
Chapter 3

Continuous Random Variables

3.1 Introduction

Rather than summing probabilities related to discrete random variables, here for
continuous random variables, the density curve is integrated to determine probability.

Exercise 3.1 (Introduction)
Patient’s number of visits, X, and duration of visit, Y .
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_

Figure 3.1: Comparing discrete and continuous distributions
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1. Number of visits, X is a (i) discrete (ii) continuous random variable,
and duration of visit, Y is a (i) discrete (ii) continuous random variable.

2. Discrete

(a) P (X = 2) = (i) 0 (ii) 0.25 (iii) 0.50 (iv) 0.75

(b) P (X ≤ 1.5) = P (X ≤ 1) = F (1) = 0.25 + 0.50 = 0.75
requires (i) summation (ii) integration and is a value of a
(i) probability mass function (ii) cumulative distribution function
which is a (i) stepwise (ii) smooth increasing function

(c) E(X) = (i)
∑
xf(x) (ii)

∫
xf(x) dx

(d) V ar(X) = (i) E(X2) − µ2 (ii) E(Y 2) − µ2

(e) M(t) = (i) E
(
etX

)
(ii) E

(
etY
)

(f) Examples of discrete densities (distributions) include (choose one or more)
(i) uniform
(ii) geometric
(iii) hypergeometric
(iv) binomial (Bernoulli)
(v) Poisson

3. Continuous

(a) P (Y = 3) = (i) 0 (ii) 0.25 (iii) 0.50 (iv) 0.75

(b) P (Y ≤ 3) = F (3) =
∫ 3

2
x
6
dx = x2

12

]x=3

x=2
= 32

12
− 22

12
= 5

12

requires (i) summation (ii) integration and is a value of a
(i) probability density function (ii) cumulative distribution func-
tion
which is a (i) stepwise (ii) smooth increasing function

(c) E(Y ) = (i)
∑
yf(y) (ii)

∫
yf(y) dy

(d) V ar(Y ) = (i) E(X2) − µ2 (ii) E(Y 2) − µ2

(e) M(t) = (i) E
(
etX

)
(ii) E

(
etY
)

(f) Examples of continuous densities (distributions) include (choose one or
more)
(i) uniform
(ii) exponential
(iii) normal (Gaussian)
(iv) Gamma
(v) chi-square
(vi) student-t
(vii) F
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3.2 Definitions

Random variable X is continuous if probability density function (pdf) f is continuous
at all but a finite number of points and possesses the following properties:

• f(x) ≥ 0, for all x,

•
∫∞
−∞ f(x) dx = 1,

• P (a < X ≤ b) =
∫ b
a
f(x) dx

The (cumulative) distribution function (cdf) for random variable X is

F (x) = P (X ≤ x) =

∫ x

−∞
f(t) dt,

and has properties

• limx→−∞ F (x) = 0,

• limx→∞ F (x) = 1,

• if x1 < x2, then F (x1) ≤ F (x2); that is, F is nondecreasing,

• P (a ≤ X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a) =
∫ b
a
f(x) dx,

• F ′(x) = d
dx

∫ x
−∞ f(t) dt = f(x).

xa

cdf F(a) = P(X < a)

density, f(x)

a b

f(x) is positive

P(a < X < b) = F(b) - F(a)
total area = 1

_

probability
_

probability

Figure 3.2: Continuous distribution

The expected value or mean of random variable X is given by

µ = E(X) =

∫ ∞
−∞

xf(x) dx,

the variance is

σ2 = V ar(X) = E[(X − µ)2] = E(X2)− [E(X)]2 = E(X2)− µ2
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with associated standard deviation, σ =
√
σ2.

The moment-generating function is

M(t) = E
[
etX
]

=

∫ ∞
−∞

etXf(x) dx

for values of t for which this integral exists.
Expected value, assuming it exists, of a function u of X is

E[u(X)] =

∫ ∞
−∞

u(x)f(x) dx

The (100p)th percentile is a value of X denoted πp where

p =

∫ πp

−∞
f(x) dx = F (πp)

and where πp is also called the quantile of order p. The 25th, 50th, 75th percentiles
are also called first, second, third quartiles, denoted p1 = π0.25, p2 = π0.50, p3 = π0.75

where also 50th percentile is called the median and denoted m = p2. The mode is the
value x where f is maximum.

Exercise 4.2 (Definitions)

1. Waiting time.
Let the time waiting in line, in minutes, be described by the random variable
X which has the following pdf,

f(x) =

{
1
6
x, 2 < x ≤ 4,

0, otherwise.

0 1 2 3

1/3

1/2

2/3

1

4 0 1 2 3

0.25

0.75

1

4
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P(X < 3) = 5/12

probability =

value of function,

F(3) = P(X < 3) = 5/12

x x

probability at 3,

P(X = 3) = 0

Figure 3.3: f(x) and F(x)
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(a) Verify function f(x) satisfies the second property of pdfs,∫ ∞
−∞

f(x) dx =

∫ 4

2

1

6
x dx =

x2

12

]x=4

x=2

=
42

12
− 22

12
=

12

12
=

(i) 0 (ii) 0.15 (iii) 0.5 (iv) 1

(b) P (2 < X ≤ 3) = ∫ 3

2

1

6
x dx =

x2

12

]x=3

x=2

=
32

12
− 22

12
=

(i) 0 (ii) 5
12

(iii) 9
12

(iv) 1

(c) P (X = 3) = P (3− < X ≤ 3) = 32

12
− 32

12
= 0 6= f(3) = 1

6
· 3 = 0.5

(i) True (ii) False
So the pdf f(x) = 1

6
x determined at some value of x does not determine probability.

(d) P (2 < X ≤ 3) = P (2 < X < 3) = P (2 ≤ X ≤ 3) = P (2 ≤ X < 3)
(i) True (ii) False
because P (X = 3) = 0 and P (X = 2) = 0

(e) P (0 < X ≤ 3) = ∫ 3

2

1

6
x dx =

x2

12

]x=3

x=2

=
32

12
− 22

12
=

(i) 0 (ii) 5
12

(iii) 9
12

(iv) 1
Why integrate from 2 to 3 and not 0 to 3?

(f) P (X ≤ 3) = ∫ 3

2

1

6
x dx =

x2

12

]x=3

x=2

=
32

12
− 22

12
=

(i) 0 (ii) 5
12

(iii) 9
12

(iv) 1

(g) Determine cdf (not pdf) F (3).

F (3) = P (X ≤ 3) =

∫ 3

2

1

6
x dx =

x2

12

]x=3

x=2

=
32

12
− 22

12
=

(i) 0 (ii) 5
12

(iii) 9
12

(iv) 1

(h) Determine F (3)− F (2).

F (3)−F (2) = P (X ≤ 3)−P (X ≤ 2) = P (2 ≤ X ≤ 3) =

∫ 3

2

1

6
x dx =

x2

12

]x=3

x=2

=
32

12
−22

12
=

(i) 0 (ii) 5
12

(iii) 9
12

(iv) 1
because everything left of (below) 3 subtract everything left of 2 equals what is between 2 and 3
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(i) The general distribution function (cdf) is

F (x) =


∫ x
−∞ 0 dt = 0, x ≤ 2,∫ x
2

t
6
dt = t2

12

]t=x
t=2

= x2

12
− 4

12
, 2 < x ≤ 4,

1, x > 4.

In other words, F (x) = x2

12
− 4

12
= x2−4

12
on (2, 4]. Both pdf density and cdf

distribution are given in the figure above.
(i) True (ii) False

(j) F (2) = 22

12
− 4

12
= (i) 0 (ii) 5

12
(iii) 9

12
(iv) 1.

(k) F (3) = 32

12
− 4

12
= (i) 0 (ii) 5

12
(iii) 9

12
(iv) 1.

(l) P (2.5 < X < 3.5) = F (3.5)− F (2.5) =
(

3.52

12
− 4

12

)
−
(

2.52

12
− 4

12

)
=

(i) 0 (ii) 0.25 (iii) 0.50 (iv) 1.

(m) P (X > 3.5) = 1− P (X ≤ 3.5) = 1− F (3.5) = 1−
(

3.52

12
− 4

12

)
=

(i) 0.3125 (ii) 0.4425 (iii) 0.7650 (iv) 1.

(n) Expected value. The average wait time is

µ = E(X) =

∫ ∞
−∞

xf(x) dx =

∫ 4

2

x

(
1

6
x

)
dx =

∫ 4

2

x2

6
dx =

x3

18

]4

2

=
43

18
−23

18
=

(i) 23
9

(ii) 28
9

(iii) 31
9

(iv) 35
9

.

library(MASS) # INSTALL once, RUN once (per session) library MASS

mean <- 4^3/18 - 2^3/18; mean; fractions(mean) # turn decimal to fraction

[1] 3.111111

[1] 28/9

(o) Expected value of function u = x2.

E
(
X2
)

=

∫ ∞
−∞

x2f(x) dx =

∫ 4

2

x2

(
1

6
x

)
dx =

∫ 4

2

x3

6
dx =

x4

24

]4

2

=
44

24
−24

24
=

(i) 9 (ii) 10 (iii) 11 (iv) 12.

(p) Variance, method 1. Variance in wait time is

σ2 = V ar(X) = E
(
X2
)
− µ2 = 10−

(
28

9

)2

=

(i) 23
81

(ii) 26
81

(iii) 31
81

(iv) 35
81

.

library(MASS) # INSTALL once, RUN once (per session) library MASS

sigma2 <- 10 - (28/9)^2 ; fractions(sigma2) # turn decimal to fraction



Section 2. Definitions (LECTURE NOTES 5) 79

[1] 26/81

(q) Variance, method 2. Variance in wait time is

σ2 = V ar(X) = E[(X − µ)2] =

∫ ∞
−∞

(x− µ)2f(x) dx

=

∫ 4

2

(
x− 28

9

)2(
1

6
x

)
dx

=

∫ 4

2

(
x3

6
− 56x2

54
+

784x

486

)
dx

=
x4

24
− 56x3

162
+

784x2

972

]4

2

=

(i) 23
81

(ii) 26
81

(iii) 31
81

(iv) 35
81

.

library(MASS) # INSTALL once, RUN once (per session) library MASS

sigma2 <- (4^4/24 - 56*4^3/162 + 784*4^2/972) - (2^4/24 - 56*2^3/162 + 784*2^2/972)

fractions(sigma2) # turn decimal to fraction

[1] 26/81

(r) Standard deviation. Standard deviation in time spent on the call is,

σ =
√
σ2 =

√
26

81
≈

(i) 0.57 (ii) 0.61 (iii) 0.67 (iv) 0.73.

(s) Moment generating function.

M(t) = E[etX ] =

∫ ∞
−∞

etxf(x) dx

=

∫ 4

2

etx
(

1

6
x

)
dx

=
1

6

∫ 4

2

xetx dx

=
1

6
etx
(
x

t
− 1

t2

)]4

x=2

=
1

6
e4t

(
4

t
− 1

t2

)
− 1

6
e2t

(
2

t
− 1

t2

)
, t 6= 0.

(i) True (ii) False
use integration by parts for t 6= 0 case:

∫
u dv = uv −

∫
v du where u = x, dv = etxdx.
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(t) Median. Since the distribution function F (x) = x2−4
12

, then median m =
π0.50 occurs when

F (m) = P (X ≤ m) =
m2 − 4

12
=

1

2

so

m = π0.50 =

√
12

2
+ 4 ≈

(i) 1.16 (ii) 2.16 (iii) 3.16
negative answer m ≈ −3.16 is not in 2 < x ≤ 4, so m 6= −3.16

2. Density with unknown a. Find a such that

f(x) =

{
ax2, 1 < x ≤ 5,
0, otherwise.

0 1 2 3

0.25

0.50

0.75

1

4 5 0 1 2 3

0.25

0.50

0.75

1

4 5

probability, cdf F(x) = P(X < x)density, pdf f(x)

x x

Figure 3.4: f(x) and F(x)

(a) Find constant a. Since the cdf F (5) = 1, and

F (x) =

∫ x

1

at2 dt = a
t3

3

]t=x
t=1

=
ax3

3
− a

3
=

a(x3 − 1)

3

then

F (5) =
a(53 − 1)

3
=

124a

3
= 1,

so a = (i) 3
124

(ii) 2
124

(iii) 1
124

(b) Determine pdf.
f(x) = ax2 =

(i) 3
124
x2 (ii) 2

124
x2 (iii) 1

124
x2
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(c) Determine cdf.

F (x) =
a(x3 − 1)

3
=

3

124
× x3 − 1

3
=

(i) 3
124

(x3 − 1) (ii) 2
124

(x3 − 1) (iii) 1
124

(x3 − 1)

(d) Determine P (X ≥ 2).

P (X ≥ 2) = 1− P (X < 2) = 1− F (2) = 1− 1

124
(23 − 1) =

(i) 61
124

(ii) 117
124

(iii) 61
117

(e) Determine P (X ≥ 4).

P (X ≥ 4) = 1− P (X < 4) = 1− F (4) = 1− 1

124
(43 − 1) =

(i) 61
124

(ii) 117
124

(iii) 61
117

(f) Determine P (X ≥ 4|X ≥ 2).

P (X ≥ 4|X ≥ 2) =
P (X ≥ 4 ∩X ≥ 2)

P (X ≥ 2)
=
P (X ≥ 4)

P (X ≥ 2)
=

61/124

117/124
=

(i) 116
124

(ii) 117
124

(iii) 61
117

(g) Expected value.

µ = E(X) =

∫ ∞
−∞

xf(x) dx =

∫ 5

1

x

(
3

124
x2

)
dx =

∫ 5

1

3x3

124
dx =

3x4

496

]5

1

=
3 · 54

496
−3 · 14

496
=

(i) 114
31

(ii) 115
31

(iii) 116
31

(iv) 117
31

.

(h) Expected value of function u = x2.

E(X2) =

∫ ∞
−∞

x2f(x) dx =

∫ 5

1

x2

(
3

124
x2

)
dx =

∫ 5

1

3x4

124
dx =

3x5

620

]5

1

=
3 · 55

620
−3 · 15

620
≈

(i) 15.12 (ii) 16.12 (iii) 17.12 (iv) 18.12.

(i) Determine 25th percentile (first quartile), p1 = π0.25.

Since F (x) = 1
124

(x3 − 1), then,

F (π0.25) =
1

124
(π3

0.25 − 1) = 0.25 =
1

4
,

and so

π0.25 =
3

√
124

4
+ 1 ≈

(i) 2.38 (ii) 3.17 (iii) 4.17
The π0.25 is that value where 25% of probability is at or below (to the left of) this value.
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(j) Determine π0.01.

F (π0.01) =
1

124
(π3

0.01 − 1) = 0.01,

and so
π0.01 = 3

√
0.01 · 124 + 1 ≈

(i) 1.31 (ii) 3.17 (iii) 4.17
The π0.01 is that value where 1% of probability is at or below (to the left of) this value.

3. Piecewise pdf. Let random variable X have pdf

f(x) =


x, 0 < x ≤ 1,
2− x, 1 < x ≤ 2,
0, elsewhere.

0 1 2

0.25

0.50

0.75

1

0 1 2 3

0.25

0.50

0.75

1

probability, cdf F(x) = P(X < x)density, pdf f(x)

x x

Figure 3.5: f(x) and F(x)

(a) Expected value.

µ = E(X) =

∫ ∞
−∞

xf(x) dx

=

∫ 1

0

x (x) dx+

∫ 2

1

x (2− x) dx

=

∫ 1

0

x2 dx+

∫ 2

1

(
2x− x2

)
dx

=

[
x3

3

]1

0

+

[
2x2

2
− x3

3

]2

1

=

(
13

3
− 03

3

)
+

(
22 − 23

3

)
−
(

12 − 13

3

)
=

(i) 1 (ii) 2 (iii) 3 (iv) 4.
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(b) E (X2).

E
(
X2
)

=

∫ 1

0

x2 (x) dx+

∫ 2

1

x2 (2− x) dx

=

∫ 1

0

x3 dx+

∫ 2

1

(
2x2 − x3

)
dx

=

[
x4

4

]1

0

+

[
2x3

3
− x4

4

]2

1

=

(
14

4
− 04

4

)
+

(
2(2)3

3
− 24

4

)
−
(

2(1)3

3
− 14

4

)
=

(i) 4
6

(ii) 5
6

(iii) 6
6

(iv) 7
6
.

(c) Variance.

σ2 = Var(X) = E
(
X2
)
− µ2 =

7

6
− 12 =

(i) 1
3

(ii) 1
4

(iii) 1
5

(iv) 1
6
.

(d) Standard deviation.

σ =
√
σ2 =

√
1

6
≈

(i) 0.27 (ii) 0.31 (iii) 0.41 (iv) 0.53.

(e) Median. Since the distribution function is

F (x) =


0 x ≤ 0∫ x

0
t dt = t2

2

]x
t=0

= x2

2
, 0 < x ≤ 1,∫ x

1
(2− t) dt+ F (1) = 2t− t2

2

]x
t=1

+ 1
2

= 2x− x2

2
− (2(1)− 12

2
) + 1

2
, 1 < x ≤ 2,

1, x > 2.

F (1) = 1
2

, so add 1
2

to F (x) for 1 < x ≤ 2

then median m occurs when

F (x) =


m2

2
= 1

2
, 0 < x ≤ 1,

2m− m2

2
− 1 = 1

2
, 1 < x ≤ 2,

1, x > 2.

so for both 0 < x ≤ 1 and 1 < x ≤ 2, m = (i) 1 (ii) 1.5 (iii) 2
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3.3 The Uniform and Exponential Distributions

Two special probability density functions are discussed: uniform and exponential.
The continuous uniform (rectangular) distribution of random variable X has density

f(x) =

{
1
b−a , a ≤ x ≤ b,

0, elsewhere,

where “X is U(a, b)” means “X is uniform over [a,b]”, distribution function,

F (x) =


0 x < a,
x−a
b−a a ≤ x ≤ b,

1 x > b,

and its expected value (mean), variance and standard deviation are,

µ = E(X) =
a+ b

2
, σ2 = V ar(X) =

(b− a)2

12
, σ =

√
V ar(X),

and moment-generating function is

M(t) = E
[
etX
]

=
etb − eta

t(b− a)
, t 6= 0.

The continuous exponential random variable X has density

f(x) =

{
λe−λx, x ≥ 0,
0, elsewhere,

distribution function,

F (x) =

{
0 x < 0,
1− e−λx x ≥ 0,

and its expected value (mean), variance and standard deviation are,

µ = E(X) =
1

λ
, σ2 = V (Y ) =

1

λ2
, σ =

1

λ
,

and moment-generating function is

M(t) = E
[
etX
]

=
λ

λ− t
, t < λ.

Notice if θ = 1
λ

in the exponential distribution,

f(x) =
1

θ
e−

x
θ , F (x) = 1− e−

x
θ , µ = σ = θ, M(t) =

θ

1− tθ
.

Exercise 3.3 (The Uniform and Exponential Distributions)
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1. Uniform: potato weights. An automated process fills one bag after another
with Idaho potatoes. Although each filled bag should weigh 50 pounds, in fact,
because of the differing shapes and weights of each potato, each bag weight, X,
is anywhere from 49 pounds to 51 pounds, with uniform density:

f(x) =

{
0.5, 49 ≤ x ≤ 51,
0, elsewhere.

(a) Since a = 49 and b = 51, the distribution is

F (x) =


0 x < 49,
x−49
51−49

49 ≤ x ≤ 51,

1 x > 52,

and so graphs of density and distribution are given in the figure.
(i) True (ii) False

0 49 50 51 0 49 50 51

0.25

0.50

0.75

1

0.25

0.50

0.75

1

probability, cdf F(x) = P(X < x)density, pdf f(x)

x x

Figure 3.6: Distribution function: continuous uniform

(b) Determine P (49.5 < X < 51) by integrating pdf.

P (49.5 < X < 51) =

∫ 51

49.5

1

2
dx =

x

2

]51

x=49.5
=

51

2
− 49.5

2
=

1.5

2

(i) 0.25 (ii) 0.50 (iii) 0.75 (iv) 1.

(c) Determine P (49.5 < X < 51) using cdf.

P (49.5 < X < 51) = F (51)− F (49.5) =
51− 49

51− 49
− 49.5− 49

51− 49
=

(i) 0.25 (ii) 0.50 (iii) 0.75 (iv) 1.
1 - punif(49.5,49,51) # uniform P(49.5 < X < 51) = 1 - P(X < 49.5), 49 < x < 51

[1] 0.75
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(d) The chance the bags weight more than 49.5

P (X > 49.5) = 1− P (X ≤ 49.5) = 1− F (49.5) = 1− 49.5− 49

51− 49
=

(i) 0.25 (ii) 0.50 (iii) 0.75 (iv) 1.
1 - punif(49.5,49,51) # uniform P(X > 49.5) = 1 - P(X < 49.5), 49 < x < 51

[1] 0.75

(e) What is the mean weight of a bag of potatoes?

µ = E(X) =
a+ b

2
=

49 + 51

2
=

(i) 49 (ii) 50 (iii) 51 (iv) 52.

(f) What is the standard deviation in the weight of a bag of potatoes?

σ =

√
(b− a)2

12
=

√
(51− 49)2

12
≈

(i) 0.44 (ii) 0.51 (iii) 0.55 (iv) 0.58.

(g) Determine probability within 1 standard deviation of mean.

P (µ− σ < X < µ+ σ) ≈ P (50− 0.58 < X < 50 + 0.58)

= P (49.42 < X < 50.58)

=

∫ 50.58

49.42

1

2
dx =

x

2

]50.58

x=49.42
=

(i) 0.44 (ii) 0.51 (iii) 0.55 (iv) 0.58.

(h) Function of X. If it costs $0.0556 (5.56 cents) per pound of potatoes,
then the cost of X pounds of potatoes is Y = 0.0556X. Determine the
probability a bag of potatoes chosen at random costs at least $2.78.

P (Y ≥ 2.78) = P (0.0556X ≥ 2.78) = P (X ≥ 50) =

∫ 51

50

1

2
dx =

x

2

]51

x=50
=

(i) 0.25 (ii) 0.50 (iii) 0.75 (iv) 1.

2. Exponential: atomic decay. Assume atomic time-to-decay obeys exponential
pdf with (inverse) mean rate of decay λ = 3,

f(x) =

{
3e−3x, x > 0,
0, otherwise.
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Figure 3.7: f(x) and F(x)

(a) Find F (x). By substituting u = −3x, then du = −3 dx and so

F (x) =

∫
3e−3x dx = −

∫
e−3x(−3) dx = −

∫
eu du = −eu =

(i) −e−3x (ii) e−3x (iii) −3e−3x

then
F (x) =

[
−e−3t

]t=x
t=0

=
(
−e−3x − (−e−3(0))

)
=

(i) e−3x − 1 (ii) e−3x + 1 (iii) 1 − e−3x

(b) Chance atomic decay takes at least 2 microseconds, P (X ≥ 2), is

P (X ≥ 2) = 1− P (X < 2) = 1− F (2) = 1−
(
1− e−3(2)

)
≈

(i) 0.002 (ii) 0.003 (iii) 0.004
1 - pexp(2,3) # exponential P(X > 2), lambda = 3

[1] 0.002478752

(c) Chance atomic decay is between 1.13 and 1.62 microseconds is

P (1.13 < X < 1.62) = F (1.62)− F (1.13)

=
(
1− e−(3)(1.62)

)
−
(
1− e−(3)(1.13)

)
= e−(3)(1.13) − e−(3)(1.62) ≈

(i) 0.014 (ii) 0.026 (iii) 0.034 (iv) 0.054.
pexp(1.62,3) - pexp(1.13,3) # exponential P(1.13 < X < 1.62), lambda = 3

[1] 0.02595819

(d) Calculate probability atomic rate between mean and 1 standard deviation
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below mean. Since λ = 3, so µ = σ = 1
3
, so

P (µ− σ < X < µ) = P

(
1

3
− 1

3
< X <

1

3

)
= P

(
0 < X <

1

3

)
= F

(
1

3

)
− F (0)

=
(

1− e−(3) 1
3

)
−
(
1− e−(3)(0)

)
≈

(i) 0.33 (ii) 0.43 (iii) 0.53 (iv) 0.63.

(e) Check if f(x) is a pdf.∫ ∞
0

3e−3x dx = lim
b→∞

∫ b

0

3e−3x dx = lim
b→∞

[
−e−3x

]x=b

x=0
= lim

b→∞

[
−e−3b − (−ex(0))

]
= 1

or, equivalently,
lim
b→∞

F (b) = lim
b→∞

1− e−3b = 1

(i) True (ii) False

(f) Show F ′(x) = f(x).

F ′(x) =
d

dx
F (x) =

d

dx

(
1− e−3x

)
=

(i) 3e−3x (ii) e−3x + 1 (iii) 1 − e−3x

(g) Determine µ using mgf. Since M(t) = λ
λ−t ,

M ′(t) =
d

dt

(
λ

λ− t

)
=

λ

(λ− t)2
,

so µ = M ′(0) = (i) λ (ii) 1 (iii) 1 − λ (iv) 1
λ

.
use quotient rule, since f = u

v
= λ

λ−t , f
′ = vu′−uv′

v2
=

(λ−t)(0)−λ(−1)

(λ−t)2 = λ
(λ−t)2 = 1

λ
if t = 0

(h) Memoryless property of exponential. Chance atomic decay lasts at least 10
microseconds is

P (X > 10) = 1− F (10) = 1− (1− e−3(10)) =

(i) e−10 (ii) e−20 (iii) e−30 (iv) e−40.

and chance atomic decay lasts at least 15 microseconds, given it
has already lasted at least 5 microseconds is

P (X > 15|X > 5) =
P (X > 15, Y > 5)

P (X > 5)
=
P (X > 15)

P (X > 5)
=

1− (1− e−3(15))

1− (1− e−3(5))
=
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(i) e−10 (ii) e−20 (iii) e−30 (iv) e−40.

so, in other words,

P (X > 15|X > 5) =
P (X > 15)

P (X > 5)
=
P (X > 10 + 5)

P (X > 5)
= P (X > 10)

or
P (X > 10 + 5) = P (X > 10) · P (X > 5)

This is an example of the “memoryless” property of the exponential, it implies time intervals are

independent of one another. Chance of decay after 15 microsecond, given decay after 5 microseconds,

same as chance of decay after 10 seconds; it is as though first 5 microseconds “forgotten”.

3. Verifying if experimental decay is exponential. In an atomic decay study, let
random variable X be time-to-decay where x ≥ 0. The relative frequency
distribution table and histogram for a sample of 20 atomic decays (measured
in microseconds) from this study are given below. Does this data follow an
exponential distribution?

0.60, 0.07, 0.66, 0.17, 0.06, 0.14, 0.15, 0.19, 0.07, 0.36
0.85, 0.44, 0.71, 1.02, 0.07, 0.21, 0.16, 0.16, 0.01, 0.88

0
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Figure 3.8: Histogram of exponential decay times
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bin frequency relative exponential
frequency probability

(0,0.2] 11 11
20

= 0.55 0.44
(0.2,0.4] 2 0.10 0.25
(0.4,0.6] 2 0.10 0.14
(0.6,0.8] 2 0.10 0.08
(0.8,1] 2 0.10 0.04
(1,1.2] 1 0.05 0.02

(a) Sample mean time-to-decay.

x̄ =
0.60 + 0.07 + · · ·+ 0.88

20
=

(i) 0.330 (ii) 0.349 (iii) 0.532 (iv) 0.631.
x <- c(0.60,0.07,0.66,0.17,0.06,0.14,0.15,0.19,0.07,0.36,0.85,0.44,0.71,1.02,0.07,0.21,0.16,0.16,0.01,0.88)

mean(x)

[1] 0.349

(b) Approximate λ for exponential. Since approximate mean time-to-decay is

µ ≈ x̄ = 0.349,

then, if time-to-decay is exponential, approximate value of λ parameter,
since µ = 1

λ
, is

λ =
1

µ
≈ 1

x̄
≈

(i) 2.9 (ii) 3.0 (iii) 3.1 (iv) 3.2

and so possible model of data might be exponential density
(i) 2.9e−3x (ii) 3e−2.9x (iii) 2.9e−2.9x (iv) 3e−3x.

(c) Approximate probabilities.

P (0 ≤ X ≤ 0.2) =

∫ 0.2

0

2.9e−2.9x dx ≈

(i) 0.44 (ii) 0.25 (iii) 0.14 (iv) 0.08.
remaining probabilities in table calculated in a similar way

pexp(0.2,2.9) - pexp(0,2.9) # exponential P(0 < X < 0.2), lambda approx 2.9

[1] 0.4401016

(d) Since sample relative frequencies do not closely match exponential with
λ = 2.9 in table, this distribution (i) is (ii) is not a good fit to the data.
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3.4 The Normal Distribution

The continuous normal distribution of random variable X, defined on the interval
(−∞,∞), has pdf with parameters µ and σ, that is, “X is N(µ, σ2)”,

f(x) =
1

σ
√

2π
e−(1/2)[(x−µ)/σ]2 ,

and cdf

F (x) = P (X ≤ x) =

∫ x

−∞

1

σ
√

2π
e−(1/2)[(t−µ)/σ]2 dt,

and its expected value (mean), variance and standard deviation are,

E(X) = µ, V ar(X) = σ2, σ =
√
V ar(X),

and mgf is

M(t) = exp

{
µt+

σ2t2

2

}
.

A normal random variable, X, may be transformed to a standard normal, Z,

f(z) =
1√
2π
e−z

2/2,

where “Z is N(0, 1)” and

Φ(z) = P (Z ≤ z) =

∫ z

−∞

1√
2π
e−t

2/2 dt,

where µ = 0, σ = 1 and M(t) = et
2/2 using the following equation,

Z =
X − µ
σ

.

The distribution of this density does not have a closed–form expression and so must be solved using numerical

integration methods. We will use both R and the tables to obtain approximate numerical answers.

Exercise 3.4 (The Normal Distribution)

1. Nonstandard normal: IQ scores.
It has been found that IQ scores, Y , can be distributed by a normal distribution.
Densities of IQ scores for 16 year olds, X1, and 20 year olds, X2, are given by

f(x1) =
1

16
√

2π
e−(1/2)[(y−100)/16]2 ,

f(x2) =
1

20
√

2π
e−(1/2)[(y−120)/20]2 .

A graph of these two densities is given in the figure.
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f(x)

f(x)

x

20 year old IQs

16 year old IQs

µ = 100 µ = 120

σ = 20

σ = 16

Figure 3.9: Normal distributions: IQ scores

(a) Mean IQ score for 20 year olds is
µ = (i) 100 (ii) 120 (iii) 124 (iv) 136.

(b) Average (or mean) IQ scores for 16 year olds is
µ = (i) 100 (ii) 120 (iii) 124 (iv) 136.

(c) Standard deviation in IQ scores for 20 year olds
σ = (i) 16 (ii) 20 (iii) 24 (iv) 36.

(d) Standard deviation in IQ scores for 16 year olds is
σ = (i) 16 (ii) 20 (iii) 24 (iv) 36.

(e) Normal density for 20 year old IQ scores is
(i) broader than normal density for 16 year old IQ scores.
(ii) as wide as normal density for 16 year old IQ scores.
(iii) narrower than normal density for 16 year old IQ scores.

(f) Normal density for the 20 year old IQ scores is
(i) shorter than normal density for 16 year old IQ scores.
(ii) as tall as normal density for 16 year old IQ scores.
(iii) taller than normal density for 16 year old IQ scores.

(g) Total area (probability) under normal density for 20’s IQ scores is
(i) smaller than area under normal density for 16’s IQ scores.
(ii) the same as area under normal density for 16’s IQ scores.
(iii) larger than area under normal density for 16’s IQ scores.

(h) Number of different normal densities:
(i) one (ii) two (iii) three (iv) infinity.

2. Percentages: IQ scores.
Densities of IQ scores for 16 year olds, X1, and 20 year olds, X2, are given by

f(x1) =
1

16
√

2π
e−(1/2)[(y−100)/16]2 ,

f(x2) =
1

20
√

2π
e−(1/2)[(y−120)/20]2 .
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Figure 3.10: Normal probabilities: IQ scores

(a) For the sixteen year old normal distribution, where µ = 100 and σ = 16,

P (X1 > 84) =

∫ ∞
84

1

16
√

2π
e−(1/2)[(y−100)/16]2 dx1 ≈

(i) 0.4931 (ii) 0.9641 (iii) 0.8413 (iv) 0.3849.
1 - pnorm(84,100,16) # normal P(X > 84), mean = 100, SD = 16

[1] 0.8413447

(b) For sixteen year old normal distribution, where µ = 100 and σ = 16,
P (96 < X1 < 120) ≈ (i) 0.4931 (ii) 0.9641 (iii) 0.8413 (iv) 0.3849.

pnorm(120,100,16) - pnorm(96,100,16) # normal P(96 < X < 120), mean = 100, SD = 16

[1] 0.4930566

(c) For twenty year old, where µ = 120 and σ = 20,
P (X2 > 84) ≈ (i) 0.4931 (ii) 0.9641 (iii) 0.8413 (iv) 0.3849.
1 - pnorm(84,120,20) # normal P(X > 84), mean = 120, SD = 20

[1] 0.9640697

(d) For twenty year old, where µ = 120 and σ = 20,
P (96 < X2 < 120) ≈ (i) 0.4931 (ii) 0.9641 (iii) 0.8413 (iv) 0.3849.

pnorm(120,120,20) - pnorm(96,120,20) # normal P(96 < X < 120), mean = 120, SD = 20

[1] 0.3849303
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(e) Empirical Rule (68-95-99.7 rule). If X is N(120, 202), find probability
within 1, 2 and 3 SDs of mean.

P (µ−σ < X < µ+σ) = P (120− 20 < X < 120 + 20) = P (100 < X < 140) ≈

(i) 0.683 (ii) 0.954 (iii) 0.997 (iv) 1.

P (µ− 2σ < X < µ+ 2σ) = P (80 < X < 160) ≈

(i) 0.683 (ii) 0.954 (iii) 0.997 (iv) 1.

P (µ− 3σ < X < µ+ 3σ) = P (60 < X < 180) ≈

(i) 0.683 (ii) 0.954 (iii) 0.997 (iv) 1.
Empirical rule is true for all X which are N(µ, σ2).

pnorm(140,120,20) - pnorm(100,120,20); pnorm(160,120,20) - pnorm(80,120,20); pnorm(180,120,20) - pnorm(60,120,20)

[1] 0.6826895 [1] 0.9544997 [1] 0.9973002

3. Standard normal.
Normal densities of IQ scores for 16 year olds, X1, and 20 year olds, X2,

f(x1) =
1

16
√

2π
e−(1/2)[(y−100)/16]2 ,

f(x2) =
1

20
√

2π
e−(1/2)[(y−120)/20]2 .

Both densities may be transformed to a standard normal with µ = 0 and σ = 1
using the following equation,

Z =
Y − µ
σ

.

(a) Since µ = 100 and σ = 16, a 16 year old who has an IQ of 132 is
z = 132−100

16
= (i) 0 (ii) 1 (iii) 2 (iv) 3

standard deviations above the mean IQ, µ = 100.

(b) A 16 year old who has an IQ of 84 is
z = 84−100

16
= (i) −2 (ii) −1 (iii) 0 (iv) 1

standard deviations below the mean IQ, µ = 100.

(c) Since µ = 120 and σ = 20, a 20 year old who has an IQ of 180 is
z = 180−120

20
= (i) 0 (ii) 1 (iii) 2 (iv) 3

standard deviations above the mean IQ, µ = 120.

(d) A 20 year old who has an IQ of 100 is
z = 100−120

20
= (i) −3 (ii) −2 (iii) −1 (iv) 0

standard deviations below the mean IQ, µ = 120.
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60        80      100     120     140     160      180            X,  nonstandard

-3        -2         -1          0          1         2           3               Z,  standard

52     68    84     100   116   132    148           X,  nonstandard

-3     -2       -1       0        1       2         3              Z,  standard

16 year olds

mean 100,  SD 16

20 year olds

mean 120,  SD 20

110

Figure 3.11: Standard normal and (nonstandard) normal

(e) Although both the 20 year old and 16 year old scored the same, 110, on
an IQ test, the 16 year old is clearly brighter relative to his/her age group
than is the 20 year old relative his/her age group because

z1 =
110− 100

16
= 0.625 > z2 =

110− 120

20
= −0.5.

(i) True (ii) False

(f) The probability a 20 year old has an IQ greater than 90 is

P (X2 > 90) = P

(
Z2 >

90− 120

20

)
= P (Z2 > −1.5) ≈

(i) 0.93 (ii) 0.95 (iii) 0.97 (iv) 0.99.
1 - pnorm(90,120,20) # normal P(X > 90), mean = 120, SD = 20

1 - pnorm(-1.5) # standard normal P(Z > -1.5), defaults to mean = 0, SD = 1

[1] 0.9331928

Or, using Table C.1 from the text,

P (Z2 > −1.5) = 1− Φ(−1.5) ≈ 1− 0.0668 ≈

(i) 0.93 (ii) 0.95 (iii) 0.97 (iv) 0.99.
Table C.1 can only used on standard normal questions, where Z is N(0, 1).

(g) The probability a 20 year old has an IQ between 125 and 135 is

P (125 < X2 < 135) = P

(
125− 120

20
< Z2 <

135− 120

20

)
= P (0.25 < Z2 < 0.75) =

(i) 0.13 (ii) 0.17 (iii) 0.27 (iv) 0.31.
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pnorm(135,120,20) - pnorm(125,120,20) # normal P(125 < X < 135), mean = 120, SD = 20

pnorm(0.75) - pnorm(0.25) # standard normal P(0.25 < Z < 0.75)

[1] 0.1746663

Or, using Table C.1 from the text,

P (0.25 < Z2 < 0.75) = Φ(0.75)− Φ(0.25) ≈ 0.7734− 0.5987 ≈

(i) 0.13 (ii) 0.17 (iii) 0.27 (iv) 0.31.

(h) If a normal random variable X with mean µ and standard deviation σ
can be transformed to a standard one Z with mean µ = 0 and standard
deviation σ = 1 using

Z =
X − µ
σ

,

then Z can be transformed to X using

X = µ+ σZ.

(i) True (ii) False

(i) A 16 year old who has an IQ which is three (3) standards above the mean
IQ has an IQ of x1 = 100 + 3(16) =
(i) 116 (ii) 125 (iii) 132 (iv) 148.

(j) A 20 year old who has an IQ which is two (2) standards below the mean
IQ has an IQ of x2 = 120− 2(20) =
(i) 60 (ii) 80 (iii) 100 (iv) 110.

(k) A 20 year old who has an IQ which is 1.5 standards below the mean IQ
has an IQ of x2 = 120− 1.5(20) =
(i) 60 (ii) 80 (iii) 90 (iv) 95.

(l) The probability a 20 year old has an IQ greater than one (1) standard
deviation above the mean is

P (Z2 > 1) = P (X2 > 120 + 1(20)) = P (X2 > 140) =

(i) 0.11 (ii) 0.13 (iii) 0.16 (iv) 0.18.
1 - pnorm(1) # standard normal P(Z > 1), defaults to mean = 0, SD = 1

1 - pnorm(140,120,20) # normal P(X > 140), mean = 120, SD = 20

[1] 0.1586553

(m) Percentile. Determine 1st percentile, π0.01, when X is N(120, 202).

F (π0.01) =

∫ π0.01

−∞

1

20
√

2π
e−(1/2)[(y−120)/20]2 = 0.01,

and so π0.01 ≈ (i) 72.47 (ii) 73.47 (iii) 75.47
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qnorm(0.01,120,20) # normal 1st percentile, mean = 120, SD = 20

[1] 73.47304

Or, using Table C.1 “backwards”, F (π0.01) = 0.01 when

Z ≈

(i) −2.33 (ii) −2.34 (iii) −2.35

but since X is N(120, 202), 1st percentile

π0.01 = X = µ+ σZ ≈ 120 + 20(−2.33) =

(i) 73.4 (ii) 74.1 (iii) 75.2
The π0.01 is that value where 1% of probability is at or below (to the left of) this value.

3.5 Functions of Continuous Random Variables

Assuming cdf F (x) is strictly increasing (as opposed to just monotonically increasing)
on a < x < b, one method to determine the pdf of a function, Y = U(X), of
random variable X, requires first determining the cdf of X, F (x), then using F (X)
to determine the cdf of Y , F (Y ), and finally differentiating the result,

f(y) = F ′(x) =
dF

du
.

The second fundamental theorem of calculus is sometimes used in this method,

d

dy

∫ u2(y)

u1(y)

fX(x) dx = fX(u2(y))
du2

dy
− fX(u1(y))

du1

dy
.

Related to this is an algorithm for sampling at random values from a random variable
X with a desired distribution by using the uniform distribution:

• determine cdf of X, F (x), desired distribution

• find F−1(y): set F (x) = y, solve for x = F−1(y)

• generate values y1, y2, . . . , yn from Y , assumed to be U(0, 1),

• use x = F−1(y) to simulate observed x1, x2, . . . , xn, from desired distribution.

Exercise 3.5 (Functions of Continuous Random Variables)
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Figure 3.12: Distributions of various functions of Y = U(X)

1. Determine pdf of Y = U(X), given pdf of X. Consider density

fX(x) =

{
1− x

2
, 0 ≤ x ≤ 2

0 elsewhere

(a) Calculate pdf of Y = 2X, version 1.

FX(x) =

∫ x

0

(
1− t

2

)
dt =

(
t− t2

4

)t=x
t=0

= x− x2

4
,

FY (y) = P (Y ≤ y) = P (2X ≤ y) = P
(
X ≤ y

2

)
= FX

(y
2

)
=

y

2
−
(
y
2

)2

4
=

y

2
− y2

16
,

fY (y) = F ′Y (y) =
dF

dy
=

(i) 3
2
− 2y

32
(ii) 1

2
− 2y

32
(iii) 1

2
− y

32
(iv) 1

2
− y

8
,

where since y = 2x, 0 ≤ x ≤ 2 implies 0 ≤ y
2
≤ 2, or

(i) −1 ≤ y ≤ 2 (ii) −2 ≤ y ≤ 1 (iii) 0 ≤ y ≤ 3 (iv) 0 ≤ y ≤ 4
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(b) Calculate pdf of Y = 2X, version 2.

FY (y) = P (Y ≤ y) = P (2X ≤ y) = P
(
X ≤ y

2

)
= FX

(y
2

)
=

∫ y
2

0

fX(x) dx

fY (y) =
d

dy

∫ y
2

0

fX(x) dx = fX

(y
2

) d

dy

(y
2

)
− 0 =

(
1− y/2

2

)
· 1

2
=

(i) 3
2
− 2y

32
(ii) 1

2
− 2y

32
(iii) 1

2
− y

32
(iv) 1

2
− y

8
,

Second fundamental theorem of calculus used here, notice cdf of FX(x) is not explicitly calculated.

(c) Calculate pdf for Y = 2− 2X.

FY (y) = P (Y ≤ y) = P (2− 2X ≤ y) = P

(
X ≥ 2− y

2

)
=

∫ 2

2−y
2

fX(x) dx,

fY (y) =
d

dy

∫ 2

2−y
2

fX(x) dx = 0− fX
(

2− y
2

)
d

dy

(
2− y

2

)
= −

(
1−

2−y
2

2

)
· −1

2
=

(i) 3
2
− 2y

32
(ii) 1

2
+ 2y

32
(iii) 1

2
+ y

32
(iv) 1

4
+ y

8
,

where since y = 2− 2x, 0 ≤ x ≤ 2 implies 0 ≤ 2−y
2
≤ 2, or

(i) −1 ≤ y ≤ 2 (ii) −2 ≤ y ≤ 1 (iii) −1 ≤ y ≤ 1 (iv) −2 ≤ y ≤ 2

(d) Calculate pdf for Y = X2.

FY (y) = P (Y ≤ y) = P
(
X2 ≤ y

)
= P (X ≤ √y) =

∫ √y
0

fX(x) dx,

fY (y) =
d

dy

∫ √y
0

fX(x) dx = fX (
√
y)

d

dy
(
√
y)− 0 =

(
1−
√
y

2

)
· 1

2
√
y

=

(i) 3
2
− 2y

32
(ii) 1

2
√
y
− 1

4
(iii) 1√

y
− 1

4
(iv) 1

2
√
y

+ 1
4
,

Shorten up number of steps, omitted FX(
√
y).

where y = x2, 0 ≤ x ≤ 2 implies 0 ≤ √y ≤ 2, or
(i) 0 ≤ y ≤ 1 (ii) 0 ≤ y ≤ 2 (iii) 0 ≤ y ≤ 3 (iv) 0 ≤ y ≤ 4
Although there are two roots, ±√y, only the positive root fits in the positive interval 0 ≤ y ≤ 2.
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2. Simulate random sample from desired cdf F (x) using uniform.
Simulate a random sample of size 5 from X with desired cdf (not pdf),

F (x) =

{
0, x < 3

1−
(

3
x

)3
, x ≥ 3

3

1

6x 9 12

cdf: F(x) = P(X < x)

y

inverse cdf: F  (y) = P(Y < y)
-1

(a) sample point y

chosen at random from 

(assume) uniform U(0,1)

(b) generates sample point x chosen

at random from desired cdf F  (y)-1

Figure 3.13: Distribution y = F (x) and inverse x = F−1(y)

(a) Determine cdf of X, desired F (x).

It is given (does not need to be worked out in this case): F (x) = 1−
(

3
x

)3

(b) Find inverse cdf F−1(y). Since F (x) = 1−
(

3
x

)3
= y, then

x = F−1(y) = (i)
(
3
x

)3
(ii) 1−

(
9
x

)3
(iii) 1−3(1−y)−

1
3 (iv) 3(1−y)−

1
3

(c) Generate values y1, y2, y3, y4, y5 from Y , assumed to be U(0, 1).
One possible random sample of size 5 from uniform on U(0, 1) gives

0.2189, 0.9913, 0.5775, 0.2846, 0.8068.

y <- runif(5); y

[1] 0.2189 0.9913 0.5775 0.2846 0.8068

(d) Use x = F−1(y) to generate observed x1, x2, . . . , xn, from desired F (x).
Complete the following table.

y sample from U(0, 1) 0.2189 0.9913 0.5775 0.2846 0.8068

x = F−1(y) = 3(1− y)−
1
3 3.2575 14.586

y <- c(0.2189,0.9913,0.5775,0.2846,0.8068)

x <- 3*(1-y)^{-1/3}; x

[1] 3.257510 14.586402 3.998027 3.354323 5.189421
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