Chapter 3 Beam Optics

- An important paraxial wave solution that satisfies Helmholtz equation is Gaussian beam. Example: Laser.

3.1 The Gaussian Beam

A. Complex Amplitude

$$
\begin{array}{rlrl}
U(\vec{r}) & =A_{0} \frac{W_{0}}{W(z)} \exp \left[-\frac{\rho^{2}}{W^{2}(z)}\right] & & \text { Amplitude factor } \\
& \times \exp \left\{-j\left[k z-\tan ^{-1}\left(\frac{z}{z_{0}}\right)\right]\right\} & & \text { Longitudinal phase } \\
& \times \exp \left[-j \frac{k \rho^{2}}{2 R(z)}\right] & & \text { Radial phase } \\
W(z) & =W_{0} \sqrt{1+\left(\frac{z}{z_{0}}\right)^{2}} & & \\
R(z) & =z\left[1+\left(\frac{z_{0}}{z}\right)^{2}\right] & & \\
z_{0} \equiv \frac{\pi W_{0}^{2}}{\lambda} & & \tag{3.1-11}
\end{array}
$$

\rightarrow Knowing W_{0} and λ (or z_{0}), a Gaussian beam is determined!
Ref: Verdeyen, "Laser Electronics," Chapter 3, Prentice-Hall
B. Properties of Gaussian Beam

Figure 3.2 Spreading of a $\mathrm{TEM}_{0.0}$ mode.
Intensity and power
$I(\rho, z)=I_{0}\left[\frac{W_{0}}{W(z)}\right]^{2} \exp \left[-\frac{2 \rho^{2}}{W^{2}(z)}\right]$

$$
\begin{equation*}
P=\frac{1}{2} I_{0}\left(\pi W_{0}^{2}\right) \tag{3.1-12}
\end{equation*}
$$

(a)

(b)

(c)

Figure 3.1-1 The normalized beam intensity I / I_{0} as a function of the radial distance ρ at different axial distances: $(a) z=0$; (b) $z=z_{0}$; (c) $z=2 z_{0}$.
Beam radius and divergence

$$
\begin{align*}
& I(\rho, z)=\frac{1}{e^{2}} I(0, z) \text { when } \rho=W(z) \\
& W(z)=W_{0} \sqrt{1+\left(\frac{z}{z_{0}}\right)^{2}}: \text { Beam radius } \tag{3.1-17}\\
& \quad W_{0}: \text { Waist radius } \\
& 2 W_{0}: \text { Spot size } \\
& W\left(z_{0}\right)=\sqrt{2} W_{0} \\
& \theta_{0}=\frac{\lambda}{\pi W_{0}}: \text { Divergence angle }\left(=\frac{\theta}{2} \text { in Fig. } 3.2 \text { shown above }\right) \tag{3.1-19}
\end{align*}
$$

\rightarrow Highly directional beam requires short λ and large W_{0}.
Depth of focus (Confocal parameter)

Figure 3.1-4 The depth of focus of a Gaussian beam.

$$
\begin{equation*}
2 z_{0}=\frac{2 \pi W_{0}^{2}}{\lambda} \tag{3.1-21}
\end{equation*}
$$

Longitudinal phase

$$
\varphi(z)=k z-\tan ^{-1}\left(\frac{z}{z_{0}}\right)
$$

\rightarrow Second term: phase retardation
Phase velocity $\quad v_{p}=\left(\frac{\varphi}{\omega z}\right)^{-1}=\frac{c}{1-\frac{\lambda}{2 \pi z} \tan ^{-1}\left(\frac{z}{z_{0}}\right)}>c$!
Wavefront bending
Surface of constant phase velocity:
$z+\frac{\rho^{2}}{2 R}=q \lambda+\xi \frac{\lambda}{2 \pi}, \quad \xi \equiv \tan ^{-1}\left(\frac{z}{z_{0}}\right)$
\rightarrow Parabolic surface with radius of curvature R

Figure 3.1-6 The radius of curvature $R(z)$ of the wavefronts of a Gaussian beam. The dashed line is the radius of curvature of a spherical wave.

Figure 3.1-7 Wavefronts of a Gaussian beam.

3.2 Transmission through Optical Components

Gaussian beam remains a Gaussian beam after transmitting through a set of circularly symmetrical optical components aligned with the beam axis. Only the beam waist and curvature are altered.
A. Transmission through a Thin Lens

Figure 3.2-1 Transmission of a Gaussian beam through a thin lens.

$$
\begin{align*}
& \frac{1}{R^{\prime}}=\frac{1}{R}-\frac{1}{R^{\prime}} \tag{3.2-2}\\
& W^{\prime}=W \\
& W_{0}^{\prime}=\frac{W}{\sqrt{1+\left(\frac{\pi W^{2}}{\lambda R^{\prime}}\right)^{2}}}
\end{align*}
$$

$$
\begin{equation*}
z^{\prime}=\frac{R^{\prime}}{1+\left(\frac{\lambda R^{\prime}}{\pi W^{2}}\right)^{2}} \tag{3.2-4}
\end{equation*}
$$

Waist radius $\quad W_{0}{ }^{\prime}=M W_{0}$
Waist locatioin $\quad\left(z^{\prime}-f\right)=M^{2}(z-f)$

Divergence $\quad 2 \theta_{0}{ }^{\prime}=\frac{2 \theta_{0}}{M}$
Magnification $\quad M=\frac{M_{r}}{\sqrt{1+r^{2}}}$

$$
\begin{equation*}
M_{r} \equiv\left|\frac{f}{z-f}\right|, r \equiv \frac{z_{0}}{z-f} \tag{3.2-9}
\end{equation*}
$$

Example: A planar wave transmitting through a thin lens is focused at distance $z^{\prime}=f$.
B. Beam Shaping

Figure 3.2-3 Focusing a beam with a lens at the beam waist.
Waist of incident Gaussian beam is at lens location.

$$
\begin{align*}
& R^{\prime}=-f \\
& W_{0}^{\prime}=\frac{W_{0}}{\sqrt{1+\left(\frac{z_{0}}{f}\right)^{2}}} \tag{3.2-13}
\end{align*}
$$

\rightarrow To focus into a small spot, we need large incident beam width, short focal length, short wavelength.

$$
\begin{equation*}
z^{\prime}=\frac{f}{1+\left(\frac{f}{z_{0}}\right)^{2}} \tag{3.2-14}
\end{equation*}
$$

F number of a lens

$$
F_{\#} \equiv \frac{f}{D}
$$

$$
\begin{equation*}
D=2 W_{0}: \text { Diameter of the lens } \tag{3.2-17}
\end{equation*}
$$

Focal spot size $\quad 2 W_{0}{ }^{\prime}=\frac{4}{\pi} \lambda F_{\#}$
C. Reflection from a Spherical Mirror

Same as transmission through a thin lens, $f=-R / 2$

$$
\begin{equation*}
W_{2}=W_{1} \tag{3.2-19}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{R_{2}}=\frac{1}{R_{1}}+\frac{2}{R} \tag{3.2-20}
\end{equation*}
$$

Figure 3.2-8 Reflection of a Gaussian beam of curvature R_{1} from a mirror of curvature R : (a) $R=\infty$; (b) $R_{1}=\infty$; (c) $R_{1}=-R$. The dashed curves show the effects of replacing the mirror by a lens of focal length $f=-R / 2$.

D. Transmission through an Arbitrary Optical System

The ABCD Law

Figure 3.2-9 Modification of a Gaussian beam by an arbitrary paraxial system described by an $A B C D$ matrix.

$$
\begin{equation*}
q_{2}=\frac{A q_{1}+B}{C q_{1}+D} \tag{3.2-9}
\end{equation*}
$$

Like in the case of ray-transfer matrix, the ABCD matrix of a cascade of optical components (or systems) is a product of the ABCD matrices of the individual components (or systems).

3.3 Hermite-Gaussian Beams

Modulated version of Gaussian beam
\rightarrow Intensity distribution not Gaussian, but same wavefronts and angular divergence as the Gaussian beam.

Figure 3.3-2 Intensity distributions of several low-order Hermite-Gaussian beams in the transverse plane. The order (l, m) is indicated in each case.

