Chapter 3 - Integral Relations
for a Control Volume

3.1 Discuss Newton’s second law (the linear momentum relation) in these three forms:

d d
YF=ma ZF—a(mV) ZF_a[jvpduJ

system

Solution: These questions are just to get the students thinking about the basic laws of
mechanics. They are valid and equivalent for constant-mass systems, and we can make
use of all of them in certain fluids problems, e.g. the #1 form for small elements, #2 form
for rocket propulsion, but the #3 form is control-volume related and thus the most
popular in this chapter.

3.2 Consider the angular-momentum relation in the form

> Mg =%{ I (rxV)pdu}

system

What does r mean in this relation? Is this relation valid in both solid and fluid
mechanics? Is it related to the linear-momentum equation (Prob. 3.1)? In what manner?

Solution: These questions are just to get the students thinking about angular
momentum versus linear momentum. One might forget that r is the position vector from
the moment-center O to the elements p dv where momentum is being summed. Perhaps
ro is a better notation.

3.3 For steady laminar flow through a long tube (see Prob. 1.12), the axial velocity
distribution is given by U = C(R2 - r2), where R is the tube outer radius and C is a
constant. Integrate U(r) to find the total volume flow Q through the tube.

Solution: The area element for this axisymmetric flow is dA = 27r dr. From Eq. (3.7),

R
Q :I u dA:j C(R*-r*)2zrdr :%CR4 Ans.
0
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P3.4 A fire hose has a 5-inch inside diameter and is flowing at 600 gal/min. The flow
exits through a nozzle contraction at a diameter D,. For steady flow, what should D, be,
in inches, to create an exit velocity of 25 m/s?

Solution:  This is a straightforward one-dimensional steady-flow continuity problem.
Some unit conversions are ne?ded:

600 gal/min = 1.337 ft’/s; 25m/s = 82.02 ft/s ; 5 inches =0.4167 ft
The hose diameter (5 in) would establish a hose average velocity of 9.8 ft/s, but we don’t
really need this. Go directly to the volume flow:

3
Q = 1.337‘% = AV, = %Dﬁ(sz.ozg)z . Solve for D, =0.144 ft =1.73in  Ans.

3.5 A theory proposed by S. I. Pai in 1953 gives the following velocity values u(r) for
turbulent (high-Reynolds number) airflow in a 4-cm-diameter tube:

I, cm 0 025 05 0.75 1.0 1.25 1.5 1.75 2.0
u,m/s 600 597 588 572 551 523 489 443 0.00

Comment on these data vis-a-vis laminar flow, Prob. 3.3. Estimate, as best you can, the
total volume flow Q through the tube, in m’Js.

Solution: The data can be plotted in the figure below.
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As seen in the figure, the flat (turbulent) velocities do not resemble the parabolic laminar-
flow profile of Prob. 3.3. (The discontinuity at r = 1.75 cm is an artifact—we need more
data for 1.75 < r < 2.0 cm.) The volume flow, Q = J u(2zr)dr, can be estimated by a
numerical quadrature formula such as Simpson’s rule. Here there are nine data points:

Ar
Q =27 (nu, +4n,U, +2r;U; +4r,u, + 2rUs + 4r,Ug + 215U, + 41U + r9u9)[?j

For the givendata, Q ~0.0059 m*®/s Ans.

3.6 When a gravity-driven liquid jet
issues from a slot in a tank, as in Fig. P3.6,
an approximation for the exit velocity
distribution is U~ +/2g(h—2), where h is
the depth of the jet centerline. Near the
slot, the jet is horizontal, two-dimensional,
and of thickness 2L, as shown. Find a
general expression for the total volume
flow Q issuing from the slot; then take the Fig. P3.6
limit of your result if L < h.

Solution: Let the slot width be b into the paper. Then the volume flow from Eq. (3.7) is
+L 2b
Q=[udA= [ [2g(h-2)]"bdz = ?\/(Zg)[(h +L)* -(h-L)*?] Ans.
-L

In the limit of L < h, this formula reduces to Q= (2Lb)./(2gh) Ans.

P3.7 A spherical tank, of diameter 35 cm, is leaking air through a S—mm—gliameter hole
in its side. The air exits the hole at 360 m/s and a density of 2.5 kg/m’. Assuming
uniform mixing, (a) find a formula for the rate of change of average density in the tank;
and (b) calculate a numerical value for (do/dt) in the tank for the given data.

Solution: If the control volume surrounds the tank and cuts through the exit flow,

dm d : d
E |system =0 = a(ptankutank) + Moyt = Vtank a(ptank) + (PAV ) out
Solve for  L(pop) = — A aut Ans.(a)
dt Dtank

(b) For the given data, we calculate
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doank  _ _(2.5kg/m*)[(z/4)(0.005m)>1(360m/s) _ 079

Ans.(b
dt (7/6)(0.35m)> ns0)

kg/m3
S

3.8 Three pipes steadily deliver water at \ _
20°C to a large exit pipe in Fig. P3.8. The D3 =6 cm
velocity V2 = 5 m/s, and the exit flow rate D, =5 cn\

Q4 =120 m 3/h. Find (a) V1; (b) V3; and
(c) V4 if it is known that increasing Q3 by > ’

o 5 1)
20% would increase Q4 by 10%. //——D4 -
. / D, =4cm

Solution: (a) For steady flow we have .
Q1 +Q2+Q3=0Q4,o0r Fig. P3.8

VIA +VL A, +V5 A =V, A, (1)
Since 0.2Q3 = 0.1Q4, and Q4 = (120 m3/h)(h/3600 s) = 0.0333 m>/s,

Q, _(0.0333 m’/s)
25 §(0.062)

V, = =5.89 m/s Ans. (b)

Substituting into (1),
( J(o 042)+(5)( ](0 05%)+(5. 89)( J(o 06%)=0.0333 V, =5.45m/s Ans. (a)

From mass conservation, Q4 = V4A4

(0.0333 m’/s) =V, (7)(0.06*)/4  V,=524m/s Ans. (c)
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3.9 A laboratory test tank contains
seawater of salinity S and density p. Water
enters the tank at conditions (S1, p1, Al,
V1) and is assumed to mix immediately in
the tank. Tank water leaves through an
outlet A2 at velocity V2. If salt is a
“conservative” property (neither created
nor destroyed), use the Reynolds transport
theorem to find an expression for the rate
of change of salt mass Msalt within the
tank.

Solution: By definition, salinity S = psalt/p. Since salt is a “conservative” substance
(not consumed or created in this problem), the appropriate control volume relation is

dMSal d . .
: systemza(cj; Ps du]+sm2 _Slml =0

dt

dM
or: d—t5|cv=slp1Alv1—s,psz2 Ans.

3.10 Water flowing through an 8-cm-diameter pipe enters a porous section, as in
Fig. P3.10, which allows a uniform radial velocity vw through the wall surfaces for a
distance of 1.2 m. If the entrance average velocity V1 is 12 m/s, find the exit velocity
V2 if (a) vw = 15 cm/s out of the pipe walls; (b) vw = 10 cm/s into the pipe. (c) What
value of vw will make V2 =9 m/s?

A

v e
t& 1.2 m ﬁl ;;*SCm
Fig. P3.10

Solution: (a) For a suction velocity of vw = 0.15 m/s, and a cylindrical suction surface area,
A, =27(0.04)(1.2)=0.3016 m*
Q=Q,+Q,
(12)(7)(0.08% /4 = (0.15)(0.3016) + V,(7)(0.08*)/4  V,=3m/s Ans. (a)

(b) For a smaller wall velocity, vw = 0.10 m/s,
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(12)(7r)(0.08%)/4 = (0.10)(0.3016) + V,(7)(0.08> Y4V, =6m/s Ans. (b)

(c) Setting the outflow V2 to 9 m/s, the wall suction velocity is,
(12)(7)(0.08%)/4 = (v,,)(0.3016) + (9)(7)(0.08*)/4 v, =0.05m/s =5cm/s out

3.11 A room contains dust at uniform concentration C = pdust/p. It is to be cleaned by
introducing fresh air at an inlet section Ai, Vi and exhausting the room air through an
outlet section. Find an expression for the rate of change of dust mass in the room.

Solution: This problem is very similar to Prob. 3.9 on the previous page, except that
here Ci = 0 (dustfree air). Refer to the figure in Prob. 3.9. The dust mass relation is

: . dM
or, since C; =0, we obtain —3ut

CV: _CpAOVO Ans.

To complete the analysis, we would need to make an overall fluid mass balance.

3.12 The pipe flow in Fig. P3.12 fills a cylindrical tank as shown. At time t = 0, the water
depth in the tank is 30 cm. Estimate the time required to fill the remainder of the tank.

D =75 cm_ I
\/ I m

|
S— — >
V,=25m/s Rd=12cm V,=19m/s
Fig. P3.12

Solution:  For a control volume enclosing the tank and the portion of the pipe below the tank,

%[J. pdV]-i- Moy =My =0

dh
pﬂ'Rz E"‘@Av)out —(pAV);, =0
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ah _ %{998[£j (0.12%)(2.5-1 .9)} =0.0153 m/s,
dt  998(7)(0.75%) 4

At=0.7/0.0153=46s Ans.
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P3.13 The cylindrical container in Fig. P3.13
1s 20 cm in diameter and has a conical contraction Az _A__.
at the bottom with an exit hole 3 cm in diameter. —
The tank contains fresh water at standard sea-level

conditions. If the water surface is falling at the «——— D—— h(t)

nearly steady rate dh/dt ~ —0.072 m/s, estimate the
average velocity V from the bottom exit.

Solution: We could simply note that dh/dt is the same as the water velocity at the surface
and use Q; = Q, or, more instructive, approach it as a control volume problem. Let the
control volume encompass the entire container. Then the mass relation is

dm d . d T 2 T 2
E‘system =0= a(c{//?dl)) + Moy = E(U?A: +’OZD h) |+ o Dexit V
7T o dh T Vs D ., dh
or: p—D"— + p—Dg;V=0 Cancel p—: V = -——
,04 qt p4 exit ,04 (Dexit) ( dt)
Introduce the data: V = (2™)2_—0.072™)] = 32T Ans.
3cm S S
3.14 The open tank in the figure contains 3 l
water at 20°C. For incompressible flow, @ I Q;=0.01m’/s
(a) derive an analytic expression for dh/dt () @
in terms of (Q1, Q2, Q3). (b) If h is - — T
constant, determine V2 for the given data if D=5c¢m > :I:m
)=

Vi=3m/sand Q3 =0.01 m3/s.

Solution: For a control volume enclosing the tank,

d d?* dh
EUV pdu]w(Qz “Q-Q)=p7 T AQ-Q-Q),
ﬁ — Ql + Q3 _QZ Ans. (a)

solve 5
dt (wd“/4)
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If h is constant, then

Q, =Q, +Q, =0.01 +%(0.05)2 (3.0)=0.0159 = %(0.07)2v2,

solve V,=4.13m/s Ans. (b)
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3.15 Water flows steadily through the r=R
round pipe in the figure. The entrance AN

velocity is  Vo. The exit velocity E 4 > u(r)
—.’

approximates turbulent flow, U=
umax(l — r/R)l/ 7. Determine the ratio
Uo/umax for this incompressible flow.

Solution: Inlet and outlet flow must balance:

497

R R 7
r
Q =Q,, or '[ U,2zr dr :.[ Uy (1——) 2zrdr, or: U,zR*=u,, —— R’
) ) R 60

Cancel and rearrange for this assumed incompressible pipe flow:

185

Yo _149 Ans.
Unx 00
3.16 An incompressible fluid flows past U y=s e @ U,
an impermeable flat plate, as in Fig. P3.16, : _:
with a uniform inlet profile u = Uo and a | |
cubic polynomial exit profile : |
| =0 v .
377 — 773 y Solid plate, width b into paper cubie
u=U,| ———| where n== _
2 ) Fig. P3.16

Compute the volume flow Q across the top surface of the control volume.

Solution:  For the given control volume and incompressible flow, we obtain
¢ (3y ¥y 4
_ _ y_J¥ _
0= Qup + Qe ~Qun =Q+] Vo 5575 | by Ubdy

:Q+§Uob5—U0b5, solve for Q=§Uob5 Ans.

3.17 Incompressible steady flow in the ;

inlet between parallel plates in Fig. P3.17 is b s cvsnin L T
uniform, U = Uo = 8 cm/s, while downstream Q% -
the flow develops into the parabolic laminar TR TIY 220
profile U = az(zo — z), where a is a constant.

If Zo = 4 cm and the fluid is SAE 30 oil at Fig. P3.17

20°C, what is the value of Umax in cm/s?
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Solution: Let b be the plate width into the paper. Let the control volume enclose the
inlet and outlet. The walls are solid, so no flow through the wall. For incompressible flow,

0=Qu —Q;, = [ az(z,—2)bdz—| U bdz=abz}/6-U,bz, =0, or: a=6U,/z
0 0
Thus continuity forces the constant a to have a particular value. Meanwhile, a is also

related to the maximum velocity, which occurs at the center of the parabolic profile:

Atz=7/2: u=u,, a(%j(z —%) =az2/4=(6U, /22 )(2>/4)

or: u =§UO:§(8cm/s):12ﬂ Ans.
S

max
2

Note that the result is independent of zo or of the particular fluid, which is SAE 30 oil.

3.18 An incompressible fluid flows INLET
steadily through the rectangular duct in the \

; . . 2b
figure. The exit velocity profile is given by
U~ umax(l — yz/bz)(l — 22/h2). (a) Does

this profile satisfy the correct boundary 2h z

conditions for viscous fluid flow? (b) Find an ??y
analytical expression for the volume flow Q /

at the exit. (¢) If the inlet flow is 300 / \
ft3 /min, estimate umax in m/s. EXIT X, U

Solution: (a) The fluid should not slip at any of the duct surfaces, which are defined by
y = b and z = th. From our formula, we see u =0 at all duct surfaces, OK. Ans. (a)
(b) The exit volume flow Q is defined by the integral of U over the exit plane area:

+h +b 2 2 4b 4h
oo - oo (22

_ 16bhu ., Ans. (b)
9

(¢) Given Q =300 ft3/min = 0.1416 m>/s and b = h = 10 cm, the maximum exit velocity is

3
Q=0.1416 mT =%(0.1 m)(0.1 m)u,_, solve for u_, =7.96m/s Ans. (c)

max?>
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3.19 Water from a storm drain flows over an outfall onto a porous bed which absorbs the
water at a uniform vertical velocity of 8 mm/s, as shown in Fig. P3.19. The system is 5 m
deep into the paper. Find the length L of bed which will completely absorb the storm water.

Initial depth = 40 cm

Solution: For the bed to completely absorb the water, the flow rate over the outfall
must equal that into the porous bed,

Q,=Qpp; or (2m/s)(0.2 m)(5 m)=(0.008 m/s)(5m)L L=50m Ans.

3.20 Oil (SG-0.91) enters the thrust
bearing at 250 N/hr and exits radially
through the narrow clearance between
thrust plates. Compute (a) the outlet
volume flow in mL/s, and (b) the average
outlet velocity in cm/s.

Solution: The specific weight of the oil is Fig. P3.20
(0.91)(9790) = 8909 N/m?>. Then

250/3600 N/s s M’ mL
= :—:78)(10 —:78 _— AnS a
2 =Q 8909 N/m° s S ®

Butalso Q, =V, 7(0.1 m)(0.002 m)=7.8x10"°, solve for V, =1.24 % Ans. (b)
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P3.21 Modify Prob. 3.13 as follows. Let the plate be L = 1256 long from inlet to exit.
The plate is porous and is drawing in fluid from the boundary layer at a uniform suction
velocity vy. (a) Calculate Q across the top if vy, = 0.002U,. (b) Find the ratio v, /U,

for which Q across the top is zero.

Q
Solution: The situation is now as shown :_ T 7/“ S
Uybd S
at right. The inlet and outlet flows were —:" control volume : 5U.bS8
calculated in Prob. P3.13. The wall flow : :
is the suction velocity times the wall area: T i 6\;111_ _____ L=1256
Qwar = VwLb = v, (1256)b
The total volume flow through the control volume is zero, solve for Q:
5 3
Q = Uybo - guobé' — 125v,bs = §U0b5 — 125v,,bo
(@) Ifvy = 0.002U,, compute Q = (1/8)U,bo Ans.(a)
(b) Q = 0 when vy, = 0.003U,. Ans.(b)
3.22 The converging-diverging nozzle
shown in Fig. P3.22 expands and accelerates \,///Jl:
dry air to supersonic speeds at the exit, where . B T
p2 = 8 kPa and T2 = 240 K. At the throat, ﬁ\i
p1 =284 kPa, T1 = 665 K, and V1 = 517 mys. 0) !
For steady compressible flow of an ideal gas, Di=tem ©)
estimate (a) the mass flow in kg/h, (b) the D,=25cm
velocity V2, and (c) the Mach number Ma2. Fig. P3.22

Solution: The mass flow is given by the throat conditions:

m=pA,V, = Mk—% Z0.01 m)2(517 Ej=0.0604 K9 ans.(a)
(287)(665) m> | 4 s s

For steady flow, this must equal the mass flow at the exit:
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8000
287(240)

kg

0.0604 —=
S

=@%w=[ % (0.0257V,, or %zmmglAmw)

4
Recall from Eq. (1.39) that the speed of sound of an ideal gas = (kRT)l/ 2 Then

1060

Mach number at exit: Ma =V,/a, = 2
[1.4(287)(240)]

~3.41 Ans. (c)

3.23 The hypodermic needle in the figure contains a liquid (SG = 1.05). If the serum is
to be injected steadily at 6 cm3/s, how fast should the plunger be advanced (a) if leakage
in the plunger clearance is neglected; and (b) if leakage is 10 percent of the needle flow?
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D;=0.75in

Solution: (a) For incompressible flow, the volume flow is the same at piston and exit:
3 i3 ;
m n . In
Q=6 CT =0.366 IT =AY, = %(0.75 iV, solve Vo, = 0.83 T A @)

(b) If there is 10% leakage, the piston must deliver both needle flow and leakage:

3 in3
cm in T
AVI = Queegie + Qetearance = 0+ 0.1(6) = 6.6 T =0.403 ? = 2(075)2\/ >

V, =0.91 ? Ans. (b)

3.24 Water enters the bottom of the cone
in the figure at a uniformly increasing —_
average velocity V = Kt. If d is very small, 5
derive an analytic formula for the water h(r)
surface rise h(t), assuming h=0att=0.

Solution: For a control volume around
the cone, the mass relation becomes

d o dl 7 2 T 2
a(jpdu)—min —O—E{pg(htané?) h}—pzd Kt

Integrate: pg h’tan’6 = p% d?Kt?

3 - , 1/3
Solve for h(t) = gKt d“cot°@ Ans.

3.25 As will be discussed in Chaps. 7 and 8, the flow of a stream Uo past a blunt flat
plate creates a broad low-velocity wake behind the plate. A simple model is given in
Fig. P3.25, with only half of the flow shown due to symmetry. The velocity profile
behind the plate is idealized as “dead air” (near-zero velocity) behind the plate, plus a higher
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velocity, decaying vertically above the wake according to the variation U ~Uo + AUe_Z/L, where
L is the plate height and z = 0 is the top of the wake. Find AU as a function of stream speed Uo.

L2 . Exponential curve

Width b Gl
Uo into paper U+ AU
—
—_— L Dead air (negligible velocity)
S 2
— B S —
Fig. P3.25

Solution: For a control volume enclosing the upper half of the plate and the section
where the exponential profile applies, extending upward to a large distance H such that
exp(—H/L) = 0, we must have inlet and outlet volume flows the same:

H H
L
Q, = j U,dz=Q,, = j (U, +AUe “")dz, or: U, (H+EJ:UOH+AUL
0

-L2

Cancel U_H and solve for AU ~ % U, Ans.

3.26 A thin layer of liquid, draining from
an inclined plane, as in the figure, will have
a laminar velocity profile u = Uo(2y/h — y*/h?),
where Uo is the surface velocity. If the
plane has width b into the paper, (a) deter-
mine the volume rate of flow of the film.
(b) Suppose that h = 0.5 in and the flow
rate per foot of channel width is 1.25 gal/min.
Estimate Uo in ft/s.

Solution: (a) The total volume flow is computed by integration over the flow area:

h 2
Q=[V,dA=]U, (%—#dey =§Uobh Ans. (a)
0

(b) Evaluate the above expression for the given data:
ft' 2 2

Q=125 9 _ 9002785 2y ph=2
min S 3 3

0.5
U, (1.0 ft)| — ft |,
% )

solve for UO:O.lof?t Ans. (b)
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P3.27 Consider a highly pressurized air tank at conditions (P,, 0o, To) and volume v,. In
Chap. 9 we will learn that, if the tank is allowed to exhaust to the atmosphere through a
well-designed converging nozzle of exit area A, the outgoing mass flow rate will be

apy A

JRT,

This rate persists as long as p, is at least twice as large as the atmospheric pressure.
Assuming constant T, and an ideal gas, (a) derive a formula for the change of density
Po(t) within the tank. (b) Analyze the time At required for the density to decrease by
25%.

where o =~ 0.685 for air

Solution: First convert the formula to reflect tank density instead of pressure:
apo A  a(peRTH)A

JRT,  JRT,

(a) Now apply a mass balance to a control volume surrounding the tank:

= apy A{RT,

dm d . dp
— lsystem =0 = E(Pouo)+ Moyt = Yo dto + apoAyRT,

dt
. dog
Separate variables: —— = — aA,/RT, dt
Po
—aA/RT,
Integrate from statel to state2 : Por _ exp[ ———>(t, -t;)]  Ans.(a)
Pol 0

(b) If the density drops by 25%, then we compute

oAJRT 0.288
TNTO (1, —t,) = —In(0.75) = 0.288 ; Thus At = o

Vo ah\fRT,

Ans.(b)
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3.28 According to Torricelli’s theorem, the SZ

velocity of a fluid draining from a hole in a
tank is V ~ (2gh)1/2, where h is the depth of
water above the hole, as in Fig. P3.28. Let
the hole have area Ao and the cylindrical

water

tank have bottom area Ab. Derive a formula
for the time to drain the tank from an initial
depth ho.

Solution: For a control volume around the tank,

%[I pdV]‘i‘ Moyt =0

A%

Fig. P3.28

Ans.

[«— = >
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3.29 In elementary compressible-flow theory

(Chap. 9), compressed air will exhaust from a

small hole in a tank at the mass flow rate S — 9
m ~ Cp, where p is the air density in the tank
and C is a constant. If po is the initial density in
a tank of volume Vv, derive a formula for the
density change o(t) after the hole is opened.
Apply your formula to the following case: a
spherical tank of diameter 50 cm, with initial
pressure 300 kPa and temperature 100°C, and
a hole whose initial exhaust rate 1s 0.01 kg/s.
Find the time required for the tank density to
drop by 50 percent.

Se

Volume v

Density p (t)

Solution: For a control volume enclosing the tank and the exit jet, we obtain

d . oo dp
0= E(J. pdv) +mg,, Or: VE =-m,, =—Cp,
Tdp  Cj C
or: J‘ . ——I dt, or: P 5 exp[——t} Ans.
o P Vo Po 14

Now apply this formula to the given data. If po = 300 kPa and To = 100°C = 373°K,
then po = p/RT = (300,000)/[287(373)] = 2.80 kg/m3. This establishes the constant “C”:
kg

m, =Cp, =0.01 ~== c(z.go
S

ke
1’1’13

m’
), or C=~0.00357 — for this hole.
S

The tank volume is v = (7/6)D° = (7/6)(0.5 m)* = 0.00654 m>. Then we require

0.00357
0.00654

plp,=0.5= exp{— t} if t=13s Ans.

jet passes through the slot. The rest splits

P3.30 A steady two-dimensional water il_ ;:;I_l_ ) _(;) ______ ;5_0_: ) _C_y
jet, 4 cm thick with a weight flow rate of i \L v\ b F
: : : (1) —
1960 N/s, strikes an angled barrier as in 1969 Nis | i 30%
Fig. P3.30. Pressure and water velocity are /I\ , i 2
|| Fig. P3.30

constant everywhere. Thirty percent of the i ) /
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symmetrically along the barrier. Calculate the horizontal force F needed, per unit

thickness into the paper, to hold the barrier stationary.

Solution:  For water take p = 998 kg/m. The control volume (see figure) cuts through all

four jets, which are numbered. The velocity of all jets follows from the weight flow at (1):

W, 1960N /s m
Vigssa =V = = 5 . = 50—
POA (9.81m/s?)(998kg / m>)(0.04m)(Im) s
my = DOOR/s—m 20049 1ny = 03m, =609, —m, =709
g 9.8IN/s s—m S—m s—m

Then the X-momentum relation for this control volume yields
—-F = (60)(5.0) +(70)(=5.0c0s 55%) + (70)(-5.0co0s55°) — 200(5.0), or:
F = 1000 + 201 + 201 — 300 = 1100 N permeterof width Ans.

3.31 A bellows may be modeled as a
deforming wedge-shaped volume as in
Fig. P3.31. The check valve on the left
(pleated) end is closed during the stroke.
If b is the bellows width into the paper,
derive an expression for outlet mass flow
m, as a function of stroke At).

Solution: For a control volume enclosing
the bellows and the outlet flow, we obtain Fig. P3.31

%( pv)+1,, =0, where v =bhL =bL* tand

since L is constant, solve for m, = —%( pbL? tan @) = — pr2 Seczaz—f Ans.
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3.32 Water at 20°C flows through the

piping junction in the figure, entering section 3 d=4cm

1 at 20 gal/min. The average velocity at S
section 2 is 2.5 m/s. A portion of the flow is \ /d =
diverted through the showerhead, which

contains 100 holes of 1-mm diameter. Q) ~— -

Assuming uniform shower flow, estimate the
exit velocity from the showerhead jets.

Solution: A control volume around sections (1, 2, 3) yields
Q, =Q, +Q, =20 gal/min = 0.001262 m’s.

Meanwhile, with V2 = 2.5 m/s known, we can calculate Q2 and then Q3:
3
Q, =V,A, =(2.5 m)%(0.0Z m)? = 0.000785
S

3
hence Q, =Q, —Q, =0.001262 —0.000785 = 0.000476 ——
S
. m’ 7 2
Each hole carries  Q,/100 = 0.00000476 — = Z(O.OOI) \Y
S

jet»

solve Ve =6.06 M Ans.
S

3.33 In some wind tunnels the test section Test section

is perforated to suck out fluid and provide a Lasosm
thin viscous boundary layer. The test section | |
wall in Fig. P3.33 contains 1200 holes of
5-mm diameter each per square meter of
wall area. The suction velocity through each
hole is Vr = 8 m/s, and the test-section
entrance velocity is V1 = 35 m/s. Assuming
incompressible steady flow of air at 20°C,
compute (a) Vo, (b) V2, and (c) Vf, in m/s.

D= 22m

|— mam —]

Fig. P3.33




Solution: The test section wall area is (7)(0.8 m)(4 m) = 10.053 m2, hence the total
number of holes is (1200)(10.053) = 12064 holes. The total suction flow leaving is

Q..o = NQ,... =(12064)(7/4)(0.005 m)*(8 m/s) ~ 1.895 m’/s
suction hole

(o]

(@) Find V,: Q,=Q, or V, %(2.5)2 =(35)%(0.8)2,
solve for V., ~3.58 % Ans. (a)
(®) Q; =Q; = Qquetion = (35)%(0-8)2 —-1.895=V, %(0-8)2,
or: V,~31.2 % Ans. (b)
(c) FindV: Q,=Q, or Vf%(z.z)2 =(31.2)%(0.8)2,

solve for V;~4.13 m Ans. (c)
S
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3.34 A rocket motor is operating steadily, l N

as shown in Fig. P3.34. The products of O s

combustion flowing out the exhaust nozzle @

approximate a perfect gas with a molecular i~

weight of 28. For the given conditions R ! ——

calculate V2 in ft/s. g _Hoo%F
D,=55m

Solution: Exit gas: Molecular we1§ht = @

28, thus Rgas = 49700/28 = 1775 ft%/(s*-°R). pootsen

Then, Fig. P3.34

p 15(144) psf

Pexit gas = 5 = ~0.000780 slug/ft*
RT  (1775)(1100 +460)

For mass conservation, the exit mass flow must equal fuel + oxygen entering = 0.6 slug/s:

ex1t

0.6 U8 _ 5 A V. =(0.00078)% (51 25 j V., solvefor V, ~4660 * Ans,
S

e’
S

3.35 In contrast to the liquid rocket in Propellant

Fig. P3.34, the solid-propellant rocket in C prsetion
. . . t~ Combustion: ~___ e P.—90KPa
Fig. P3.35 is self-contained and has no (= 1500 K. 950 kPa Vo= 150 mis
. T,=750K

entrance ducts. Using a control-volume

analysis for the conditions shown in el
Fig. P3.35, compute the rate of mass loss

of the propellant, assuming that the exit gas

has a molecular weight of 28.

Fig. P3.35

Solution: With M =28, R =8313/28 =297 mz/(sz-K), hence the exit gas density is

p 90,000 Pa

T % = 0.404 kg/m®
RT  (297)(750 K)

p ex1t

For a control volume enclosing the rocket engine and the outlet flow, we obtain

d .
1. (mCV) +mg, = 0’

dt

d

or: a(mpropellant) =-m

exit —

—p, AV, =—(0.404)(/4)(0.18)*(1150) ~ —11.8 K9 ans.
S
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3.36 The jet pump in Fig. P3.36 injects e Minine Fully
water at Ul = 40 m/s through a 3-in pipe 1
and entrains a secondary flow of water U2 =
3 m/s in the annular region around the
small pipe. The two flows become fully
mixed down-stream, where U3 is
approximately  constant. For  steady
incompressible flow, compute U3 in m/s.

Solution:  First modify the units: D1 = 3 in = 0.0762 m, D2 = 10 in = 0.254 m. For
incompressible flow, the volume flows at inlet and exit must match:

Q,+Q,=Q, or %(0.0762)2 (40)+ %[(0.254)2 —(0.0762)*1(3) = %(0.254)2U3

Solve for U; =6.33m/s Ans.

3.37 A solid steel cylinder, 4.5 cm in Vi
diameter and 12 cm long, with a mass of

1500 grams, falls concentrically through a /d =4.5cm

5-cm-diameter vertical container filled with
oil (SG = 0.89). Assuming the oil is incom- D=5cm

pressible, estimate the oil average velocity

E L=12c E
in the annular clearance between cylinder ! " /
and container (a) relative to the container; ] : E vV
and (b) relative to the cylinder. E : ;/C
Solution: (a) The fixed CV shown is o R N
relative to the container, thus: Vi
V) T 2 2 d2
Qcy| = QO“ 5 or: Zd ch| = Z(D - d )VOI| N thUS VO“ = mvcw AnS. (a)

For the given dimensions (d =4.5 cm and D = 5.0 cm), Voil = 4.26 Vcylinder.
(b) If the CV moves with the cylinder we obtain, relative to the cylinder,

D2
Voil retative to cylinder :Vpart(a) +chl = mvcyl ~ 5'26chl Ans. (b)
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3.38 An incompressible fluid is squeezed Yo
between two disks by downward motion Vo

of the upper disk. Assuming 1-dimensional S SAAMMAAANNANAAARN
radial outflow, find the velocity V(r). $ cv SO
h(t) | ([— r —{
Solution: Let the CV enclose the disks " e
and have an upper surface moving down at SESSSS NSNS
speed Vo. There is no inflow. Thus Fixed cireular sk
Fig. P3.38

i[ j ,odu}L I PVou dA=O=i(p7rr2h)+p27rrhV,
dt v s dt

dh

or: r’ % +2rhV =0, but I = -V, (the disk velocity)

As the disk spacing drops, h(t) = ho — Vot, the outlet velocity is V = Vor/(2h). Ans.

3.39 A wedge splits a sheet of 20°C water, as shown in Fig. P3.39. Both wedge and
sheet are very long into the paper. If the force required to hold the wedge stationary is F
=126 N per meter of depth into the paper, what is the angle 8 of the wedge?

6 m/s l

Fig. P3.39 4 cm\ 6 m/s
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Solution: For water take p=998 kg/m’. First compute the mass flow per unit depth:

m/b = pVh =(998kg /m3)(6m/s)(0.04 m) = 239.5kg/s—m

The mass flow (and velocity) are the same entering and leaving. Let the control volume
surround the wedge. Then the X-momentum integral relation becomes
. . 0 . 0
2F, =—F =mM(Ugy —Uj) =my cosE—V) = mV(cosE—l)

or: —124N/m=(239.5kg/s— m)(6m/s)(cos§—1)

Solve cos§:0.9137, §=24O , 0 = 48° Ans.

3.40 The water jet in Fig. P3.40 strikes
normal to a fixed plate. Neglect gravity and b - 1oem
friction, and compute the force F in D i
newtons required to hold the plate fixed.

Solution: For a CV enclosing the plate
and the impinging jet, we obtain:
Z Fx =-F= n.llupuup + n./ldownudown - m_]u_]
=—mjuj, m;=pA;Y;
Thus F=pA;V; =(998)7(0.05)(8)° ~500 N «— Ans.

3.41 In Fig. P3.41 the vane turns the water
jet completely around. Find the maximum s
jet velocity Vo for a force Fo.

Po Ve Dy o

Solution: For a CV enclosing the vane
and the inlet and outlet jets, Fig. P3.41

2 Fx = _Fo = 1’houtu’out - 1’hinu’in = rhjet (_Vo) - 1hjet (+Vo)
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or: F =2p A V2, solvefor V, = Lz
2p,(7/4)Dg
3.42 A liquid of density p flows through FOV I 2
the sudden contraction in Fig. P3.42 and P ! )
exits to the atmosphere. Assume uniform e _J"F I p
conditions (p1, V1, D1) at section 1 and Py . . ;1
(p2, V2, D2) at section 2. Find an expression | !
for the force F exerted by the fluid on the E(g) (1)
contraction. : !
T ]

Fig. P3.42
Solution: Since the flow exits directly to the atmosphere, the exit pressure equals
atmospheric: p2 = pa. Let the CV enclose sections 1 and 2, as shown. Use our trick (page 129
of the text) of subtracting pa everywhere, so that the only non-zero pressure on the CS is at
section 1, p = p1 — pa. Then write the linear momentum relation with X to the right:

2F =F—(p,—p,)A, =myu, —myu;, where m, =m, = pA}V,
But u, =-V, and u,=-V,. Solvefor F 4.4 =/ —P.)A + AV, (-V, +V))

Meanwhile, from continuity, we can relate the two velocities:
Q,=Q,, or (z/4)D}V,=(z/4)D;V,, or: V,=V,(D;/D3)

Finally, the force of the fluid on the wall is equal and opposite to Fon fluid, to the left:
T
Fouidonwanl = (B1 = Pa)A; = oA V] [(Df /D3 ) - 1} . A= ZDf Ans.

The pressure term is larger than the momentum term, thus F > 0 and acts to the left.

3.43 Water at 20°C flows through a
5-cm-diameter pipe which has a 180°
vertical bend, as in Fig. P3.43. The total
length of pipe between flanges 1 and 2 is
75 cm. When the weight flow rate is
230 N/s, p1 = 165 kPa, and p2 = 134 kPa.
Neglecting pipe weight, determine the total
force which the flanges must withstand for
this flow.




Solution: Let the CV cut through the flanges and surround the pipe bend. The mass flow rate
is (230 N/s)/(9.81 m/s ) = 23.45 kg/s. The volume flow rate is Q = 230/9790 = 0.0235
m°/s. Then the pipe inlet and exit velocities are the same magnitude:

0.0235 m’/s m

b Q (7/4)(0.05 m)? s

Subtract pa everywhere, so only p1 and p2 are non-zero. The horizontal force balance is:
2F =F wfange T (P1 —Pa)A; + (P2 = Po)A, = myu, —myu,
=Fq+ (64000)2(0.05)2 + (33000)2(0.05)2 =(23.45)(-12.0-12.0 m/s)
-126-65-561~-750N Ans.

or: Fx,ﬂange =

The total x-directed force on the flanges acts to the left. The vertical force balance is

pipe

YF, = F, fnge = Woipe + Wiig = 0+ (9790)%(0.05)2(0.75) ~14N Ans.

Clearly the fluid weight is pretty small. The largest force is due to the 180° turn.

3.44 Consider uniform flow past a cylinder with a V-shaped wake, as shown. Pressures
at (1) and (2) are equal. Let b be the width into the paper Find a formula for the force F
on the cylinder due to the flow. Also compute CD = F /(pU Lb).

U

—_——

\
)
O

Fig. P3.44
Solution: The proper CV is the entrance (1) and exit (2) plus streamlines above

and below which hit the top and bottom of the wake, as shown. Then steady-flow
continuity yields,

L
0=I pudA—_[ pudA=2J. ,0H 1+ b dy -2 pUbH,
2 1 o 2 L
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where 2H is the inlet height. Solve for H = 3L/4.

Now the linear momentum relation is used. Note that the drag force F is to the
right (force of the fluid on the body) thus the force F of the body on fluid is to the left.
We obtain,

L
Ul y)y Ul y 2
2F, =0=|upudA—|upudA=2| —|1+= |[p—| 1+= |bdy-2HpUb=-F,,
\ !p !p {2( Ljpz( Lj y—2Hp g

Use H:3TL, then Fy,, =%pU2Lb—%pU2Lbz%pU2Lb Ans.

The dimensionless force, or drag coefficient F/QoUsz), equals CD=1/3. Ans.
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P3.45 A 12-cm-diameter pipe, containing
water flowing at 200 N/s, is capped by an
orifice plate, as in Fig. P3.45. The exit jet is
25 mm in diameter. The pressure in the pipe
at section 1 is 800 kPa-gage. Calculate the

force F required to hold the orifice plate.

200 N/s

O

i . —> V2
| Il i
; ;\d =25 mm
Ccv
Fig. P3.45

Solution: For water take p= 998 kg/m’. This is a straightforward X-momentum problem.

First evaluate the mass flow and the two velocities:

m:ﬂ: 2OON/82=20.4k—g;V1= m 2(3).4kg/s 2:1.SIE
g 98Im/s s PA (998kg /m”)(/4)(0.12m) s

v, = m _ 230.4kg/s - 41'6m

PRy (998kg /m>)(xr/4)(0.025m) S

Now apply the x-momentum relation for a control volume surrounding the plate:

IR = -F + pl,gageAl = mV,-V,), or:

F = (800000Pa)%(0.12m)2 - (20.4%’)(41.6—1.81%) = 9048 —812 = 8240N Ans.

3.46  When a jet strikes an inclined plate,
it breaks into two jets of equal velocity V
but unequal fluxes aQ at (2) and (1 — @)Q
at (3), as shown. Find ¢, assuming that the
tangential force on the plate is zero. Why
doesn’t the result depend upon the properties
of the jet flow?

(1-Q, vV

Fig. P3.46




Solution: Let the CV enclose all three jets and the surface of the plate. Analyze the
force and momentum balance tangential to the plate:

2F =F =0=m,V+my(-V)—m,Vcosd

=agmV—-(1-a)mV-mVcosd =0, solve for a=%(l+c089) Ans.

The jet mass flow cancels out. Jet (3) has a fractional flow (1 — &) = (1/2)(1 — cosé).

3.47 A liquid jet Vj of diameter Dj strikes a fixed cone and deflects back as a conical sheet
at the same velocity. Find the cone angle € for which the restraining force F = (3/2)pA_]V_]

Conical sheet

Jet

Fig. P3.47
Solution: Let the CV enclose the cone, the jet, and the sheet. Then,

ZFx =-F= rilloutu

out in-in

—m,u;, =m(=V;cosd)-mV;, where m= pA;V;

Solve for F = ijij (1+cosO)= %ijij if cosé :% or €=60° Ans.

3.48 The small boat is driven at steady speed Vo by compressed air issuing from a
3-cm-diameter hole at Ve = 343 m/s and pe = 1 atm, Te = 30°C. Neglect air drag. The
hull drag is kVo where k = 19 N-s2/m?. Estimate the boat speed Vo.

D=3 cm [ Compressed
Ve =& air
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Solution: For a CV enclosing the boat and moving to the right at boat speed Vo,
the air appears to leave the left side at speed (Vo + Ve). The air density is pe/RTe =
1.165 kg/m3. The only mass flow across the CS is the air moving to the left. The
force balance is

> F, =-Drag=-kV?=m =[p. A (V, + V)=V, - V),

outuout

or: P A (V,+V.)* =kVZ, (1.165)(7/4)(0.03)*(V, +343)* =19V

work out the numbers: (V, +343) = VO\/ (23060), solve for V, =2.27m/s Ans.

3.49 The horizontal nozzle in Fig. P3.49
has D1 =12 in, D2 = 6 in, with p1 =38 psia
and V2 = 56 ft/s. For water at 20°C, find
the force provided by the flange bolts to
hold the nozzle fixed.

Solution: For an open jet, p2 = pa =
15 psia. Subtract pa everywhere so the only
nonzero pressure is pl = 38 — 15 = 23 psig.

P = 15 Ibf/in? abs
)
Open
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The mass balance yields the inlet velocity:

V4 T ft ot ‘1::- -------- g \7.5
Vi 1(12)2 = (56)1(6)25 Vi=14 — 23 psig—+-# 56 fifs
S V] _%_. : 0 psig
The density of water is 1.94 slugs per cubic C—

foot. Then the horizontal force balance is

L F, =~Fis +(23 psig) (12 i)’ =riyu, —tyu; =1h(V; = V;)

Compute Fbolts=2601—(1.94)%(1 ft)2[1 ftj(% 14 ftj 1700 Ibf  Ans.
S S

3.50 The jet engine in Fig. P3.50 admits et

air at 20°C and 1 atm at (1), where Al = /’ﬂ\\

0.5 m? and V1 = 250 m/s. The fuel-air ratio : Combustion !
is 1:30. The air leaves section (2) at | atm, 6 ! chamber |
| |

V2 =900 m/s, and A2 = 0.4 m? . Compute

the test stand support reaction Rx needed. \\:j//
Solution: p1 p/RT =101350/[287(293)] =
1.205 kg/m For a CV enclosing the
engine,

m, = pA,V, = (1.205)(0.5)(250) = 151 kg/s, i, = 151(1+%} =156 kg/s

Y F, =R, =1i,u, — U, — Mg,y =156(900)—151(250)— 0 ~ 102,000N  Ans.

3.51 A liquid jet of velocity Vj and area Aj strikes a single 180° bucket on a turbine
wheel rotating at angular velocity Q. Find an expression for the power P delivered. At
what Q is the power a maximum? How does the analysis differ if there are many buckets,
so the jet continually strikes at least one?

Bucket

Wheel. radius R

Fig. P3.51



210 Solutions Manual e Fluid Mechanics, Fifth Edition



Chapter 3 o Integral Relations for a Control Volume 211

Solution: Let the CV enclose the bucket MOVING
and jet and let it move to the right at bucket Ve~ CV
velocity V = QR, so that the jet enters the S

CV at relative speed (Vj — QR). Then, velocity |

\%

3 Fx = _Fbucket = I’huout - I’huin =
=mh[—(V; - QR)]-mi[V, - QR]
or: Fyyger =2m(V; —QR) =2pA(V, - QRY’,
and the poweris P = QRF, 4 = 2pA,QR(V,; -QR)* Ans.

Maximum power is found by differentiating this expression:

V.
9P _0 if OR=—1 Ans. |whence P = 3 PAV?
dQ 3 277 M

If there were many buckets, then the full jet mass flow would be available for work:

. 1 V,
Maiae = PAVj: P=2pAVOR(V=OR), Prg=—pAN] at QR=—1 Ans.

available iV

3.52 The vertical gate in a water channel is partially open, as in Fig. P3.52.
Assuming no change in water level and a hydrostatic pressure distribution, derive an
expression for the streamwise force Fx on one-half of the gate as a function of (p, h,
w, €, V1). Apply your result to the case of water at 20°C, VI =0.8 m/s,h=2m,w=1.5m,
and €= 50°.

¥ 4
Vi N
— 2w —
V h
0 2
Top View
Side View

Solution: Let the CV enclose sections (1) and (2), the centerline, and the inside of the
gate, as shown. The volume flows are

V,Wh=V,Bh, or: V2:V1E:V
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1
1 CV gate on
\WY, : N fluid
1
1 (D
1

centerline

since B =W — Wsiné. The problem is unrealistically idealized by letting the water depth
remain constant, whereas actually the depth would decrease at section 2. Thus we have
no net hydrostatic pressure force on the CV in this model! The force balance reduces to

2 F, =Fyeon i =MV, —mV,, where m=pWhV, and V,=V,/(1-sin0)
1
Solve for F.; =—pWhV?| ——=— 1| (totheleft) Ans.
fluid on gate p 1 |:(l— Sin0) :| ( f)

This is unrealistic—the pressure force would turn this gate force around to the right. For
the particular data given, W = 1.5 m, #=50°, B=W(1 —sinf) =0.351 m, V1 = 0.8 m/s,
thus V2 = V1/(1 — sin 50°) = 3.42 m/s, p =998 kg/m3, h =2 m. Thus compute

F

fluid on gate

= (998)(2)(1.5)(0.8)2 {;— 1} ~6300 N «— Ans.
1-sin50°

3.53 Consider incompressible flow in the
entrance of a circular tube, as in Fig. P3.53. P
The inlet flow is uniform, ul = Uo. The flow ®\
at section 2 is developed pipe flow. Find
the wall drag force F as a function of (p1,
P2, p, Uo, R) if the flow at section 2 is

Friction drag on fluid

r2 J Fig. P3.53

Solution: The CV encloses the inlet and outlet and is just inside the walls of the tube.
We don’t need to establish a relation between umax and Uo by integration, because the
results for these two profiles are given in the text. Note that Uo = uav at section (2). Now
use these results as needed for the balance of forces:

R
SF, = (py PR ~ Fypy = [ 05(pu, 271 dr) - Uy (p7R?U,) = prR*UZ(B, - 1)
0
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We simply insert the appropriate momentum-flux factors £ from p. 136 of the text:
(a) Laminar:  Fy,y = (py — P,)7R* = (1/3)pzR?UZ  Ans. (a)
(b) Turbulent, 8, ~1.020: Fy =(p; —P,)7R? —0.02p7R?UZ  Ans. (b)

3.54 For the pipe-flow reducing section ®
of Fig. P3.54, D1 =8 cm, D2 = 5 c¢m, and p2
= 1 atm. All fluids are at 20°C. If V1 =5
m/s and the manometer reading is h = 58
cm, estimate the total horizontal force
resisted by the flange bolts.

. py=p, =101 kPa

Mercury

Fig. P3.54

Solution: Let the CV cut through the bolts and through section 2. For the given
manometer reading, we may compute the upstream pressure:

Pr P2 = (Zmexe ~ Vouar )1 = (132800~ 9790)(0.58 m) ~ 71300 Pa (gage)

Now apply conservation of mass to determine the exit velocity:
Q,=Q,, or (5m/s)(7/4)(0.08 m)* = V,(/4)(0.05)*, solve for V, ~12.8 m/s

Finally, write the balance of horizontal forces:
zFx = _Fbolts + pl,gageAl = m(VZ - Vl )’

or: Fyp = (71300)%(0.08)2 —(998)%(0.08)2(5.0)[12.8—5.0] ~163N  Ans.

3.55 In Fig. P3.55 the jet strikes a vane
which moves to the right at constant velocity
Vc on a frictionless cart. Compute (a) the force
Fx required to restrain the cart and (b) the
power P delivered to the cart. Also find the
cart velocity for which (c) the force Fx is a
maximum and (d) the power P is a maximum.

Fig. P3.55

Solution: Let the CV surround the vane and cart and move to the right at cart speed.
The jet strikes the vane at relative speed Vj — Vc. The cart does not accelerate, so the
horizontal force balance is

Y F, =—F, =[pA;(V; = V)I(V;— V,)cosO - pA;(V; - V,)*
or: F = pA;(V,-V,)*(1-cosd) Ans. (a)
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The power delivered is P =V.F, = pA;V (V; - V,)?(1—cos@) Ans. (b)
The maximum force occurs when the cart is fixed, or: V., =0 Ans. (c)
The maximum power occurs when dP/dV, =0, or: V, =V;/3 Ans. (d)

3.56 Water at 20°C flows steadily through /

the box in Fig. P3.56, entering station ‘

(1) at 2 m/s. Calculate the (a) horizontal; 65°

and (b) vertical forces required to hold the D,=3cm D;=5cm

box stationary against the flow momentum. | Ty
‘—

Solution: (a) Summing horizontal forces, .

2 l:x = Rx = Mgy Ugye — Minlin Fig. P3.56

R, =(998) H%} (0.032)(5.56)} (-5.56)— (998)[[%] (0.052)(2)} (- 2)(cos 65°)

=-1846 N Ans.
Rx =185 N to the left

>F, =R, = MUy, = —(998)(%)(0.052)(2)(—2 sin65°)=7.1N up

3.57 Water flows through the duct in B

Fig. P3.57, which is 50 cm wide and 1 m O,
deep into the paper. Gate BC completely |5 /s .
50 cm A

closes the duct when f=90°. Assuming one-  _,, =
dimensional flow, for what angle £ will the '
force of the exit jet on the plate be 3 kN? I i e
Solution: The steady flow equation
applied to the duct, Q1 = Q2, gives the jet Fig. P3.57
velocity as V2 = V1i(1 — sinf). Then for a

force summation for a control volume
around the jet’s impingement area,

2
2R =F= r’hjvj = p(h, =, Sinﬂ)(D)L—slinﬂ} (Vlz)

2
f—sin” [1 B phl% } i [1_ (998)(03.(5)())(;)(1.2)2 } e a
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3.58 The water tank in Fig. P3.58 stands
on a frictionless cart and feeds a jet of
diameter 4 cm and velocity 8 m/s, which is
deflected 60° by a vane. Compute the
tension in the supporting cable.

8 m/s

Ao

Cable
Solution: The CV should surround the S
tank and wheels and cut through the cable Fig. P3.58
and the exit water jet. Then the horizontal
force balance is
Y F, = T = MgyUoy = (PAV))V, cosf = 998(%)(0.04)2(8)%% 60°=40N Ans.
3.59 A pipe flow expands from (1) to (2), Pressure = p, control

causing eddies as shown. Using the given
CV and assuming p = pl1 on the corner
annular ring, show that the downstream
pressure is given by, neglecting wall
friction,

P> =P, +pVi (%)[1 _%]
2 2 Fig. P3.59

Solution: From mass conservation, V1A1 = V2A2. The balance of x-forces gives

P2 V2. Ay

LF =piA + Py (Ay —A))—prAy =m(V, - Vp), where = pA,V,, V,=V/A/A,

If p,.; =Dp; as given, this reduces to p, =p; + inf 1—i Ans.
A; A;

3.60 Water at 20°C flows through the
elbow in Fig. P3.60 and exits to the atmo-
sphere. The pipe diameter is D1 = 10 cm,
while D2 = 3 cm. At a weight flow rate of
150 N/s, the pressure p1 = 2.3 atm (gage).
Neglect-ing the weight of water and elbow,
estimate the force on the flange bolts at
section 1.
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Solution:  First, from the weight flow, compute Q = (150 N/s)/(9790 N/m3) =0.0153 m’/s.
Then the velocities at (1) and (2) follow from the known areas:

_Q_ 0018 gem Q00153 o m

YTA (40172 s A,  (74)0.03)7 s

The mass flow is pA1V1 = (998)(7[/4)(0.1)2(1.95) ~ 15.25 kg/s. Then the balance of forces
in the x-direction is:

> F, =—Fy s + DA, =mu, —mu, =m(-V, cos40°-V,)

solve for Fy, = (23><101350) (0.1)> +15.25(21.7cos40°+1.95) ~ 2100N  Ans,

3.61 A 20°C water jet strikes a vane on a
tank with frictionless wheels, as shown.
The jet turns and falls into the tank without
spilling. If 8= 30°, estimate the horizontal
force F needed to hold the tank stationary.

Solution: The CV surrounds the tank and
wheels and cuts through the jet, as shown.
We have to assume that the splashing into
the tank does not increase the x-momentum
of the water in the tank. Then we can write
the CV horizontal force relation:

d :
2F =-F =a(.[ up du)tank -m,u, =0-mV, et independent of &

Thus F=pA,V? = (1 94 Slugj (i fj (50 EJ ~106 Ibf Ans,
© )41 s

3.62 Water at 20°C exits to the standard
sea-level atmosphere through the split
nozzle in Fig. P3.62. Duct areas are
Al = 0.02 m? and A2 = A3 = 0.008 m?. If
p1 =135 kPa (absolute) and the flow rate is
Q2=0Q3=275m /h compute the force on
the flange bolts at section 1.

—— = —— — ——— !
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Solution:  With the known flow rates, we can compute the various velocities:

3
v :\]3:275/3600r121/s:9.55 2; V]=550/3600=7.642
0.008 m S 0.02 S

The CV encloses the split nozzle and cuts through the flange. The balance of forces is
Z Fx = _Fbolts + pl,gageAl = pQZ (_VZ cos 300) + pQ3(_V3 cos 300) - le (+V1 )5

275 550
or: Fuo =2(998)] —— [(9.55¢0830°)+998| ——— |(7.64)+(135000—101350)(0.02
botis = 2( )(360())( ) (3600)( )+( )(0.02)

=1261+1165+673~3100 N Ans.

P3.63 In Example 3.10, the gate force F is a function of both water depth and
velocity. (@) Non-dimensionalize the force by dividing by (pgbh,?) and plot this force
versus hy/h; <1.0. (b) The plot involves a second dimensionless parameter involving V.
Do you know its name? (c) For what condition hy/h; is the force largest? (d) For small
values of V|, the force becomes negative (to the right), which is totally unrealistic. Can
you explain why?

Solution: The original solution for gate force in Ex. 3.10 was

h h
Foae = 2 gbh2[1-(2)2] = phbV2 (1)
2 h, h,

(a) When we divide through by (pgbh,?), we obtain the dimensionless force relation

Foo_ 1 oo VPl
o = 2U (hl)] (gm)(h2 1) Ans.(a)

(b) On the right hand side is a new dimensionless group, [V;*/(gh;)], which is called the
Froude number at section 1.  Ans.(b)

As an extra requirement of part (&), we can plot the dimensionless force versus h,/h; < 1.0 for
various values of the Froude number [V,*(gh))], as follows:
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Fl/(pgbh 12) Froude Number:
——0.05

0.30 /"\\ 010
s N T
R

T

0.4 0.6 0.8 1
ha/hy

of

(c) For everything held constant except h,, the maximum force is found by differentiation:

daF . AJ2R2 /3 hy ﬁ 1/3
= 0 which yields h,=(V;*hi/g)"° or = () Ans.(c)
dh, hy ghy

(d) We see that, at small hy/h;, the force becomes negative and is not plotted. Presently the
writer does not know exactly why this happens, but when it does, Fr; is very large, > 8.

3.64 The 6-cm-diameter 20°C water jet
in Fig. P3.64 strikes a plate containing a
hole of 4-cm diameter. Part of the jet
passes through the hole, and part is
deflected. Determine the horizontal force
required to hold the plate.

Solution: First determine the incoming
flow and the flow through the hole:

Fig. P3.64

3 2
Q. =%(0.06)2(25) =0.0707 2=, Qe =%(0.o4)2(25) ~0.0314
S S



Chapter 3 e Integral Relations for a Control Volume 219

Then, for a CV enclosing the plate and the two jets, the horizontal force balance is
>FE =-F

plate —my, U;

= Myg1eUpole +m u + My er Yiower in “in

upper “upper

=(998)(0.0314)(25)+ 0+ 0—(998)(0.0707)(25)
=784-1764, solve for F~980 N (to left) Ans.

3.65 The box in Fig. P3.65 has three 0.5-in
holes on the right side. The volume flows of F —>>
20°C water shown are steady, but the details of
the interior are not known. Compute the force,
if any, which this water flow causes on the box.

0.1 fi’ss

0.2 fl/ss

0.1 firs

Solution: First we need to compute the
velocities through the various holes: Fig. P3.65

3
= L/Sz =733 15, Vinigae = 2Viop
(7/4)(0.5/12)

Pretty fast, but do-able, I guess. Then make a force balance for a CV enclosing the box:

\% = 146.6 fi/s

op = Vbottom

zFx = Fbox =My Uy, +2mtoputop> where Ui = _Vmiddle and Uiop = Vtop

Solve for F,_, =(1.94)(0.2)(146.6)+2(1.94)(0.1)(73.3) ~ 85 Ibf  Ans.

3.66 The tank in Fig. P3.66 weighs 500 N
empty and contains 600 L of water at 20°C.
Pipes 1 and 2 have D = 6 cm and Q =
300 m>/hr. What should the scale reading
W be, in newtons?

Solution: Let the CV surround the tank,
cut through the two jets, and slip just under Fig. P3.66
the tank bottom, as shown. The relevant jet

velocities are

~Q _(300/3600) m*/s _

=V, = - ~29.5m/s
A (7/4)(0.06 m)

The scale reads force “P” on the tank bottom. Then the vertical force balance is

SF, =P-W,, -W

water

=m,v, —m;v; =m[0—(-V))]

ank
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Solve for P =3500+9790(0.6 m’)+998 ( 33600 ](29 5)~8800N Ans.

3.67 Gravel is dumped from a hopper, at a rate of 650 N/s, onto a moving belt, as in
Fig. P3.67. The gravel then passes off the end of the belt. The drive wheels are 80 cm in
diameter and rotate clockwise at 150 r/min. Neglecting system friction and air drag,
estimate the power required to drive this belt.

Fig. P3.67

Solution: The CV goes under the gravel on the belt and cuts through the inlet and
outlet gravel streams, as shown. The no-slip belt velocity must be

(0.4 m)~6.28 2

rev rad 1 min
S

Vbelt = Voutlet = QRwheel - [150_27[ e
min rev 60 s



Chapter 3 o Integral Relations for a Control Volume 221

Then the belt applies tangential force F to the gravel, and the force balance is

zFx = Fon belt — MoutWout — mmumﬂ but Ui, = 0.

Then F, =V, =[50 k& (628 —] 416 N
9.81 S S

The power required to drive the beltis P=FV,,, =(416)(6.28) = 2600 W  Ans.

3.68 The rocket in Fig. P3.68 has a super- Fuc*
sonic exhaust, and the exit pressure pe is
not necessarily equal to pa. Show that the

force F required to hold this rocket on the 4—-—/\|

test stand is F = peAeVe + Ae(pe — pa). Is
this force F what we term the thrust of the Oxidizer

rocket? Fig. P3.68

Solution: The appropriate CV surrounds the entire rocket and cuts through the exit jet.
Subtract pa everywhere so only exit pressure # 0. The horizontal force balance is

Z:Fx =F _(pe _pa)Ae = l"neue - Ihfuf _moum but U =U, = 0, 1;ne = peAeVe
Thus F=pAV2+(p,—p,)A, (the thrust) Ans.

3.69 A uniform rectangular plate, 40 cm
long and 30 cm deep into the paper, hangs in
air from a hinge at its top, 30-cm side. It is
struck in its center by a horizontal 3-cm-
diameter jet of water moving at 8 m/s. If the
gate has a mass of 16 kg, estimate the angle
at which the plate will hang from the vertical.

Fjel

Fig. P3.69

Solution: The plate orientation can be
found through force and moment balances,

SR o=F=—mu, = (998)( J(o 03%)(8%)=45.1N

> Mg =0 = —(45)(0.02)(sin®) + (16)(9.81)(0.02)(cos#) @ =16°
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3.70 The dredger in Fig. P3.70 is loading . _aCv
sand (SG = 2.6) onto a barge. The sand b————\g&/ !
leaves the dredger pipe at 4 ft/s with a weight : o i
flux of 850 Ibf/s. Estimate the tension on the _ l

mooring line caused by this loading process.

Solution: The CV encloses the boat and cuts Fig. P3.70

through the cable and the sand flow jet. Then,
>F, =-T

cable

or: T = @ Sl& 4 E cos30° =91 Ibf Ans.
@le “{ 399 g s

= MgypgUgapg = —M Vsand cos 0’

3.71 Suppose that a deflector is deployed
at the exit of the jet engine of Prob. 3.50, as
shown in Fig. P3.71. What will the reaction
Rx on the test stand be now? Is this reaction
sufficient to serve as a braking force during
airplane landing?

Solution: From Prob. 3.50, recall that the
essential data was

V,=250m/s, V,=900m/s, m, =151kg/s, m, =156 kg/s

Fig. P3.71

The CV should enclose the entire engine and also the deflector, cutting through the support
and the 45° exit jets. Assume (unrealistically) that the exit velocity is Still 900 m/s. Then,

o . B o B
> F =R, =mu,,, —m,u,, where u,,, =-V,, cos45° and u, =V,

Then R, =-156(900cos45°)—151(250)=-137,000 N
The support reaction is to the left and equals 137 kN Ans.

3.72 A thick elliptical cylinder immersed U,
in a water stream creates the idealized wake
shown. Upstream and downstream pressures
are equal, and Uo = 4 m/s, L = 80 cm. Find
the drag force on the cylinder per unit width
into the paper. Also compute the
dimensionless drag coefficient CD = 2F/(p
Uo?bL).

i~

-

Width b into paper

i
0]
|
. L

Fig. P3.72
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Solution: This is a ‘numerical’ version of the “analytical” body-drag Prob. 3.44. The
student still must make a CV analysis similar to Prob. P3.44 of this Manual. The wake is
exactly the same shape, so the result from Prob. 3.44 holds here also:

1

Furse =3 pUcLb = %(998)(4)2(0.8)(1 0)~4260N Ans.

The drag coefficient is easily calculated from the above result: CD =2/3. Ans.

3.73 A pump in a tank of water directs a jet = AN i
at 45 ft/s and 200 gal/min against a vane, as ‘
shown in the figure. Compute the force F to
hold the cart stationary if the jet follows
(a) path A; or (b) path B. The tank holds
550 gallons of water at this instant.

Solution: The CV encloses the tank and
passes through jet B.

(a) For jet path A, no momentum flux crosses
the CV, therefore F=0 Ans. (a)

(b) For jet path B, there is momentum flux, so the Xx-momentum relation yields:

2R =F=myu

out = MietUp

Now we don’t really know uB exactly, but we make the reasonable assumption that the jet
trajectory is frictionless and maintains its horizontal velocity component, that is, UB =~
Vjetcos 60°. Thus we can estimate

slug

3
F=rug =|1.94 > 200 7 (45c0360°) ~19.5 Ibf  Ans. (b)
ft* )| 4488 s

3.74 Water at 20°C flows down a vertical 6-cm-diameter tube at 300 gal/min, as in the
figure. The flow then turns horizontally and exits through a 90° radial duct segment 1 cm
thick, as shown. If the radial outflow is uniform and steady, estimate the forces (Fx, Fy, Fz)
required to support this system against fluid momentum changes.

— l <~— 6cm y

Vertical Horizontal
plane plane

z
i /R=150m
o

1 cm—f—

Radial outflow
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Solution:  First convert 300 gal/min = 0.01893 m?/s, hence the mass flow is PQ =189
kg/s. The vertical-tube velocity (down) is Vtube = 0.01893/ [(7[/4)(0.06)2] =—-6.69 k m/s.
The exit tube area is (7/2)RAh = (7/2)(0.15)(0.01) = 0.002356 m2, hence Vexit = Q/Aexit
=0.01893/0.002356 = 8.03 m/s. Now estimate the force components:
+45°
SFy =Fy = [ Ug difgy = [ —Viyie sin0 pARAO=0  Ans. (a)
—45°
+45°
SFy =Fy = [ Voy dilgye =1y = [~V 050 pANRAO —0 =~V pANRY2

—45°
or: F =—(8.03)(998)(0.01)(0.15)\/7 ~-=17 N Ans. (b)
2 F =F, =mWg, —w,,)=(18.9 kg/s)[0 — (—6.69 m/s)]~+126 N Ans. (c)

3.75 A liquid jet of density r and area A \ oA
strikes a block and splits into two jets, as A
shown in the figure. All three jets have the
same velocity V. The upper jet exits at angle
0 and area @A, the lower jet turns down at
90° and area (1 — a)A. (a) Derive a formula
for the forces (Fx,Fy) required to support e
the block against momentum changes.

(b) Show that Fy = 0 only if ¢ > 0.5. F,

(c) Find the values of « and & for which both

Fx and Fy are zero.

Solution: (a) Set up the x- and y-momentum relations:
Y F, =F =am(-Vcos@)-m(-V) where m= pAV of the inlet jet
2F, =F =amVsind +(1-a)m(-V)
Clean this up for the final result:
F,=mV(l-acos)
F, =mV(asind+a-1) Ans. (a)
(b) Examining Fy above, we see that it can be zero only when,
sinf = Ira
a

But this makes no sense if @< 0.5, hence Fy=0 onlyif «>0.5. Ans. (b)



226 Solutions Manual e Fluid Mechanics, Fifth Edition

(c) Examining Fx, we see that it can be zero only if cos@= 1/«, which makes no sense
unless o = 1, 8= 0°. This situation also makes Fx = 0 above (sind = 0). Therefore the
only scenario for which both forces are zero is the trivial case for which all the flow goes
horizontally across a flat block:

F,=F,=0 onlyif: =1 6=0° Ans.(c)

3.76 A two-dimensional sheet of water,
10 cm thick and moving at 7 m/s, strikes a
fixed wall inclined at 20° with respect to
the jet direction. Assuming frictionless flow,
find (a) the normal force on the wall per
meter of depth, and the widths of the sheet
deflected (b) upstream, and (c) downstream
along the wall.

Vjet

Solution: (a) The force normal to the wall is due to the jet’s momentum,
> Fy =—m Ui, =—(998)(0.1)(7%)(cos 70°) = 1670 N/m  Ans.
(b) Assuming V1 =V2=V3=Vjet, VjAl=VjA2+ VjA3 where,
A, =A,sind=(0.1)(1)(sin20°) =0.034 m =~ 3 cm Ans.

(c) Similarly, A3 = A1 cos@=(0.1)(1)(cos 20°) =0.094 m =~ 9.4cm Ans.

3.77 Water at 20°C flows steadily through
a reducing pipe bend, as in Fig. P3.77.
Known conditions are p1 = 350 kPa, D1 =
25 cm, V1 = 2.2 m/s, p2 = 120 kPa, and D2
= 8 cm. Neglecting bend and water weight,
estimate the total force which must be
resisted by the flange bolts.

Solution: First establish the mass flow
and exit velocity: Fig. P3.77

= pA,V, = 998(%}(0.25)2(2.2) ~108 %: 998(%)(0.08)2%, or V,=215 ?
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The CV surrounds the bend and cuts through the flanges. The force balance is
2F, =—Fogis TPl gage A1 P2 gage Ay =Myu, —myuy, where u, ==V, and u =V,

or F,,. =(350000- 100000)%(0.25)2 +(120000 — 100000)%(0.08)2 +108(21.5+2.2)

=12271+101+2553~14900N Ans.

3.78 A fluid jet of diameter D1 enters a
cascade of moving blades at absolute
velocity V1 and angle f1, and it leaves at
absolute velocity V1 and angle /2, as in
Fig. P3.78. The blades move at velocity u.
Derive a formula for the power P delivered
to the blades as a function of these
parameters.

Solution: Let the CV enclose the blades
and move upward at speed U, so that the
flow appears steady in that frame, as shown
at right. The relative velocity Vo may be
eliminated by the law of cosines:

V2 =V} +u®—2Vucos S,

=V3 +u’ —2V,ucos 3,
(112)(Vi -V3)

V,cos S, =V, cos 3,

solve for u=

Then apply momentum in the direction of blade motion:
Z:Fy =F = 1’hjet(\/oly - V02y) = m(\ll COSIBI - VZ COSﬂ2 )a m= IOAI\II

vanes

The power delivered is P = Fu, which causes the parenthesis “cos #” terms to cancel:

1
p:Fu=Emjet(Vf—V§) Ans.
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3.79 Air at 20°C and 1 atm enters the
bottom of an 85° conical flowmeter duct at
a mass flow rate of 0.3 kg/s, as shown in the
figure. It supports a centered conical body
by steady annular flow around the cone and
exits at the same velocity as it enters.
Estimate the weight of the body in newtons.

|4

Solution: First estimate the velocity from the known inlet duct size:

p _ 101350 _ k_%’

RT 287(293) ~ m

Pair =

thus m=0.3=pAV = (1.205)%(0.1)2v, solve V=317 &
S

Then set up the vertical momentum equation, the unknown is the body weight:
2 F, =-W =mV cos42.5°—mV =mV (cos42.5°—1)
Thus W, =(0.3)(31.7)(1—cos42.5°)=25N Ans.

cone

3.80 A river (1) passes over a “drowned”  —————-——————— Seye—
weir as shown, leaving at a new condition '
(2). Neglect atmospheric pressure and assume
hydrostatic pressure at (1) and (2). Derive an
expression for the force F exerted by the river
on the obstacle. Neglect bottom friction. Fig. P3.80

Solution: The CV encloses (1) and (2) and cuts through the gate along the bottom, as
shown. The volume flow and horizontal force relations give

V,bh, = V,bh,
1 1
2F =—F g+ 5 pgh;(hb)- 5 pgh,(h,b)=(ph bV )(V, -V))

Note that, except for the different geometry, the analysis is exactly the same as for the
sluice gate in Ex. 3.10. The force result is the same, also:

1 h
Fucir = pab(h? —h3) - ph;bV? (h—l—lj Ans.
2
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3.81 Torricelli’s idealization of efflux
from a hole in the side of a tank is
Vz\/ﬁ,as shown in Fig. P3.81. The
tank weighs 150 N when empty and
contains water at 20°C. The tank bottom
is on very smooth ice (static friction
coefficient '~ 0.01). For what water depth
h will the tank just begin to move to - Suatic
the right? friction
Fig. P3.81

Solution: The hole diameter is 9 cm. The CV encloses the tank as shown. The coefficient
of static friction is {'= 0.01. The Xx-momentum equation becomes

z Fx = _gwtank = rhuout =-—m Vhole = _pAVZ = _pA(zgh)
or: 0.01{(9790)%(1 m)2(h +0.3+0.09) + 150} - 998(%}(0.09)2(2)(9.81)h

Solve for hx=0.66 m Ans.

3.82 The model car in Fig. P3.82 weighs .
17 N and is to be accelerated from rest by ey, D
a 1-cm-diameter water jet moving at 75 m/s.
Neglecting air drag and wheel friction, G
estimate the velocity of the car after it has TR
moved forward 1 m.

Fig. P3.82

Solution: The CV encloses the car, moves to the left at accelerating car speed V(t), and
cuts through the inlet and outlet jets, which leave the CS at relative velocity Vj — V. The
force relation is Eq. (3.50):

2 Fx _I Apel dm=0 M8 = ri’loutuout - 1’hinuin = _2rhjet (V_] - V)’
dv
or: mg, pl 2pA;(V, ~V)

Except for the factor of “2,” this is identical to the “cart” analysis of Example 3.12 on
page 140 of the text. The solution, for V=0 at t =0, is given there:
ViKt 2pA. 2
Vo . where K = PA; _ 2(998)(7/4)(0.01)
1+ VKt m (17/9.81)

car

=0.0905 m™"
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Thus EE——
1+6.785t

V (in m/s) =
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t
and then compute distance S = I Vdt

0

The initial acceleration is 509 m/s2, quite large. Assuming the jet can follow the car

without dipping, the car reaches S= 1 m at t = 0.072 s, where V ~ 24.6 m/s.

3.83 Gasoline at 20°C is flowing at V1 =
12 m/s in a 5-cm-diameter pipe when it
encounters a 1-m length of uniform radial
wall suction. After the suction, the velocity
has dropped to 10 m/s. If p1 = 120 kPa,
estimate p2 if wall friction is neglected.

Solution:

Ans.
suction
R2ms Vo T
: CV 1
120 kPa | i 10m/s

AF‘V‘"F"H:";—
2)

m D=5Scm,L=1m

The CV cuts through sections 1 and 2 and the inside of the walls. We

compute the mass flow at each section, taking p =~ 680 kg/m3 for gasoline:

f, = 680(%)(0.05)2(12) =16.02 %;

, =680(%)(0.05)2(10)= 1335 X8

S

The difference, 16.02 — 13.35 =2.67 kg/s, is sucked through the walls. If wall friction is
neglected, the force balance (taking the momentum correction factors S~ 1.0) is:

SF, =p,A, —p,A, =1h,V, —1i,V, = (120000 —;)2)%(0.05)2

= (13.35)(10) = (16.02)(12),

solve for p, =150 kPa Ans.

3.84 Air at 20°C and 1 atm flows in a
25-cm-diameter duct at 15 m/s, as in
Fig. P3.84. The exit is choked by a 90° cone,
as shown. Estimate the force of the airflow
on the cone.

Solution: The CV encloses the cone, as
shown. We need to know exit velocity. The
exit area is approximated as a ring of
diameter 40.7 cm and thickness 1 cm:

3

Q=AV, = %(0.25)2(15) =0.736 = A,V, ~ 7(0.407)(0.01)V,,
S

Fig. P3.84

or V,~57.6 %
S
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The air density is p=p/RT = (101350)/[287(293)] = 1.205 kg/m3 . We are not given any
pressures on the cone so we consider momentum only. The force balance is

>F, =F u, ) =(1.205)(0.736)(57.6cos45°—15) ~ 22.8 N Ans.

cone m(uout -

The force on the cone is to the right because we neglected pressure forces.

3.85 The thin-plate orifice in Fig. P3.85
causes a large pressure drop. For 20°C water
flow at 500 gal/min, with pipe D = 10 cm
and orifice d = 6 cm, p1 — p2 = 145 kPa. If
the wall friction is negligible, estimate the
force of the water on the orifice plate.

Fig. P3.85

Solution: The CV is inside the pipe walls, cutting through the orifice plate, as shown.
At least to one-dimensional approximation, V1 = V2, so there is no momentum change.
The force balance yields the force of the plate on the fluid:

ZF =-F plate on fluid + plAl - p2A2 - z-wall‘Awall - m(VZ Vl) ~0

~(0, we obtain F

Since 7 plate

wall

- (145000)%(0.1)2 ~1140N  Ans.

The force of the fluid on the plate is opposite to the sketch, or to the right.

3.86 For the water-jet pump of Prob. 3. 36 e ﬁ;‘l‘g‘f Fuly
add the following data: p1 = p2 =25 Ibf/in?, 27" — T :
and the distance between sections 1 and 3
is 80 in. If the average wall shear stress
between sections 1 and 3 is 7 lbf/ft esti-
mate the pressure p3. Why is it hlgher than
p1?

Fig. P3.36

Solution: The CV cuts through sections 1, 2, 3 and along the inside pipe walls. Recall
from Prob. 3.36 that mass conservation led to the calculation V3 ~ 6.33 m/s. Convert data
to ST units: L = 80 in =2.032 m, p1 = p2 =25 psi = 172.4 kPa, and rwall = 7 psf = 335 Pa.
We need mass flows for each of the three sections:

998( j(o 0762)’(40) ~ 182 X&.

kg

m2—998( j[(o 254)> —(0.0762)*1(3) ~ 138 —= kg and sy ~182+138 =320 —
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Then the horizontal force balance will yield the (high) downstream pressure:
2F =p(A +A)—p3A; — 17D, L =m; Vs —m, V, —m, V,
= (172400 —p, )%(0.254)2 —3357(0.254)(2.032) =320(6.33)—138(3) —182(40)

Solve for p, =274000Pa Ans.

The pressure is high because the primary inlet kinetic energy at section (1) is converted
by viscous mixing to pressure-type energy at the exit.

3.87 Figure P3.87 simulates a manifold v,
flow, with fluid removed from a porous ! I
Wall or perforated sectiqn of pipe.' Assume It E =T -
incompressible flow with negligible wall % 1 l- SD ~ A
. . Pl PR 1 75
friction and small suction V,, <V,.. If 7~ | ot )"
L4 __ Poroussection ___ __ _ J A

(p1, Vi1, Vw, p, D) are known, derive ‘ i l [T1
expressions for (a) V2 and (b) p2. '

Fig. P3.87

Solution: The CV cuts through sections 1 and 2 and runs along the duct wall, as shown.
Assuming incompressible flow, mass conservation gives

5D
VA =V,A, + [V, (1 —ij 7Ddx = V,ZD? +2.57V,D? = V.2 D?
0 5D 4 4
Assuming V,, <V, solve for V, =V, -10V,, Ans.(a)
Then use this result while applying the momentum relation to the same CV:
Z:Fx = (pl _pZ)%Dz _I Tw dAW = thuZ _Ihlul +'[ uy, dmw

Since 7w = 0 and uw = 0 and the area A1 cancels out, we obtain the simple result

Py =py+ (Vi ~V2) = py +20pV,, (V= 5V,,) Ans. (b)

3.88 The boat in Fig. P3.88 is jet-propelled
by a pump which develops a volume flow
rate Q and ejects water out the stern at
velocity Vj. If the boat drag force is F = kVZ,
where K is a constant, develop a formula for
the steady forward speed V of the boat.
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Solution: Let the CV move to the left at boat speed V and enclose the boat and the
pump’s inlet and exit. Then the momentum relation is
YF =kV? =r o (V;+ V=V )~ pQ(V;+V) if we assume V

inlet

pump < Vj

If, further, V <'V;, then the approximate solution is: V = (0QVj/ k)ll 2 Ans.
If V and Vj are comparable, then we solve a quadratic equation:

Vag+[g2+2¢V]%, where = % Ans.

3.89 Consider Fig. P3.36 as a general problem for analysis of a mixing ejector pump. If
all conditions (p, p, V) are known at sections 1 and 2 and if the wall friction is negligible,
derive formulas for estimating (a) V3 and (b) p3.

Solution: Use the CV in Prob. 3.86 but use symbols throughout. For volume flow,
V&Df + VZ%(Dg D} )= \g% D2, or: V,=Via+V,(I-a), a=(D/D,’ (A)
Now apply X-momentum, assuming (quite reasonably) that p1 = p2:
(py —pg)%Di ~7,7D,L = p%DiVi - p%(Di -D}) V3 - p%D?Vf

4Lz,

2
Cleanup: p3=p;— + p[an +(1-a)V? —Vg] where a = (&j Ans.

2 D2

You have to insert V3 into this answer from Eq. (A) above, but the algebra is messy.

3.90 As shown in Fig. P3.90, a liquid
column of height h is confined in a vertical
tube of cross-sectional area A by a stopper.
At t = 0 the stopper is suddenly removed,
exposing the bottom of the liquid to
atmospheric pressure. Using a control-
volume analysis of mass and vertical
momentum, derive the differential equation
for the downward motion V(1) of the liquid.
Assume one-dimensional, incompressible,
frictionless flow.
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Solution: Let the CV enclose the cylindrical blob of liquid. With density, area, and the
blob volume constant, mass conservation requires that V = V(t) only. The CV accelerates
downward at blob speed V(t). Vertical (downward) force balance gives

z Fdown _I arel dm = %(I Vdownpdl)) + 1’hout\/out - 1’hin\/in =0
or: my,g+ApA-7,A, —am,, =0

Since Ap=0 and 7=0, we are left with a,,,, = C:j_\t/ =g Ans.

3.91 Extend Prob. 3.90 to include a linear (laminar) average wall shear stress of the form
7~ cV, where c is a constant. Find V(t), assuming that the wall area remains constant.

Solution: The downward momentum relation from Prob. 3.90 above now becomes

0= Myp8 — TWHDL — My, d—V, or d_V_|_ cV=g, where £ = crDL
dt dt My,

where we have inserted the laminar shear 7= cV. The blob mass equals p(;r/4)D2L. For
V =0 at t =0, the solution to this equation is

V=g(l—e_4t), where § = c#DL =£ Ans
4 My~ PD
3.92 A more involved version of Prob. 3.90 e b

is the elbow-shaped tube in Fig. P3.92, with
constant cross-sectional area A and diameter
D <« h,L. Assume incompressible flow,
neglect friction, and derive a differential
equation for dV/dt when the stopper is
opened. Hint: Combine two control volumes,

i PRI

one for each leg of the tube. Fig. P3.92
Solution: Use two CV’s, one for the :'I/Are”‘
vertical blob and one for the horizontal Cv()

blob, connected as shown by pressure. h
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From mass conservation, V1 = V2 = V(t). For CV’s #1 and #2,
: dv
% Fagun = [ 0 dm = AGV) = 0= (pym ~P)A+ pgAh—m; —= (No. 1)

EF, —J 0 dm = AW =0.= (b, ~py)A-+0-m, S (No.2)

Add these two together. The pressure terms cancel, and we insert the two blob masses:
dv h

—=g Ans.
dt L+h

pgAh—(pAh+ pAL)(ii_\t/ =0, or:

3.93 Extend Prob. 3.92 to include a linear (laminar) average wall shear stress of the form
7~ cV, where c is a constant. Find V(t), assuming that the wall area remains constant.

Solution: For the same two CV’s as in Prob. 3.92 above, we add wall shears:

ApA + pgAh —(cV)zDh =m, C:i_\t/ (No. 1)
dv
—ApA+0—(cV)zDL =m, e (No. 2)

Add together, divide by (pA), A = 7zD2/4, and rearrange into a 1st order linear ODE:

dt (pD) L+h

The blob length (L + h) could be assumed constant, but h = h(t). We could substitute for
V = —dh/dt and rewrite this relation as a 2nd order ODE for h(t), but we will not proceed
any further with an analytical solution to this differential equation.

dV_{ﬁjV gh subjectto V=0 at t=0, h=h, Ans.

3.94 Attempt a numerical solution of Prob. 3.93 for SAE 30 oil at 20°C. Let h =20 cm,
L =15 cm, and D = 4 mm. Use the laminar shear approximation from Sec. 6.4: 7 =
8uVID, where p is the fluid viscosity. Account for the decrease in wall area wetted by the
fluid. Solve for the time required to empty (a) the vertical leg and (b) the horizontal leg.

Solution: For SAE 30 oil, £~ 0.29 kg/(m-s) and p ~ 917 kg/m3. For laminar flow as
given, ¢ = 84/D, so the coefficient (4c/pD) = 4[8(0.29)/0.004]/[917(0.004)] =~ 632 s,
[The flow is highly damped.] Then the basic differential equation becomes
d—V+632V= 9.81h
0.15+h

t
. with h:O.Z—Ith and V(0)=0
0



236 Solutions Manual e Fluid Mechanics, Fifth Edition

We may solve this numerically, e.g., by Runge-Kutta or a spreadsheet or whatever.
After h reaches zero, we keep h = 0 and should decrease L = 0.15 — [V dt until L = 0.
The results are perhaps startling: the highly damped system (lubricating oil in a
capillary tube) quickly reaches a ‘terminal’ (near-zero-acceleration) velocity in 16 ms
and then slowly moves down until h = 0, t = 70 s. The flow stops, and the horizontal leg
will not empty.

The computed values of V and h for the author’s solution are as follows:

t, s: 0 5 10 15 20 30 40 50 60 70
V,m/s: 0 0.008 0.007 0.006 0.005 0.003 0.001 0.000 0.000 0.000
h, m: 0.2 0.162 0.121 0.089 0.063 0.028 0.011 0.004 0.001 0.000

P3.95 A cylindrical water tank discharges through

K

a well-rounded orifice to hit a plate, as in Fig. P3.95.

Use the Torricelli formula of Prob. P3.81

to estimate the exit velocity. (a) If, at this
instant, the force F required to hold the

plate is 40 N, what is the depth h ? F

(b) If the tank surface is dropping at the

—"l
Fig. P3.95

rate of 5 cm every 2 seconds, what is the tank diameter D?

Solution: For water take p= 998 kg/m’. The control volume surrounds the plate and yields

. . T
XF = F = —Miglin = =Mjet (Vijer) = PAjetVjet Vier) = Pzdzvjzet
F
p(z/4)d*(29)
40N

Given data: h = 3 5 - = 1.63m Ans.(a)
(998kg / m-~)(zr /4)(0.04m)~(2)(9.81m/s*)

But Torricelli says V jzet =2gh ; Thus h =
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(b) In 2 seconds, h drops from 1.63m to 1.58m, not much change. So, instead of a laborious
calculus solution, find Qjetav for an average depth h,y = (1.63+1.58)/2 = 1.605 m:

Qay = Ajery/20h, = %(0.04m)2\/2(9.81m/52)(1.605m) ~ 0.00705m>/s

B N QAt  [(0.00705)(2s) _
Equate QAt = A, Ah,or: D = \/(ﬂ/4)Ah = \/(72/4)(0.05m) ~ 0.60m Ans.(b)
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3.96 Extend Prob. 3.90 to the case of the
liquid motion in a frictionless U-tube whose
liquid column is displaced a distance Z
upward and then released, as in Fig. P3.96.
Neglect the short horizontal leg and combine
control-volume analyses for the left and
right legs to derive a single differential
equation for V(t) of the liquid column.

Equilibrium position

Liquid - column length
L=hy + hy+hy

Solution: As in Prob. 3.92, break it up
into two moving CV’s, one for each leg, as
shown. By mass conservation, the velocity cv
V(t) is the same in each leg. Let pI be the 'z
bottom pressure in the (very short) cross-
over leg. Neglect wall shear stress. Now
apply vertical momentum to each leg:

Leg#l : Z Fdown - _[ Arel dm

dv
=(pa—pI)A+pgAhl—mla=0

dv
Leg#z: Z:Fup _J. Arel dm = (pI pa)A_ pgAh2 —m, E =0
Add these together. The pressure terms will cancel. Substitute for the h’s as follows:

dv dv
pgA(hy —hy) = pgA(2Z) = (m; +m,)— - = pA(h; +h ) =pAL—-

2
Since V = —d—Z, we arrive at, finally, d Z 29 —Z7Z=0 Ans.
dt dt L

The solution is a simple harmonic oscillation: Z =C cos[t\/(2g/L)] +D sin[t\/(Zg/L)].

3.97 Extend Prob. 3.96 to include a linear (laminar) average wall shear stress resistance
of the form 7~ 84VID, where y is the fluid viscosity. Find the differential equation for
dV/dt and then solve for V(t), assuming an initial displacement z = zo, V =0 at t = 0. The
result should be a damped oscillation tending toward z = 0.

Solution: The derivation now includes wall shear stress on each leg (see Prob. 3.96):

Leg#l: 2 F,un —J. a, dm=ApA+ pgAh, —7,7Dh; —-m, — v =0

dt
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Leg#2: X2F, —J. a,, dm=-ApA - pgAh, —7,7Dh, —m, (il_\t/ =0

Again add these two together: the pressure terms cancel, and we obtain, if A = 7zD2/4,

2
d_f+4ﬂ+2—92=0, where TW=M Ans.
dt?  pD D

The shear term is equal to the linear damping term (32,u/pD2)(dZ/dt). If we assume an
initial static displacement Z = Zo, V =0, at t = 0, we obtain the damped oscillation

2
Z=2,e""cos(wt), where t*= ’f (Is:) and @=+2g/L Ans.
U

3.98 As an extension of Ex. 3.9, let the
plate and cart be unrestrained, with fric-
tionless wheels. Derive (a) the equation of
motion for cart velocity Vc(t); and (b) the
time required for the cart to accelerate to
90% of jet velocity. (¢) Compute numerical
values for (b) using the data from Ex. 3.9
and a cart mass of 2 kg.

Solution: (a) Use Eq. (3.49) with arel equal to the cart acceleration and > Fx = 0:

dv
C=-pA;(V;-V,)" Ans.(a)

LF, _?rx,relm =J- upV-ndA=-m, e

The above 15%-order differential equation can be solved by separating the variables:

V, t
© A.
'[ e 5= Kj dt, where K =21
0 O/j _Vc) 0 mc
V. Kt
Solve for: Ye— 1 _090 if toges = O M s (b)
V,  1+VKt KV,  pAV,

9(2 kg)
(1000 kg/m*)(0.0003 m?*)(20 m/s)

For the Example 3.10 data, g, = ~3.0s Ans. (c)
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3.99 Let the rocket of Fig. E3.12 start at z = 0, with constant exit velocity and exit mass
flow, and rise vertically with zero drag. (a) Show that, as long as fuel burning continues,
the vertical height S(t) reached is given by

s=YeMo 1o h1], where ¢=1-C
m M

0

(b) Apply this to the case Ve = 1500 m/s and Mo = 1000 kg to find the height reached
after a burn of 30 seconds, when the final rocket mass is 400 kg.

Solution: (a) Ignoring gravity effects, integrate the equation of the projectile’s velocity
(from E3.12):

S(t):J'V(t)dt =j [—Vel (I—M—Hdt

0 0
mt m .
Let ¢ =1—M—, then dg“:—M— dt and the integral becomes,

0 0

S(t):(_ve)I: }f(é”l §)dg = ( j[(l ng - 4]5—( j[é”lné” ¢ +1]

(b) Substituting the numerical values given,

=0.40

M; -M
_ AM _ My o 1000 kg—-400 kg “20kgs and C= 1_(20 kg/s)(30 s)
At At 30s 1000 kg
(1500 m/s)(1000 kg)

S(t=30s)= 20 ke)

[0.4 In(0.4)—(0.4)+1]=17,500 m  Ans.

3.100 Suppose that the solid-propellant rocket of Prob. 3.35 is built into a missile of
diameter 70 cm and length 4 m. The system weighs 1800 N, which includes 700 N of
propellant. Neglect air drag. If the missile is fired vertically from rest at sea level, estimate
(a) its velocity and height at fuel burnout and (b) the maximum height it will attain.

Solution: The theory of Example 3.12 holds until burnout. Now Mo = 1800/9.81 =
183.5 kg, and recall from Prob. 3.35 that Ve = 1150 m/s and the exit mass flow is 11.8 kg/s.
The fuel mass is 700/9.81 = 71.4 kg, so burnout will occur at tburnout = 71.4/11.8 = 6.05
s. Then Example 3.12 predicts the velocity at burnout:

11.8(6.05)

V, =-1150 In| 1-
183.5

j—9.81(6.05)z507 % Ans. (a)
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Meanwhile, Prob. 3.99 gives the formula for altitude reached at burnout:

o _ 1835(1150)

) e [1+(O.611){ln(0.611)—1}]—%(9.81)(0.605)2z1393m Ans. (a)

where “0.611” = 1 — 11.8(6.05)/183.5, that is, the mass ratio at burnout. After burnout,
with drag neglected, the missile moves as a falling body. Maximum height occurs at

At:£:i71:51.7 s, whence

g

S=S§, +%gAt2 =1393+(1/2)(9.81)(51.7)* 14500 m  Ans. (b)

3.101 Modify Prob. 3.100 by accounting for air drag on the missile F = CpDZVZ, where
C = 0.02, p is the air density, D is the missile diameter, and V is the missile velocity.
Solve numerically for (a) the velocity and altitude at burnout and (b) the maximum
altitude attained.

Solution: The CV vertical-momentum analysis of Prob. 3.100 is modified to include a
drag force resisting the upward acceleration:

m(L—Y:mVe—mg—CDpDZVZ, where m=m_ —mt, and pzpo{

4.26
T, —Bz
T

o

with numerical values m, =183.5 kg, m=11.8 E, V., =1150 E, D=0.7m,C, =0.02
S S

We may integrate this numerically, by Runge-Kutta or a spreadsheet or whatever, starting
with V=0, z= 0, at t = 0. After burnout, t = 6.05 s, we drop the thrust term. The density
is computed for the U.S. Standard Atmosphere from Table A-6. The writer’s numerical
solution is shown graphically on the next page. The particular values asked for in the
problem are as follows:

Atburnout, t=6.05s: V=470m/s, z=1370m Ans. (a)

At maximum altitude: t=40s, z,, ~=8000m Ans. (b)

m

We see that drag has a small effect during rocket thrust but a large effect afterwards.
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Problem 3.101 - NUMERICAL SOLUTION
Hydraulic =T
oy - B

3.102 As can often be seen in a kitchen
sink when the faucet is running, a high-

speed channel flow (V1, h1) may “jump” to
a low-speed, low-energy condition (V2, r g :
g

h2) as in Fig. P3.102. The pressure at
1 and 2 is approximately

sections
hydrostatic, and wall friction is negligible.
Use the continuity and momentum relations
to find h2 and V2 in terms of (h1, V1).

The CV cuts through sections 1 and 2 and surrounds the jump, as shown.

Wall shear is neglected. There are no obstacles. The only forces are due to hydrostatic

Fig. P3.102

Solution:

pressure:
1

z FX = 0 = —
5 Pg

where m = pV,h,b= pV,h,b
1 1 2
Solve for V, =V,h;/h, and h,/h, =_E+ E\/1+8V1/(9h1) Ans.

1 }
h;(h;b)— E pgh,(h,b)=m(V, -V))
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3.103 Suppose that the solid-propellant rocket of Prob. 3.35 is mounted on a 1000-kg
car to propel it up a long slope of 15°. The rocket motor weighs 900 N, which includes
500 N of propellant. If the car starts from rest when the rocket is fired, and if air drag
and wheel friction are neglected, estimate the maximum distance that the car will travel
up the hill.

Solution: This is a variation of Prob. 3.100, except that “g” is now replaced by “g sin&.”
Recall from Prob. 3.35 that the rocket mass flow is 11.8 kg/s and its exit velocity is 1150 m/s.
The rocket fires for tb = (500/9.81)/11.8 = 4.32 sec, and the initial mass is Mo = (1000 +
900/9.81) = 1092 kg. Then the differential equation for uphill powered motion is

m(:i—\t/:rh\/e -mgsind, m=M_ —mt

This integrates to: V() =-V, In(1-mt/M_)—gtsind for t<4.32s.

After burnout, the rocket coasts uphill with the usual falling-body formulas with “g sin6.”
The distance travelled during rocket power is modified from Prob. 3.99:

S=M,V./ m)[1+(1-mt/M_){In(1-mt/M_ )—-1}] —%gt2 sin@
Apply these to the given data at burnout to obtain

Viumont = —1150 1n(0.9533)—%(9.81)511115"(4.32) ~44.0 m/s

_1092(1150)

T [1+0.9533{ln(0.9533)—1}]—%(9.81)sin15°(4.32)2 ~94m

The rocket then coasts uphill a distance AS such that Vb2 = 2gASsinf, or AS =
(44.0)2/[2(9.81)sin 15°] = 381 m. The total distance travelled is 381 + 94 ~ 475 m  Ans.

3.104 A rocket is attached to a rigid
horizontal rod hinged at the origin as in
Fig. P3.104. Its initial mass is Mo, and its
exit properties are M and Ve relative to the
rocket. Set up the differential equation for
rocket motion, and solve for the angular vl
velocity a(t) of the rod. Neglect gravity, air MV, pe = P
drag, and the rod mass. Fig. P3.104
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Solution: The CV encloses the rocket and moves at (accelerating) rocket speed Q(t).
The rocket arm is free to rotate, there is no force parallel to the rocket motion. Then
we have

2 Fiangent =0 —J. agdm=m(-V,), or mR i—? =mV,, where m=M, —mt

Integrate, with Q=0att=0, to obtain Q= —% In {1 —a—t] Ans.

0

3.105 Extend Prob. 3.104 to the case where the rocket has a linear air drag force F =
cV, where C is a constant. Assuming no burnout, solve for a(t) and find the terminal
angular velocity, i.e., the final motion when the angular acceleration is zero. Apply to the
case Mo =6 kg, R=3 m, m=0.05 kg/s, Ve = 1100 m/s, and ¢ = 0.075 N-s/m to find the
angular velocity after 12 s of burning.

Solution: If linear resistive drag is added to Prob. 3.104, the equation of motion
becomes

m%:mge -CQ, where m=M_ —mt, withQ=0att=0

The solution is found by separation of variables:

Q t X C/m
If B=mV,/R, then [ de2 = [ d¢ on o=Bl1 (1Mt Ans. (a)
B-CQ § M, —it C M

0 (o]

Strictly speaking, there is no terminal velocity, but if we set the acceleration equal to zero
in the basic differential equation, we obtain an estimate Qterm = mVe/(RC). Ans. (b)
For the given data, at t = 12 s, we obtain the angular velocity

0.075

o - 0.05)(1100) 1_(1 ~ 0.05(12)}0.05 rad

Att=12s: ~36 — Ans. (¢)
(3.0)(0.075) 6.0 sec

3.106 Extend Prob. 3.104 to the case where the rocket has a quadratic air drag force F =
KV2, where K is a constant. Assuming no burnout, solve for @(t) and find the terminal
angular velocity, i.e., the final motion when the angular acceleration is zero. Apply to the
case Mo = 6 kg, R = 3 m, m = 0.05 kg/s, Ve = 1100 m/s, and k = 0.0011 N-s*>/m? to find
the angular velocity after 12 s of burning.
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Solution: If quadratic drag is added to Prob. 3.104, the equation of motion becomes
dQQ mV,
m——=

dt

—kRQ?, where m=M_ —mt withQ=0att=0

The writer has not solved this equation analytically, although it is possible. A numerical
solution results in the following results for this particular data (Ve = 1100 m/s, etc.):

t, sec: 0 3 6 9 12 15 20 30 40 50 60 70
Q,rad/s: 0 92 184 273 356 43.1 535 66.7 720 739 744 745

The answer desired, Q ~ 36 rad/s at t = 12 s, is coincidentally the same as Prob. 3.105.
Note that, in this case, the quadratic drag, being stronger at high Q, causes the rocket
to approach terminal speed before the fuel runs out (assuming it has that much fuel):

Terminal speed, Ez 0: Qo = \/mVe = 0.050 1002) =745 rad
dt 0.0011(3) S

Ans.

kR?

3.107 The cart in Fig. P3.107 moves at (@) )
constant velocity Vo = 12 m/s and takes on
water with a scoop 80 cm wide which dips
h = 2.5 cm into a pond. Neglect air drag
and wheel friction. Estimate the force
required to keep the cart moving.

Fig. P3.107

Solution: The CV surrounds the cart and scoop and moves to the left at cart speed Vo.
Momentum within the cart fluid is neglected. The horizontal force balance is

but V.

inlet

2 F, =-Thrust=—m, V.

scoop ' inlet?

Therefore Thrust =mV, =[998(0.025)(0.8)(12)](12) = 2900 N  Ans.

=V, (water motion relative to scoop)

3.108 A rocket sled of mass M is to be
decelerated by a scoop, as in Fig. P3.108,
which has width b into the paper and dips into
the water a depth h, creating an upward jet at
60°. The rocket thrust is T to the left. Let the
initial velocity be Vo, and neglect air drag and

wheel friction. Find an expression for V(t) of
the sled for (a) T =0 and (b) finite T = 0. Fig. P3.108
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Solution: The CV surrounds the sled and scoop and moves to the left at sled speed V(t).
Let X be positive to the left. The horizontal force balance is

dv

2E =T-M E:momu —m,;,u;, =m(-Vcosd)-m(-V), m= pbhV

out min

or: M. ‘Z—Y =T-CV? C= pbh(l-cosb)

Whether or not thrust T = 0, the variables can be separated and integrated:

\% t
(a) T=0: d—zz—gj. dt, or: V=L Ans. (a)
o Vi Mg 1+CV,t/M
\% t
(b) T>0: J' &VZ:I dt, or: V=V, tanh[at+¢] Ans. (b)
v T-CV? 4

where V. =[T/pbg(1-cosd)]"?, a=[Tpbh(l-cosd)]"*/M, ¢ =tanh™'(V,/V;)
final LOg ol Vf

This solution only applies when Vo < Vfinal, which may not be the case for a speedy sled.

3.109 Apply Prob. 3.108 to the following data: Mo = 900 kg, b=60 cm, h=2 cm, Vo =
120 m/s, with the rocket of Prob. 3.35 attached and burning. Estimate V after 3 sec.

Solution: Recall from Prob. 3.35 that the rocket had a thrust of 13600 N and an exit
mass flow of 11.8 kg/s. Then, after 3 s, the mass has only dropped to 900 — 11.8(3) = 865 kg,
so we can approximate that, over 3 seconds, the sled mass is near constant at about 882 kg.
Compute the “final” velocity if the rocket keeps burning:

13600 =
998(0.6)(0.02)(1 - cos 60°)

Thus solution (b) to Prob. 3.108 does not apply, since Vo = 120 m/s > Vfinal. We
therefore effect a numerical solution of the basic differential equation from Prob. 3.108:

M (il—\t/:T—pbh(l—cosH)Vz, or: 882%=13600—5.988V2, with V, =120 =
S

~47.66 2
S

Vina =[THpbh(1-cos0)}]" = {

The writer solved this on a spreadsheet for 0 <t < 3 sec. The results may be tabulated:

t,sec: 0.0 0.5 1.0 1.5 2.0 2.5 3.0 sec
V,m/s: 120.0 909 755 663 604 56.6 53.9mls

The sled has decelerated to 53.9 m/s, quite near its “steady” speed of about 46 m/s.
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3.110 The horizontal lawn sprinkler in
Fig. P3.110 has a water flow rate of
4.0 gal/min introduced vertically through
the center. Estimate (a) the retarding torque
required to keep the arms from rotating and Fig. P3.110
(b) the rotation rate (r/min) if there is no re-

tarding torque.

Solution: The flow rate is 4 gal/min = 0.008912 ft3/s and p = 1.94 slug/ft The
velocity issuing from each arm is Vo = (0.008912/2)/[(#/4)(0.25/12 ft) ]~ 13.1 ft/s. Then:

v

o

(a) From Example 3.15, @ = =

and, if there is no motion (@ =0),

pQ
T, = pQRY, = (1.94)(0.008912)(6/12)(13.1) ~ 0.113 ft-Ibf  Ans. (a)
(B)IFT, =0, then @, 1. = Vo/R =12 1US _ o 14 130 050 T Ans. (b)
6/12 ft s min

3.111 In Prob. 3.60 find the torque caused
around flange 1 if the center point of exit 2
is 1.2 m directly below the flange center.

Solution: The CV encloses the elbow
and cuts through flange (1). Recall from
Prob. 3.60 that D1 = 10 cm, D2 = 3 cm,
weight flow = 150 N/s, whence V1 = 1.95 m/s
and V2 = 21.7 m/s. Let “O” be in the center
of flange (1). Then ro2 =—1.2j and ro1 = 0.
The pressure at (1) passes through O, thus causes no torque. The moment relation is

150 kg B
T j[( 1.2j)x(~16.6i—13.9j)]

or: Ty=-305kN-m Ans.

Fig. P3.60

2 Mg =Ty =m[(ry, xV,) = (rg; xV))] = (

3.112 The wye joint in Fig. P3.112 splits
the pipe flow into equal amounts Q/2,
which exit, as shown, a distance Ro from
the axis. Neglect gravity and friction. Find
an expression for the torque T about the
X axis required to keep the system rotating
at angular velocity Q.

Fig. P3.112
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Solution: Let the CV enclose the junction, cutting through the inlet pipe and thus
exposing the required torque T. If'y is “up” in the figure, the absolute exit velocities are

Vyoer = V, €080+ V, sinf j+ R QK; Vo =V, cos@i—-V, sind j—-R Qk

upper

where Vo = Q/(2A) is the exit velocity relative to the pipe walls. Then the moments about
the X axis are related to angular momentum fluxes by

z Maxis =Ti= (pQ/Z)(ROJ) X Vupper + (pQ/Z)(_ROJ) X Vlower - pQ(rinlet\/inlet)

- %(RiQ i—R_V,Q k)+p2—Q(R§Q i+R,V,Qk)-pQ(0)

Each arm contributes to the torque via relative velocity ((2Ro). Other terms with Vo cancel.

Final torque result: T=pQR2Q=mRZQ Ans,

3.113 Modify Ex. 3.14 so that the arm
starts up from rest and spins up to its final 2 oy

rotation speed. The moment of inertia of Ve ma i
the arm about O is lo. Neglect air drag. { i ’ E"
Find dw/dt and integrate to determine @ (t), | i ' ;
assuming =0 att=0. ! Loy
' e —t
Solution: The CV is shown. Apply clock- § L N
wise moments: "( ‘L_;?\"}—‘
. Inlet velocity
EM, - [ (rxag) dm= [ (rxV)dm, ey
s Fig. 3.14 View from above of a single arm of
or: —T,—1I, (il_i) — pQ(Rza) —RV,), a rotating lawn sprinkler.

2 —
do  pQR" = pQRV,-T,
a1 I

(o] (o]

or:

Integrate this first-order linear differential equation, with @= 0 at t = 0. The result is:

R pOR
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3.114 The 3-arm lawn sprinkler of
Fig. P3.114 receives 20°C water through
the center at 2.7 m>/hr. If collar friction is
neglected, what is the steady rotation rate

in rev/min for (a) = 0°; (b) 6= 40°? /

Solution:  The velocity exiting each arm is

Q3 _27MB600)3) _, , m e

T (whE  @0007F s Fig. P3.114

(o]

With negligible air drag and bearing friction,
the steady rotation rate (Example 3.15) is

V,cos@

Ofinal = (a) 0=0° w= W rad rev
R

=433 — =414 —— Ans. (a)
0.15m S min

(1)0=40°: @ =w,cos6 =(414)cos40° =317 % Ans. (b)
|

3.115 Water at 20°C flows at 30 gal/min

through the 0.75-in-diameter double pipe B

bend of Fig. P3.115. The pressures are p1 = ‘?\\”—"f—'j

30 Ibf/in® and p2 = 24 Ibf/in®. Compute the NV |
torque T at point B necessary to keep the u}:;(\\ 3t
pipe from rotating. ‘)’?\Q\ i ®

Solution: This is similar to Example 3.13,

of the text. The volume flow Q = 30 gal/min = Fig. P3.115
0.0668 ft/s, and p= 1.94 slug/ft>. Thus the

mass flow pQ = 0.130 slug/s. The velocity

in the pipe is

_ 0.0668 __o1g ft
(7/4)(0.75/12) s

V,=V, =Q/A

If we take torques about point B, then the distance “h1,” from p. 143, = 0, and h2 = 3 ft.
The final torque at point B, from “Ans. (a)” on p. 143 of the text, is

T, = hy(p,A, +mV,) = (3 fi)[(24 psi)§(0.75 in)> +(0.130)(21.8)] ~ 40 ft-Ibf  Ans.
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3.116 The centrifugal pump of Fig. P3.116
has a flow rate Q and exits the impeller at an
angle 62 relative to the blades, as shown. The
fluid enters axially at section 1. Assuming
incompressible flow at shaft angular velocity
o, derive a formula for the power P required
to drive the impeller.

T,Pw

Solution: Relative to the blade, the fluid
exits at velocity Vrel,2 tangent to the blade,
as shown in Fig. P3.116. But the Euler

turbine formula, Ans. (a) from Example 3.14 e
of the text, ~. DIAGRAM
Torque T = pQ(r, Vi, —1,Vyy) \‘.m T,

=~ pQr,V,, (assuming V,, = 0)

involves the absolute fluid velocity tangential to the blade circle (see Fig. 3.13). To
derive this velocity we need the “velocity diagram” shown above, where absolute
exit velocity V2 is found by adding blade tip rotation speed wr2 to Vrel,2. With
trigonometry,

V, =nw—-V,,cotd,, where V, =Q/A_; = Qb is the normal velocity

With torque T known, the power required is P = Tw. The final formula is:

2zr,b,

P=pQr2a{r2a)—( Q ]cotez} Ans.

3.117 A simple turbomachine is con- 2em
structed from a disk with two interpal it
ducts which exit tangentially through T AL

square holes, as in the figure. Water at
20C enters the disk at the center, as
shown. The disk must drive, at 250 rev/min,
a small device whose retarding torque is
1.5 N-m. What is the proper mass flow
of water, in kg/s?

cm - 0
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Solution:  This problem is a disguised version of the lawn-sprinkler arm in Example 3.15.
For that problem, the steady rotating speed, with retarding torque To, was

1) Yo To > WhereV, is the exit velocity and R is the arm radius.
R pQR

Enter the given data, noting that Q = 2Vo ALexit? is the total volume flow from the
two arms:

= - > 5> Solve V, =6.11 =z
s 0.16m 998(2V,)(0.02 m)“(0.16 m) s

w=250[2—”j rad _V, 1.5N-m
60

The required mass flow is thus,

m=pQ = (998 k—%) [2[6.11 ED 0.02m)2 =244 X8 ans
m S S

3.118 Reverse the flow in Fig. P3.116, so R, GUIDE VANE
that the system operates as a radial-inflow @
turbine. Assuming that the outflow into
section 1 has no tangential velocity, derive
an expression for the power P extracted by
the turbine.

Solution: The Euler turbine formula, “Ans. (a)” from Example 3.14 of the text, is valid
in reverse, that is, for a turbine with inflow at section 2 and outflow at section 1. The
torque developed is

T, = pQ(,Vy, —1V) = pQr, V,, if V=0

The velocity diagram is reversed, as shown in the figure. The fluid enters the turbine
at angle 62, which can only be ensured by a guide vane set at that angle. The absolute
tangential velocity component is directly related to inlet normal velocity, giving the
final result

VIZ = Vnz cot 62, Vnz = Q N
27rr,b,
thus P=oT, = an)rz( jcoté?2 Ans.
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3.119 Revisit the turbine cascade system
of Prob. 3.78, and derive a formula for the
power P delivered, using the angular-
momentum theorem of Eq. (3.55).

Solution: To use the angular momentum
theorem, we need the inlet and outlet
velocity diagrams, as in the figure. The
Euler turbine formula becomes

T, = pQ(Vy —5, V) = pQR(V,; = V),)

since the blades are at nearly constant radius R. From the velocity diagrams, we find

V, =u+V,, cote; V,=u-V,cota,, where V,, =V, =V, cosf,

n
The normal velocities are equal by virtue of mass conservation across the blades. Finally,

P = pQwR(V,-V,)=pQuV,(cota, +cota,) Ans.

3.120 A centrifugal pump delivers 4000 gal/min of water at 20°C with a shaft rotating
at 1750 rpm. Neglect losses. Ifr1 =6 in, 12 =14 in, bl =b2 = 1.75 in, Vi1 = 10 ft/s, and V12 =
110 ft/s, compute the absolute velocities (a) V1 and (b) V2, and (c) the ideal horsepower
required.

Solution:  First convert 4000 gal/min = 8.91 ft3/s and 1750 rpm = 183 rad/s. For water,
take p=1.94 slug/ft3. The normal velocities are determined from mass conservation:
Q 891 195 1 Q _g3qlt

an = = =195 —; Vnz =
2znb,  27(6/12)(1.75/12) S 27r,b, S

Then the desired absolute velocities are simply the resultants of Vt and Vn:

ft

V, =[(10)* +(19.45)*]"* = 22 < V, =[(110)* +(8.3)*]"* =110 % Ans. (a, b)

The ideal power required is given by Euler’s formula:
P = pQa(r,V, —1,V,;) = (1.94)(8.91)(183)[(14/12)(110) — (6/12)(10)]

ft-1bf
s

=391,000 ~710hp Ans. (c)
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3.121 The pipe bend of Fig. P3.121 has
D1 =27 cm and D2 = 13 cm. When water at
20°C flows through the pipe at 4000 gal/
min, pl = 194 kPa (gage). Compute the
torque required at point B to hold the bend
stationary.

Solution:  First convert Q = 4000 gal/

min = 0.252 m>/s. We need the exit velocity: Fig. P3.121
V, =Q/A, = Lzz =190 = Meanwhile, V, =Q/A, =4.4 =
(7/4)(0.13) s s

We don’t really need V1, because it passes through B and has no angular momentum.
The angular momentum theorem is then applied to point B:

Mg =T+, xpAj+ 1, xp,A,(—i)=m(r, xV, =1, x V)
But r1 and p2 are zero,
hence Ty =i(r, xV,) = pQ[(0.5i +0.5])x (19.0i)]
Thus, finally, TB = (998)(0.252)(0.5)(19.0)(—k) ~ —=2400 k N-m (clockwise) Ans.

3.122 Extend Prob. 3.46 to the problem

of computing the center of pressure L of . "
the normal face Fn, as in Fig. P3.122. (At { | ’lf ,/CV/ /\\ 4
the center of pressure, no moments are N et TR
required to hold the plate at rest.) Neglect U/’IL’ f_" o ////(E,\\L(F
friction. Express your result in terms of the N \/\// ’
sheet thickness h1 and the angle @ between /‘,(
the plate and the oncoming jet 1. e

Fig. P3.122

Solution: Recall that in Prob. 3.46 of this Manual, we found h2 = (h1/2)(1 + cos6) and
that h3 = (h1/2)(1 — cosé). The force on the plate was Fn = pQVsiné. Take clockwise
moments about O and use the angular momentum theorem:

XM, =—F,L =m;ry0 x V, |+ ms|f0 x Vs | ,— 1 |rio X Vi,

= pVh, (h,V/2)+ pVhy(~h;V/2)—0 = (12)pV* (b3 b3 )
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(12)pV?* (h3 —h? h? —h?
Thus L=- 5 ( ? 3)=—( ’ . 3):—lhlcotﬂ Ans.
pV~h;sind 2h;sin@ 2

The latter result follows from the (h1, h2, h3) relations in 3.46. The C.P. is below point O.

3.123 The waterwheel in Fig. P3.123 is
being driven at 200 r/min by a 150-ft/s jet
of water at 20°C. The jet diameter is 2.5 in.
Assuming no losses, what is the horse-
power developed by the wheel? For what
speed Q r/min will the horsepower developed
be a maximum? Assume that there are many
buckets on the waterwheel.

i
t 150 ft/s

l
Solution:  First convert Q = 200 rpm = (75 [
20.9 rad/s. The bucket velocity = Vb = —
QR =(20.9)(4) = 83.8 ft/s. From Prob. 3.51 Fig. P3.123

of this Manual, if there are many buckets,
the entire (absolute) jet mass flow does the

work:
P = l’i’ljetVb (Vjet - Vb )(1 —COS 1650) = ijethetVb (Vjet - Vb )(1 .966)
2
(2.5
=(1 '94)Z(Ej (150)(83.8)(150 —83.8)(1.966)
108200 1T C197hp  Ans.

S
Prob. 3.51: Max. power is for Vb = Vjet/2 = 75 ft/s, or Q = 18.75 rad/s =179 rpm  Ans.

3.124 A rotating dishwasher arm delivers at 60°C to six nozzles, as in Fig. P3.124. The
total flow rate is 3.0 gal/min. Each nozzle has a diameter of % in. If the nozzle flows are
equal and friction is neglected, estimate the steady rotation rate of the arm, in r/min.

5 in 6in+t+5in 1 1 1
S e e o e s 05

% PN BT

Fig. P3.124
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Solution:  First we need the mass flow and velocity from each hole “i,” i =1 to 6:
v, =%=w~ ss1 o 229 1.94(3/448'8j ~0.00216 218
i 3/16 S S
/4
w208

Recall Example 3.15 from the text. For each hole, we need the absolute velocity, Vi — Qri.
The angular momentum theorem is then applied to moments about point O:

XMy =T, =2m;(hig X Vi aps) =15, Vi =2 m;r;(V; cos40°—Qr;)

All the velocities and mass flows from each hole are equal. Then, if TO = 0 (no friction),

Q- 2. m;rV; cos40 _ V. cos40°-= 2 L= (5.81)(0. 766)5—32— 4.25 @_41 rom Ans.
s

Zl’rllrl I.l

3.125 A liquid of density p flows through
a 90° bend as in Fig. P3.125 and issues
vertically from a uniformly porous section
of length L. Neglecting weight, find a
result for the support torque M required at
point O.

Solution: Mass conservation requires

Fig. P3.125

L
= I V, (zd)dx =V, zdL, or: Q =rdV
0

dx W

Then the angular momentum theorem applied to moments about point O yields

EMg =Ty = [ (1o xV)diiy, —kj (R+x)V, prdV, dx
CS

= gpﬂ' dV\i[(RJrX)2 —RZ] |§

Substitute Vwz dL = Q and clean up to obtain T, = pQVw(R + %) k' Ans.
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3.126 Given a steady isothermal flow
of water at 20°C through the device in
Fig. P3.126. Heat-transfer, gravity, and
temperature effects are neghglble Known
data are D1 = 9 cm, Q1 = 220 m /h p1 =
150 kPa, D2 = 7 cm, Q2—100m/h p2 =
225 kPa, D3 = 4 cm, and p3 = 265 kPa.
Compute the rate of shaft work done for
this device and its direction.

Fig. P3.126

Solution:  For continuity, Q3 =Q1 —Q2 =120 m?>/hr. Establish the velocities at each port:
Q, 220/3600 061 M. v 100/3600 70y M.y, 120/3600 6.5 M

1= - - 7 H - - I H

A, 7(0.045) s’ 7 7(0.035) s” 7 20022 T s

With gravity and heat transfer and internal energy neglected, the energy equation becomes

2 2 2
QW W, m(p—V—Jm(p—V—Jm[p—v—j
Py 2 Py 2 P2

2 2
N /p:3160(;)0[225000+(7.22) }r 120 [265000+(26.5) }

998 2 3600 998 2

, 220 150000+(9.61)2
3600 998 2

Solve for the shaft work: W, = 998(~6.99 —20.56+12.00) ~ ~15500 W  Ans.
(negative denotes work done on the fluid)

3.127 A power plant on a river, as in
Fig. P3.127, must eliminate 55 MW of
waste heat to the river. The river
conditions upstream are Q1 = 2.5 m3/s
and T1 = 18°C. The river is 45 m wide
and 2.7 m deep. If heat losses to the
atmosphere and ground are negligible,
estimate the downstream river conditions

(Qo, To).

Fig. P3.127



258 Solutions Manual e Fluid Mechanics, Fifth Edition

Solution:  For water, take cp ~ 4280 J/kg-°C. For an overall CV enclosing the entire
sketch,

Q = ri’lout (CpTout) - Ihin (Cp m)
or: 55,000,000 W ~ (998 2.5)[4280T, , —4280(18)], solve for T, ~23.15°C Ans.

The power plant flow is “internal” to the CV, hence Q_, =Q;, =2.5 m3/s. Ans.

3.128 For the conditions of Prob. 3.127, if the power plant is to heat the nearby river
water by no more than 12°C, what should be the minimum flow rate Q, in m 3 s, through
the plant heat exchanger? How will the value of Q affect the downstream conditions

(Qo, To)?

Solution: Now let the CV only enclose the power plant, so that the flow going through
the plant shows as an inlet and an outlet. The CV energy equation, with no work, gives

Qplam =M€ Ty =M€, Ty =(998)Q 1 (4280)(12°C) - since Q;, =Q

p “out In~p “in

out

55,000,000

~ m3/s  Ans.
(998)(4280)(12)

Solve for = Qe =

It’s a lot of flow, but if the river water mixes well, the downstream flow is still the same.

3.129 Multnomah Falls in the Columbia River Gorge has a sheer drop of 543 ft. Use the
steady flow energy equation to estimate the water temperature rise, in °F, resulting.

Solution: For water, convert cp= 4200 x 5.9798 = 25100 ft-Ibf/(slug-°F). Use the
steady flow energy equation in the form of Eq. (3.66), with “1” upstream at the top of
the falls:

h, +%Vl2 +g7, =h2+%V§+g22 —q

Assume adiabatic flow, q = 0 (although evaporation might be important), and neglect the
kinetic energies, which are much smaller than the potential energy change. Solve for
32.2(543)

Ah=c AT ~g(z,—2,), or: AT=——"—">~0.70°0 Ans.
p g( 1 2) 25100
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3.130 When the pump in Fig. P3.130
draws 220 m3/h of water at 20°C from the
reservoir, the total friction head loss is 5 m.
The flow discharges through a nozzle to
the atmosphere Estimate the pump power
in kW delivered to the water.

Solution: Let “1” be at the reservoir surface
and “2” be at the nozzle exit, as shown. We
need to know the exit velocity:

Fig. P3.130
V, =Q/A, = %3602 =31.12 E, while V, = 0 (reservoir surface)
7(0.025) S
Now apply the steady flow energy equation from (1) to (2):
2 2
&+£+z1 =p—2+L+z2 +hy—h,,
rg 2g pg 2g

or: 0+O+0:O+(31.12)2/[2(9.81)]+2+5—hp, solve for h, ~56.4 m.

The pump power P = pgQhp = (998)(9.81)(220/3600)(56.4)
=33700 W =33.7 kW Ans.

3.131 When the pump in Fig. P3.130 delivers 25 kW of power to the water, the friction
head loss is 4 m. Estimate (a) the exit velocity; and (b) the flow rate.

Solution: The energy equation just above must now be written with V2 and Q
unknown:

2
O+O+O:O+£+2+4—hp, where h, = P __ 25000
2g pgQ  (998)(9.81)Q
and where V, = Lz Solve numerically by iteration: V2 ~28.1 m/s Ans. (a)
7(0.025)

and Q= (28.1)7(0.025)2 ~ 0.0552 m3/s ~ 200 m3/hr  Ans. (b)
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3.132 Consider a turbine extracting energy
from a penstock in a dam, as in the figure.
For turbulent flow (Chap 6) the friction head
loss is hf = CQ where the constant C
depends upon penstock dimensions and
water physical properties. Show that, for a
given penstock and river flow Q, the
maximum turbine power possible is Pmax =
2pgHQ/3 and occurs when Q = (H/3C)

Turbine |——

Solution: Write the steady flow energy equation from point 1 on the upper surface to
point 2 on the lower surface:

BV W

pg " 2g g g T N
But p1 = p2 = patm and V1 = V2 = 0. Thus the turbine head is given by
he=H-h; =H-CQ?,
or: Power =P = pgQh, = pgQH — pgCQ’

Differentiate and set equal to zero for max power and appropriate flow rate:

j—gngH—Z»ngQz _0 if Q=+HAC Ans.

Insert Q in P to obtain P, = p9Q (Z?Hj Ans.

3.133 The long pipe in Fig. 3.133 is filled YO
with water at 20°C. When valve A is
closed, p1 — p2 =75 kPa. When the valve is
open and water flows at 500 m /h p1 — p2
= 160 kPa. What is the friction head loss
between 1 and 2, in m, for the flowing
condition?

Constant-
diameter

%

pipe

¥ 4
Fig. P3.133
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Solution:  With the valve closed, there is no velocity or friction loss:

Pz =Py o z,-z =P17P2_ 75000,
Pg Pg pg  998(9.81)
When the valve is open, the velocity is the same at (1) and (2), thus “d” is not needed:
_ 2 2
With flow: h, =Pi=P2 Vi =Vo o 160000 L o6 8 7m  Ans
g 2g 998(9.81)

3.134 A 36-in-diameter pipeline carries oil
(SG = 0.89) at 1 million barrels per day
(bbl/day) (1 bbl = 42 U.S. gal). The friction
head loss is 13 ft/1000 ft of pipe. It is planned

to place pumping stations every 10 mi along 10 mucs___fl
the pipe. Estimate the horsepower which

must be delivered to the oil by each pump.

Pump

Solution: Since AV and Az are zero, the energy equation reduces to
=22 and b, =0013 1195 4 mi)(5280 1) ~ 686 ft
0g ft-pipe mi
Convert the flow rate from 1E6 bbl/day to 29166 gal/min to 65.0 ft3/s. Then the power is

ft-Ibf

P = QAp = yQh, = (62.4)(65.0)(686) = 2.78E6

~ 5060 hp Ans.

3.135 The pump-turbine system in
Fig. P3.135 draws water from the upper
reservoir in the daytime to produce power
for a city. At night, it pumps water from
lower to upper reservoirs to restore the
situation. For a design flow rate of 15,000 gal/
min in either direction, the friction head
loss is 17 ft. Estimate the power in kW
(a) extracted by the turbine and (b) delivered Fig. P3.135
by the pump.

Z,=1501




262 Solutions Manual e Fluid Mechanics, Fifth Edition

Solution: (a) With the turbine, “1” is upstream:

2 2
&+&+zl :p_2+&+22 +h;+h,
pg  2g pg 2g

or: 0+0+150=0+0+25+17=h,

Solve for ht = 108 ft. Convert Q = 15000 gal/min = 33.4 ft3/s. Then the turbine power is

P =yQh,, = (62.4)(33.4)(108) = 225,000 " 10f

~410hp Ans. (a)

(b) For pump operation, point “2” is upstream:

2 2

v
p—2+—2+z2 :ﬂ+—1+z1 +he—h,

pg 2g pg 2g
or: 0+0+25=0+0+150+17-h,
Solve for h, ~142 ft
The pump power is Ppump = yQhp = (62.4)(33.4)(142) = 296000 ft-1bf/s =540 hp.  Ans. (b)

3.136  Water at 20°C is delivered from one reservoir to another through a long 8-cm-
diameter pipe. The lower reservoir has a surface elevation z2 = 80 m. The friction loss in
the pipe is correlated by the formula hloss ~ 17.5(V2/Zg), where V is the average velocity
in the pipe. If the steady flow rate through the pipe is 500 gallons per minute, estimate the
surface elevation of the higher reservoir.

Solution: We may apply Bernoulli here,
175V

h =7, -1
f 29 1 2

17.5 (500 gal/min)(3.785 m*/gal)(min/60s)
2(9.81 m/s?) 7 0.082)
4O

=7,-80m

71 =115 m Ans.
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3.137 A fireboat draws seawater (SG = Pump
1.025) from a submerged pipe and discharges
it through a nozzle, as in Fig. P3.137. The
total head loss is 6.5 ft. If the pump efficiency ] (2)
is 75 percent, what horsepower motor is
required to drive it?

D=2in

Solution: For seawater, y=1.025(62.4) =

63.96 Ibf/ft>. The energy equation becomes Fig. P3.137
2 2
&+—1+zl :10—2+&+z2 +he—h,
prg  2g pg  2g
2
or: 040+0=0+20" 1 1046.5-h,
2(32.2)

Solve for hp = 240 ft. The flow rate is Q = V2A2 = (120)(7/4)(2/12)? = 2.62 ft>/s. Then

h :
7Q p_(63.96)(2.62)(240) _ .. fi-1bf
efficiency 0.75 S

Poump =

~97hp Ans.

3.138 Students in the fluid mechanics lab at Penn State University use the device in the
figure to measure the viscosity of water: a tank and a capillary tube. The flow is laminar and
has negligible entrance loss, in which case Chap. 6 theory shows that hf = 32,uLV/(pgd2).
Students measure water temperature with a

thermometer and Q with a stopwatch and a

graduated cylinder. Density is measured by — A
weighing a known volume. (a) Write an - é) H
expression for x as a function of these i
variables. (b) Calculate u for the following K

actual data: T = 16.5°C, p=998.7 kg/m3, d=
0.041 in, Q =031 mL/s, L = 36.1 in, and
H = 0.153 m. (c) Compare this x with the L
published result for the same temperature. d—> [
(d) Compute the error which would occur
if one forgot to include the kinetic energy
correction factor. Is this correction important || ______ ) A
here?
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Solution: (a) Write the steady flow energy equation from top to bottom:

2 2 2
L A +(H+L)= P +%+O+hf, or: hf=32ﬂ|‘2v:H+L—%
g 79 g 29 pgd 29

Noting that, in a tube, Q = Vﬂd2/4, we may eliminate V in favor of Q and solve for the
fluid viscosity:

4
H= 7psd (H+L)—M Ans. (a)
128LQ 16z L

(b) For the given data, converting d = 0.041 in = 0.00104 m, L =36.1 in=0.917 m, and Q =
0.31 mL/s = 3.1E-7 m”/s, we may substitute in the above formula (a) and calculate

4
_ 7(O98.DOSDO00104)° o3 g7 2009873 1E)
128(0.917)(3.1E-7) 167(0.917)

kg
m-S

=0.001063-0.000013 = 0.00105 Ans. (b)

(c) The accepted value (see Appendix Table A-1) for water at 16.5°C is u~ 1.11E-3 kg/m's,
the error in the experiment is thus about —5.5%. Ans. (¢)

(d) If we forgot the kinetic-energy correction factor o2 = 2.0 for laminar flow, the
calculation in part (b) above would result in

1= 0.001063 —0.000007 ~ 0.001056 kg/m- s (negligible 0.6% error) Ans. (d)

In this experiment, the dominant (first) term is the elevation change (H + L)—the
momentum exiting the tube is negligible because of the low velocity (0.36 m/s).

3.139 The horizontal pump in Fig. P3.139 e 120K
discharges 20°C water at 57 m>/h. Neglecting
losses, what power in kW is delivered to the
water by the pump?

Pump

D,=3cm Dy=9em
Solut.iqn: First‘ we need to compute the Fig. P3.139
velocities at sections (1) and (2):
_Q_ ST _om Q_ STR60 ), m

A, 7(0.0457 s A, 7(0.0157 s
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Then apply the steady flow energy equation across the pump, neglecting losses:

2 2
&-F&-FZI :p_2+L+Z2 +he—h,,
pg 2¢g g 2g

120000 (2.49)° 4 0= 400000 (22.4)*
9790  2(9.81) 9790  2(9.81)

57
3600

+0+O—hp, solve for hp ~53.85m

Then the pump poweris P, =yQh, = 9790( ](53.85) =8350 W=8.4 kW Ans.

3.140 Steam enters a horizontal turbine at 350 Ibf/in? absolute, 580°C, and 12 ft/s and
is discharged at 110 ft/s and 25°C saturated conditions. The mass flow is 2.5 Ibm/s, and
the heat losses are 7 Btu/Ib of steam. If head losses are negligible, how much horsepower
does the turbine develop?

Solution: We have to use the Steam Tables to find the enthalpies. State (2) is saturated
vapor at 25°C = 77°F, for which we find h2 = 1095.1 Btu/lbm = 2.74E7 ft-Ibf/slug. At
state (1), 350 psia and 580°C = 1076°F, we find h1 = 1565.3 Btu/lbm = 3.92E7 ft-1bf/slug.
The heat loss is 7 Btu/lbm = 1.75E5 ft-Ibf/slug. The steady flow energy equation is best
written on a per-mass basis:

1

q—wS=h2+5V§—h 1

= EVIZ, or:
ft-1bf

—1.75E5-w, =2.74E7+(110)*/2-3.92E7—(12)*/2, solve for w, ~1.16E7 1
slug

The result is positive because work is done by the fluid. The turbine power at 100% is

:rhwsz( 2.5 %]£1.16E7 ft'lbsz%looo ft-1of  1640np  Ans.

P -
322 s slug s

turb

3.141 Water at 20°C is pumped at 1500 gal/
min from the lower to the upper reservoir,
as in Fig. P3.141. Pipe friction losses are
approximated by hf = 27V?2/(2g), where V is
the average velocity in the pipe. If the
pump is 75 percent efficient, what horse-
power is needed to drive it?

nPump
Fig. P3.141
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Solution: First evaluate the average velocity in the pipe and the friction head loss:

3 2
Q=B 35y v Qo33 o hf=27(l7'0) ~
2(32.2

=== 121 ft
448.8 s A 7312y s

Then apply the steady flow energy equation:

2 2
&+ﬁ+zl =p—2+£+z2 +h;—h
pg 28 pg  2¢g

or: 0+0+50=0+0+150+121—hp

p)

h
Thus h, =221ft, so P, = yQh, _ (62.4)(3.34)(221)
n 0.75

ft - 1bf
s

=61600

~112hp Ans.

3.142 A typical pump has a head which,
for a given shaft rotation rate, varies with
the flow rate, resulting in a pump
performance curve as in Fig. P3.142.
Suppose that this pump is 75 percent
efficient and is used for the system in
Prob. 3.141. Estimate (a) the flow rate, in
gal/min, and (b) the horsepower needed to
drive the pump.

Head, ft

Flow rate, ft¥/s

Fig. P3.142

Solution: This time we do not know the flow rate, but the pump head is hp = 300 —
50Q, with Q in cubic feet per second. The energy equation directly above becomes,
V2
2(32.2)

0+0+50=0+0+150+(27)

~(300-50Q), where Q =V (0.5 ft)’
4

This becomes the quadratic Q” +4.60Q—18.4=0, solve for Q ~2.57 ft’/s

h —
Then the power s By =20t (2OCSNS00-500.57)
n .

ft-1bf
s

=36700 ~67hp Ans.
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3.143 The insulated tank in Fig. P3.143 is pO—
to be filled from a high-pressure air supply. e 7, = 20°C
Initial conditions in the tank are T = 20°C | Tek: V=200 A} = s
and p = 200 kPa. When the valve is opened, v )
L

the initial mass flow rate into the tank is
0.013 kg/s. Assuming an ideal gas, estimate
the initial rate of temperature rise of the air in
the tank.

Fig. P3.143

Solution:  For a CV surrounding the tank, with unsteady flow, the energy equation is

2
1%

. d . dT
Rewrite as —(puvc, T)=m. c T. =pvc, —+c,To —
q (Pre D= mye, Ty, = pue, —=+e To -~
where p and T are the instantaneous conditions inside the tank. The CV mass flow gives
d . o dp .
E(I pdu)—min =0, or: UE =m,,

Combine these two to eliminate v(dp/dt) and use the given data for air:

dT

g e = puc, | 200000
287(293)

(e, —¢,)T _ (0.013)(1005-718)(293) _,, °C
. s .

}(0.2 m’)(718)

3.144 The pump in Fig. P3.144 creates St —
a 20°C water jet oriented to travel a maxi-
mum horizontal distance. System friction
head losses are 6.5 m. The jet may be
approximated by the trajectory of friction-
less particles. What power must be deli-
vered by the pump?

Fig. P3.144

Solution: For maximum travel, the jet must exit at = 45°, and the exit velocity must be

12
V,sind=2ghz or v,=208DEIT 45, m
sin45° S

The steady flow energy equation for the piping system may then be evaluated:
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or: 0+0+15:0+(31.32)2/[2(9.81)]+2+6.5—hp, solve for h, #43.5m

Then P, =yQh, = (9790)[%(0.05)2 (31.32)}(43.5) ~26200W  Ans.

pump

3.145 The large turbine in Fig. P3.145
diverts the river flow under a dam as
shown System friction losses are hf =
3.5V2 /(29), where V is the average velocity
in the supply pipe. For what river flow rate
in m%/s will the power extracted be 25 MW?
Which of the two possible solutions has a
better “conversion efficiency”?

Fig. P3.145

Solution: The flow rate is the unknown, with the turbine power known:
2 2

&+£+zl_p—2+v—+zz+hf+hmb, or: 0+0+50=0+0+10+h;+h,
y 2g y 28
Q
where h;=3.5V2 /(2g) and h,=P/(yQ) and V, =—=——
pip pip (/4)Dp1pe

Introduce the given numerical data (e.g. Dpipe = 4 m, Ppump = 25E6 W) and solve:
Q’ —35410Q +2.261E6 =0, withroots Q =+76.5,+137.9, and —214.4 m’/s

The negative Q is nonsense. The large Q (=137.9) gives large friction lossé hf =~ 21.5 m.
The smaller Q (= 76.5) gives hf ~ 6.6 m, about right. Select Qriver  76.5 m>/s.  Ans.

3.146 Kerosene at 20°C flows through the
pump in Fig. P3.146 at 2.3 ft/s. Head
losses between 1 and 2 are 8 ft, and the
pump delivers 8§ hp to the flow. What
should the mercury-manometer reading h ft
be?

Solution: First establish the two velocities:

Mercury

3
V, :Q:L/Sz Fig. P3.146
A (w4312 fr)
ft 1 ft

=469 —; V,=-V,=11.7 —
S 4 S
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For kerosene take p = 804 kg/m = 1.56 slug/ft3 or %k = 1.56(32.2) = 50.2 Ibf/ft3. For
mercury take ym = 846 Ibf/ft>. Then apply a manometer analysis to determine the
pressure difference between points 1 and 2:

Dy — Py = (7 — 7N — 7, AZ = (846 — 50.2)h — (50 2'%}(5 ft) = 796h—251 %

Now apply the steady flow energy equation between points 1 and 2:

2
Ll +V_+Z1 &+—+22+hf—hp, where h, = P = 8(550) ft-lbi;/s =38.1ft
7 29 7v 29 7Q  (50.2)(2.3 ft’/s)
L6 o +0= (“7) +5+8-38.1ft Solve p,—p, =2866 'ﬂﬂ

50 2" 2(322) 50 2 2(322)

Now, with the pressure difference known, apply the manometer result to find h:

2
P, — P, =2866 =796h—-251, or: h= 2866 +251 Ibt/ft =3.92 ft Ans.

796 Ibf/ft>

3.147 Repeat Prob. 3.49 by assuming that
p1 is unknown and using Bernoulli’s P.= 15 Ibffin? abs
equation with no losses. Compute the new
bolt force for this assumption. What is the
head loss between 1 and 2 for the data of
Prob. 3.49?

Open
Jjet

Solution: Use Bernoulli’s equation with @ 12
no losses to estimate p1 with Az = 0: Fig. P3.49
(14) L150144) (56)°
v 2(32 2) 624 2(32.2)’

solve for p 4., = 34.8 psia

From the x-momentum CV analysis of Prob. 3.49, the bolt force is given by

Fbolts = pz,gageAz - m(V2 - Vl)

=(34.8- 15)(144) (1 ft)? —194[ j(l ft)? (14)(56 — 14) ~ 1340 Ibf  Ans.
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We can estimate the friction head loss in Prob. 3.49 from the steady flow energy
equation, with p1 taken to be the value of 38 psia given in that problem:

38(144) (14)* _15144) (56)*
624  2(322) 624 2(322)

+h;, solvefor hy=7.4ft Ans.

P3.148 Extend the siphon analysis of Ex. 3.22 as follows. Let p; = 1 atm and let the fluid
be hot water at 60°C. Let z;,4 be the same, with z3 unknown. Find the value of z3 for which
the water might begin to vaporize.

Solution:  Given p; = 101350 Pa and recall that z; = 60 cm, zZ, = -25 ¢cm, and z4 was not
needed. Then note that, because of steady-flow one-dimensional continuity, from Ex. 3.22,

Vy; = V, = 20(z,-2,) = 2(9.81)[0.6—-(-0.25)] = 4.08m/s

For cavitation, p; should drop down to the vapor pressure of water at 60°C, which from Table
A.51is 19.92 kPa. And, from Table A.3, the density of water at 60°C is 983 kg/m’. Now write
Bernoulli from point 1 to point 3 at the top of the siphon:

2 2
& + VL + gzl — & + Vi + 923
o 2 2
2 2
101350+ 0~ £ (9.81)(0.6m) = 19920Pa3 N (4.08m/s) + 981z,
983 2 983kg/m
80.4

103.1+0+59 =203 + 83 + 981z , Solve z; = 981 =82m Ans.

That’s pretty high, so the writer does not think cavitation is a problem with this siphon.
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3.149 A jet of alcohol strikes the vertical
plate in Fig. P3.149. A force F ~ 425 N is it l
required to hold the plate stationary. Aeobal 1 Py =101 kP ‘

Assuming there are no losses in the —————y e

nozzle, estimate (a) the mass flow rate of : e 1
! D, =2cm

alcohol and (b) the absolute pressure at
section 1.

Solution: A momentum analysis of the plate (e.g. Prob. 3.40) will give
F=mV, = pA,V; = 0.79(998)%(0.02)2V§ =425 N,
solve for V, ~41.4 m/s
whence 1 =0.79(998)(7/4)(0.02)*(41.4)~10.3 kg/s  Ans. (a)

We find V1 from mass conservation and then find p1 from Bernoulli with no losses:

2
. : 2
Incompressible mass conservation: V, = V,(D,/D,)* = (41.4) (gj ~ 6.63 m/s

Bernoulli, z, =z,: p, =P, +%p(V§ —Vf): 101000+%[(41.4)2 —(6.63)*]
~ 760,000 Pa Ans. (b)
3.150 An airfoil at an angle of attack
a, as in Fig. P3.150, provides lift by
a Bernoulli effect, because the lower
surface slows the flow (high pressure) ™. Vupper > U
o
and the upper surface sp@eds up the flow m.«:\
(low pressure). If the foil is 1.5 m long U =200 m;sl T,
and 18 m wide into the paper, and the —
ambient air is 5000 m standard atmo- Viower <U
sphere, estimate the total lift if the average Fig. P3.150

velocities on upper and lower surfaces are
215 m/s and 185 m/s, respectively. Neglect

gravity.
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Solution: A vertical force balance gives,
1
I:Lift = (pl - pu)ApIanform = EIO(VU2 _V|2 )(bL)
:%(0.7361)(2152 —185%)(18)(1.5)

=119,250 N =119 kN Ans.
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3.151 Water flows through a circular
nozzle, exits into the air as a jet, and strikes
a plate. The force required to hold the plate
steady is 70 N. Assuming frictionless one-
dimensional flow, estimate (a) the velocities
at sections (1) and (2); (b) the mercury man-
ometer reading h.

D;=10cm

Solution: (a) First examine the momen-
tum of the jet striking the plate,

z F = F = —minuin = _pA2V22

Fig. P3.151

70 N =—(998)(%j(0.032)0/22) V,=9.96 m/s Ans.(a)

. 96)[ j(o 03?%)
Then V, = 2R _ or ¥,=09m/s Ans. (a)
A Z(0.12)

(b) Applying Bernoulli,
0,—p =~ (v2 )=—(998)(9 96% —0.9%) = 49,100 Pa

And from our manometry principles,

CAp 49,100
g (133,100-9790)

~04m Ans. (b)
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3.152 A free liquid jet, as in Fig. P3.152,
has constant ambient pressure and small
losses hence from Bernoulli’s equation

z+V? /(29) is constant along the jet. For the sof].
fire nozzle in the figure, what are (a) the NolQns g
minimum and (b) the maximum values of & \ 0 :
for which the water jet will clear the corner ST

of the building? For which case will the jet Fig. P3.152

velocity be higher when it strikes the roof
of the building?



274 Solutions Manual e Fluid Mechanics, Fifth Edition

Solution: The two extreme cases are when the jet just touches the corner A of the
building. For these two cases, Bernoulli’s equation requires that

V7 +2gz, =(100)* +2g(0) = Vi +2gz, = Vi +2(32.2)(50), or: V, =823 ft
S

The jet moves like a frictionless particle as in elementary particle dynamics:

. . . 1 . .
Vertical motion: z =V, sin6ft Y gt?; Horizontal motion: x =V, cos 0t

Eliminate “t” between these two and apply the result to point A:

2 2
ZA ﬁo:xﬁaﬂ@‘%:‘mtaﬂ@—%
2Vj cos™0 2(100)" cos“@

; clean up and rearrange:
tan@ =1.25+0.0644 sec’d, solve for 6 =85.94° Ans.(a) and 55.40° Ans. (b)

Path (b) is shown in the figure, where the jet just grazes the corner A and goes over the
top of the roof. Path (a) goes nearly straight up, to z = 155 ft, then falls down to pt. A.

3.153 For the container of Fig. P3.153
use Bernoulli’s equation to derive a
formula for the distance X where the free
jet leaving horizontally will strike the floor,
as a function of h and H. For what ratio
h/H will X be maximum? Sketch the three
trajectories for h/H= 0.4, 0.5, and 0.6.

Solution: The velocity out the hole and

the time to fall from hole to ground are AV
given by B
h=075H =
Vo =+2g(H-h) tg, =+2h/g o5
Then the distance travelled horizontally is 025 H «
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Maximum X occurs at h = H/2, or Xmax = H. When h = 0.25H or 0.75H, the jet travels
out to H = 0.866H. These three trajectories are shown in the sketch on the previous page.

P3.154 Water at 20°C, in the pressurized

4+--M\Q3)
tank of Fig. P3.154, flows out and creates a Air
0 75 kPa-gage
vertical jet as shown. Assuming steady H> 1.
(1)
frictionless flow, determine the height H water 85 cm
to which the jet rises. IR 2 N I N 2
w ] |
Fig. P3.154

Solution: This is a straightforward Bernoulli problem. Let the water surface

be (1), the exit plane be (2), and the top of the vertical jet be (3). Let z; = 0 for convenience.

If we are clever, we can bypass (2) and write Bernoulli directly from (1) to (3):

2 2
Py VL+21: <IN ViJrz3 , or:

M~ 29 ~ 29

L‘OO+ 085m = 0 +0+ H

(9.81)(998) -

Solve H =766m+ 08m = 85Im Ans.

If we took an intermediate step from (1) to (2), we would find V,%/2g = 8.51 m, and then going
from (2) to (3) would convert the velocity head into pure elevation, because V3 = 0.
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3.155 Bernoulli’s 1738 treatise Hydro-
dynamica contains many excellent sketches
of flow patterns. One, however, redrawn here
as Fig. P3.155, seems physically misleading.
What is wrong with the drawing?

Solution: If friction is neglected and the
exit pipe is fully open, then pressure in the
closed “piezometer” tube would be
atmospheric and the fluid would not rise at . . :
all in the tube. The open jet coming from Fig. P3.155
the hole in the tube would have V = V(2gh)

and would rise up to nearly the same height

as the water in the tank.

P3.156 Extend Prob. 3.13 as follows. (a) Use Bernoulli’s equation to estimate the
elevation of the water surface above the exit of the bottom cone. (b) Then estimate the time
required for the water surface to drop 20 cm in the cylindrical tank. If you fail to solve part (a),
assume that the initial elevation above the exit is 52 cm. Neglect the possible contraction and
nonuniformity of the exit jet mentioned in Ex. 3.21.

Solution:  This is a “Torricelli” flow, like Ex. 3.21. Using the continuity relation in Prob.
3.tank, we found that V = 3.2 m/s. (a) Thus we know everything except AZ = heyi + Neone:

V = J20A7 ~32m/s =2(9.81m/s2)Az , solve for Az = 0.52m =52cm  Ans.(a)

(b) The time At to drop from 52 c¢cm to 32 cm could be obtained by numerical quadrature, or,
better, we could solve for At analytically:

T 2 d 7 _» T 2 7 »,dh &
- "p2.v = -2 (EDh) = D2 Jogaz = - Fp2 - Tp
Qout 4 et at (4 ) 4 et g 4 4

dt
: . (032d(Az7) Deyit 2 At
Separate & integrate : Io.sz i = —4/20 (T) _[0 dt
2(\/0.52—\/0.32)( D , 03108 (0.2cm )2

V29 Dext.  +/2(9.81) "0.03cm

» d(Az)
dt

Result: At =

= At = 3.12s Ans.(b)




3.157 The manometer fluid in Fig. P3.157

is mercury. Estimate the volume flow in the O
tube if the flowing fluid is (a) gasoline and {
(b) nitrogen, at 20°C and 1 atm.

Solution: For gasoline (a) take p = 1.32
slug/ft>. For nitrogen (b), R ~ 297 J/kg-°C and
p =
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=

L cz:ﬂ

p/RT = (101350)/[(297)(293)] ~ 1.165 Fig. P3.157

kg/m3 = 0.00226 slug/ft3. For mercury,

take

P~ 26.34 slug/ft3. The pitot tube (2) reads stagnation pressure, and the wall hole (1)
reads static pressure. Thus Bernoulli’s relation becomes, with Az =0,

1
P1+5PV12:I)2’ or V,=42(p,-p)p

The pressure difference is found from the manometer reading, for each fluid in turn:

V

\4

(a) Gasoline:  Ap = (py, —p)yn =(26.34-1.32)(32.2)(112 ft) = 67.1 Ibf/ft?

2 3
| =[2(67.1)1.32]"* =10.1 ﬁ, Q=VA, :(10.1)(%)(%) =0.495 ftT Ans. (a)
S

(b)Ny: Ap = (py, — p)gh =(26.34-0.00226)(32.2)(1/12) ~ 70.7 Ibf/ft’

2 3
[2(70.7)/0.00226]"* =250 E, Q=VA, =(250)(%)(%} <123 1% Ans (b)
S S
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3.158 In Fig. P3.158 the flowing fluid is D, =10cm D=6 em
CO2 at 20°C. Neglect losses. If p1 = 170 kPa {
and the manometer fluid is Meriam red oil
(SG = 0.827), estimate (a) p2 and (b) the
gas flow rate in m”/h.

Solution: Estimate the CO2 density as p =
p/RT = (170000)/[189(293)] = 3.07 kg/m
The manometer reading gives the down-
stream pressure:

Fig. P3.158

P1 — P2 =(Poil = Pco, )gh =[0.827(998) —3.07](9.81)(0.08) ~ 645 Pa
Hence p, =170,000-645~169400Pa Ans. (a)
Now use Bernoulli to find V2, assuming p1 ~ stagnation pressure (V1 = 0):

1
Pt p(O) ~Pyts A%

or: V,= \/2(p1 Pa) \/2(645) ~205 2

S

3
Then Q=V,A, =(20.5)(7/4)(0.06)> = 0.058 m*/s ~ 209 r:— Ans. (b)
r

P3.159 The cylindrical water tank in Fig. P3.159 is being

filled at a volume flow Q; = 1.0 gal/min, while the
water also drains from a bottom hole of diameter d =

6 mm. Attimet=0, h=0. Find (a) an expression for iameter
D=20cm

h(t) and (b) the eventual maximum water depth hp,.

Assume that Bernoulli’s steady-flow equation is valid.

l V, Fig. P3.159
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Solution: Bernoulli predicts that V, ~ \(2gh).

Convert Q; = 6.309E-5 m>/s. A control volume around the tank gives the mass balance:

dm d Vs Vs
g Joysem = 0 = (AN = Qp + A,+2gh , where A:ZDz and A, :Zdz

Rearrange, separate the variables, and integrate:

!; QI_A2‘\/29h Ko

h(t) t
dh 1 jdt

(a) The integration is a bit tricky and laborious. Here is the writer’s result:

Q 2AVh

2Q1
- , where o = A A/ 2 Ans.(a

t = (

a

() A graph of h versus t for the particular given data is as follows:

0.26
024 | h, meters R ¢
0.22 -

0.2 -
0.18 -
0.16
0.14 -
0.12 -

0.1 -
0.08 -
0.06 -
0.04 -
0.02

0+¢ t,sec’
0 200 400 600 800 1000 1200

(b) The water level rises fast and then slower and is asymptotic to the value hy.x = 0.254 m.

This is when the outflow through the hole exactly equals the inflow from the pipe:

Q = Ayy/20N . » OF: 6.309E - 5—: —(0 006m)2./2(9.81)h,,.,

Solve for h = 0.254m  Ans.(b)

max
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3.160 The air-cushion vehicle in Fig.
P3.160 brings in sea-level standard air
through a fan and discharges it at high
velocity through an annular skirt of 3-cm
clearance. If the vehicle weighs 50 kN,
estimate (a) the required airflow rate and
(b) the fan power in kW.

Fig. P3.160

Solution: The air inside at section 1 is
nearly stagnant (V = 0) and supports the
weight and also drives the flow out of the
interior into the atmosphere:

weight 50,000 N 1
P1 ®Po1: Pot = Pam = = =7

exit —

—=—pVa —1(1.205)\/;it ~1768 Pa
area (3 m) 2 2

3

Solve for V., ~54.2m/s, whence Q, =A_V, = 7(6)(0.03)(54.2) =30.6 —
S

exit

Then the power required by the fan is P = QeAp = (30.6)(1768) = 54000 W  Ans.

3.161 A necked-down section in a pipe
flow, called a venturi, develops a low
throat pressure which can aspirate fluid
upward from a reservoir, as in Fig. P3.161.
Using Bernoulli’s equation with no losses,
derive an expression for the velocity V1
which is just sufficient to bring reservoir
fluid into the throat.

VyPy=h

Fig. P3.161

Solution: Water will begin to aspirate into the throat when pa — p1 = pgh. Hence:

Volume flow: V, =V,(D,/D,)*; Bernoulli (Az=0): p, +%,0V12 R Patm +%pV§
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Solve for p,—p, = —(a —~1)V3 > pgh, a= &, or: V, 2, [—;
D] a -1
2gh

Similarly, V, .. =a%V, . = |——=
y 1, min 2, min 1— (D1/D2 )4

3.162 Suppose you are designing a 3 x 6-ft

air-hockey table, with 1/16-inch-diameter

holes spaced every inch in a rectangular Pa
pattern (2592 holes total), the required jet

speed from each hole is 50 ft/s. You must ] | e r
select an appropriate blower. Estlmate the

volumetric flow rate (in ft’/min) and Manifold: p; , V;~0
pressure rise (in psi) required. Hint: Assume
the air is stagnant in the large manifold under
the table surface, and neglect frictional
losses.

Vjet

Solution: Assume an air density of about sea-level, 0.00235 Slug/fts. Apply Bernoulli’s
equation through any single hole, as in the figure:

pﬁ% =P, + pVJZet, or:

pv2 0.00235 Ibf Ibf

jet = (50)* =2.94 e =0.0204 — Ans.

Aprequwed pl pa in

The total volume flow required is
Q =VA_.(# of holes)= (50 EJZ(% ft] (2592 holes)

3 3
276 T _166 1 Ans,
S min
It wasn’t asked, but the power required would be P = QAp = (2.76 ft3/s)(2.94 lbf/ftz) =

8.1 ft-1bf/s, or about 11 watts.
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3.163 The liquid in Fig. P3.163 is
kerosine at 20°C. Estimate the flow rate
from the tank for (a) no losses and (b) pipe
losses hf ~ 4.5V /(2g)

Air:
p =20 Ibf/in? abs

, = 14.7 Ibffin? abs

Solution: For kerosine let y = 50.3 —
Ibf/ft. Let (1) be the surface and (2) the _ (2)
exit jet: Fig. P3.163
V2 V2 2
pl+—+z1 p—2+—+zz+hf, withz, =0 and V, =0, hf:K—2
7y 28 y o2 2g

V2 _ _
Solve for ~2(14K) =7, + PPz _ 5, Q014N o, 4
2 v 50.3

We are asked to compute two cases (a) no losses; and (b) substantial losses, K = 4.5:

12 2 3
@K=0 V,=| 282202 1" 561t Q=36.of(ij ~0197 T Ans (a)
1+0 ] 4\12 S
2 3
b K=45 V,= [202DB0 _ 5, It Q=16.41(ij ~0.089 T© Ans. (b)
1+4.5 S 4\ 12 S
3.164 An open water jet exits from a H---
nozzle into sea-level air, as shown, and 1 dcm | L
strikes a stagnation tube. If the centerline o Waer T | J
pressure at section (1) is 110 kPa and 12em (1’)'t—+>: —e =/ -1 Openjer
losses are neglected, estimate (a) the mass : }
flow in kg/s; and (b) the height H of the Sea-level air
fluid in the tube. Fig. P3.164

Solution:  Writing Bernoulli and continuity between pipe and jet yields jet velocity:

4 4
P2 Dier | | _ _ 998, » 4
B —p, = Vletll (Dl ] ]110000—101350 Va1 5] |

m
solve Vi, =4.19 -

Then the mass flow is M= pA Vg _998%(0.04)2(4.19) =5.25 kg Ans. (a)
S
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(b) The water in the stagnation tube will rise above the jet surface by an amount equal to
the stagnation pressure head of the jet:

2

\V& 2
H=R +—==0.02 m+%:o.oz+o.89=0.91 m Ans. (b)

+ =0.
g 2(9.81

3.165 A venturi meter, shown in Fig.
P3.165, is a carefully designed constriction
whose pressure difference is a measure of
the flow rate in a pipe. Using Bernoulli’s
equation for steady incompressible flow
with no losses, show that the flow rate Q is
related to the manometer reading h by

0= Ay 12gh(ow — p)
J1-(D,/D))* p

where pM is the density of the manometer
fluid.

Solution: First establish that the manometer reads the pressure difference between 1
and 2:

P1 =P = (o — p)gh (1)
Then write incompressible Bernoulli’s equation and continuity between (1) and (2):

V2 V2

_A20h(pu—p)lp
1-(D,/D,)*

Eliminate V, and (p, —p,) from (1) above: Q

3.166 A wind tunnel draws in sea-level standard air from the room and accelerates it
into a 1-m by 1-m test section. A pressure transducer in the test section wall measures Ap =
45 mm water between inside and outside. Estimate (a) the test section velocity in mi/hr;
and (b) the absolute pressure at the nose of the model.
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Patm \ Pump

) o ® :...:-‘.:

— —> Cmodd) [ p—>
/ Ap =45 mm water

Solution: (a) First apply Bernoulli from the atmosphere (1) to (2), using the known Ap:

p, —p, =45 mm H,0 =441 Pa; p, =1.225kg/m’; p, +§v§ ~ P, +§Vg

Since V, = 0 and p, =p,, we obtain V, = 28p _ \/2(441) =268 2 =60 Ans, (a)
o, 1.225 S hr

(b) Bernoulli from 1 to 3: both velocities = 0, so pnose = pa = 101350 Pa. Ans. (b)

3.167 In Fig. P3.167 the fluid is gasoline
at 20°C at a weight flux of 120 N/s.
Assuming no losses, estimate the gage
pressure at section 1.

Solution: For gasoline, p = 680 kg/rn3.
Compute the velocities from the given flow

' 3
_ W __120Ns 09 o
pg  680(9.81) S
- 0'0182=3.58 2, v, = 0'0182=9.16E
7(0.04) S 7(0.025) S
Now apply Bernoulli between 1 and 2:
p Vi p,, Vi P, (3587 o Ogage)  (9.16)’
At —tgz v+ —+gz,, ori L+ 40~ + +9.81(12)
p 2 p 2 Yo, 2 680 2

Solve for p, ~ 104,000 Pa(gage) Ans.
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3.168 In Fig. P3.168 both fluids are at
20°C. If V1 = 1.7 ft/s and losses are ne-
glected, what should the manometer reading
h ft be?

Solution: By continuity, establish V2:

V, = Vy(D,/D,)* =1.7(3/1)* =15.3 ﬁ

Now apply Bernoulli between 1 and 2 to
establish the pressure at section 2:

Mcrcury

Py +§V?+pgzl =pz+§V§+pgzz, Fig. P3.168
or: p; +(1.94/2)(1.7)* +0 = 0+(1.94/2)(15.3)* +(62.4)(10), p, =848 psf

This is gage pressure. Now the manometer reads gage pressure, so

p, —p, =848 l:—f (Prmere = Pwater 181 = (846 —62.4)h, solve for h~1.08 ft Ans.

P3.169 Extend the siphon analysis of Ex. 3.22 to account for friction in the tube, as
follows. Let the friction head loss in the tube be correlated as 5.4(Viwe)/(29), which
approximates turbulent flow in a 2-m-long tube. Calculate the exit velocity in m/s and
the volume flow rate in cm’/s. We repeat the sketch of Ex. 3.22 for convenience.

2= 60 cm

T d = lcm

water T

z2=0------ ;= —25 cm
Fig. E3.22

Solution: Write the steady flow energy equation from the water surface (1) to the exit (2):

2 2

Y Vi
ﬂ+L+zl = |02+—+zz+ hy , where h; = 5.4-ube

P9 29 P 29 29
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The tube area is constant, hence Viype = Vo. Also, p; = p2and V; = 0. Thus we obtain

2
2, -2, = 0.6m—(=0.25m) = 0.85m = V—2(1+5.4)
29

2
Solve V, = 20.81m/s7)(0.85m) 1610 Ans.
1+5.4 S
m3 cm?®
and Q = V,A, =(L. 61—) (0 Olm) _0000167—_ 127—— Ans.

S

Tube friction has reduced the flow rate by more than 60%.

3.170 If losses are neglected in Fig.
P3.170, for what water level h will the flow
begin to form vapor cavities at the throat of
the nozzle?

Solution:  Applying Bernoulli from (a) to (2)
gives Torricelli’s relation: V2 = V(2gh). Also,

V, = V,(D,/D,)* = V,(8/5)* =2.56V,

Fig. P3.170

Vapor bubbles form when p1 reaches the vapor pressure at 30°C, pvap = 4242 Pa (from
Table A.5), while p~ 996 kg/rn at 30°C (Table A.1). Apply Bernoulli between 1 and 2:
Vi V3 2 2
P +—+ng p—2+—+g or: 4242+(2.56V2) +0zlooooo+£+0
p 2 p 2 996 2 996 2

Solve for V% =34.62=2gh, or h=34.62/[2(9.81)]=1.76 m Ans.
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3.171 For the 40°C water flow in Fig.
P3.171, estimate the volume flow through
the pipe, assuming no losses; then explain
what is wrong with this seemingly innocent
questlon If the actual flow rate is Q =

40 m /h compute (a) the head loss in ft and
(b) the constriction diameter D which causes
cavitation, assuming that the throat divides
the head loss equally and that changing the

|(2)

Scm

constriction causes no additional losses. Fig. P3.171
Solution:  Apply Bernoulli between 1 and 2:
2 2
p1+V—+z p—2+v—+z or: 0+0+25~0+0+10, or: 25=1077?
2’ . ~ b} . - . .
7 28 7y 2

This is madness, what happened? The answer is that this problem cannot be free of losses.
There is a 15-m loss as the pipe-exit jet dissipates into the downstream reservoir.  Ans. (a)

(b) Examining analysis (a) shows that the head loss is 15 meters. For water at 40°C, the
vapor pressure is 7375 Pa (Table A.5), and the density is 992 kg/m (Table A.1). Now
write Bernoulli between (1) and (3), assuming a head loss of 15/2 = 7.5 m:

V? V2
P Y e, P e b 8h L where V, _Q_ 40/360(2) _ 001241
p 2 p ’ A;  (7/4)D D
Thus 201330 540 81(25) = 73725 (001421/D y +0+(9.81)(7.5)

Solve for D*~3.75E=7 m*, or D~0.0248m=~25mm Ans.

This corresponds to V3 = 23 m/s.
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3.172 The 35°C water flow of Fig.
P3.172 discharges to sea-level standard
atmosphere. Neglecting losses, for what
nozzle diameter D will cavitation begin to
occur? To avoid cavitation, should you
increase or decrease D from this critical
value?

Fig. P3.172

Solution: At 35°C the vapor pressure of
water is approximately 5600 Pa (Table A.5).
Bernoulli from the surface to point 3 gives the
Torricelli result V3 = \/(Zgh) = V2(32.2)(6) = 19.66 ft/s. We can ignore section 2 and
write Bernoulli from (1) to (3), with p1 = pvap and Az = 0:

VZ V2 V2 V2
P Vi P V2o 17 V2116 Vs
p 2 p 2 193 2 193 2

2
butalso V, =V; Db
1/12

Eliminate V, and introduce V; =19.66 ft to obtain D* =3.07E-4, D=~0.132 ft Ans.
s

To avoid cavitation, we would keep D < 0.132 ft, which will keep p1 > pvapor.
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3.173 The horizontal wye fitting in Fig.
P3.173 splits the 20°C water flow rate
equally, if Q1 = 5 ft3/s and p1 = 25 Ibf/in’
(gage) and losses are neglected, estimate
(a) p2, (b) p3, and (c) the vector force
required to keep the wye in place.

Solution: First calculate the velocities:

Fig. P3.173

1=

Q__ 30 o4ty 25 _ 5003 1 v _o86s

A, (@A612F st (A)BN2Y s S

Then apply Bernoulli from 1 to 2 and then again from 1 to 3, assuming Az = 0:

1.94

2

1.94
2

Py =P, +§(V% —V3)=25(144)+-—"[(25.46)" —(50.93) ]~ 1713 psfg  Ans. (a)

Py =D, +§(V% —V3)=25(144) + ———[(25.46)> —(28.65)*] ~ 3433 psfg  Ans. (b)

(c) to compute the support force R (see figure above), put a CV around the entire wye:
2FE =R, +p,A, —p,A,sin30°—p;A;5in50° = pQ,V,sin30°+ pQ,V;sin50° - pQ,V,
=R, +707-42-229=124+106-247, or: R, =-453Ibf (toleft) Ans. (c)
2F, =R, —p,A, c0s30°+p;A; cos 50° = pQ,V, cos30° + pQ;(—V;)cos 50°
=R, —73+193=214-89, or: R, ~+5 Ibf (up) Ans.(c)

3.174 In Fig. P3.174 the piston drives Dy=8in
water at 20°C. Neglecting losses, estimate

the exit velocity V2 ft/s. If D2 is further
constricted, what is the maximum possible = 10%f—=
value of V2?

Solution: Find p1 from a freebody of the Fig. P3.174
piston:
10.0 Ibf )8 Ibf

2F, =F+p,A —p/A,, or -p,=—— =28
Pafhi =Pt PP = a2y 2
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Now apply continuity and Bernoulli from 1 to 2:

% V2

VlAl:V2A2) or Vlzlvz; &+—lzp_a+_2
4 p 2 p 2

Introduce p, —p, and substitute for V, to obtain V3 = M’
1.94(1-1/16)

V, =5.61 f?t Ans.

If we reduce section 2 to a pinhole, V2 will drop off slowly until V1 vanishes:

Severely constricted section 2: 'V, = _2(28.65) ~5.43 ft Ans.
1.94(1-0) S

3.175 If the approach velocity is not too
high, a hump in the bottom of a water

channel causes a dip Ah in the water level, ‘ f/ :z:
which can serve as a flow measurement. hmtm e v, T2 .
If, as shown in Fig. P3.175, Ah = 10 cm | //‘ L
when the bump is 30 cm high, what is the - U S—
volume flow Q1 per unit width, assuming f

no losses? In general, is Ah proportional oo

t0 012 Fig. P3.175

Solution:  Apply continuity and Bernoulli between 1 and 2:

] 2 2gAh
Vih; =V;hy; —l+h1z—2+h2 +H, solve Viz%
2g (hi/h3)-1

We see that Ah is proportional to the square of V1 (or Q1), not the first power. For the
given numerical data, we may compute the approach velocity:

h,=2.0-03-0.1=1.6m; V,= M:lmﬂ
[(2.01.6)> - 1] s

3
whence Q, = Vih, =(1.87)(2.0) ~ 3.74 ;n—m Ans.
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3.176 In the spillway flow of Fig. P3.176,
the flow is assumed uniform and
hydrostatic at sections 1 and 2. If losses are
neglected, compute (a) V2 and (b) the force
per unit width of the water on the spillway.

Solution: For mass conservation,

5.0

(a) Now apply Bernoulli from 1 to 2:

&+—1+h1zp—2+—2+h2; or: 0+—1+5.Oz0+w+0.7
7 2g 7y 2g 2g 2g
2(9.81)(5.0-0.7) m

Solve for V7 =

. cor V=130 M v, =7.14v,2928 I Ans. (a)
[(7.14Y —1] s s

(b) To find the force on the spillway (F <), put a CV around sections 1 and 2 to obtain
_ Y2 Vi2_ . . )
2E =-F+ Ehl - Ehz =m(V,-V,), or,using the given data,

N

F= %(9790)[(5.0)2 —(0.7)*]-998[(1.30)(5.0)](9.28 — 1.30) ~ 68300 — A (b)

3.177 For the water-channel flow of
Fig. P3.177,h1 =1.5m,H=4 m, and V1 =
3 m/s. Neglecting losses and assuming
uniform flow at sections 1 and 2, find the
downstream depth h2, and show that two
realistic solutions are possible.

Solution:  Combine continuity and Bernoulli

between 1 and 2: Fig. P3.177
Vi ' V? 2
voy 309 Vi Ve L Vs G
hy hy o 2e 267 208D) 2081)
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Combine into a cubic equation: h3 —5.959 h3 +1.032 = 0. The three roots are:

h, =-0.403 m (impossible); h, =+5.93 m (subcritical);
h, =+0.432 m (supercritical) Ans.

3.178 For the water channel flow of Fig.
P3.178, h1 = 0.45 ft, H = 2.2 ft, and V1 =
16 ft/s. Neglecting losses and assuming
uniform flow at sections 1 and 2, find the
downstream depth h2. Show that two realistic
solutions are possible.

Solution: The analysis is quite similar to
Prob. 3.177 - continuity + Bernoulli:

Fig. P3.178

2 2 2 5
szvlﬁzw; £+h1=£+h2+H: Vi +0.45:m+h2
h,  h, T2 2 2322) 2622)

+2.2
Combine into a cubic equation: h; —2.225 h3 +0.805 = 0. The three roots are:

h, =—-0.540 ft (impossible); h, =+2.03 ft (subcritical);
h, =+0.735 ft (supercritical) Ans.

3.179 A cylindrical tank of diameter D

contains liquid to an initial height ho. At

time t = 0 a small stopper of diameter d is «—D —»
removed from the bottom. Using Bernoulli’s — —f-
equation with no losses, derive (a) a h(t)
differential equation for the free-surface

height h(t) during draining and (b) an _’{ Pt i
expression for the time to to drain the entire 2 v V2

tank.

Solution:  Write continuity and the unsteady Bernoulli relation from 1 to 2:

2 2 2 2
J‘é,—v ds+p—2—|-£+gz2 :&+£+gzl; Continuity: V, :Vlﬁ:V1 (2)
Ot p 2 p 2 A,
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The integral term J. i”_\tf ds~ % h is very small and will be neglected, and p1 = p2.. Then
12
V, = {ihl} , where o = (D/d)4; but also V, = —%, separate and integrate:

h 12 t 12 7P 4
J- % = —[ﬁ} I dt, or: h= hgz —{L} t|, a= (Bj Ans. (a)
: a—1 2(a-1) d

the tank 1s empty when [| = 0 in (a) above, or tfinal = |2(a — 1)g/ho]~"“. ns.
(b) th ki hen [] =0 in (a) ab [2( 1)g/h ]1/2 Ans. (b)

3.180 The large tank of incompressible | o |
liquid in Fig. P3.180 is at rest when, at t = 0, ()
the valve is opened to the atmosphere.

Assuming h =~ constant (negligible velocities

h = constant

and accelerations in the tank), use the /D Valve
unsteady frictionless Bernoulli equation to 40 JX}—>
derive and solve a differential equation for } 0 ; (2)
V(1) in the pipe. Fig. P3.180
Solution:  Write unsteady Bernoulli from 1 to 2:
2 2 2
I 0;,—\( dS+%+gZ2 z%+gzl, where p, =p,, V, =0, z, =0, and z, =h =const
1

The integral approximately equals (ii—\t/L, so the diff. eqn. is 2L(11—\t/ +V? =2gh

This first-order ordinary differential equation has an exact solution for V=0att=0:

3.181 Modify Prob. 3.180 as follows. Let the top of the tank be enclosed and under
constant gage pressure Po. Repeat the analysis to find V(1) in the pipe.
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Solution: The analysis is the same as Prob. 3.180, except that we now have a (constant)
surface-pressure term at point 1 which contributes to Vfinal:

2 2 2 2
Ié)—V ds+ﬁ+gzz zp_0+&+gzl :d_VL+V_:p_0
Vo 2 2 & 2 p

The solution is: V=Vﬁna|tanh(%j, where Vi, = 2&+ 2gh  Ans.
\ »

+gh, with V=0att=0.

3.182 The incompressible-flow form of Bernoulli’s relation, Eq. (3.77), is accurate only
for Mach numbers less than about 0.3. At higher speeds, variable density must be accounted
for. The most common assumption for compressible fluids is isentropic flow of an ideal gas,
orp= Cpk, where k = cp/cv. Substitute this relation into Eq. (3.75), integrate, and eliminate
the constant C. Compare your compressible result with Eq. (3.77) and comment.

Solution: We are to integrate the differential Bernoulli relation with variable density:

p= Cpk, so dp= kak_1 dp, k=c,lc,

Substitute this into the Bernoulli relation:

k-1
@+VdV+gdZ=—ka dp

P P

+VdV+gdz=0

Integrate: .[ kCp*2dp +J. VdVv+ J. gdz= I 0 = constant

The first integral equals kak_l/(k — 1) =kp/[p(k — 1)] from the isentropic relation. Thus
the compressible isentropic Bernoulli relation can be written in the form
V2

kp +——+gz=constant Ans.
k-Dp 2

It looks quite different from the incompressible relation, which only has “p/p.” It becomes
more clear when we make the ideal-gas substitution p/p = RT and cp = kR/(k — 1). Then we
obtain the equivalent of the adiabatic, no-shaft-work energy equation:

VZ
Cp T +——+gz=constant Ans.
2
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3.183 The pump in Fig. P3.183 draws _
gasoline at 20°C from a reservoir. Pumps @—>
are in big trouble if the liquid vaporizes

(cavitates) before it enters the pump.
(a) Neglecting losses and assuming a flow

rate of 65 gal/min, find the limitations on z Pam = 100 kPa
(X, Y, ) for avoiding cavitation. (b) If pipe-
friction losses are included, what additional SZ.
limitations might be important? —
D=3cm | y
Solution: (a) From Table A.3, p =680 kg/
m° and py = 5.51E+4.
22_21:y+zzpl_p2:(pa+pgy)_pv \
yely PrY |
(100,000 — 55,100) —
(680)(9.81) z=673m DR
Fig. P3.183

Thus make length z appreciably less than 6.73 (25% less), orz<5m. Ans. (a)
(b) Total pipe length (x + y + z) restricted by friction losses. Ans. (b)

3.184 For the system of Prob. 3.183, let the pump exhaust gasoline at 65 gal/min to the
atmosphere through a 3-cm-diameter opening, with no cavitation, when X = 3 m, y =
2.5 m, and z = 2 m. If the friction head loss is hloss = 3.7(V2/2g), where V is the average
velocity in the pipe, estimate the horsepower required to be delivered by the pump.

Solution:  Since power is a function of hp, Bernoulli is required. Thus calculate the velocity,

3
(65 gal/min)(6.3083E—5 m/s )
Q gal/min
szz = =5.8 m/S
~(0.03°
4( )
The pump head may then be found,
2
Py ) i
—+z,=—=+2,+h; —h +—
y oy T P g

100,000+ (680)(9.8D(2.5) _, o _ 100,000 37(58) (58

(680)(9.81) T (680)(9.81) 209.81) " 2(9.81)
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hp =10.05m

P = yQh, = (680)(9.81)(0.0041)(10.05) P=275W=037hp Ans.

3.185 Water at 20°C flows through a
vertical tapered pipe at 163 m3/h. The
entrance diameter is 12 cm, and the pipe
diameter reduces by 3 mm for every 2 meter —— .
rise in elevation. For frictionless flow, if the L =5p-r- |
entrance pressure is 400 kPa, at what

elevation will the fluid pressure be 100 kPa?

Solution: Bernouilli’s relation applies,

2 2
b, +—Q1 :&+zz+ 2

y 2T 7 20A;
Where,
d, =d; -0.0015(z, - z))

(1)

2)

Also, Q1 = Q2 = Q = (163 m/h)(h/3600s) = 0.0453 m’/s; ¥=9790; z1 = 0.0; p1 = 400,000;
and p2 = 100,000. Using EES software to solve equations (1) and (2) simultaneously, the
final height is found to be z = 27.2 m. The pipe diameter at this elevation is d2 = 0.079 m =

7.9 cm.
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FUNDAMENTALS OF ENGINEERING EXAM PROBLEMS: Answers

FE3.1 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If
the flow rate is 160 gal/min, what is the average velocity at section 1?

(@)26mis (b)0.81m/s (c)93m/s (d)23m/s (e) 1.62m/s

FE3.2 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If
the flow rate is 160 gal/min and friction is neglected, what is the gage pressure at section 1?
(a) 1.4kPa (b)32kPa (c)43kPa (d)22KkPa (e) 123 kPa

FE3.3 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If
the exit velocity is V2 = 8 m/s and friction is neglected, what is the axial flange force
required to keep the nozzle attached to pipe 1?

(@1IN (b)36N (¢)83N (d)123N (e) 110N
FE3.4 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If
the manometer fluid has a specific gravity of 1.6 and h = 66 cm, with friction neglected,

what is the average velocity at section 27
(a)4.55m/s (b)2.4m/s (c)2.8mis (d)5.55m/s (e)3.4m/s

FE3.5 A jet of water 3 cm in diameter strikes normal to a plate as in Fig. FE3.5. If the
force required to hold the plate is 23 N, what is the jet velocity?
(a)2.85m/s (b)5.7m/s (¢)8.1m/s (d)4.0m/s (e)23 m/s

FE3.6 A fireboat pump delivers water to a vertical nozzle with a 3:1 diameter ratio, as
in Fig. FE3.6. If friction is neglected and the flow rate is 500 gal/min, how high will the
outlet water jet rise?

@)20m (b)9.8m (c)32m (d)64m (e)98m
FE3.7 A fireboat pump delivers water to a vertical nozzle with a 3:1 diameter ratio, as
in Fig. FE3.6. If friction is neglected and the pump increases the pressure at section 1 to
51 kPa (gage), what will be the resulting flow rate?

(a) 187 gal/min (b) 199 gal/min (c) 214 gal/min (d) 359 gal/min (e) 141 gal/min
FE3.8 A fireboat pump delivers water to a vertical nozzle with a 3:1 diameter ratio, as
in Fig. FE3.6. If duct and nozzle friction are neglected and the pump provides 12.3 feet of
head to the flow, what will be the outlet flow rate?

(a) 85 gal/min (b) 120 gal/min (c) 154 gal/min (d) 217 gal/min (¢) 285 gal/min
FE3.9 Water flowing in a smooth 6-cm-diameter pipe enters a venturi contraction with
a throat diameter of 3 cm. Upstream pressure is 120 kPa. If cavitation occurs in the throat
at a flow rate of 155 gal/min, what is the estimated fluid vapor pressure, assuming ideal

frictionless flow?
(a)6kPa (b)12kPa (c)24kPa (d)31KkPa (¢)52kPa

FE3.10 Water flowing in a smooth 6-cm-diameter pipe enters a venturi contraction with
a throat diameter of 4 cm. Upstream pressure is 120 kPa. If the pressure in the throat is
50 kPa, what is the flow rate, assuming ideal frictionless flow?

(a) 7.5 gal/min  (b) 236 gal/min (c) 263 gal/min (d) 745 gal/min (e) 1053 gal/min
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COMPREHENSIVE PROBLEMS

C3.1 In a certain industrial process, oil of
density p flows through the inclined pipe in
the figure. A U-tube manometer with fluid
density pm, measures the pressure difference
between points 1 and 2, as shown. The flow
is steady, so that fluids in the U-tube are
stationary. (a) Find an analytic expression
for p1 — p2 in terms of system parameters.
(b) Discuss the conditions on h necessary for
there to be no flow in the pipe. (c) What
about flow up, from 1 to 2? (d) What about
flow down, from 2 to 1?

Solution: (a) Start at 1 and work your way around the U-tube to point 2:
P, + 098+ pgh — pngh— pgs — pgAz = p,,
or: p,—p,=pgAz+(p,—p)gh where Az=z,—-z, Ans.(a)

(b) If there is no flow, the pressure is entirely hydrostatic, therefore Ap = pg and, since
pm # p, it follows from Ans. (a) above that h=0 Ans. (b)

(c) If h is positive (as in the figure above), pl is greater than it would be for no flow,
because of head losses in the pipe. Thus, if h > 0, flow is up from 1to 2. Ans. (c)

(d) If h is negative, p1 is less than it would be for no flow, because the head losses act
against hydrostatics. Thus, if h <0, flow is down from 2to 1. Ans. (d)

Note that h is a direct measure of flow, regardless of the angle & of the pipe.

C3.2 A rigid tank of volume v = 1.0 m>
is initially filled with air at 20°C and po =
100 kPa. At time t = 0, a vacuum pump is
turned on and evacuates air at a constant
volume flow rate Q = 80 L/min (regardless
of the pressure). Assume an ideal gas and an
isothermal process. (a) Set up a differential
equation for this flow. (b) Solve this equation
for t as a function of (v, Q, p, po). (¢) Com-
pute the time in minutes to pump the tank
down to p = 20 kPa. [Hint: Your answer
should lie between 15 and 25 minutes. ]
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Solution: The control volume encloses the tank, as shown. The CV mass flow relation

becomes
%(J. pdu) + 2. Mgy, —Z%: 0

Assuming that p is constant throughout the tank, the integral equals pv, and we obtain

Ucij—p'i‘pQ:O, or: Jd_p:_gj dt, yielding h{ﬁj:_g
t P v po 19

Where po is the initial density. But, for an isothermal ideal gas, p/po = p/po. Thus the
time required to pump the tank down to pressure p is given by

t= —gln[lj Ans. (a, b)

o

(c) For our particular numbers, noting Q = 80 L/min = 0.080 m> /min, the time to pump a

1 m? tank down from 100 to 20 kPa is

1.0 m* [ 20
In

t=—
0.08 m’/min  \100

j =20.1min Ans. (¢)

C3.3 Suppose the same steady water jet

as in Prob. 3.40 (jet velocity 8 m/s and jet
diameter 10 cm) impinges instead on a cup
cavity as shown in the figure. The water is
turned 180° and exits, due to friction, at
lower velocity, Ve = 4 m/s. (Looking from "
the left, the exit jet is a circular annulus of
outer radius R and thickness h, flowing
toward the viewer.) The cup has a radius of
curvature of 25 cm. Find (a) the thickness h of

the exit jet, and (b) the force F required to
hold the cupped object in place. (c) Compare

part (b) to Prob. 3.40, where F = 500 N, and give a physical explanation as to why F has
changed.

Fig. C3.3

Solution: For a steady-flow control volume enclosing the block and cutting through the
jets, we obtain 2Qin = 2Qout, or:

T N2 2 2 /2 V1D12
VJZDJ :Veﬂ'[R —(R—h) ], or: h=R-,|R —77 Ans. (a)
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For our particular numbers,

h=0.25- \/(0.25)2 —%% =0.25-0.2398=0.0102 m=1.02cm Ans. (a)
(b) Use the momentum relation, assuming no net pressure force except for F:
S F = —F =My (-V,)~ M (V;), or: F= ij%DJZ.(Vj +V,) Ans. (b)
For our particular numbers:
F= 998(8)%(0.1)2 (84+4)=752N totheleft Ans. (b)

(c) The answer to Prob. 3.40 was 502 N. We get 50% more because we turned through
180°, not 90°.  Ans. (¢)

C3.4 The air flow beneath an air hockey

puck is very complex, especially since the air ‘ YYVYVVYY
jets from the table impinge on the puck at = i
various points asymmetrically. A reasonable T T T T T Tpunder

approximation is that, at any given time, the
gage pressure on the bottom of the puck is halfway between zero (atmospheric) and the
stagnation pressure of the impinging jets, po = 1/2 pVJet (a) Find the velocity Vjet required to
support a puck of weight W and diameter d, with air density p as a parameter. (b) For W =
0.05 Ibf and d = 2.5 inches, estimate the required jet velocity in ft/s.

Solution: (a) The puck has atmospheric pressure on the top and slightly higher on the
bottom:

1 Yo, 4w
(Punder — Pa)Apuex =W = 2(0 Zvjetj J d?, Solve for Vi = y /; Ans. (a)

For our particular numbers W = 0.05 Ibf and d = 2.5 inches, we assume sea-level air,
p=0.00237 slug/ft and obtain

vo__ 4 0.05 Ibf
U (2.5/12 ft) \| 2(0.00237 slug/ft’)

=50 ft/s Ans. (b)
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C3.5 Neglecting friction sometimes leads
to odd results. You are asked to analyze and
discuss the following example in Fig. C3.5.
A fan blows air vertically through a duct
from section 1 to section 2, as shown.
Assume constant air density p. Neglecting
frictional losses, find a relation between the
required fan head hp and the flow rate and
the elevation change. Then explain what
may be an unexpected result.

Solution: Neglecting frictional losses, hf =
0, and Bernoulli becomes,

2 2

&+V—1+21:&+22+V—2—hp
P9 29 ot 29

2 _ 2
ﬁ+v_1+21:pz+pg(zl 22)+V—2+22—hp
P9 29 pels) 2
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\ T r .............. Z)
A"
Atmosphere

Since the fan draws from and exhausts to atmosphere, V1 = V2 = 0. Solving for hp,

h,=pg(z —2,)+pgs,—pgs =0 Ans.

Without friction, and with V1 = V2, the energy equation predicts that Ap = 0! Because the
air has insignificant weight, as compared to a heavier fluid such as water, the power input

required to lift the air is also negligible.




