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Chapter 3  Beam Optics 
 

- An important paraxial wave solution that satisfies Helmholtz equation is 
Gaussian beam. Example: Laser. 

 
3.1  The Gaussian Beam 
A. Complex Amplitude 
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→ Knowing 0W  and λ  (or 0z ), a Gaussian beam is determined! 
Ref: Verdeyen, “Laser Electronics,” Chapter 3, Prentice-Hall 
 
B. Properties of Gaussian Beam 

 
Intensity and power 
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Beam radius and divergence 
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     0W :  Waist radius 
     02W :  Spot size 
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λθ = :  Divergence angle (=

2
θ  in Fig. 3.2 shown above) 

           (3.1-19) 
→ Highly directional beam requires short λ  and large 0W . 
 
Depth of focus (Confocal parameter) 
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Longitudinal phase 
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  → Second term: phase retardation 
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Wavefront bending 
Surface of constant phase velocity: 
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  → Parabolic surface with radius of curvature R 
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3.2  Transmission through Optical Components 

Gaussian beam remains a Gaussian beam after transmitting through a set of 
circularly symmetrical optical components aligned with the beam axis. Only the 
beam waist and curvature are altered. 

 
A. Transmission through a Thin Lens 
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 Waist radius  00 ' MWW =      (3.2-5) 
 Waist locatioin )()'( 2 fzMfz −=−     (3.2-6) 
 Depth of focus )2('2 0

2
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Example: A planar wave transmitting through a thin lens is focused at distance 
fz =' . 

 
 
 
 
B. Beam Shaping 

 

 
 
Waist of incident Gaussian beam is at lens location. 
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→ To focus into a small spot, we need large incident beam width, short focal 
length, short wavelength. 
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F number of a lens 

   
D
fF ≡#  

   02WD = :  Diameter of the lens 

Focal spot size #0
4'2 FW λ
π

=       (3.2-17) 

 
C. Reflection from a Spherical Mirror 
     Same as transmission through a thin lens, 2
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D. Transmission through an Arbitrary Optical System 
The ABCD Law 
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Like in the case of ray-transfer matrix, the ABCD matrix of a cascade of optical 
components (or systems) is a product of the ABCD matrices of the individual 
components (or systems).  
 
3.3 Hermite-Gaussian Beams 

Modulated version of Gaussian beam 
→ Intensity distribution not Gaussian, but same wavefronts and angular 
divergence as the Gaussian beam. 

 

 


