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Introduction

After we define probability measures and sample spaces, we
can talk about random variables. The next two chapters focus on ran-
dom variables, which translate random outcomes into mathematical
objects, such as numbers.1 This first chapter introduces random vari- 1 In general random variables can

produce any mathematical object. In
this class random variables almost
always produce real numbers, but in
general random variables can also
produce vectors or even functions, but
this is well beyond the scope of the
course.

ables and a theory for discrete random variables. The second chapter
focuses on continuous random variables.

Section 1: Random Variables

A random variable (sometimes abbreviated with rv) is a function
taking values from the sample space S and associating numbers
with them.2 Conventional notation for random variables uses capital 2 From this definition it’s clear that ran-

dom variables are neither random nor
variables; they are functions mapping
values from S to some other space,
commonly the real numbers R. They
can be written X : S → R to emphasize
this fact.

letters from the end of the English alphabet, while lower-case letters
are used to denote a non-random value or outcome. If ω ∈ S , the
notation X(ω) = x can be used to say that the value of the random
variable X when the outcome ω occurs is x. The set {ω : X(ω) = x}
is the event that an element of S is drawn that causes the random
variable X to equal x, and the set {ω : X(ω) ∈ A} is the event that an
element of S is drawn that causes the random variable X to assume
a value that is in A.3 Instead of writing P ({ω : X(ω) ∈ A}) we often 3 The latter set is known as the preim-

age of A under X.write P (X ∈ A).
Random variables are commonly classified as being either discrete

or continuous.4 Discrete (real-valued) random variables take values 4 There are random variables considered
neither discrete nor continuous. One
obvious example is a random variable
that is a mixture of discrete and contin-
uous random variables. For example,
if a random variable X quantifies the
number of hours slept per day, you may
have P (X = 0) > 0 and P (X = 24) > 0
but all other outcomes are treated like
the continuous case. Yet even then it’s
possible to define random variables that
are not discrete, not continuous, and
not a mixture of the two, those these
are not seen in practice. In measure-
theoretic probability theory, all of these
cases are effectively indistinguishable;
there isn’t a separate theory for each
type of random variable. But without
this theory we handle discrete and
continuous random variables separately.

in a finite or countably infinite (or enumerable, if you prefer) set with
positive probability; these are effectively the only possible values.
Continuous (real-valued) random variables satisfy the following two
properties:

1. The random variable takes values in intervals (possibly infinite
in length) or disjoint unions of intervals of the real line R with
positive probability.

2. For any c ∈ R, P (X = c) = 0.

Perhaps the simplest non-trivial random variable is the Bernoulli
random variable. If X is a Bernoulli random variable, then P (X = 1) =
1−P (X = 0) = p, and we say X ∼ Ber(p) to mean this. The set S
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on which X(ω) is defined could be just about anything. An inter-
esting result of probability theory is that if all I gave you was the
values of X(ω) without saying anything about S or how specifically
X assumes values given ω ∈ S , it is impossible statistically to deter-
mine what S is. The sample space is effectively forgotten. (In other
words, you wouldn’t be able to tell the difference between a fair coin
and a Bernoulli random variable taking a value of 1 when the coin
lands heads-up after being flipped, or a fair die being rolled and
a Bernoulli random variable taking a value of 1 when the number
rolled is even.)

Example 1

Which of the following random variables are likely to be considered
discrete and which continuous? Describe the space of outcomes the
random variable takes with positive probability.

1. Flip a coin, record 1 for H, and 0 for T.

2. Roll a die, record the number of pips showing.

3. Roll a die, record 1 for an even number of pips and -1 for an odd
number of pips.

4. The time (in minutes) needed to complete a race.

5. The length (in cm) of a hair plucked from a person’s head.
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6. Roll two dice and record the sum of the number of pips showing.

7. Flip a coin until H is seen and count the number of flips.

Example 2

Consider an experiment of rolling two six-sided die. Define two ran-
dom variables for this experiment. Are they continuous or discrete?

Section 2: Probability Distributions for Discrete Random Variables

A probability distribution for a random variable is a function that
describes the probability that a random variable takes on certain
values. Discrete rv’s are determined completely by the probability
mass function (abbreviated pmf):

The pmf can be visualized using a line graph, where a line is
placed on each point x of R that X takes with positive probability
and extends to a height representing p(x).
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A probability histogram functions similarly to a line graph, but is
a histogram, with bins centered on x of length 1 (usually) and with
height p(x).

Example 3

A fair coin is flipped; X(H) = 1 and X(T) = 0. Find the pmf of X,
p(x). Visualize p(x) with a line graph.
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The R package discreteRV [Buja et al., 2015] allows for defining
and working with discrete random variables in R. (It’s pedagogically
useful but R’s supplied discrete random variable functions are more
practical.)

suppressPackageStartupMessages( # Startup messages are annoying

library(discreteRV) # An R package for working with discrete random variables

)

# A statement enclosed in parenthesis prints the variable that was assigned

(X <- RV(0:1, probs = c(1/2, 1/2)))

## Random variable with 2 outcomes

##

## Outcomes 0 1

## Probs 1/2 1/2

plot(X)

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

Possible Values

P
ro

ba
bi

lit
ie

s

Example 4

Let S be the sum of the number of pips rolled on two dice. Find p(s)
and plot it.



chapter 3: discrete random variables and probability distributions 6

(D <- RV(1:6, probs = rep(1/6, times = 6)))

## Random variable with 6 outcomes

##

## Outcomes 1 2 3 4 5 6

## Probs 1/6 1/6 1/6 1/6 1/6 1/6

(S <- SofIID(D))

## Random variable with 11 outcomes

##

## Outcomes 2 3 4 5 6 7 8 9 10 11 12

## Probs 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36

plot(S)
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Example 5

Consider flipping a fair coin until H is seen. Let N be the number of
flips. Find a pmf describing the distribution of N and plot the first
few values of the pmf.
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(N <- RV("geometric"))

## Random variable with outcomes from 1 to Inf

##

## Outcomes 1 2 3 4 5 6 7 8 9 10 11 12

## Probs 0.500 0.250 0.125 0.063 0.031 0.016 0.008 0.004 0.002 0.001 0.000 0.000

##

## Displaying first 12 outcomes

plot(N)
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Sometimes we describe a distribution in terms of a parameter,
which is a value that can be set to different possible values to gener-
ate a pmf. Probability distributions that differ only in the choice of
parameters are called a family of distributions.

Example families with parameters include:
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Example 6

Confirm that p(x; N) = 1
N for x ∈ {1, 2, ..., N} = [N] is a valid

pmf. This is the pmf of the discrete uniform distribution, X ∼
DUNIF(1, N).

Example 7

Confirm that f (n; p) = p(1− p)n−1 is a valid pmf. This is the pmf of
the geometric distribution, X ∼ GEOM(p).

The cumulative distribution function (abbreviated cdf) is defined
below:
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Notice the following relation between the cdf and the pdf:

In general, a function F(x) is a cdf if it satisfies the following three
properties:5 5 If a function F(x) satisfies these

properties than there exists a random
variable X with a cdf identical to F(x).

For discrete rv’s, cdf’s are jump functions, resembling the follow-
ing plot:
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Like a pmf, a cdf completely characterizes a random variable. We
can use it for computing probabilities of regions using the following
rule:

Example 8

Compute and plot the cdf for a random variable X ∼ Ber(p).
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# For p = 1/2

bercdf <- function(q) {pbinom(q, size = 1, prob = 1/2)}

plot(stepfun(0:1, bercdf((-1):1), right = TRUE), verticals = FALSE,

main = "cdf")
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Example 9

Consider rolling a four-sided dice that produces numbers from 1 to 4

(so X ∼ DUNIF(1, 4)). Compute the cdf of X and plot it.
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(U <- RV(1:4, probs = rep(1/4, 4)))

## Random variable with 4 outcomes

##

## Outcomes 1 2 3 4

## Probs 1/4 1/4 1/4 1/4

discunifcdf <- function(u) {P(U <= u)}

discunifcdf <- Vectorize(discunifcdf)

plot(stepfun(1:4, discunifcdf(0:4), right = TRUE), verticals = FALSE,

main = "cdf")
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Example 10

Find the cdf of a geometric random variable with parameter p. What
would a plot of the cdf look like?
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geomcdf <- function(q) {pgeom(q, 1/2)}

plot(stepfun(0:9, geomcdf((-1):9), right = TRUE), vertical = FALSE,

main = "cdf")
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Section 3: Expected Values

The expected value for a discrete random variable, E [X], is given
below:

E [X] is viewed as the population mean, µ, described in previous
chapters. We can also compute the expected value of functions of X,
E [h(X)], in a natural way:

The expected value is, in some sense, a “best prediction”6 for the 6 Specifically, let E
[
(X− µ̂)2] represent

the expected squared error, and µ̂
represents a prediction for X; when this
quantity exists (sometimes it doesn’t),
the value of µ̂ that minizes the expected
squared error is µ̂ = E [X].

value of X.
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Example 11

Compute the expected value for X ∼ Ber(p), S ∼ DUNIF(1, 6), and
N ∼ GEOM(p) (as seen in examples 3, 4, and 5).
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E(X)

## [1] 0.5

E(S)

## [1] 7

E(N) # Approximate

## [1] 1.999999

Expectations are linear functions acting on random variables.7 7 This is true for all random variables
though we work with the discrete case
only for now.Proposition 1.

E [aX + b] = aE [X] + b

The variance of a random variable is given by:

There is a handy formula for computing the variance that is often
easier than computing it directly:

Proposition 2.

Var (X) = E
[

X2
]
− (E [X])2
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Var (X) is thought of as the population variance and is often de-
noted Var (X) = σ2. From this we get the population standard devia-
tion, σ =

√
σ2.

Example 12

Compute the variance and standard deviation of the random vari-
ables listed in Example 11.
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V(X)

## [1] 0.25

SD(X)

## [1] 0.5

V(S)

## [1] 5.833333

SD(S)

## [1] 2.415229

V(N) # Approximate

## [1] 1.999981

SD(N)

## [1] 1.414207

Proposition 3.

Var (aX + b) = a2 Var (X)

σaX+b = |a| σX

where σX is the standard deviation of X.

Expectations need not be finite or even exist, as demonstrated in
the following example:8 8 This example is known as the St. Pe-

tersburg paradox, and is famous for
how unintuitive its solution is and how
strongly humans underestimate the
game’s value. The game gets its name
due to its resolution by Daniel Bernoulli
in 1738 [Bernoulli, 1954], who lived in
St. Petersburg at the time.
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Example 13

Consider a game where a fair coin is flipped until it lands heads-up.
A player would earn $1 if the game ends with 1 flip, $2 if it ends
with two flips, $4 if it ends with three flips, $8 if it ends with four
flips, and so on. The “fair price” of a game corresponds to the game’s
expected payout. What, then, is the fair price to play this game?

Section 4: The Binomial Probability Distribution

A binomial experiment is an experiment that satisfies the following
requirements:

1. The experiment consists of n Bernoulli trials that end in either in
“success”, S, or “failure”, F.

2. The trials are independent.

3. For each trial, P (S) = 1−P (F) = p ∈ (0, 1).

We can think of the outcome of an experiment as a sequence of S
and F, such as SSFSF (here, n = 5).

The binomial random variable associated with a binomial ex-
periment counts the number of “successes” in the experiment:
X(ω) = {# of S in ω}; we write X ∼ BIN(n, p). For example,
X(SSFSF) = 3.

We denote the pmf of X with b(x; n, p). This is 0 for x that is not
an integer from 0 to n. For x ∈ {0, 1, . . . , n}, it can be computed:
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The cdf of X is given below:

E [X], Var (X), and σX are given below:9 9 We can compute these algebraically
or with a probabilistic argument. The
former is algebraically tedious while
the latter is illuminating and easy. We
revisit this in Chapter 5.

Select values of B(x; n, p) are given in Table A.1 of the textbook.

Example 14

You flip a fair coin ten times.

1. What is the probability you see exactly 4 heads? (Do so without
using a table.)

2. If X ∼ BIN(10, 0.5), compute P (4 < X ≤ 6).
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3. Compute P (2 ≤ X ≤ 4).

4. What is the probability you see more than 7 heads?

5. Compute E [X], Var (X), and σX .
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dbinom(4, size = 10, prob = 0.5) # 1

## [1] 0.2050781

pbinom(6, size = 10, prob = 0.5) - pbinom(4, size = 10, prob = 0.5) # 2

## [1] 0.4511719

pbinom(4, size = 10, prob = 0.5) - pbinom(2 - 1, size = 10, prob = 0.5) # 3

## [1] 0.3662109

1 - pbinom(7, size = 10, prob = 0.5) # 4

## [1] 0.0546875

pbinom(7, size = 10, prob = 0.5, lower.tail = FALSE) # Alternative to 4

## [1] 0.0546875

X <- RV(0:10, probs = dbinom(0:10, size = 10, prob = 0.5))

E(X) # 5

## [1] 5

V(X)

## [1] 2.5

SD(X)

## [1] 1.581139

plot(X)
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Example 15

A manufacturer of widgets send batches of widgets in giant bins.
Your company will accept a shipment of widgets if no more than
7% of widgets are defective. The procedure for deciding whether
a shipment is defective is to choose four widgets from the batch at
random, without replacement. If more than one widget is defective,
the batch is rejected. What is the probability of rejecting the batch if
7% of the widgets are defective? Model the process using a binomial
random variable.10 10 We can view the batch of widgets

as the entire population and we are
choosing a subsample of that popu-
lation without replacement. Binomial
random variables draw “successes” and
“failures” from an infinite population,
not a finite one, and thus a different
probability distribution should describe
this experiment (it is the subject of the
next section). It is safe, though, to treat
a finite population like an infinite one if
your sample size does not exceed 5% of
the population size.



chapter 3: discrete random variables and probability distributions 25

pbinom(1, 4, 0.07, lower.tail = FALSE)

## [1] 0.02672803

Example 16

I claim that I can make 80% of my free-throw shots when playing
basketball. You plan to test me by having me shoot 20 baskets; if I
make fewer baskets than a specified amount, you will call me a liar.
The threshold amount of baskets is chosen so that the probability
I make less than this amount given that I am, in fact, an 80% free-
throw shooter does not exceed 5%. What is the threshold amount?

Additionally, compute the mean and standard deviation of the
number of shots I would make if my claim is true.
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qbinom(0.05, 20, 0.8) - 1

## [1] 12

# The subtraction is due to how qbinom defines quantiles; see documentation

X <- RV(0:20, probs = dbinom(0:20, size = 20, prob = 0.8))

plot(X)
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E(X)

## [1] 16

V(X)

## [1] 3.199998

SD(X)

## [1] 1.788854

Section 5: Hypergeometric and Negative Binomial Distributions

The hypergeometric distribution is the finite population analogue
to the binomial distribution. The population has N elements labeled
S or F (for “success” or “failure”). There are M S’s in the population
(and thus N −M F’s). A sample of size n is chosen from the sample
without replacement in such a way that each subset of n elements
is equally likely.11 X ∼ HYPERGEOM(n, M, N) denotes a random 11 The hypergeometric distribution

should resemble the binomial distri-
bution as N becomes large. In fact it
can be shown that if M is replaced with
MN and MN

N → p as N → ∞, the
hypergeometric distribution becomes
the binomial distribution in the limit.
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variable following the hypergeometric distribution.
For an integer x satisfying max(0, n− N + M) ≤ x ≤ min(n, M),

the pmf of the hypergeometric distribution is given below:

Below are E [X] and Var (X):

Example 16

A manufacturer of widgets send batches of widgets in giant bins.
Your company will accept a shipment of widgets if no more than
6% of widgets are defective. The procedure for deciding whether
a shipment is defective is to choose four widgets from the batch at
random, without replacement. If more than one widget is defective,
the batch is rejected. The batch sent contains 50 widgets. What is the
probability of rejecting the batch if 6% of the widgets are defective?

Also, compute the mean and variance of X, the number of defec-
tive widgets in the sample, under the assumption that 6% of widgets
are defective.
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phyper(1, 50 * .06, 50 * (1 - .06), 4, lower.tail = FALSE)

## [1] 0.01428571

pbinom(1, 4, .06, lower.tail = FALSE) # For comparison

## [1] 0.01991088

X <- RV(0:4, probs = dhyper(0:4, 50 * .06, 50 * (1 - .06), 4))

plot(X)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

Possible Values

P
ro

ba
bi

lit
ie

s

E(X)

## [1] 0.24

V(X)

## [1] 0.2117878

Example 17

It is election night in the small town of Studentsville, and Jack John-
son is running for mayor against bitter rival, John Jackson. Votes
have been cast and are being counted. There are 1024 ballots cast
and among the 200 ballots counted, 116 were cast for Jack Johnson.
If the election were actually a tie, what would be the probability of
observing 116 ballots or more cast for Jack Johnson? What does this
say about who is likely winning the election?

phyper(116 - 1, 512, 512, 200, lower.tail = FALSE)
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## [1] 0.007203238

Consider flipping a coin with probability p of landing heads-up
(all flips independent). Flip a coin until r heads have been seen, and
count the number of tails seen until the experiment ended; let the
random variable X represent this count. Then X follows the negative
binomial distribution, or X ∼ NB(r, p).12 The pmf of X is given 12 Let r = 1. Then Y = 1 + X follows

the geometric distribution, or Y ∼
GEOM(p).

below:

Additionally, below are E [X] and Var (X):

Example 18

A husband and wife plan to have children until they have exactly two
boys; after this, they will stop attempting to have children. Assume
that the probability of giving birth to a boy is 51%.

1. What is the probability they will have two girls before stopping
attempting to have more children?
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2. What is the probability they will need at least four children?

3. What is the expected number of children they will have? What is
the variance of this random variable?
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dnbinom(2, 2, 0.51) # 1

## [1] 0.18735

pnbinom(4 - 2 - 1, 2, 0.51, lower.tail = FALSE) # 2

## [1] 0.485002

nbinom_func <- function(x) {dnbinom(x, 2, 0.51)}

(X <- RV(c(0, Inf), nbinom_func))

## Random variable with outcomes from 0 to Inf

##

## Outcomes 0 1 2 3 4 5 6 7 8 9 10 11

## Probs 0.260 0.255 0.187 0.122 0.075 0.044 0.025 0.014 0.008 0.004 0.002 0.001

##

## Displaying first 12 outcomes

plot(X)
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E(X) # 3

## [1] 1.921568

V(X)

## [1] 3.767769
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Section 6: The Poisson Probability Distribution

X ∼ POI(µ), or X follows the Poisson distribution with parameter µ,
if the pmf of X is given by:

Is this a valid pmf? Yes.

If X ∼ POI(µ), E [X] = Var (X) = µ.
Table A.2 of your textbook gives the cdf of select Poisson distribu-

tions.
The Poisson distribution describes random variables that follow

the Poisson process. This process describes the number of times
an event occurs over an interval of time.13 So the probability an 13 This interpretation comes from a

relationship between Poisson random
variables and binomial random vari-
ables; if pn → 0 but npn → µ as n → ∞,
b(x; n, pn) → p(x; µ) as n → ∞, where
p(·; µ) is the pmf of a Poisson random
variable.

event occurs k times during an interval of time of length t is given

by Pk(t) =
e−αt(αt)k

k! .
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Below is a plot of a simulated Poisson process.

jumps <- rexp(4)

plot(stepfun(cumsum(jumps), 0:4, right = TRUE), vertical = FALSE,

xlab = "Time", ylab = "Value", main = "Simulated Poisson Process",

xlim = c(0, ceiling(sum(jumps))))
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Example 19

On average, your daughter’s soccer team scores 10 points per game.
Assume that the number of points scored per game by her team
follows a Poisson process.

1. What is the probability her team will score 7 points during the
game?

2. What is the probability that by half time your daughter’s team
will have scored two points?
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3. What is the probability your daughter’s team will score between 3

and 6 points (inclusive) during the game?

4. What is the probability your daughter’s team will score more than
three points in the last half of the game?

5. What is the probability that in two games your daughter’s team
will score between 15 and 18 points (inclusive)?
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poiproc <- function(x, t) {dpois(x, 10 * t)}

(X1 <- RV(c(0, Inf), poiproc, t = 1))

## Random variable with outcomes from 0 to Inf

##

## Outcomes 0 1 2 3 4 5 6 7 8 9 10 11

## Probs 0.000 0.000 0.002 0.008 0.019 0.038 0.063 0.090 0.113 0.125 0.125 0.114

##

## Displaying first 12 outcomes

(Xhalf <- RV(c(0, Inf), poiproc, t = 1/2))

## Random variable with outcomes from 0 to Inf

##

## Outcomes 0 1 2 3 4 5 6 7 8 9 10 11

## Probs 0.007 0.034 0.084 0.140 0.175 0.175 0.146 0.104 0.065 0.036 0.018 0.008

##

## Displaying first 12 outcomes

(X2 <- RV(c(0, Inf), poiproc, t = 2))

## Random variable with outcomes from 0 to Inf

##

## Outcomes 1 2 3 4 5 6 7 8 9 10 11 12

## Probs 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.003 0.006 0.011 0.018

##

## Displaying first 12 outcomes

plot(X1)
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plot(Xhalf)
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plot(X2)
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P(X1 == 7) # 1

## [1] 0.09007923

P(Xhalf == 2) # 2

## [1] 0.08422434

P((X1 >= 3) %AND% (X1 <= 6)) # 3
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## [1] 0.127372

P(Xhalf > 3) # 4

## [1] 0.7349741

P((X2 >= 15) %AND% (X2 <= 18)) # 5

## [1] 0.2765577

Tables for the Poisson distribution can be used for approximating
binomial distribution probabilities when n is large and p is small.
Then b(x; n, p) ≈ p(x; np).

Example 20

Use the Poisson approximation to estimate B(4; 200, .01).
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pbinom(4, 200, .01)

## [1] 0.9482537

ppois(4, 200 * .01)

## [1] 0.947347
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