COMP 211 | Assembly Programming

Chapter 3: Assembly Language
Fundamentals

Cristina G. Rivera

Basic Elements of Assembly Language

Example: Adding and Subtracting Integers

Assembling, Linking, and Running Programs Cha pter Overview
Defining Data

= Symbolic Constants
= Real-Address Mode Programming

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
2

Integer constants

Integer expressions

Character and string constants
Reserved words and identifiers
Directives and instructions
Labels

Mnemonics and Operands
Comments

Examples

Basic Elements of
Assembly
Language

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.

Integer Constants

= Optional leading + or — sign
= binary, decimal, hexadecimal, or octal digits

= Common radix characters:
= h—hexadecimal
= d-decimal
= b—binary

Examples: 30d, 6Ah, 42, 1101b
Hexadecimal beginning with letter: 0AS5h

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
4

Integer Expressions

= Operators and precedence levels:

= Examples:

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
5

Character and
String Constants

"Enclose character in single or double quotes
m IAI’ IIXII
= ASCIl character = 1 byte

"Enclose strings in single or double quotes

m IIABCII
m leZl
= Each character occupies a single byte

"Embedded quotes:
= 'Say "Goodnight," Gracie'

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.

Reserved Words
and ldentifiers
*Reserved words cannot be used as
identifiers

" Instruction mnemonics, directives, type
attributes, operators, predefined symbols

"|dentifiers
=1-247 characters, including digits

"not case sensitive

=first character must be a letter, , @, ?, or S

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.

Directives

"Commands that are recognized and
acted upon by the assembler

" Not part of the Intel instruction set

" Used to declare code, data areas, select memory
model, declare procedures, etc.

" not case sensitive
=*Different assemblers have different

directives
" TASM not the same as MASM, for example

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.

Instructions

" Assembled into machine code by assembler
" Executed at runtime by the CPU
*We use the Intel IA-32 instruction set

=An instruction contains:
" Label (optional)
* Mnemonic (required)
" Operand (depends on the instruction)
* Comment (optional)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.

Labels

" Act as place markers

= marks the address (offset) of code and data

*Follow identifier rules
=Data label

" must be unique

= example: count DWORD 100 (not followed by colon)
"Code label

= target of jump and loop instructions

= example: L1: (followed by colon)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
10

Mnemonics and
Operands

" Instruction Mnemonics
" memory aid
= examples: MOV, ADD, SUB, MUL, INC, DEC

= Operands

" constant

= constant expression
"= register

" memory (data label)

Constants and constant expressions are
often called immediate values

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
11

Comments

*Comments are good!
= explain the program's purpose
= when it was written, and by whom
" revision information
" tricky coding techniques COMMENT &
= application-specific explanations This line is a comment.

This line is a comment.
&

=Single-line comments

= begin with semicolon (;)

* Multi-line comments

" begin with COMMENT directive and a programmer-chosen character

= end with the same programmer-chosen character

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
12

"No operands

=stc

"One operand

" inc eax
" inc myByte

"Two operands
= add ebx,ecx
" sub myByte,25
= add eax,36 * 25

Instruction Format
Examples

; set Carry flag

; register
; memory

; register, register
; memory, constant
; register, constant-expression

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
13

What's Next
"Basic Elements of Assembly Language

sExample: Adding and Subtracting
Integers

= Assembling, Linking, and Running Programs
"Defining Data

=*Symbolic Constants

" Real-Address Mode Programming

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
14

Example: Adding and Subtracting Integers

TITLE Add and Subtract (AddSub.asm)
; This program adds and subtracts 32-bit integers.

INCLUDE Irvine32.inc

.code
main PROC
mov eax,10000h ; EAX = 10000h
add eax,40000h ; EAX = 50000h
sub eax,20000h ; EAX = 30000h
call DumpRegs ; display registers
exit
main ENDP

END main

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
15

Example Output

Program output, showing registers and flags:

EAX=00030000 EBX=7FFDF000 ECX=00000101 EDX=FFFFFFFF
ESTI=00000000 EDI=00000000 EBP=0012FFF0 ESP=0012FFC4
EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
16

Suggested Coding Standards (1 of 2)

"Some approaches to capitalization

= capitalize nothing
= capitalize everything

= capitalize all reserved words, including instruction
mnemonics and register names

= capitalize only directives and operators

"Other suggestions
= descriptive identifier names
" spaces surrounding arithmetic operators
" blank lines between procedures

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
17

Suggested Coding
Standards (2 of 2)

"|ndentation and spacing

" code and data labels — no indentation

" executable instructions — indent 4-5 spaces

" comments: begin at column 40-45, aligned vertically

= 1-3 spaces between instruction and its operands
=ex: mov ax,bx

= 1-2 blank lines between procedures

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
18

Program Template

TITLE Program Template (Template.asm)

; Program Description:

; Author:

; Creation Date:

; Revisions:

; Date: Modified by:

INCLUDE Irvine32.inc
.data
; (insert wvariables here)
.code
main PROC
; (insert executable instructions here)
exit
main ENDP
; (insert additional procedures here)
END main

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
19

What's Next

Basic Elements of Assembly Language

Example: Adding and Subtracting Integers

Assembling, Linking, and Running Programs

Defining Data
= Symbolic Constants
= Real-Address Mode Programming

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
20

Assembling, Linking, and Running Programs

Assemble-Link-Execute Cycle
make32.bat

Listing File

Map File

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
21

= The following diagram describes the steps from creating a source
program through executing the compiled program.

= |f the source code is modified, Steps 2 through 4 must be repeated.

Link
Library

Source Object Executable Output
File File File P

Listing Map
File File

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
22

Listing File

"Use it to see how your program is compiled
=Contains

" source code

= addresses

" object code (machine language)

" segment names

= symbols (variables, procedures, and constants)

"Example:

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
23

AddSubLst.txt

Map File

"Information about each program
segment:

= starting address
" ending address
"size

" segment type

"Example: (16-bit version)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
24

AddSubMap.txt

What's Next

Basic Elements of Assembly Language

Example: Adding and Subtracting Integers

Assembling, Linking, and Running Programs

Defining Data
= Symbolic Constants
= Real-Address Mode Programming

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
25

Defining Data

Intrinsic Data Types

Data Definition Statement

Defining BYTE and SBYTE Data
Defining WORD and SWORD Data
Defining DWORD and SDWORD Data
Defining QWORD Data

Defining TBYTE Data

Defining Real Number Data

Little Endian Order

Adding Variables to the AddSub Program
Declaring Uninitialized Data

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.

26

Intrinsic Data

“BYTE, SBYTE Types (1 of 2)

= 8-bit unsigned integer; 8-bit signed integer
*WORD, SWORD

= 16-bit unsigned & signed integer
*DWORD, SDWORD

= 32-bit unsigned & signed integer
"QWORD

= 64-bit integer

*"TBYTE
= 80-bit integer

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
27

Intrinsic Data
Types (2 of 2)

"REAL4
= 4-byte IEEE short real

"REALS8
= 8-byte IEEE long real

"REAL10
" 10-byte IEEE extended real

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
28

Data Definition Statement

= A data definition statement sets aside storage in memory
for a variable.

* May optionally assign a name (label) to the data
= Syntax:
[name] directive initializer [,initializer] . . .

VoL

valuel BYTE 10

= All initializers become binary data in memory

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
29

Defining BYTE and SBYTE Data

Each of the following defines a single byte of storage:

valuel
value2
value3
value4
valueb

valueb6

BYTE 'A'
BYTE O
BYTE 255
SBYTE -128
SBYTE +127
BYTE ?

; character constant

; smallest unsigned byte
; largest unsigned byte
; smallest signed byte

; largest signed byte

; uninitialized byte

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.

30

Defining Byte Arrays

Examples that use multiple initializers:

listl BYTE 10,20,30,40
list2 BYTE 10,20,30, 40
BYTE 50,60,70,80
BYTE 81,82,83,84
list3 BYTE ?,32,41h,00100010b
list4 BYTE OAh,20h, ‘A’,22h

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
31

Defining Strings (1
of 3)
= A string is implemented as an array of characters
= For convenience, it is usually enclosed in quotation marks
= |t often will be null-terminated

= Examples:

strl BYTE "Enter your name",0

str2 BYTE 'Error: halting program',O

str3 BYTE 'A','E','I','0','U’

greeting BYTE "Welcome to the Encryption Demo program "
BYTE "created by Kip Irvine.",0

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
32

Defining Strings (2 of 3)

= To continue a single string across multiple lines, end each line with a comma:

menu BYTE '"Checking Account",0dh,0Oah,0dh, Oah,
"l. Create a new account",0dh,Oah,
"2. Open an existing account",6 0dh, Oah,
"3. Credit the account",0dh, Oah,
"4. Debit the account",0dh, Oah,
"5. Exit",0ah,0Oah,
"Choice> ",0

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
33

Defining Strings (3 of 3)

= End-of-line character sequence:
= ODh = carriage return
= 0OAh =line feed

strl BYTE "Enter your name: ",0Dh, OAh
BYTE "Enter your address: ",0

newLine BYTE ODh,OAh,O0

ldea: Define all strings used by your program in the same
area of the data segment.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
34

Using the DUP Operator

= Use DUP to allocate (create space for) an array or string. Syntax: counter DUP
(argument)

= Counter and argument must be constants or constant EXPFESSiOI’]S

varl BYTE 20 DUP(O) ; 20 bytes, all equal to zero
var2 BYTE 20 DUP (?) ; 20 bytes, uninitialized

var3 BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"
vard4d BYTE 10,3 DUP(0),20 ; 5 bytes

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
35

Defining WORD and SWORD Data

= Define storage for 16-bit integers
= or double characters
= single value or multiple values

wordl WORD 65535 ; largest unsigned value
word2 SWORD -32768 ; smallest signed value
word3 WORD °? ; uninitialized, unsigned
word4 WORD "AB" ; double characters
myList WORD 1,2,3,4,5 ; array of words

array WORD 5 DUP(?) ; uninitialized array

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
36

Defining DWORD and
SDWORD Data

Storage definitions for signed and unsigned 32-bit
Integers:

vall DWORD 12345678h ; unsigned
val2 SDWORD -2147483648 ; signed
val3 DWORD 20 DUP(?) ; unsigned array

val4d SDWORD -3,-2,-1,0,1 ; signed array

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
37

Defining QWORD, TBYTE, Real Data

Storage definitions for quadwords, tenbyte values,
and real numbers:

quadl QWORD 1234567812345678h
vall TBYTE 1000000000123456789Ah
rVall REAL4 -2.1

rVal2 REAL8 3.2E-260

rVal3 REAL1QO 4.6E+4096

ShortArray REAL4 20 DUP(0.0)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
38

Little Endian Order

= All data types larger than a byte store their individual bytes in reverse order. The
least significant byte occurs at the first (lowest) memory address.

. :
Example: 0000: | 78
vall DWORD 12345678h
0001: | 56
0002: | 34
0003: 12

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
39

Adding Variables to AddSub

TITLE Add and Subtract, Version 2 (AddSub2 . asm)
; This program adds and subtracts 32-bit unsigned

; integers and stores the sum in a variable.

INCLUDE Irvine32.inc

.data

vall DWORD 10000h

val2 DWORD 40000h

val3 DWORD 20000h

finalVal DWORD °?

.code

main PROC
mov eax,vall ; start with 10000h
add eax,val2 ; add 40000h
sub eax,val3 ; subtract 20000h
mov finalVal, eax ; store the result (30000h)
call DumpRegs ; display the registers
exit

main ENDP

END main

Irvine, Kip R. ASSembly Language for Intel-Based Computers, 2007.
40

Declaring Unitialized Data

= Use the .data? directive to declare an unintialized data segment:
.data?

= Within the segment, declare variables with "?" initializers:
smallArray DWORD 10 DUP(?)

Advantage: the program's EXE file size is reduced.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
41

What's Next

Basic Elements of Assembly Language

Example: Adding and Subtracting Integers

Assembling, Linking, and Running Programs

Defining Data
= Symbolic Constants
= Real-Address Mode Programming

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
42

Symbolic
Constants

= Equal-Sign Directive

= Calculating the Sizes of Arrays and Strings
=EQU Directive

*TEXTEQU Directive

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
43

Equal-Sign
Directive

" name = expression

= expression is a 32-bit integer (expression
or constant)

* may be redefined

= name is called a symbolic constant
= good programming style to use

symbols

COUNT = 500

mov al,COUNT

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
44

Calculating the Size
of a Byte Array

= current location counter: S

= subtract address of list
= difference is the number of bytes

list BYTE 10,20,30,40
ListSize = ($ - list)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
45

Calculating the Size
of a Word Array

Divide total number of bytes by 2 (the size of a word)

list WORD 1000h,2000h,3000h,4000h
ListSize = ($ - list) / 2

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
46

Calculating the Size of a Doubleword Array

Divide total number of bytes by 4 (the size of a doubleword)

list DWORD 1,2,3,4
ListSize = ($ - list) / 4

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
47

EQU Directive

" Define a symbol as either an integer or text expression.
= Cannot be redefined

PI EQU <3.1416>

pressKey EQU <"Press any key to continue...",0>
.data

prompt BYTE pressKey

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
48

TEXTEQU Directive

= Define a symbol as either an integer or text expression.
= Called a text macro
= Can be redefined

continueMsg TEXTEQU <"Do you wish to continue (Y/N)?">
rowSize = 5

.data

promptl BYTE continueMsg

count TEXTEQU % (rowSize * 2) ; evaluates the expression

setupAL TEXTEQU <mov al,count>

.code

setupAL ; generates: "mov al,10"

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
49

What's Next

Basic Elements of Assembly Language

Example: Adding and Subtracting Integers

Assembling, Linking, and Running Programs

Defining Data
= Symbolic Constants
= Real-Address Mode Programming

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
50

Real-Address Mode
Programming (1 of 2)

= Generate 16-bit MS-DOS Programs

= Advantages
= enables calling of MS-DOS and BIOS functions
" no memory access restrictions

= Disadvantages
= must be aware of both segments and offsets

= cannot call Win32 functions (Windows 95 onward)
= |imited to 640K program memory

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
51

Real-Address Mode
Programming (2 of 2)

= Requirements
* INCLUDE Irvinel6.inc
= |nitialize DS to the data segment:
mov ax,@data

mov ds,ax

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
52

Add and Subtract, 16-Bit Version

TITLE Add and Subtract, Version 2 (AddSub2r.asm)
INCLUDE Irvinelé6.inc

.data

vall DWORD 10000h

val2 DWORD 40000h

val3 DWORD 20000h

finalvVal DWORD °?

.code

main PROC
mov ax,(@ddata ; initialize DS
mov ds, ax
mov eax,vall ; get first value
add eax,val2 ; add second value
sub eax,val3 ; subtract third wvalue
mov finalVal,k eax ; store the result
call DumpRegs ; display registers
exit

main ENDP

END main

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.

53

Integer expression, character
constant

directive — interpreted by the
assembler

instruction — executes at runtime
code, data, and stack segments

source, listing, object, map,
executable files

Data definition directives: SU mma ry

= BYTE, SBYTE, WORD, SWORD,
DWORD, SDWORD, QWORD,
TBYTE, REAL4, REALS, and
REAL10

= DUP operator, location counter (S)

Symbolic constant
= EQU and TEXTEQU

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.

54

TITLE Add and Subtract (AddSub2.asm)

INCLUDE Irvine.inc
.data
vall WORD 10000h
val2 WORD 40000h
val3 WORD 20000h
Vald4d SDWORD -3
Val5 SDWORD -5
finalVal WORD ? Exercise:
.code
main PROC
mov eax,vall .
add eax,val2 Encircle
sub eax,val3
mov finalVal,eax the
call dumpregs
mov eax, val4 Error
Mul eax,valb
call DumpRegs
exit
main ENDP
END main
mov eax, valb
mul vald

call DumpRegs

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2007.
55

