CHAPTER 3
EQUATIONS USED IN THE MTC PROGRAM

The equations used in the Model of Time and Fuel Consumption (MTC) are derived from specific experiments. The speed equations were determined on the basis of the following experiments:

- TB-1 - Free speed on positive grades;
- TB-2 - Free speed on negative grades;
- TB-3 - Acceleration;
- TB-4 - Free speed on curves;
- TB-6 - Calibration; and
- TBS-3- Deceleration.

The fuel consumption equations were determined on the basis of other experiments, which are listed below:

- FC-1 - Consumption at steady-state speed on positive and negative grades;
- FC-2 - Consumption at start of positive grades preceded by negative grades;
- FC-3 - Influence of horizontal curvature on consumption;
- FC-4 - Calibration;
- FCS-4- Consumption during acceleration; and
- TBS-6- Consumption during deceleration.

As discussed in previous chapters, a given fuel-consumption equation is associated with a given speed equation in the MTC. Table 3.l shows the relations among the equations 〔together with the mnemonics utilized in the programl, the tests which led to these equations, and the correspondence between speed and consumption equations.

Fuel consumption is calculated by vehicle class and type. For gasoline-powered automobiles, utilities and light trucks (empty and loadedj, the rate is given in milliliters/second of a gasoline-plus--20%-alcohol mixture, while in the other vehicle classes and types the units used are milliliters/second of diesel oil.

As was explained in Volume 6, when some experiments were being carried out the fuel available as a substitute for pure gasoline was the gasoline/alcohol mixture.

TABLE 3.1 - CORRESPON:DENCE BETWEEN MTC EQUATIONS AND THE EXPERIMENTS

GRADE	SPEED EQUATION	EXPERIMENT	CORRESPONDING CONSUMPTION EQUATION	EXPERIMENT
POSITIVE	PGSE - steady-state PGSE - deceleration PGDB - deceleration LACC - acceleration	$\begin{aligned} & \text { TB-1 } \\ & \text { TB-1 } \\ & \text { TBS-3 } \\ & \text { TB- } 6 \end{aligned}$	$\begin{aligned} & \text { FC1P } \\ & \text { FC2P } \\ & \text { FCDP } \\ & \text { FCS } 4 P \end{aligned}$	$\begin{aligned} & \text { FC-1 } \\ & \text { FC- } 2 \\ & \text { TBS- } 6 \\ & \text { FCS- }-4 \end{aligned}$
NEGATIVE	NGSE - steady-state NGDB - deceleration NGAE - acceleration	$\begin{aligned} & \text { TB-2 } \\ & \text { TBS-3 } \\ & \text { TB-3/TB-6 } \end{aligned}$	$\begin{aligned} & \text { FCIN } \\ & \text { FCDN } \\ & \text { FCS } 4 N \end{aligned}$	$\begin{aligned} & \text { FC-1 } \\ & \text { TBS-6 } \\ & \text { FCS-4/FC-1 } \end{aligned}$

Consequently, Experiment FCS-6 was carried out to make all fuel-consumption results uniform, since some of the experiments had been performed with the use of pure gasoline and others with the gasoline/alcohol mixture. The adjustment factors were as follows: log for the VW l300 model; l. 05 for the Kombi (utility); and 1.02 for the $F-400$. It should be emphasized that these factors apply only to those experiments carried out with pure gasoline and, consequently, cannot be applied externally to the results of the model, since the factors do not apply to those equations designed to predict consumption in terms of the gasoline/alcohol mixture.

In practice, however, considering that the differences in consumption observed in Experiment FCS-6 were small, and perhaps even below other imprecisions of the model, the MTC results can be accepted as valia for pure gasoline.
3.2 LIST OF EQUATIONS

Tables 3.2 to 3.12 show the equations for predicting free speed and fuel consumption used in the MTC.

TABLE 3.3-DECELERATION ON POSITIVE GRADES PRECEDED BY NEGATIVE GRADES (PGSE - DECEL.)

Automobiles	$\Delta V=D$	$(-0.0001 G 1-0.008 G 2-0.0158 G 3) S 1+$ DS 2 GA
Buses	$\Delta V=D$	$(-0.0003 G 1-0.167 G 2-0.0312 G 3) S 1-0.006052 G$
Empty Utilities	$\Delta V=D$	$(-0.0003 G 1-0.008 G 2-0.01 G 3) S 1+D S 2 G A$
Full Utilities	$\Delta V=\square$	〔-0.0003G1-0.008G2-0.0152G3) S $1+$ DS 2 GA
Empty Trucks	$\Delta V=\square$	$(-0.0016 \mathrm{G}-0.008 \mathrm{G} 2-0.0125 \mathrm{G} 3) \mathrm{S} 1+\mathrm{DS} 2 \mathrm{GA}$
Full Trucks	$\Delta V=D$	(-0.0037G1-0.008G2-0.0125G3)S1-0.006DS2G

S1 $= \begin{cases}1 & \text { if paved } \\ 0 & \text { otherwise }\end{cases}$
G3 $=0$ if Grade $\leqslant 5 \%$

S2 $= \begin{cases}1 & \text { if unpaved } \\ 0 & \text { otherwise }\end{cases}$
$\Delta V=$ Speed loss (km/h)

G1 = Grade (\%) if $0<$ Grade $<3 \%$
$=3 \%$ if Grade $\geqslant 3 \%$
$A=\left\{\begin{array}{l}-0,000794 \text { if Grade } \leqslant 3 \% \\ -0,000794-0,001976 \frac{(G-3)}{3} \\ 3 \%<\text { Grade }<6 \% \\ -0,00277 \text { if Grade } \geqslant 6 \%\end{array}\right.$

TABLE 3.4 - FORCED DECELERATION ON POSITIVE (PGDB) AND NEGATIVE (NGDB) GRADES
$v_{2}^{2}=v_{1}^{2}-c k a x$
$V_{1}=$ speed at start of link, in km/h
$V_{2}=$ speed at end of link, in km / h
C \quad conversion factor of units
$=1,0$ if paved
$=1,1$ if unpaved
$=$ rate of deceleration, in $\mathrm{m} / \mathrm{sec}^{2}$
$x \quad=$ distance covered during deceleration, in meters

Vehicle Class	Rate of Deceleration(m/sec $\left.{ }^{2}\right)$
Automobiles	0.61
Buses	0.61
Empty Utilities	0.61
Full Utilities	0.61
Empth Trucks	0.46
Full Trucks	0.33

TABLE 3.5 - ACCELERATION ON POSITIVE GRADES (LACC)*

```
\DeltaV = VC-VE 
    1000m
    = specific constant speed of positive grade, in km/h
VE = entry speed on positive grade, in km/h
    D = distance covered during acceleration, in m
\DeltaV = addition of speed (km/h)
```

* This equation did not result from any basic tests developed during the ICR Research for use in the MTC, During calibration, it was noted that the acceleration equation derived from the data of TB-3 increased speed on positive grades excessively. Consequently, the equation above (valid for all vehicle classes) was elaborated separately and tested against the calibration data (TB-6).

TABLE 3.6 - ACCELERATION ON NEGATIVE GRADES

PAVED ROADS	
Automobiles	$\Delta V=[0.04444+0.00016(P W-46.1)-0.00238 G=0.000038 Q I] \quad D$
Buses	$\Delta V=\left[0.03903+0.00037(P W-17.1)-0.00109 G-0.000038 \mathrm{Q} \mathrm{I}^{(1)} \mathrm{D}\right.$
Utilities	$\Delta V=[0.04894+0.00037(P W-38.1)-0.00109 G-0.000038 Q I] \quad D$
Light Truck (Gas.)	$\Delta V=[0.04538+0.00037(P W-46.5)-0.00109 \mathrm{G}-0.000038 \mathrm{QI}] \mathrm{D}$
Light Truck (Die.)	$\Delta V=[0.03903+0.00022(P W-28.2)-0.00109 G-0.000038 Q I] \quad D$
Heavy Truck	$\Delta V=[0.03737+0.00037(P W-11.1)-0.00109 G-0.000038 Q I] \quad \square$
Half-Trailer	$\Delta V=[0.03903+0.00037(P W-9.6) \cdots 0.001096-0.0000380 \mathrm{I}] \mathrm{D}$
UNPAVED ROADS	
Automobiles	$\Delta V=[0.05639+0.00021(P W-46.1)-0.00169 \mathrm{G}-0.000046 \mathrm{QI}] \quad \mathrm{D}$
Buses	$\Delta V=[0.03811+0.00021(P W-17.1)-0.00131 G] D$
Utilities	$\Delta V=[0.04735+0.00021(P W-38.1)-0.00245 \mathrm{G}-0.0000250 \mathrm{I}] \mathrm{D}$
Light Truck (Gas.)	$\Delta V=[0.04152+0.00021(P W-46.5)-0.00131 \mathrm{G}] \mathrm{D}$
Light Truck (Die.)	$\Delta V=[0.03325+0.00021(P W-28.2)-0.00131 \mathrm{G}] \mathrm{D}$
Heavy Truck	$\Delta V=[0.03951+0.00021(P W-11.1)-0.00131 \mathrm{G}] \mathrm{D}$
Half-Trailer	$\Delta V=[0.03325+0.00021(P W-9.6)-0.00131 \mathrm{G}] \mathrm{D}$

G	Grade $(\%)$	D	$=$ Distance covered during deceleration
$Q I$	roughness (count/km)	ΔV	$=$ Addition of speed $(\mathrm{m} / \mathrm{sec})$

PAVED ROACIS	
Automobile Bus Empty Utility Full Utility Empty Truck Full Truck	
	UNPAVED ROADS
Automobile Bus Empty Utility Full Utility Empty Truck Full Truck	

$R_{100}= \begin{cases}\text { radius, in meters } & \text { if radius }<100 \mathrm{~m} \\ 100 \mathrm{~m} & \text { if radius } \geqslant 100 \mathrm{~m}\end{cases}$
$R_{200}= \begin{cases}0 \quad \mathrm{~m} & \text { if radius }<100 \mathrm{~m} \\ \text { radius-100m } & \text { if radius } \leqslant \text { radius } 200 \mathrm{~m} \\ 100 \mathrm{~m} & \text { if radius } \geqslant 200 \mathrm{~m}\end{cases}$
$R_{400}= \begin{cases}0 \quad \mathrm{~m} & \text { if radius }<200 \mathrm{~m} \\ \text { radius-200m } & \text { if 200 } \leqslant \text { radius } 400 \mathrm{~m} \\ 200 \mathrm{~m} & \text { if radius } \geqslant 400 \mathrm{~m}\end{cases}$
$R_{600}= \begin{cases}0 \mathrm{~m} & \text { if radius }<400 \mathrm{~m} \\ \text { radius }-400 \mathrm{~m} & \text { if } 400 \leqslant \text { radius } 600 \mathrm{~m} \\ 200 \mathrm{~m} & \text { if radius } \geqslant 600 \mathrm{~m}\end{cases}$

G= Grade in \%
SE= Superelevation, in decimals

TABLE 3.8 - FUEL CONSUMPTION AT STEADY-StATE SPEED ON POSITIVE (FC1P) AND NEGATIVE (FC1N) GRADES

Automobiles	$C=0.142 e^{0.02287 S+0.000855(S) G R+0.03782([5 R+3) P+0.2695(5-M A R C)+0.0001024(Q I)(G R+14)}$
Buses	$\mathrm{C}=0.195 \mathrm{e}^{0.0359 S+0.0044(S) G R+0.0075(G R+1) P+0.2781(6-M A R C)+0.0002088(Q I) P}$
Utilities	$\mathrm{C}=0.197 \mathrm{e}^{0.02579 S+0.001062(S) G R+0.02932(5 R+3)+0.2485(5-M A R C)+0.0000785(Q I)(G R+14)}$
Light Truck (Gas.)	$C=0.906 e^{[0.0127+0.00063 P+0.00699(5-M A R C)+0.0000215(Q I)] S+0.01234(G R)(\text { MARC }) P}$
Light Truck (Die.)	$\mathrm{C}=0.1826 \mathrm{e}^{0.0325 S+0.00208(\mathrm{GR}) \mathrm{S}+0.0254(\mathrm{GR}+1) \mathrm{P}+0.2333(5-\mathrm{MARC})+0.0014005(\mathrm{QI})}$
Heavy Truck	$\mathrm{C}=0.583 e^{[0.02356+0.000491(G R+1)(P)]} \mathrm{S}+(0.00594 \mathrm{P}+0.01224 \mathrm{GR})(6-\mathrm{MARC})+0.00057(\mathrm{QI})$
Half-Trailer	$C=\{2.54 / \sqrt{1+G)}\} e^{[0.00505+0.00029(G R+1) P+0.00035(Q I)] \mathrm{S} .}$

S	$=$ Speed $[\mathrm{km} / \mathrm{h}]$
$G R$	$=$ Grade $(\%)$
G	$=\|G R\|$ for negative grades
$0 \quad$ otherwise	
P	$=$ Gross weight (t)

QI = roughness (counts/km)
MARC= vehicle gear
$C=$ fuel consumption ($\mathrm{ml} / \mathrm{sec}$)

TABLE 3.9 - FUEL CONSUMPTION IN DECELERATION ON POSITIVE GRADES PRECEDED BY NEGATIVE GRADES (FC2P)

VEHICLES	Number of observations	Fuel Consumption (ml/sec)			
	Average	Standard Deviation	Minimum	Maximum	
Automobiles	6	2.45	0.164	2.20	2.70
Buses	17	6.10	0.698	4.70	7.30
Utilities	11	3.83	0.380	3.10	4.50
Light Truck (Gas.)	12	10.86	1.072	10.60	14.40
Heavy Truck (Die.)	5	4.50	0.339	3.90	4.70
Half-Trailer	31	6.77	1.148	5.30	10.10
	15	12.12	1.012	10.60	14.40

The average rates of consumption are utilized in the model.

TABLE 3.10 - FUEL CONSUMPTION DURING FORCED DECELERATION ON POSITIVE (FCDP) AND NEGATIVE〔FCON〕 GRADES

VEHICLE	Number of Observations	Fuel Consumption ($\mathrm{ml} / \mathrm{sec}$)			
		Average	Standard Deviation	Minimum	Maximum
Automobiles	16	0.50	0.19	0.28	0.97
Buses	6	1.57	0.61	1. 17	2.68
Utilities	26	0.66	0.18	0.31	1.03
Light Truck (Gas.)	14	4.81	1.74	1.50	6.75
Light Truck (Die.)	14	2.53	0.93	1.21	4.38
Heavy Truck	20	2.04	0.63	0.80	3.25
Half-Trailer	6	2.41	0.18	2.21	2.71

The average rates of consumption are utilized in the model.

TABLE 3.11 - FUEL CONSUMPTION DURING ACCELERATION ON POSITIVE GRADES (FCS4P)

VEHICLE	Number of Observations	Fuel Consumption (ml/sec)			
		Standard Deviation	Minimum	Maximum	
Automobiles	69	2.72	0.11	2.50	2.90
Buses	65	5.85	0.46	4.00	7.60
Utilities	143	3.60	0.49	2.10	4.40
Light Truck (Gas.)	65	10.03	0.95	8.40	12.50
Light Truck (Die.)	69	3.78	0.35	2.80	4.60
Heavy Truck	149	5.80	1.01	2.60	8.80
Half-Trailer	92	10.08	1.14	7.00	12.80

The average rates of consumption are utilized in the model.

TABLE 3.12 - FUEL CONSUMPTION DURING ACCELERATION ON NEGATIVE GRADES (FCS4N)
During calibration, it was necessary to adjust forecasts of consumption during acceleration on negative grades. Consequently, the equation FCS4N became a variable between the rates of consumption of the equations FCS4P and the equations FC1N.
If $S<S$,
$C=\frac{S_{1}-S^{\prime}}{S_{1}}$
A

B

If $S \geqslant S$,
$C=B$
$C=$ fuel consumption ($\mathrm{ml} / \mathrm{sec}$)
$S=$ speed at start of stage of acceleration
$S_{1}=$ constant speed of adjustment calculated for each vehicle according to type of surface and cargo level.
$A=$ fuel consumption forecast by equation FCS $4 P$
$B=$ fuel consumption forecast by equation FC1N

TYPE OF VEHICLE	Constants of Adjustment			
	PAVED		UNPAVED	
	EMPTY	FULL	EMPTY	FULL
Automobiles	120	10000	120	10000
Buses	80	80	80	80
Utilities	100	100	100	100
Light Truck (Die.)	80	100	60	70
Heavy Truck	60	150	60	100
Half-Trailer	150	150	150	150

${ }^{1}$ Field tests with the light gasoline-powered truck ($F-400$) must be repeated and calibration had not been completed at the time of publication of this report.

