
Chapter 3 • Integral Relations 
for a Control Volume 

3.1 Discuss Newton’s second law (the linear momentum relation) in these three forms: 

( )
system

d dm m d
dt dt

ρ υ
⎛ ⎞
⎜ ⎟∑ = ∑ = ∑ =
⎜ ⎟
⎝ ⎠

∫F a F V F V  

Solution: These questions are just to get the students thinking about the basic laws of 
mechanics. They are valid and equivalent for constant-mass systems, and we can make 
use of all of them in certain fluids problems, e.g. the #1 form for small elements, #2 form 
for rocket propulsion, but the #3 form is control-volume related and thus the most 
popular in this chapter. 

 

3.2 Consider the angular-momentum relation in the form 

( )O
system

d d
dt

ρ υ
⎡ ⎤

∑ = ×⎢ ⎥
⎢ ⎥⎣ ⎦

∫M r V  

What does r mean in this relation? Is this relation valid in both solid and fluid 
mechanics? Is it related to the linear-momentum equation (Prob. 3.1)? In what manner? 

Solution: These questions are just to get the students thinking about angular 
momentum versus linear momentum. One might forget that r is the position vector from 
the moment-center O to the elements ρ  dυ where momentum is being summed. Perhaps 
rO is a better notation. 

 

3.3 For steady laminar flow through a long tube (see Prob. 1.12), the axial velocity 
distribution is given by u = C(R2 − r2), where R is the tube outer radius and C is a 
constant. Integrate u(r) to find the total volume flow Q through the tube. 

Solution: The area element for this axisymmetric flow is dA = 2π r dr. From Eq. (3.7), 

2 2

0

 ( )2 .
R

Q u dA C R r r dr Ansπ= = − =∫ ∫
π 4CR
2
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P3.4 A fire hose has a 5-inch inside diameter and is flowing at 600 gal/min.  The flow 
exits through a nozzle contraction at a diameter Dn.   For steady flow, what should Dn be, 
in inches, to create an exit velocity of 25 m/s? 
 
Solution:   This is a straightforward one-dimensional steady-flow continuity problem.  
Some unit conversions are needed: 
           600 gal/min = 1.337 ft3/s;   25 m/s  =   82.02 ft/s   ;   5 inches = 0.4167 ft 
The hose diameter (5 in) would establish a hose average velocity of 9.8 ft/s, but we don’t 
really need this.  Go directly to the volume flow: 

 
 

3.5 A theory proposed by S. I. Pai in 1953 gives the following velocity values u(r) for 
turbulent (high-Reynolds number) airflow in a 4-cm-diameter tube: 
 

r, cm 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 
u, m/s 6.00 5.97 5.88 5.72 5.51 5.23 4.89 4.43 0.00 

 
Comment on these data vis-a-vis laminar flow, Prob. 3.3. Estimate, as best you can, the 
total volume flow Q through the tube, in m3/s. 

Solution: The data can be plotted in the figure below. 
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As seen in the figure, the flat (turbulent) velocities do not resemble the parabolic laminar-
flow profile of Prob. 3.3. (The discontinuity at r = 1.75 cm is an artifact—we need more 
data for 1.75 < r < 2.0 cm.) The volume flow, Q = ∫ u(2π r)dr, can be estimated by a 
numerical quadrature formula such as Simpson’s rule. Here there are nine data points: 

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 92 ( 4 2 4 2 4 2 4 )
3

, .

rQ r u r u r u r u r u r u r u r u r u

For the given data Q Ans

π Δ⎛ ⎞= + + + + + + + + ⎜ ⎟
⎝ ⎠

≈ 30.0059 m /s
 

 

3.6 When a gravity-driven liquid jet 
issues from a slot in a tank, as in Fig. P3.6, 
an approximation for the exit velocity 
distribution is 2 ( ),u g h z≈ −  where h is 
the depth of the jet centerline. Near the 
slot, the jet is horizontal, two-dimensional, 
and of thickness 2L, as shown. Find a 
general expression for the total volume 
flow Q issuing from the slot; then take the 
limit of your result if .L h  

 
Fig. P3.6 

Solution: Let the slot width be b into the paper. Then the volume flow from Eq. (3.7) is 
+L

1/2

L

Q udA [2g(h z)] bdz .Ans
−

= = − = √∫ ∫ 3/2 3/22b (2g)[(h L) (h L) ]
3

+ − −  

In the limit of L h,  this formula reduces to .AnsQ (2Lb) (2gh)≈  
_______________________________________________________________________ 

P3.7 A spherical tank, of diameter 35 cm, is leaking air through a 5-mm-diameter hole 
in its side.  The air exits the hole at 360 m/s and a density of 2.5 kg/m3.  Assuming 
uniform mixing, (a) find a formula for the rate of change of average density in the tank; 
and (b) calculate a numerical value for (dρ/dt) in the tank for the given data. 
 
Solution:   If the control volume surrounds the tank and cuts through the exit flow, 

 
(b)  For the given data, we calculate 
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3.8 Three pipes steadily deliver water at 
20°C to a large exit pipe in Fig. P3.8. The 
velocity V2 = 5 m/s, and the exit flow rate 
Q4 = 120 m3/h. Find (a) V1; (b) V3; and 
(c) V4 if it is known that increasing Q3 by 
20% would increase Q4 by 10%. 

Solution: (a) For steady flow we have  
Q1 + Q2 + Q3 = Q4, or 

 
Fig. P3.8 

1 1 2 2 3 3 4 4V A V A V A V A+ + =  (1) 

Since 0.2Q3 = 0.1Q4, and Q4 = (120 m3/h)(h/3600 s) = 0.0333 m3/s, 

3
4

3
23

(0.0333 m /s)  (b)
2 (0.06 )

2

QV Ans.
A π= = = 5.89 m/s  

Substituting into (1), 

2 2 2
1 (0.04 ) (5) (0.05 ) (5.89) (0.06 ) 0.0333  (a)

4 4 4
V Ans.π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
1V 5.45 m/s=  

From mass conservation, Q4 = V4A4 

3 2
4(0.0333 m /s) V ( )(0.06 )/4  (c)Ans.π= 4V 5.24 m/s=  
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3.9 A laboratory test tank contains 
seawater of salinity S and density ρ. Water 
enters the tank at conditions (S1, ρ1, A1, 
V1) and is assumed to mix immediately in 
the tank. Tank water leaves through an 
outlet A2 at velocity V2. If salt is a 
“conservative” property (neither created 
nor destroyed), use the Reynolds transport 
theorem to find an expression for the rate 
of change of salt mass Msalt within the 
tank. 

 

 

Solution: By definition, salinity S = ρsalt/ρ. Since salt is a “conservative” substance 
(not consumed or created in this problem), the appropriate control volume relation is 

2 1
salt

system s 1
CV

dM d d Sm S m 0
dt dt

ρ υ
⎛ ⎞

= + − =⎜ ⎟⎜ ⎟
⎝ ⎠

| ∫  

or: Ans. s
CV 1 1 1 1 2 2

dM S A V S A Vdt = −| ρ ρ  

 

3.10 Water flowing through an 8-cm-diameter pipe enters a porous section, as in  
Fig. P3.10, which allows a uniform radial velocity vw through the wall surfaces for a 
distance of 1.2 m. If the entrance average velocity V1 is 12 m/s, find the exit velocity 
V2 if (a) vw = 15 cm/s out of the pipe walls; (b) vw = 10 cm/s into the pipe. (c) What 
value of vw will make V2 = 9 m/s? 

 
Fig. P3.10 

Solution: (a) For a suction velocity of vw = 0.15 m/s, and a cylindrical suction surface area, 
2

wA 2 (0.04)(1.2) 0.3016 mπ= =  

1 w 2Q Q Q= +  
2 2

2(12)( )(0.08 )/4 (0.15)(0.3016) V ( )(0.08 )/4  (a)Ans.π π= + 2V 3 m/s=  

(b) For a smaller wall velocity, vw = 0.10 m/s, 
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2 2
2(12)( )(0.08 )/4 (0.10)(0.3016) V ( )(0.08 )/4  (b)Ans.π π= + 2V 6 m/s=  

(c) Setting the outflow V2 to 9 m/s, the wall suction velocity is, 
2 2

w(12)( )(0.08 )/4 (v )(0.3016) (9)( )(0.08 )/4  π π= + wv 0.05 m/s 5 cm/s= = out  
 

3.11 A room contains dust at uniform concentration C = ρdust/ρ. It is to be cleaned by 
introducing fresh air at an inlet section Ai, Vi and exhausting the room air through an 
outlet section. Find an expression for the rate of change of dust mass in the room. 

Solution: This problem is very similar to Prob. 3.9 on the previous page, except that 
here Ci = 0 (dustfree air). Refer to the figure in Prob. 3.9. The dust mass relation is 

dust
system dust out out in in

CV

dM d0 d C m C m ,
dt dt

ρ υ
⎛ ⎞

= = + −⎜ ⎟⎜ ⎟
⎝ ⎠

| ∫  

dust
in CV

dMor, since C 0, we obtain .
dt

Ansρ= =| − o oC A V  

To complete the analysis, we would need to make an overall fluid mass balance. 
 

3.12 The pipe flow in Fig. P3.12 fills a cylindrical tank as shown. At time t = 0, the water 
depth in the tank is 30 cm. Estimate the time required to fill the remainder of the tank. 

 
Fig. P3.12 

Solution: For a control volume enclosing the tank and the portion of the pipe below the tank, 

0out in
d dv m m
dt

ρ⎡ ⎤ + − =⎣ ⎦∫  

2 ( ) ( ) 0out in
dhR AV AV
dt

ρπ ρ ρ+ − =  

 



 Solutions Manual • Fluid Mechanics, Fifth Edition 182 

 

2
2

4 998 (0.12 )(2.5 1.9) 0.0153 / ,
4998( )(0.75 )

0.7/0.0153

dh m s
dt

Ans.t

π
π

⎡ ⎤⎛ ⎞= − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Δ = =  46 s
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P3.13 The cylindrical container in Fig. P3.13 
is 20 cm in diameter and has a conical contraction 
at the bottom with an exit hole 3 cm in diameter. 
The tank contains fresh water at standard sea-level 
conditions.   If the water surface is falling at the 
nearly steady rate  dh/dt ≈ −0.072 m/s, estimate the 
average velocity  V  from the bottom exit. 
 
 
 
 
 
 
 
 
 
Solution:   We could simply note that dh/dt is the same as the water velocity at the surface 
and use Q1 = Q2, or, more instructive, approach it as a control volume problem.  Let the 
control volume encompass the entire container.  Then the mass relation is 

 

3.14 The open tank in the figure contains 
water at 20°C. For incompressible flow, 
(a) derive an analytic expression for dh/dt 
in terms of (Q1, Q2, Q3). (b) If h is 
constant, determine V2 for the given data if 
V1 = 3 m/s and Q3 = 0.01 m3/s.  

Solution: For a control volume enclosing the tank, 
2

2 1 3 2 1 3( ) ( ),
4CV

d d dhd Q Q Q Q Q Q
dt dt

πρ υ ρ ρ ρ
⎛ ⎞

+ − − = + − −⎜ ⎟⎜ ⎟
⎝ ⎠

∫  
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If h is constant, then 

2 2
2 1 3 20.01 (0.05) (3.0) 0.0159 (0.07) ,

4 4
Q Q Q Vπ π

= + = + = =  

2 . (b)solve AnsV 4.13 m/s=  
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3.15 Water flows steadily through the 
round pipe in the figure. The entrance 
velocity is Vo. The exit velocity 
approximates turbulent flow,    u =  
umax(1 − r/R)1/7. Determine the ratio 
Uo/umax for this incompressible flow. 

Solution: Inlet and outlet flow must balance: 
 

1/7
2 2

1 2
0 0

49, 2 1 2 ,
60

R R

o max o max
r:Q Q or U r dr u r dr or: U R u R
R

ππ π π⎛ ⎞= = − =⎜ ⎟
⎝ ⎠∫ ∫  

Cancel and rearrange for this assumed incompressible pipe flow: 

max
.oU Ans

u
=

49
60

 

 

3.16 An incompressible fluid flows past 
an impermeable flat plate, as in Fig. P3.16, 
with a uniform inlet profile u = Uo and a 
cubic polynomial exit profile 

3

o
3 where 

2
yu U η η η
δ

⎛ ⎞−
≈ =⎜ ⎟

⎝ ⎠
  

Fig. P3.16 

Compute the volume flow Q across the top surface of the control volume. 

Solution: For the given control volume and incompressible flow, we obtain 
3

top right left o o3
0 0

30 Q Q Q Q U  b dy U bdy
2 2

y yδ δ

δ δ
⎛ ⎞

= + − = + − −⎜ ⎟⎝ ⎠∫ ∫  

o o
5Q U b U b , solve for .
8

Ansδ δ= + − o
3Q U b
8

= δ  

 

3.17 Incompressible steady flow in the 
inlet between parallel plates in Fig. P3.17 is 
uniform, u = Uo = 8 cm/s, while downstream 
the flow develops into the parabolic laminar 
profile u = az(zo − z), where a is a constant. 
If zo = 4 cm and the fluid is SAE 30 oil at 
20°C, what is the value of umax in cm/s? 

 
Fig. P3.17 
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Solution: Let b be the plate width into the paper. Let the control volume enclose the 
inlet and outlet. The walls are solid, so no flow through the wall. For incompressible flow, 

o oz z
3 2

out in o o o o o o o
0 0

0 Q Q az(z z)bdz U bdz abz /6 U bz 0, or: a 6U /z= − = − − = − = =∫ ∫  

Thus continuity forces the constant a to have a particular value. Meanwhile, a is also 
related to the maximum velocity, which occurs at the center of the parabolic profile: 

2 2 2o o
o max o o o o o

z zAt z z /2: u u a z az /4 (6U /z )(z /4)
2 2

⎛ ⎞⎛ ⎞= = = − = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

max o
3 3or: u U (8 cm/s) .
2 2

Ans= = =
cm12
s

 

Note that the result is independent of zo or of the particular fluid, which is SAE 30 oil. 
 

3.18 An incompressible fluid flows 
steadily through the rectangular duct in the 
figure. The exit velocity profile is given by 
u ≈ umax(1 – y2/b2)(1 – z2/h2). (a) Does 
this profile satisfy the correct boundary 
conditions for viscous fluid flow? (b) Find an 
analytical expression for the volume flow Q 
at the exit. (c) If the inlet flow is 300 
ft3/min, estimate umax in m/s.  

Solution: (a) The fluid should not slip at any of the duct surfaces, which are defined by 
y = ±b and z = ±h. From our formula, we see u ≡ 0 at all duct surfaces, OK. Ans. (a) 
(b) The exit volume flow Q is defined by the integral of u over the exit plane area: 

2 2

max max2 2
4 41 1   
3 3

h b

h b

y z b hQ u dA u dy dz u
b h

+ +

− −

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = − − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

∫ ∫ ∫ ∫  

. ( )bAns= max16bhu
9

 

(c) Given Q = 300 ft3/min = 0.1416 m3/s and b = h = 10 cm, the maximum exit velocity is 
3

max
m 160.1416 (0.1 m)(0.1 m) , . (c)
s 9

Q u solve for Ans= = maxu 7.96 m/s=  
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3.19 Water from a storm drain flows over an outfall onto a porous bed which absorbs the 
water at a uniform vertical velocity of 8 mm/s, as shown in Fig. P3.19. The system is 5 m 
deep into the paper. Find the length L of bed which will completely absorb the storm water. 

 
Fig. P3.19 

Solution: For the bed to completely absorb the water, the flow rate over the outfall 
must equal that into the porous bed, 

1 PBQ Q ; or (2 m/s)(0.2 m)(5 m) (0.008 m/s)(5 m)L  Ans.= = L 50 m≈  
 

3.20 Oil (SG-0.91) enters the thrust 
bearing at 250 N/hr and exits radially 
through the narrow clearance between 
thrust plates. Compute (a) the outlet 
volume flow in mL/s, and (b) the average 
outlet velocity in cm/s. 

Solution: The specific weight of the oil is 
(0.91)(9790) = 8909 N/m3. Then 

 
Fig. P3.20 

3
6

2 1 3
250/3600 N/s mQ Q 7.8 10   . (a)

s8909 N/m
Ans−= = = × =

mL7.8
s

 

6
2 2 2But also Q V (0.1 m)(0.002 m) 7.8 10 , solve for V  . (b)Ansπ −= = × =

cm1.24
s

 
________________________________________________________________________ 
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P3.21 Modify Prob. 3.13 as follows.  Let the plate be L = 125δ  long from inlet to exit.  

The plate is porous and is drawing in fluid from the boundary layer at a uniform suction 

velocity vw.  (a)  Calculate Q across the top if vw = 0.002Uo.   (b)  Find the ratio vw /Uo  

for which Q across the top is zero. 

 

Solution:  The situation is now as shown 

at right.  The inlet and outlet flows were 

calculated in Prob. P3.13.  The wall flow 

is the suction velocity times the wall area: 

     Qwall   =   vw L b    =    vw (125δ) b 

The total volume flow through the control volume is zero, solve for Q: 

 

 (a)  If vw =  0.002Uo, compute Q  =   (1/8) δbUo        Ans.(a) 

 (b)   Q  =  0  when  vw =  0.003Uo.                     Ans.(b) 

 

3.22 The converging-diverging nozzle 
shown in Fig. P3.22 expands and accelerates 
dry air to supersonic speeds at the exit, where 
p2 = 8 kPa and T2 = 240 K. At the throat,  
p1 = 284 kPa, T1 = 665 K, and V1 = 517 m/s. 
For steady compressible flow of an ideal gas, 
estimate (a) the mass flow in kg/h, (b) the 
velocity V2, and (c) the Mach number Ma2. 

 
Fig. P3.22 

Solution: The mass flow is given by the throat conditions: 

2
1 1 1 3

284000 kg mm A V (0.01 m) 517  . (a)
(287)(665) 4 sm

Ansπρ ⎡ ⎤ ⎛ ⎞= = =⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

kg0.0604
s

 

For steady flow, this must equal the mass flow at the exit: 

Q 

5Uobδ/8
Uobδ

Qwall

control volume 

L  =  125 δ 

δδδδδ bvbUbvbUbUQ wowoo 125
8
3125

8
5

−=−−=
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2
2 2 2 2 2

kg 80000.0604 A V (0.025) V , or V  . (b)
s 287(240) 4

Ansπρ ⎡ ⎤= = ≈⎢ ⎥⎣ ⎦

m1060
s

 

Recall from Eq. (1.39) that the speed of sound of an ideal gas = (kRT)1/2. Then 

2 2 1/2
1060Ma = V /a =

[1.4(287)(240)]
Mach number at exit: . (c)Ans≈ 3.41  

 

3.23 The hypodermic needle in the figure contains a liquid (SG = 1.05). If the serum is 
to be injected steadily at 6 cm3/s, how fast should the plunger be advanced (a) if leakage 
in the plunger clearance is neglected; and (b) if leakage is 10 percent of the needle flow? 
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Solution: (a) For incompressible flow, the volume flow is the same at piston and exit: 
3 3

2
1 1 16 0.366 (0.75 ) ,  . (a)

4 piston
cm inQ A V in V solve V Ans

s s
π

= = = = =
in0.83
s

 

(b) If there is 10% leakage, the piston must deliver both needle flow and leakage: 
3 3

2
1 1 16 0.1(6) 6.6 0.403 (0.75) ,

4needle clearance
cm inA V Q Q V

s s
π

= + = + = = =  

1 . (b)V Ans=
in0.91
s

 

 

3.24 Water enters the bottom of the cone 
in the figure at a uniformly increasing 
average velocity V = Kt. If d is very small, 
derive an analytic formula for the water 
surface rise h(t), assuming h = 0 at t = 0. 

Solution: For a control volume around 
the cone, the mass relation becomes 

 

( ) 2 20 ( tan )
3 4in

d dd m h h d Kt
dt dt

π πρ υ ρ θ ρ⎡ ⎤− = = −⎢ ⎥⎣ ⎦∫  

3 2 2 2: tan
3 8

Integrate h d Ktπ πρ θ ρ=  

 .Solve for Ans⎡ ⎤
⎢ ⎥⎣ ⎦

1/3
2 2 23h(t) Kt d cot

8
θ=  

 

3.25 As will be discussed in Chaps. 7 and 8, the flow of a stream Uo past a blunt flat 
plate creates a broad low-velocity wake behind the plate. A simple model is given in  
Fig. P3.25, with only half of the flow shown due to symmetry. The velocity profile 
behind the plate is idealized as “dead air” (near-zero velocity) behind the plate, plus a higher 



 Chapter 3 • Integral Relations for a Control Volume  191

velocity, decaying vertically above the wake according to the variation u ≈ Uo + ΔUe−z/L, where 
L is the plate height and z = 0 is the top of the wake. Find ΔU as a function of stream speed Uo. 

 
Fig. P3.25 

Solution: For a control volume enclosing the upper half of the plate and the section 
where the exponential profile applies, extending upward to a large distance H such that 
exp(–H/L) ≈ 0, we must have inlet and outlet volume flows the same: 

H H
z/L

in o out o o o
L/2 0

LQ U dz Q (U U e )dz, or: U H U H UL
2

−

−

⎛ ⎞= = = + Δ + = + Δ⎜ ⎟
⎝ ⎠∫ ∫  

oCancel U H and solve for U .AnsΔ ≈ o
1 U
2

 

 

3.26 A thin layer of liquid, draining from 
an inclined plane, as in the figure, will have 
a laminar velocity profile u = Uo(2y/h − y2/h2), 
where Uo is the surface velocity. If the 
plane has width b into the paper, (a) deter-
mine the volume rate of flow of the film. 
(b) Suppose that h = 0.5 in and the flow 
rate per foot of channel width is 1.25 gal/min. 
Estimate Uo in ft/s.  

Solution: (a) The total volume flow is computed by integration over the flow area: 
2

2
0

2 . (a)
h

n o
y yQ V dA U b dy Ans

h h
⎛ ⎞

= = − =⎜ ⎟
⎝ ⎠

∫ ∫ o
2 U bh
3

 

(b) Evaluate the above expression for the given data: 
3 2 2 0.51.25 0.002785 (1.0 )  ,

min 3 3 12o o
gal ftQ U bh U ft ft

s
⎛ ⎞= = = = ⎜ ⎟
⎝ ⎠

 

 . (b)osolve for U Ans=
ft0.10
s
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P3.27 Consider a highly pressurized air tank at conditions (po, ρo, To) and volume υo.  In 
Chap. 9 we will learn that, if the tank is allowed to exhaust to the atmosphere through a 
well-designed converging nozzle of exit area A, the outgoing mass flow rate will be 
 

This rate persists as long as  po  is at least twice as large as the atmospheric pressure.   
Assuming constant To  and an ideal gas, (a) derive a formula for the change of density 
ρo(t) within the tank.  (b)  Analyze the time Δt required for the density to decrease by 
25%. 
 
Solution:  First convert the formula to reflect tank density instead of pressure: 

 
(a)  Now apply a mass balance to a control volume surrounding the tank:   

 
(b)   If  the density drops by 25%, then we compute 
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3.28 According to Torricelli’s theorem, the 
velocity of a fluid draining from a hole in a 
tank is V ≈ (2gh)1/2, where h is the depth of 
water above the hole, as in Fig. P3.28. Let 
the hole have area Ao and the cylindrical 
tank have bottom area Ab. Derive a formula 
for the time to drain the tank from an initial 
depth ho. 

 
Fig. P3.28 

Solution: For a control volume around the tank, 

+ = 0out
d dv m
dt

ρ⎡ ⎤
⎣ ⎦∫  

= = 2b out o
dhA m A gh
dt

ρ ρ− −  

=∫ ∫
0

0

2 ; .
o

t
o

bh

A gdh dt Ans
Ah

b o

o

A ht
A g

=
2
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3.29 In elementary compressible-flow theory 
(Chap. 9), compressed air will exhaust from a 
small hole in a tank at the mass flow rate 

,m Cρ≈  where ρ is the air density in the tank 
and C is a constant. If ρo is the initial density in 
a tank of volume v, derive a formula for the 
density change ρ(t) after the hole is opened. 
Apply your formula to the following case: a 
spherical tank of diameter 50 cm, with initial 
pressure 300 kPa and temperature 100°C, and 
a hole whose initial exhaust rate is 0.01 kg/s. 
Find the time required for the tank density to 
drop by 50 percent. 

 

 

Solution: For a control volume enclosing the tank and the exit jet, we obtain 

( ) out out
d d0 d m , or: m C ,
dt dt

v v ρρ ρ= + = − = −∫  

o

t

o0

d Cor: dt, or: .Ans
v

ρ

ρ

ρ ρ
ρ ρ

⎡ ⎤= − ≈ −⎢ ⎥⎣ ⎦∫ ∫
Cexp t
v

 

Now apply this formula to the given data. If po = 300 kPa and To = 100°C = 373°K, 
then ρo = p/RT = (300,000)/[287(373)] ≈ 2.80 kg/m3. This establishes the constant “C”: 

ρ ⎛ ⎞= = = ≈⎜ ⎟
⎝ ⎠

3

o o 3
kg kg mm C 0.01 C 2.80 , or C 0.00357  for this hole.
s sm

 

The tank volume is 3 3 3( /6)D ( /6)(0.5 m) 0.00654 m .v π π= = ≈  Then we require 

o
0.00357/ 0.5 exp t if t  .
0.00654

Ansρ ρ ⎡ ⎤= = − ≈⎢ ⎥⎣ ⎦
1.3 s  

 

P3.30 A steady two-dimensional water 

jet, 4 cm thick with a weight flow rate of 

1960 N/s, strikes an angled barrier as in 

Fig. P3.30.  Pressure and water velocity are 

constant everywhere.  Thirty percent of the 

jet passes through the slot.  The rest splits 
Fig. P3.30

1960 N/s

4 cm

35° 

35° 
F 

30%
(1)

(2) 

(3)

(4)

CV 
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symmetrically along the barrier.  Calculate the horizontal force F needed, per unit 

thickness into the paper, to hold the barrier stationary. 

 

Solution:   For water take ρ = 998 kg/m.  The control volume (see figure) cuts through all 

four jets, which are numbered.  The velocity of all jets follows from the weight flow at (1): 

 

Then the x-momentum relation for this control volume yields 

 

 

3.31 A bellows may be modeled as a 
deforming wedge-shaped volume as in 
Fig. P3.31. The check valve on the left 
(pleated) end is closed during the stroke. 
If b is the bellows width into the paper, 
derive an expression for outlet mass flow 

om as a function of stroke θ(t). 

Solution: For a control volume enclosing 
the bellows and the outlet flow, we obtain 

 
Fig. P3.31 

2
out

d ( ) m 0, where bhL bL tan
dt

ρυ υ θ+ = = =  

2
o

dsince L is constant, solve for m ( bL tan ) .
dt

Ansρ θ= − = −
θρ θ2 2 dbL sec

dt
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3.32 Water at 20°C flows through the 
piping junction in the figure, entering section 
1 at 20 gal/min. The average velocity at 
section 2 is 2.5 m/s. A portion of the flow is 
diverted through the showerhead, which 
contains 100 holes of 1-mm diameter. 
Assuming uniform shower flow, estimate the 
exit velocity from the showerhead jets. 

 

Solution: A control volume around sections (1, 2, 3) yields 
3

1 2 3Q Q Q 20 gal/min 0.001262 m /s.= + = =  

Meanwhile, with V2 = 2.5 m/s known, we can calculate Q2 and then Q3: 
3

2
2 2 2

m(2.5 m) (0.02 m) 0.000785 ,
4 s

Q V A π
= = =  

3

3 1 2
m0.001262 0.000785 0.000476 
s

hence Q Q Q= − = − =  

3
2

3
m/100 0.00000476 (0.001) ,
s 4

 .

jet

jet

Each hole carries Q V

solve V Ans

π
= =

=
m6.06
s

 

 

3.33 In some wind tunnels the test section 
is perforated to suck out fluid and provide a 
thin viscous boundary layer. The test section 
wall in Fig. P3.33 contains 1200 holes of 
5-mm diameter each per square meter of 
wall area. The suction velocity through each 
hole is Vr = 8 m/s, and the test-section 
entrance velocity is V1 = 35 m/s. Assuming 
incompressible steady flow of air at 20°C, 
compute (a) Vo, (b) V2, and (c) Vf, in m/s. 

 
Fig. P3.33 



Solution: The test section wall area is (π)(0.8 m)(4 m) = 10.053 m2, hence the total 
number of holes is (1200)(10.053) = 12064 holes. The total suction flow leaving is 

2 3
suction holeQ NQ (12064)( /4)(0.005 m) (8 m/s) 1.895 m /sπ= = ≈  

2 2
o o 1 o

o

(a) Find V : Q Q or V (2.5) (35) (0.8) ,
4 4

solve for V  . (a)Ans

π π
= =

≈
m3.58
s

 

2 2
2 1 suction 2

2

(b) Q Q Q (35) (0.8) 1.895 V (0.8) ,
4 4

or: V  . (b)Ans

π π
= − = − =

≈
m31.2
s

 

2 2
f f 2 f

f

(c) Find V : Q Q or V (2.2) (31.2) (0.8) ,
4 4

solve for V  . (c)Ans

π π
= =

≈
m4.13
s
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3.34 A rocket motor is operating steadily, 
as shown in Fig. P3.34. The products of 
combustion flowing out the exhaust nozzle 
approximate a perfect gas with a molecular 
weight of 28. For the given conditions 
calculate V2 in ft/s. 

Solution: Exit gas: Molecular weight = 
28, thus Rgas = 49700/28 = 1775 ft2/(s2⋅°R). 
Then, 

 
Fig. P3.34 

2
exit gas

p 15(144) psf 0.000780 slug/ft
RT (1775)(1100 460)

ρ = = ≈
+

 

For mass conservation, the exit mass flow must equal fuel + oxygen entering = 0.6 slug/s: 

πρ ⎛ ⎞= = = ≈⎜ ⎟
⎝ ⎠

2

exit e e e e e
slug 5.5m 0.6 A V (0.00078) V , solve for V  .

s 4 12
Ansft4660

s
 

 

3.35 In contrast to the liquid rocket in 
Fig. P3.34, the solid-propellant rocket in 
Fig. P3.35 is self-contained and has no 
entrance ducts. Using a control-volume 
analysis for the conditions shown in 
Fig. P3.35, compute the rate of mass loss 
of the propellant, assuming that the exit gas 
has a molecular weight of 28. 

 
Fig. P3.35 

Solution: With M = 28, R = 8313/28 =297 m2/(s2⋅K), hence the exit gas density is 

3
exit

p 90,000 Pa 0.404 kg/m
RT (297)(750 K)

ρ = = =  

For a control volume enclosing the rocket engine and the outlet flow, we obtain 

CV out
d (m ) m 0,
dt

+ =  

2
propellant exit e e e

dor: (m ) m A V (0.404)( /4)(0.18) (1150)  .
dt

Ansρ π= − = − = − ≈ −
kg11.8
s
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3.36 The jet pump in Fig. P3.36 injects 
water at U1 = 40 m/s through a 3-in pipe 
and entrains a secondary flow of water U2 = 
3 m/s in the annular region around the 
small pipe. The two flows become fully 
mixed down-stream, where U3 is 
approximately constant. For steady 
incompressible flow, compute U3 in m/s. 

 
 

Solution: First modify the units: D1 = 3 in = 0.0762 m, D2 = 10 in = 0.254 m. For 
incompressible flow, the volume flows at inlet and exit must match: 

2 2 2 2
1 2 3 3Q Q Q , or: (0.0762) (40) [(0.254) (0.0762) ](3) (0.254) U

4 4 4
π π π

+ = + − =  

Solve for .Ans3U 6.33 m/s≈  
 

3.37 A solid steel cylinder, 4.5 cm in 
diameter and 12 cm long, with a mass of 
1500 grams, falls concentrically through a 
5-cm-diameter vertical container filled with 
oil (SG = 0.89). Assuming the oil is incom-
pressible, estimate the oil average velocity 
in the annular clearance between cylinder 
and container (a) relative to the container; 
and (b) relative to the cylinder. 

Solution: (a) The fixed CV shown is 
relative to the container, thus:  

2 2 2, : ( ) , . (a)
4 4cyl oil cyl oilQ Q or d V D d V thus Ansπ π

= = −
2

oil cyl2 2
dV V

D d
=

−
 

For the given dimensions (d = 4.5 cm and D = 5.0 cm), Voil = 4.26 Vcylinder. 
(b) If the CV moves with the cylinder we obtain, relative to the cylinder, 

= + =   ( ) . (b)oil relative to cylinder part a cyl cylV V V V Ans
2

cyl2 2
D V 5.26

D d
≈

−
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3.38 An incompressible fluid is squeezed 
between two disks by downward motion Vo 
of the upper disk. Assuming 1-dimensional 
radial outflow, find the velocity V(r). 

Solution: Let the CV enclose the disks 
and have an upper surface moving down at 
speed Vo. There is no inflow. Thus  

Fig. P3.38 

2
out

CV CS

d dd V dA 0 ( r h) 2 rh V,
dt dt

ρ υ ρ ρπ ρ π
⎛ ⎞

+ = = +⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫  

2
o

dh dhor: r 2rhV 0, but V (the disk velocity)
dt dt

+ = = −  

As the disk spacing drops, h(t) ≈ ho − Vot, the outlet velocity is V = Vor/(2h). Ans. 
 

 

 

 

 

 

3.39 A wedge splits a sheet of 20°C water, as shown in Fig. P3.39.  Both wedge and 
sheet are very long into the paper.  If the force required to hold the wedge stationary is F 
= 126 N per meter of depth into the paper, what is the angle θ of the wedge? 

 

 

 

 

 

F
6 m/s

4 cm

6 m/s

6 m/sFig. P3.39 

θ 
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Solution:   For water take ρ = 998 kg/m3.  First compute the mass flow per unit depth: 

 

 The mass flow (and velocity) are the same entering and leaving.  Let the control volume 
surround the wedge.  Then the x-momentum integral relation becomes 

 

 
3.40 The water jet in Fig. P3.40 strikes 
normal to a fixed plate. Neglect gravity and 
friction, and compute the force F in 
newtons required to hold the plate fixed. 

Solution: For a CV enclosing the plate 
and the impinging jet, we obtain: 

x up up down down j j

j j j j j

F F m u m u m u

m u , m A Vρ

∑ = − = + −

= − =
 

 
Fig. P3.40 

 

2 2 2
j jThus F A V (998) (0.05) (8) .Ansρ π= = ≈ ←500 N  

 

3.41 In Fig. P3.41 the vane turns the water 
jet completely around. Find the maximum 
jet velocity Vo for a force Fo. 

Solution: For a CV enclosing the vane 
and the inlet and outlet jets, 

 
Fig. P3.41 

∑ = − = − = − − +x o out out in in jet o jet oF F m u m u m ( V ) m ( V )  

3/ (998 / )(6 / )(0.04 ) 239.5 /m b Vh kg m m s m kg s mρ= = = −

( ) ( cos ) (cos 1)
2 2

: 124 / (239.5 / )(6 / )(cos 1)
2

Solve cos 0.9137 , 24 , .
2 2

x out in

o

F F m u u m V V mV

or N m kg s m m s

Ans

θ θ

θ

θ θ θ

Σ = − = − = − = −

− = − −

= = = o48
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2
o o o o oor: F 2 A V , solve for V Ans.ρ= = o

2
o o

F
2 ( /4)Dρ π

 

 

3.42 A liquid of density ρ flows through 
the sudden contraction in Fig. P3.42 and 
exits to the atmosphere. Assume uniform 
conditions (p1, V1, D1) at section 1 and 
(p2, V2, D2) at section 2. Find an expression 
for the force F exerted by the fluid on the 
contraction. 

 
Fig. P3.42 

Solution: Since the flow exits directly to the atmosphere, the exit pressure equals 
atmospheric: p2 = pa. Let the CV enclose sections 1 and 2, as shown. Use our trick (page 129 
of the text) of subtracting pa everywhere, so that the only non-zero pressure on the CS is at 
section 1, p = p1 – pa. Then write the linear momentum relation with x to the right: 

x 1 a 1 2 2 1 1 2 1 1 1 1F F (p p )A m u m u , where m m A Vρ∑ = − − = − = =  

2 2 1 1 on fluid 1 a 1 1 1 1 2 1But u V and u V . Solve for F (p p )A A V ( V V )ρ= − = − = − + − +  

Meanwhile, from continuity, we can relate the two velocities: 
2 2 2 2

1 2 1 1 2 2 2 1 1 2Q Q , or ( /4)D V ( /4)D V , or: V V (D /D )π π= = =  

Finally, the force of the fluid on the wall is equal and opposite to Fon fluid, to the left: 

( )2 2 2 2
fluid on wall 1 a 1 1 1 1 1 2 1 1F (p p )A A V D D 1 , A D .

4
Ansπρ ⎡ ⎤= − − − =⎣ ⎦  

The pressure term is larger than the momentum term, thus F > 0 and acts to the left. 
 

3.43 Water at 20°C flows through a  
5-cm-diameter pipe which has a 180° 
vertical bend, as in Fig. P3.43. The total 
length of pipe between flanges 1 and 2 is  
75 cm. When the weight flow rate is  
230 N/s, p1 = 165 kPa, and p2 = 134 kPa. 
Neglecting pipe weight, determine the total 
force which the flanges must withstand for 
this flow. 

 
Fig. P3.43 



Solution: Let the CV cut through the flanges and surround the pipe bend. The mass flow rate 
is (230 N/s)/(9.81 m/s2) = 23.45 kg/s. The volume flow rate is Q = 230/9790 = 0.0235 
m3/s. Then the pipe inlet and exit velocities are the same magnitude: 

3

1 2 2
0.0235 m /s mV V V Q/A 12.0 

s( /4)(0.05 m)π
= = = = ≈  

Subtract pa everywhere, so only p1 and p2 are non-zero. The horizontal force balance is: 

x x,flange 1 a 1 2 a 2 2 2 1 1

2 2
x,fl

F F (p p )A (p p )A m u m u

F (64000) (0.05) (33000) (0.05) (23.45)( 12.0 12.0 m/s)
4 4
π π

∑ = + − + − = −

= + + = − −
 

x,flangeor: F 126 65 561 .Ans= − − − ≈ 750 N−  

The total x-directed force on the flanges acts to the left. The vertical force balance is 

2
y y,flange pipe fluidF F W W 0 (9790) (0.05) (0.75) .

4
Ansπ

∑ = = + = + ≈ 14 N  

Clearly the fluid weight is pretty small. The largest force is due to the 180° turn. 
 

3.44 Consider uniform flow past a cylinder with a V-shaped wake, as shown. Pressures 
at (1) and (2) are equal. Let b be the width into the paper. Find a formula for the force F 
on the cylinder due to the flow. Also compute CD = F/(ρU2Lb). 

 
Fig. P3.44 

Solution: The proper CV is the entrance (1) and exit (2) plus streamlines above 
and below which hit the top and bottom of the wake, as shown. Then steady-flow 
continuity yields, 

L

2 1 0

U y0 u dA u dA 2 1 b dy 2 UbH,
2 L

ρ ρ ρ ρ⎛ ⎞= − = + −⎜ ⎟
⎝ ⎠∫ ∫ ∫  
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where 2H is the inlet height. Solve for H = 3L/4. 
Now the linear momentum relation is used. Note that the drag force F is to the 

right (force of the fluid on the body) thus the force F of the body on fluid is to the left.  
We obtain, 

L
2

x drag
2 1 0

U y U yF 0 u u dA u u dA 2 1 1 bdy 2H U b F
2 L 2 L

ρ ρ ρ ρ⎛ ⎞ ⎛ ⎞∑ = = − = + + − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ ∫  

2 2
drag

3L 3 7Use H , then F U Lb U Lb .
4 2 6

Ansρ ρ= = − ≈ 21 U Lb
3

ρ  

The dimensionless force, or drag coefficient F/(ρU2Lb), equals CD = 1/3. Ans. 
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P3.45 A 12-cm-diameter pipe, containing 

water flowing at 200 N/s, is capped by an 

orifice plate, as in Fig. P3.45.  The exit jet is 

25 mm in diameter.  The pressure in the pipe 

at section 1 is 800 kPa-gage.   Calculate the 

force  F  required to hold the orifice plate. 

Solution:  For water take ρ = 998 kg/m3.  This is a straightforward x-momentum problem.  
First evaluate the mass flow and the two velocities: 

 

Now apply the x-momentum relation for a control volume surrounding the plate: 

 

 

3.46 When a jet strikes an inclined plate, 
it breaks into two jets of equal velocity V 
but unequal fluxes αQ at (2) and (1 – α)Q 
at (3), as shown. Find α, assuming that the 
tangential force on the plate is zero. Why 
doesn’t the result depend upon the properties 
of the jet flow?  

Fig. P3.46 

1

V2
200 N/s

F ? 

Fig. P3.45 

d = 25 mm
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121,1

Ans
s
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s
kgmPaF

VVmApFF gagex

N8240=−=−−=

−=+−=Σ

π

CV 



Solution: Let the CV enclose all three jets and the surface of the plate. Analyze the 
force and momentum balance tangential to the plate: 

t t 2 3 1F F 0 m V m ( V) m V cos

mV (1 )m V m V cos 0, solve for .Ans

θ

α α θ α

∑ = = = + − −

= − − − = =
1 (1 cos )
2

+ θ  

The jet mass flow cancels out. Jet (3) has a fractional flow (1 − α) = (1/2)(1 − cosθ). 
 

3.47 A liquid jet Vj of diameter Dj strikes a fixed cone and deflects back as a conical sheet 
at the same velocity. Find the cone angle θ  for which the restraining force F = (3/2)ρAjVj2. 

 
Fig. P3.47 

Solution: Let the CV enclose the cone, the jet, and the sheet. Then, 

x out out in in j j j jF F m u m u m( V cos ) mV , where m A Vθ ρ∑ = − = − = − − =  

2 2
j j j j

3 1Solve for F A V (1 cos ) A V if cos or .
2 2

Ansρ θ ρ θ θ= + = = = 60°  

 

3.48 The small boat is driven at steady speed Vo by compressed air issuing from a 
3-cm-diameter hole at Ve = 343 m/s and pe = 1 atm, Te = 30°C. Neglect air drag. The 
hull drag is kVo2, where k = 19 N ⋅ s2/m2. Estimate the boat speed Vo. 

 
Fig. P3.48 
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Solution: For a CV enclosing the boat and moving to the right at boat speed Vo, 
the air appears to leave the left side at speed (Vo + Ve). The air density is pe/RTe ≈ 
1.165 kg/m3. The only mass flow across the CS is the air moving to the left. The 
force balance is 

2
x o out out e e o e o eF Drag kV m u [ A (V V )]( V V ),ρ∑ = − = − = = + − −  

2 2 2 2 2
e e o e o o oor: A (V V ) kV , (1.165)( /4)(0.03) (V 343) 19Vρ π+ = + =  

o owork out the numbers: (V 343) V (23060), solve for .Ans+ = √ oV 2.27 m/s=  
 

3.49 The horizontal nozzle in Fig. P3.49 
has D1 = 12 in, D2 = 6 in, with p1 = 38 psia 
and V2 = 56 ft/s. For water at 20°C, find 
the force provided by the flange bolts to 
hold the nozzle fixed. 

Solution: For an open jet, p2 = pa =  
15 psia. Subtract pa everywhere so the only 
nonzero pressure is p1 = 38 − 15 = 23 psig.   
 

 
Fig. P3.49 
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The mass balance yields the inlet velocity: 

2 2
1 1

ftV (12) (56) (6) , V 14 
4 4 s
π π

= =  

The density of water is 1.94 slugs per cubic 
foot. Then the horizontal force balance is 

 

 

2
x bolts 2 2 1 1 2 1F F (23 psig) (12 in) m u m u m(V V )

4
π

∑ = − + = − = −  

2
bolts

ft ftCompute F 2601 (1.94) (1 ft) 14 56 14 .
4 s s

Ansπ ⎛ ⎞⎛ ⎞= − − ≈⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

1700 lbf  

 

3.50 The jet engine in Fig. P3.50 admits 
air at 20°C and 1 atm at (1), where A1 = 
0.5 m2 and V1 = 250 m/s. The fuel-air ratio 
is 1:30. The air leaves section (2) at 1 atm, 
V2 = 900 m/s, and A2 = 0.4 m2. Compute 
the test stand support reaction Rx needed. 

Solution: ρ1 = p/RT = 101350/[287(293)] = 
1.205 kg/m3. For a CV enclosing the 
engine, 

 
Fig. P3.50 

1 1 1 1 2
1m A V (1.205)(0.5)(250) 151 kg/s, m 151 1 156 kg/s

30
ρ ⎛ ⎞= = = = + =⎜ ⎟

⎝ ⎠
 

x x 2 2 1 1 fuel fuelF R m u m u m u 156(900) 151(250) 0 .Ans∑ = = − − = − − ≈ 102,000 N  
 

3.51 A liquid jet of velocity Vj and area Aj strikes a single 180° bucket on a turbine 
wheel rotating at angular velocity Ω. Find an expression for the power P delivered. At 
what Ω is the power a maximum? How does the analysis differ if there are many buckets, 
so the jet continually strikes at least one? 

 
Fig. P3.51 
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Solution: Let the CV enclose the bucket 
and jet and let it move to the right at bucket 
velocity V = ΩR, so that the jet enters the 
CV at relative speed (Vj − ΩR). Then, 

x bucket out in

j j

F F mu mu
m[ (V R)] m[V R]

∑ = − = −

= − − Ω − − Ω
  

 

2
bucket j j jor: F 2m(V R) 2 A (V R) ,ρ= − Ω = − Ω  

bucketand the power is RF .Ans= Ω = 2
j jP 2 A R(V R)ρ Ω − Ω  

Maximum power is found by differentiating this expression: 

3
max j j

dP 80 if . whence P A V
d 27

Ans ρ⎛ ⎞= =⎜ ⎟Ω ⎝ ⎠
jV

R
3

Ω =  

If there were many buckets, then the full jet mass flow would be available for work: 

available j j j j jm A V , P 2 A V R(V R), Ans.ρ ρ= = Ω − Ω j3
max j j

V1P A V at R
2 2

= Ω =ρ  

 

3.52 The vertical gate in a water channel is partially open, as in Fig. P3.52. 
Assuming no change in water level and a hydrostatic pressure distribution, derive an 
expression for the streamwise force Fx on one-half of the gate as a function of (ρ, h, 
w, θ, V1). Apply your result to the case of water at 20°C, V1 = 0.8 m/s, h = 2 m, w = 1.5 m, 
and θ = 50°. 

 
 

Solution: Let the CV enclose sections (1) and (2), the centerline, and the inside of the 
gate, as shown. The volume flows are 

1 2 2 1 1
W 1V Wh V Bh, or: V V V
B 1 sinθ

= = =
−

 



 Solutions Manual • Fluid Mechanics, Fifth Edition 212 

 

 
since B = W − W sinθ. The problem is unrealistically idealized by letting the water depth 
remain constant, whereas actually the depth would decrease at section 2. Thus we have 
no net hydrostatic pressure force on the CV in this model! The force balance reduces to 

x gate on fluid 2 1 1 2 1F F mV mV , where m WhV and V V /(1 sin )ρ θ∑ = = − = = −  

fluid on gateSolve for F .
)

 Ans⎡ ⎤
= ⎢ ⎥⎣ ⎦

− −
−

ρ
θ

2
1

1WhV 1 ( )
(1 sin

to the left  

This is unrealistic—the pressure force would turn this gate force around to the right. For 
the particular data given, W = 1.5 m, θ = 50°, B = W(1 − sinθ ) = 0.351 m, V1 = 0.8 m/s, 
thus V2 = V1/(1 − sin 50°) = 3.42 m/s, ρ = 998 kg/m3, h = 2 m. Thus compute 

2
fluid on gate

1F (998)(2)(1.5)(0.8) 1 .
1 sin 50

Ans⎡ ⎤= − ≈ ←⎢ ⎥− °⎣ ⎦
6300 N  

 

3.53 Consider incompressible flow in the 
entrance of a circular tube, as in Fig. P3.53. 
The inlet flow is uniform, u1 = Uo. The flow 
at section 2 is developed pipe flow. Find 
the wall drag force F as a function of (p1, 
p2, ρ, Uo, R) if the flow at section 2 is 

2

2 max 2(a) Laminar: 1 ru u
R

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

1/7

2 max(b) Turbulent: 1 ru u
R

⎛ ⎞≈ −⎜ ⎟
⎝ ⎠

 

 
Fig. P3.53 

Solution: The CV encloses the inlet and outlet and is just inside the walls of the tube. 
We don’t need to establish a relation between umax and Uo by integration, because the 
results for these two profiles are given in the text. Note that Uo = uav at section (2). Now 
use these results as needed for the balance of forces: 

R
2 2 2 2

x 1 2 drag 2 2 o o o 2
0

F (p p ) R F u ( u 2 r dr) U ( R U ) R U ( 1)π ρ π ρπ ρπ β∑ = − − = − = −∫  
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We simply insert the appropriate momentum-flux factors β from p. 136 of the text: 
(a) Laminar: . (a)Ans2 2 2

drag 1 2 oF (p p ) R (1/3) R U= − −π ρπ  

(b) β ≈2Turbulent, 1.020: . (b)Ans2 2 2
drag 1 2 oF (p p ) R 0.02 R U= − −π ρπ  

 

3.54 For the pipe-flow reducing section 
of Fig. P3.54, D1 = 8 cm, D2 = 5 cm, and p2 
= 1 atm. All fluids are at 20°C. If V1 = 5 
m/s and the manometer reading is h = 58 
cm, estimate the total horizontal force 
resisted by the flange bolts. 

 
Fig. P3.54 

Solution: Let the CV cut through the bolts and through section 2. For the given 
manometer reading, we may compute the upstream pressure: 

1 2 merc waterp p ( )h (132800 9790)(0.58 m) 71300 Pa (gage)γ γ− = − = − ≈  

Now apply conservation of mass to determine the exit velocity: 
2 2

1 2 2 2Q Q , or (5 m/s)( /4)(0.08 m) V ( /4)(0.05) , solve for V 12.8 m/sπ π= = ≈  

Finally, write the balance of horizontal forces: 

x bolts 1,gage 1 2 1F F p A m(V V ),∑ = − + = −  

2 2
boltsor: F (71300) (0.08) (998) (0.08) (5.0)[12.8 5.0] .

4 4
Ansπ π

= − − ≈ 163 N  
 

3.55 In Fig. P3.55 the jet strikes a vane 
which moves to the right at constant velocity 
Vc on a frictionless cart. Compute (a) the force 
Fx required to restrain the cart and (b) the 
power P delivered to the cart. Also find the 
cart velocity for which (c) the force Fx is a 
maximum and (d) the power P is a maximum.  

Fig. P3.55 

Solution: Let the CV surround the vane and cart and move to the right at cart speed. 
The jet strikes the vane at relative speed Vj − Vc. The cart does not accelerate, so the 
horizontal force balance is 

2
x x j j c j c j j cF F [ A (V V )](V V )cos A (V V )ρ θ ρ∑ = − = − − − −  

xor: F . (a)Ans= 2
j j cA (V V ) (1 cos )− −ρ θ  
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c xThe power delivered is P V F . (b)Ans= = ρ θ2
j c j cA V (V V ) (1 cos )− −  

=cThe maximum force occurs when the cart is fixed, or: V . (c)Ans0  
The maximum power = =c coccurs when dP/dV 0, or: V / . (d)AnsjV 3  

 

3.56 Water at 20°C flows steadily through 
the box in Fig. P3.56, entering station 
(1) at 2 m/s. Calculate the (a) horizontal; 
and (b) vertical forces required to hold the 
box stationary against the flow momentum. 

Solution: (a) Summing horizontal forces, 

x x out out in inF R m u m u∑ = = −  
 

Fig. P3.56 

2 2(998) (0.03 )(5.56) ( 5.56) (998) (0.05 )(2) ( 2)(cos65 )
4 4

 

xR

Ans.

π π⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − − − °⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
= −18.46 N

 

=   Rx to the left18.5 N  
π⎛ ⎞∑ = = − = − − ° =⎜ ⎟

⎝ ⎠
2(998) (0.05 )(2)( 2 sin 65 )  

4y y in inF R m u up7.1 N  
 

3.57 Water flows through the duct in 
Fig. P3.57, which is 50 cm wide and 1 m 
deep into the paper. Gate BC completely 
closes the duct when β = 90°. Assuming one-
dimensional flow, for what angle β will the 
force of the exit jet on the plate be 3 kN? 

Solution: The steady flow equation 
applied to the duct, Q1 = Q2, gives the jet 
velocity as V2 = V1(1 – sinβ). Then for a 
force summation for a control volume 
around the jet’s impingement area, 

 
Fig. P3.57 

ρ β
β

⎡ ⎤
∑ = = = − ⎢ ⎥−⎣ ⎦

2
2

1 1 1
1( sin )( ) ( )

1 sinx j jF F m V h h D V  

ρβ − −⎡ ⎤ ⎡ ⎤
= − = − =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦

2 2
1 11 1 (998)(0.5)(1)(1.2)sin 1 sin 1

3000
h DV Ans.

F
49.5°  
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3.58 The water tank in Fig. P3.58 stands 
on a frictionless cart and feeds a jet of 
diameter 4 cm and velocity 8 m/s, which is 
deflected 60° by a vane. Compute the 
tension in the supporting cable. 

Solution: The CV should surround the 
tank and wheels and cut through the cable 
and the exit water jet. Then the horizontal 
force balance is 

 
Fig. P3.58

2 2
x cable out out j jF T m u ( AV )V cos 998 (0.04) (8) cos60 .

4
Ansπρ θ ⎛ ⎞∑ = = = = ° =⎜ ⎟

⎝ ⎠
40 N  

 

3.59 A pipe flow expands from (1) to (2), 
causing eddies as shown. Using the given 
CV and assuming p = p1 on the corner 
annular ring, show that the downstream 
pressure is given by, neglecting wall 
friction, 

2 1 1
2 1 1

2 2

A Ap p V 1
A A

ρ
⎛ ⎞⎛ ⎞

= + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  
Fig. P3.59 

Solution: From mass conservation, V1A1 = V2A2. The balance of x-forces gives 

x 1 1 wall 2 1 2 2 2 1 1 1 2 1 1 2F p A p (A A ) p A m(V V ), where m A V , V V A /Aρ∑ = + − − = − = =  

wall 1If p p  as given, this reduces to .Ans
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

21 1
2 1 1

2 2

A Ap p V 1
A A

= + −ρ  

 

3.60 Water at 20°C flows through the 
elbow in Fig. P3.60 and exits to the atmo-
sphere. The pipe diameter is D1 = 10 cm, 
while D2 = 3 cm. At a weight flow rate of 
150 N/s, the pressure p1 = 2.3 atm (gage). 
Neglect-ing the weight of water and elbow,  
estimate the force on the flange bolts at 
section 1. 

 
Fig. P3.60
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Solution: First, from the weight flow, compute Q = (150 N/s)/(9790 N/m3) = 0.0153 m3/s. 
Then the velocities at (1) and (2) follow from the known areas: 

1 22 2
1 2

Q 0.0153 m Q 0.0153 mV 1.95 ; V 21.7 
A s A s( /4)(0.1) ( /4)(0.03)π π

= = = = = =  

The mass flow is ρA1V1 = (998)(π /4)(0.1)2(1.95) ≈ 15.25 kg/s. Then the balance of forces 
in the x-direction is: 

x bolts 1 1 2 1 2 1

2
bolts

F F p A mu mu m( V cos 40 V )

solve for F (2.3 101350) (0.1) 15.25(21.7cos 40 1.95) .
4

Ansπ
∑ = − + = − = − ° −

= × + ° + ≈ 2100 N
 

 

3.61 A 20°C water jet strikes a vane on a 
tank with frictionless wheels, as shown. 
The jet turns and falls into the tank without 
spilling. If θ = 30°, estimate the horizontal 
force F needed to hold the tank stationary. 

Solution: The CV surrounds the tank and 
wheels and cuts through the jet, as shown. 
We have to assume that the splashing into 
the tank does not increase the x-momentum 
of the water in the tank. Then we can write 
the CV horizontal force relation: 

 
Fig. P3.61 

( )ρ υ θ∑ = − = − = −∫x in in jettank

dF F u d m u 0 mV  independent of 
dt

 

2 2
2

j j 3
slug 2 ftThus F A V 1.94  ft 50 .

4 12 sft
Ansπρ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
106 lbf  

 

3.62 Water at 20°C exits to the standard 
sea-level atmosphere through the split 
nozzle in Fig. P3.62. Duct areas are 
A1 = 0.02 m2 and A2 = A3 = 0.008 m2. If  
p1 = 135 kPa (absolute) and the flow rate is 
Q2 = Q3 = 275 m3/h, compute the force on 
the flange bolts at section 1. 

 
Fig. P3.62 
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Solution: With the known flow rates, we can compute the various velocities: 
3

2 3 12
275/3600 m /s m 550/3600 mV V 9.55 ; V 7.64 

s 0.02 s0.008 m
= = = = =  

The CV encloses the split nozzle and cuts through the flange. The balance of forces is 

x bolts 1,gage 1 2 2 3 3 1 1F F p A Q ( V cos30 ) Q ( V cos30 ) Q ( V ),ρ ρ ρ∑ = − + = − ° + − ° − +  

bolts
275 550or: F 2(998) (9.55cos30 ) 998 (7.64) (135000 101350)(0.02)

3600 3600
⎛ ⎞ ⎛ ⎞= ° + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

1261 1165 673  .Ans= + + ≈ 3100 N  
 

P3.63 In Example 3.10, the gate force F is a function of both water depth and 
velocity.  (a) Non-dimensionalize the force by dividing by (ρgbh1

2) and plot this force 
versus  h2/h1 ≤ 1.0.  (b) The plot involves a second dimensionless parameter involving V1.  
Do you know its name?  (c) For what condition  h2/h1  is the force largest?  (d) For small 
values of V1, the force becomes negative (to the right), which is totally unrealistic.  Can 
you explain why? 
 
Solution:  The original solution for gate force in Ex. 3.10 was 

 

(a)  When we divide through by (ρgbh1
2), we obtain the dimensionless force relation 

 

(b)  On the right hand side is a new dimensionless group, [V1
2/(gh1)], which is called the 

Froude number at section 1.       Ans.(b) 
As an extra requirement of part (a), we can plot the dimensionless force versus h2/h1 ≤ 1.0 for 
various values of the Froude number  [V1

2/(gh1)], as follows: 

)1(])(1[
2 2

12
11

2

1

22
1 −−−=

h
hbVh

h
hgbhFgate ρρ

).()1()(])(1[
2
1

2

1

1

2
12

1

2
2
1

aAns
h
h

gh
V

h
h

gbh
F

−−−=
ρ
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(c) For everything held constant except h2, the maximum force is found by differentiation: 

 
(d) We see that, at small h2/h1, the force becomes negative and is not plotted.  Presently the 
writer does not know exactly why this happens, but when it does, Fr2 is very large, > 8. 
 

 

3.64 The 6-cm-diameter 20°C water jet 
in Fig. P3.64 strikes a plate containing a 
hole of 4-cm diameter. Part of the jet 
passes through the hole, and part is 
deflected. Determine the horizontal force 
required to hold the plate. 

Solution: First determine the incoming 
flow and the flow through the hole:  

Fig. P3.64 
3 2

2 2
in hole

m mQ (0.06) (25) 0.0707 , Q (0.04) (25) 0.0314 
4 s 4 s
π π

= = = =  

).(or)/(yieldswhich0 3/1

1

2
1

1

23/12
1

2
12

2
)( cAns

gh
V

h
hghVh

dh
dF

===
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Then, for a CV enclosing the plate and the two jets, the horizontal force balance is 

x plate hole hole upper upper lower lower in inF F m u m u m u m u

(998)(0.0314)(25) 0 0 (998)(0.0707)(25)

784 1764, solve for .Ans

∑ = − = + + −

= + + −

= − F 980 N (to left)≈

 

 

3.65 The box in Fig. P3.65 has three 0.5-in 
holes on the right side. The volume flows of 
20°C water shown are steady, but the details of 
the interior are not known. Compute the force, 
if any, which this water flow causes on the box. 

Solution: First we need to compute the 
velocities through the various holes: 

 
Fig. P3.65 

3

top bottom middle top2
0.1 ft /sV V 73.3 ft/s; V 2V 146.6 ft/s

( /4)(0.5/12)π
= = = = =  

Pretty fast, but do-able, I guess. Then make a force balance for a CV enclosing the box: 

x box in in top top in middle top topF F m u 2m u , where u V and u V∑ = = − + = − =  

boxSolve for F (1.94)(0.2)(146.6) 2(1.94)(0.1)(73.3) .Ans= + ≈ 85 lbf  
 

 
3.66 The tank in Fig. P3.66 weighs 500 N 
empty and contains 600 L of water at 20°C. 
Pipes 1 and 2 have D = 6 cm and Q = 
300 m3/hr. What should the scale reading 
W be, in newtons? 

Solution: Let the CV surround the tank, 
cut through the two jets, and slip just under 
the tank bottom, as shown. The relevant jet 
velocities are 

 
Fig. P3.66 

3

1 2 2
Q (300/3600) m /sV V 29.5 m/s
A ( /4)(0.06 m)π

= = = ≈  

The scale reads force “P” on the tank bottom. Then the vertical force balance is 

z tank water 2 2 1 1 1F P W W m v m v m[0 ( V )]∑ = − − = − = − −  
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3 300Solve for 500 9790(0.6 m ) 998 (29.5) .
3600

Ans⎛ ⎞= + + ≈⎜ ⎟
⎝ ⎠

P 8800 N  

 

3.67 Gravel is dumped from a hopper, at a rate of 650 N/s, onto a moving belt, as in 
Fig. P3.67. The gravel then passes off the end of the belt. The drive wheels are 80 cm in 
diameter and rotate clockwise at 150 r/min. Neglecting system friction and air drag, 
estimate the power required to drive this belt. 

 
Fig. P3.67 

Solution: The CV goes under the gravel on the belt and cuts through the inlet and 
outlet gravel streams, as shown. The no-slip belt velocity must be 

belt outlet wheel
rev rad 1 min mV V R 150 2 (0.4 m) 6.28 
min rev 60 s s

π⎡ ⎤= = Ω = ≈⎢ ⎥⎣ ⎦
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Then the belt applies tangential force F to the gravel, and the force balance is 

x on belt out out in in inF F m u m u , but u 0.∑ = = − =  

belt out
650 kg mThen F mV  6.28 416 N
9.81 s s

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

beltThe power required to drive the belt is FV (416)(6.28) .Ans= = ≈P 2600 W  
 

3.68 The rocket in Fig. P3.68 has a super-
sonic exhaust, and the exit pressure pe is 
not necessarily equal to pa. Show that the 
force F required to hold this rocket on the 
test stand is F = ρeAeVe2 + Ae(pe − pa). Is 
this force F what we term the thrust of the 
rocket? 

 
Fig. P3.68 

Solution: The appropriate CV surrounds the entire rocket and cuts through the exit jet. 
Subtract pa everywhere so only exit pressure ≠ 0. The horizontal force balance is 

x e a e e e f f o o f o e e e eF F (p p )A m u m u m u , but u u 0, m A Vρ∑ = − − = − − = = =  

Thus .Ans2
e e e e a eF = A V (p p )A (the )ρ + − thrust  

 

3.69 A uniform rectangular plate, 40 cm 
long and 30 cm deep into the paper, hangs in 
air from a hinge at its top, 30-cm side. It is 
struck in its center by a horizontal 3-cm-
diameter jet of water moving at 8 m/s. If the 
gate has a mass of 16 kg, estimate the angle 
at which the plate will hang from the vertical. 

Solution: The plate orientation can be 
found through force and moment balances, 

 
Fig. P3.69 

2 2(998) (0.03 )(8 ) 45.1 
4x j in inF F m u Nπ⎛ ⎞∑ = = − = − =⎜ ⎟

⎝ ⎠
 

θ θ∑ = = − +0 (45)(0.02)(sin ) (16)(9.81)(0.02)(cos )BM 16θ = °  
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3.70 The dredger in Fig. P3.70 is loading 
sand (SG = 2.6) onto a barge. The sand 
leaves the dredger pipe at 4 ft/s with a weight 
flux of 850 lbf/s. Estimate the tension on the 
mooring line caused by this loading process. 

Solution: The CV encloses the boat and cuts 
through the cable and the sand flow jet. Then, 

 
Fig. P3.70 

x cable sand sand sandF T m u m V cos ,θ∑ = − = − = −  

cable
850 slug ftor: T  4 cos30 .
32.2 s s

Ans⎛ ⎞⎛ ⎞= ° ≈⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

91 lbf  

 

3.71 Suppose that a deflector is deployed 
at the exit of the jet engine of Prob. 3.50, as 
shown in Fig. P3.71. What will the reaction 
Rx on the test stand be now? Is this reaction 
sufficient to serve as a braking force during 
airplane landing? 

Solution: From Prob. 3.50, recall that the 
essential data was 

 
Fig. P3.71 

1 2 1 2V 250 m/s, V 900 m/s, m 151 kg/s, m 156 kg/s= = = =  

The CV should enclose the entire engine and also the deflector, cutting through the support 
and the 45° exit jets. Assume (unrealistically) that the exit velocity is still 900 m/s. Then, 

x x out out in in out out in 1F R m u m u , where u V cos 45 and u V∑ = = − = − ° =  

xThen R 156(900 cos 45 ) 151(250) 137,000 N= − ° − = −  

.AnsThe support reaction is to the left and equals 137 kN  
 

3.72 A thick elliptical cylinder immersed 
in a water stream creates the idealized wake 
shown. Upstream and downstream pressures 
are equal, and Uo = 4 m/s, L = 80 cm. Find 
the drag force on the cylinder per unit width 
into the paper. Also compute the 
dimensionless drag coefficient CD = 2F/(ρ 
Uo2bL). 

 
Fig. P3.72 
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Solution: This is a ‘numerical’ version of the “analytical” body-drag Prob. 3.44. The 
student still must make a CV analysis similar to Prob. P3.44 of this Manual. The wake is 
exactly the same shape, so the result from Prob. 3.44 holds here also: 

2 2
drag o

1 1F U Lb (998)(4) (0.8)(1.0) .
3 3

Ansρ= = ≈ 4260 N  

The drag coefficient is easily calculated from the above result: CD = 2/3. Ans. 
 

3.73 A pump in a tank of water directs a jet 
at 45 ft/s and 200 gal/min against a vane, as 
shown in the figure. Compute the force F to 
hold the cart stationary if the jet follows 
(a) path A; or (b) path B. The tank holds 
550 gallons of water at this instant. 

Solution: The CV encloses the tank and 
passes through jet B. 
(a) For jet path A, no momentum flux crosses 
the CV, therefore F = 0 Ans. (a) 

 
Fig. P3.73 

(b) For jet path B, there is momentum flux, so the x-momentum relation yields: 

x out out jet BF F m u m u∑ = = =  

Now we don’t really know uB exactly, but we make the reasonable assumption that the jet 
trajectory is frictionless and maintains its horizontal velocity component, that is, uB ≈ 
Vjet cos 60°. Thus we can estimate 

⎛ ⎞⎛ ⎞
= = ° ≈⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

3

3
2001.94  (45cos60 )  . (b)

448.8B
slug ftF mu Ans

sft
19.5 lbf  

 

3.74 Water at 20°C flows down a vertical 6-cm-diameter tube at 300 gal/min, as in the 
figure. The flow then turns horizontally and exits through a 90° radial duct segment 1 cm 
thick, as shown. If the radial outflow is uniform and steady, estimate the forces (Fx, Fy, Fz) 
required to support this system against fluid momentum changes. 
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Solution: First convert 300 gal/min = 0.01893 m3/s, hence the mass flow is ρQ = 18.9 
kg/s. The vertical-tube velocity (down) is Vtube = 0.01893/[(π/4)(0.06)2] = −6.69 k m/s. 
The exit tube area is (π/2)RΔh = (π/2)(0.15)(0.01) = 0.002356 m2, hence Vexit = Q/Aexit 
= 0.01893/0.002356 = 8.03 m/s. Now estimate the force components: 

 θ ρ θ
+ °

− °

∑ = = = − Δ ≡∫ ∫
45

45

sin  . (a)x out out exitF u dm V hR d AnsxF 0  

θ ρ θ ρ
+ °

− °

∑ = = − = − Δ − = − Δ∫ ∫
45

45

cos 0 2y out out in exit exitF v dm mv V hR d V hRyF  

 = − ≈(8.03)(998)(0.01)(0.15) 2  . (b)or: AnsyF 17 N−  

 ∑ = = − = − − ≈( ) (18.9 / )[0 ( 6.69 / )]  . (c)z out inF m w w kg s m s AnszF 126 N+  
 

3.75 A liquid jet of density r and area A 
strikes a block and splits into two jets, as 
shown in the figure. All three jets have the 
same velocity V. The upper jet exits at angle 
θ and area αA, the lower jet turns down at 
90° and area (1 − α)A. (a) Derive a formula 
for the forces (Fx,Fy) required to support 
the block against momentum changes. 
(b) Show that Fy = 0 only if α ≥  0.5. 
(c) Find the values of α and θ for which both 
Fx and Fy are zero. 

 

Solution: (a) Set up the x- and y-momentum relations: 

α θ ρ

α θ α

∑ = = − − − =

∑ = = + − −

( cos ) ( )    

sin (1 ) ( )
x x

y y

F F m V m V where m AV of the inlet jet

F F mV m V
 

Clean this up for the final result: 

. (a)
x

y

F
F Ans

=

= −

mV(1 cos )
mV( sin 1)

−

+

α θ
α θ α

 

(b) Examining Fy above, we see that it can be zero only when, 

αθ
α
−

=
1sin  

But this makes no sense if α < 0.5, hence Fy = 0 only if α ≥ 0.5. Ans. (b) 
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(c) Examining Fx, we see that it can be zero only if cosθ = 1/α, which makes no sense 
unless α = 1, θ = 0°. This situation also makes Fx = 0 above (sinθ = 0). Therefore the 
only scenario for which both forces are zero is the trivial case for which all the flow goes 
horizontally across a flat block: 

x yF F 0 only if: , . (c)Ansα θ= = = =1 0°  
 

3.76 A two-dimensional sheet of water, 
10 cm thick and moving at 7 m/s, strikes a 
fixed wall inclined at 20° with respect to 
the jet direction. Assuming frictionless flow, 
find (a) the normal force on the wall per 
meter of depth, and the widths of the sheet 
deflected (b) upstream, and (c) downstream 
along the wall. 

 
Fig. P3.76 

Solution: (a) The force normal to the wall is due to the jet’s momentum, 
2(998)(0.1)(7 )(cos70 )N in inF m u Ans.∑ = − = − ° = 1670 /N m  

(b) Assuming V1 = V2 = V3 = Vjet, VjA1 = VjA2 + VjA3 where, 

θ= = = ≈2 1A A sin (0.1)(1)(sin 20°) 0.034 m  Ans.3 cm  

(c) Similarly, A3 = A1 cosθ = (0.1)(1)(cos 20°) = 0.094 m ≈ 9.4 cm Ans. 
 

3.77 Water at 20°C flows steadily through 
a reducing pipe bend, as in Fig. P3.77. 
Known conditions are p1 = 350 kPa, D1 = 
25 cm, V1 = 2.2 m/s, p2 = 120 kPa, and D2 
= 8 cm. Neglecting bend and water weight, 
estimate the total force which must be 
resisted by the flange bolts. 

Solution: First establish the mass flow 
and exit velocity: 

 
Fig. P3.77 

2 2
1 1 1 2 2

kg mm A V 998 (0.25) (2.2) 108 998 (0.08) V , or V 21.5 
4 s 4 s
π πρ ⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 



 Chapter 3 • Integral Relations for a Control Volume  227

The CV surrounds the bend and cuts through the flanges. The force balance is 

x bolts 1,gage 1 2,gage 2 2 2 1 1 2 2 1 1F F p A p A m u m u , where u V and u V∑ = − + + = − = − =  

2 2
boltsor F (350000 100000) (0.25) (120000 100000) (0.08) 108(21.5 2.2)

4 4
12271 101 2553 .

π π
= − + − + +

= + + ≈ 14900 N Ans
 

 

3.78 A fluid jet of diameter D1 enters a 
cascade of moving blades at absolute 
velocity V1 and angle β1, and it leaves at 
absolute velocity V1 and angle β2, as in  
Fig. P3.78. The blades move at velocity u. 
Derive a formula for the power P delivered 
to the blades as a function of these 
parameters. 

Solution: Let the CV enclose the blades 
and move upward at speed u, so that the 
flow appears steady in that frame, as shown 
at right. The relative velocity Vo may be 
eliminated by the law of cosines: 

2 2 2
o 1 1 1

2 2
2 2 2

V V u 2V u cos

V u 2V ucos

β

β

= + −

= + −
 

 
Fig. P3.78 

 

  
( )2 2

1 2

1 1 2 2

(1/2) V V
solve for u

V cos V cosβ β

−
=

−
 

Then apply momentum in the direction of blade motion: 

y vanes jet o1y o2y 1 1 2 2 1 1F F m (V V ) m(V cos V cos ), m A Vβ β ρ∑ = = − = − =  

The power delivered is P = Fu, which causes the parenthesis “cos β ” terms to cancel: 

( ) Ans.2 2
jet 1 2

1P Fu m V V
2

= = −  
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3.79 Air at 20°C and 1 atm enters the 
bottom of an 85° conical flowmeter duct at 
a mass flow rate of 0.3 kg/s, as shown in the 
figure. It supports a centered conical body 
by steady annular flow around the cone and 
exits at the same velocity as it enters. 
Estimate the weight of the body in newtons.  

Solution: First estimate the velocity from the known inlet duct size: 

3

2

101350 kg1.205 ,
287(293) m

m0.3 (1.205) (0.1) ,  
4 s

air
p

RT

thus m AV V solve

ρ

π
ρ

= = =

= = = V 31.7=
 

Then set up the vertical momentum equation, the unknown is the body weight: 

∑ = − = ° − = ° − cos 42.5 (cos 42.5 1)zF W mV mV mV  

= − ° =(0.3)(31.7)(1 cos 42.5 )Thus Ans.coneW 2.5 N  
 

3.80 A river (1) passes over a “drowned” 
weir as shown, leaving at a new condition  
(2). Neglect atmospheric pressure and assume 
hydrostatic pressure at (1) and (2). Derive an 
expression for the force F exerted by the river 
on the obstacle. Neglect bottom friction. 

 
Fig. P3.80 

Solution: The CV encloses (1) and (2) and cuts through the gate along the bottom, as 
shown. The volume flow and horizontal force relations give 

1 1 2 2V bh V bh=  

x weir 1 1 2 2 1 1 2 1
1 1F F gh (h b) gh (h b) ( h bV )(V V )
2 2

ρ ρ ρ∑ = − + − = −  

Note that, except for the different geometry, the analysis is exactly the same as for the 
sluice gate in Ex. 3.10. The force result is the same, also: 

( ) .Ans
⎛ ⎞
⎜ ⎟
⎝ ⎠

2 2 2 1
weir 1 2 1 1

2

1 hF gb h h h bV 1
2 h

= − − −      ρ ρ  
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3.81 Torricelli’s idealization of efflux 
from a hole in the side of a tank is 

2 ,V gh≈ as shown in Fig. P3.81. The 
tank weighs 150 N when empty and 
contains water at 20°C. The tank bottom 
is on very smooth ice (static friction 
coefficient ζ ≈ 0.01). For what water depth 
h will the tank just begin to move to 
the right?  

Fig. P3.81 

Solution: The hole diameter is 9 cm. The CV encloses the tank as shown. The coefficient 
of static friction is ζ = 0.01. The x-momentum equation becomes 

2
x tank out holeF W mu m V AV A(2gh) ζ ρ ρ∑ = − = = − = − = −  

2 2or: 0.01 (9790) (1 m) (h 0.3 0.09) 150 998 (0.09) (2)(9.81)h
4 4
π π⎡ ⎤ ⎛ ⎞+ + + = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

 

Solve for .Ansh 0.66 m≈   
 

3.82 The model car in Fig. P3.82 weighs 
17 N and is to be accelerated from rest by 
a 1-cm-diameter water jet moving at 75 m/s. 
Neglecting air drag and wheel friction, 
estimate the velocity of the car after it has 
moved forward 1 m. 

 
Fig. P3.82 

Solution: The CV encloses the car, moves to the left at accelerating car speed V(t), and 
cuts through the inlet and outlet jets, which leave the CS at relative velocity Vj − V. The 
force relation is Eq. (3.50): 

dmx rel car car out out in in jet jF a 0 m a m u m u 2m (V V),∑ − = − = − = − −∫  

dV
dt

2
car j jor: m 2 A (V V)ρ= −  

Except for the factor of “2,” this is identical to the “cart” analysis of Example 3.12 on 
page 140 of the text. The solution, for V = 0 at t = 0, is given there: 

2 2
j j 1

j car

V Kt 2 A 2(998)( /4)(0.01)V , where K 0.0905 m
1 V Kt m (17/9.81)

ρ π −= = = =
+
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dt
t

0

509tThus V (in m/s) and then compute distance S V
1 6.785t

= =
+ ∫  

The initial acceleration is 509 m/s2, quite large. Assuming the jet can follow the car 
without dipping, the car reaches S = 1 m at t ≈ 0.072 s, where V ≈ 24.6 m/s. Ans. 

 

3.83 Gasoline at 20°C is flowing at V1 = 
12 m/s in a 5-cm-diameter pipe when it 
encounters a 1-m length of uniform radial 
wall suction. After the suction, the velocity 
has dropped to 10 m/s. If p1 = 120 kPa, 
estimate p2 if wall friction is neglected.  

Solution: The CV cuts through sections 1 and 2 and the inside of the walls. We 
compute the mass flow at each section, taking ρ ≈ 680 kg/m3 for gasoline: 

2 2
1 2

kg kgm 680 (0.05) (12) 16.02 ; m 680 (0.05) (10) 13.35 
4 s 4 s
π π⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

The difference, 16.02 − 13.35 = 2.67 kg/s, is sucked through the walls. If wall friction is 
neglected, the force balance (taking the momentum correction factors β ≈ 1.0) is: 

2
x 1 1 2 2 2 2 1 1 2

2

F p A p A m V m V (120000 p ) (0.05)
4

(13.35)(10) (16.02)(12), solve for p  .Ans

π
∑ = − = − = −

= − ≈ 150 kPa
 

 

3.84 Air at 20°C and 1 atm flows in a 
25-cm-diameter duct at 15 m/s, as in 
Fig. P3.84. The exit is choked by a 90° cone, 
as shown. Estimate the force of the airflow 
on the cone. 

Solution: The CV encloses the cone, as 
shown. We need to know exit velocity. The 
exit area is approximated as a ring of 
diameter 40.7 cm and thickness 1 cm: 

 
Fig. P3.84 

3
2

1 1 2 2 2 2
m mQ A V (0.25) (15) 0.736 A V (0.407)(0.01)V , or V 57.6 

4 s s
π π= = = = ≈ ≈  
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The air density is ρ = p/RT = (101350)/[287(293)] ≈ 1.205 kg/m3. We are not given any 
pressures on the cone so we consider momentum only. The force balance is 

x cone out inF F m(u u ) (1.205)(0.736)(57.6cos 45° 15) Ans.∑ = = − = − ≈ 22.8 N  

The force on the cone is to the right because we neglected pressure forces. 
 

3.85 The thin-plate orifice in Fig. P3.85 
causes a large pressure drop. For 20°C water 
flow at 500 gal/min, with pipe D = 10 cm 
and orifice d = 6 cm, p1 − p2 ≈ 145 kPa. If 
the wall friction is negligible, estimate the 
force of the water on the orifice plate.  

Fig. P3.85 

Solution: The CV is inside the pipe walls, cutting through the orifice plate, as shown. 
At least to one-dimensional approximation, V1 = V2, so there is no momentum change. 
The force balance yields the force of the plate on the fluid: 

x plate on fluid 1 1 2 2 wall wall 2 1F F p A p A A m(V V ) 0τ∑ = − + − − = − ≈  

2
wall plateSince 0, we obtain F (145000) (0.1)

4
Ans.πτ ≈ = ≈ 1140 N  

The force of the fluid on the plate is opposite to the sketch, or to the right. 
 

3.86 For the water-jet pump of Prob. 3.36, 
add the following data: p1 = p2 = 25 lbf/in2, 
and the distance between sections 1 and 3 
is 80 in. If the average wall shear stress 
between sections 1 and 3 is 7 lbf/ft2, esti-
mate the pressure p3. Why is it higher than 
p1?  

Fig. P3.36 

Solution: The CV cuts through sections 1, 2, 3 and along the inside pipe walls. Recall 
from Prob. 3.36 that mass conservation led to the calculation V3 ≈ 6.33 m/s. Convert data 
to SI units: L = 80 in = 2.032 m, p1 = p2 = 25 psi = 172.4 kPa, and τwall = 7 psf = 335 Pa. 
We need mass flows for each of the three sections: 

2
1

2 2
2 3

kgm 998 (0.0762) (40) 82 ;
4 s

kg kgm 998 [(0.254) (0.0762) ](3) 138 and m 182 138 320 
4 s s

π

π

⎛ ⎞= ≈ 1⎜ ⎟
⎝ ⎠

⎛ ⎞= − ≈ ≈ + ≈⎜ ⎟
⎝ ⎠
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Then the horizontal force balance will yield the (high) downstream pressure: 

x 1 1 2 3 3 wall 2 3 3 2 2 1 1

2
3

F p (A A ) p A D L m V m V m V

(172400 p ) (0.254) 335 ( )(2.032) 320(6.33) 138(3) 182(40)
4

τ π
π π

∑ = + − − = − −

= − − 0.254 = − −
 

3Solve for p Ans.≈ 274000 Pa  

The pressure is high because the primary inlet kinetic energy at section (1) is converted 
by viscous mixing to pressure-type energy at the exit. 

 

3.87 Figure P3.87 simulates a manifold 
flow, with fluid removed from a porous 
wall or perforated section of pipe. Assume 
incompressible flow with negligible wall 
friction and small suction 1wV V .. If 
(p1, V1, Vw, ρ, D) are known, derive 
expressions for (a) V2 and (b) p2. 

 
Fig. P3.87 

Solution: The CV cuts through sections 1 and 2 and runs along the duct wall, as shown. 
Assuming incompressible flow, mass conservation gives 

5D
2 2 2

1 1 2 2 w 2 w 1
0

xV A V A V 1 Ddx V D 2.5 V D V D
5D 4 4

π ππ π⎛ ⎞= + − = + =⎜ ⎟
⎝ ⎠∫  

w 1Assuming V V , solve for (a)Ans.−2 1 wV  V   10V=  

Then use this result while applying the momentum relation to the same CV: 

dm2
x 1 2 w w 2 2 1 1 w wF (p p ) D dA m u m u u

4
π τ∑ = − − = − +∫ ∫  

Since τw ≈ 0 and uw ≈ 0 and the area A1 cancels out, we obtain the simple result 

( )2 2
2 1 1 2p p V V ( )  (b)Ans.ρ= + − = 1 w 1 wp 20 V V 5V+ −ρ  

 

3.88 The boat in Fig. P3.88 is jet-propelled 
by a pump which develops a volume flow 
rate Q and ejects water out the stern at 
velocity Vj. If the boat drag force is F = kV2, 
where k is a constant, develop a formula for 
the steady forward speed V of the boat. 

 
Fig. P3.88 
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Solution: Let the CV move to the left at boat speed V and enclose the boat and the 
pump’s inlet and exit. Then the momentum relation is 

2
x pump j inlet j inlet jF kV m (V V V ) Q(V V) if we assume V Vρ∑ = = + − ≈ +  

If, further, jV V , then the approximate solution is: V ≈ (ρQVj/k)1/2 Ans. 
If V and Vj are comparable, then we solve a quadratic equation: 

V , where Ans.≈ 2 1/2
j

Q[ 2 V ]
2k
ρζ ζ ζ ζ+ + =  

 

3.89 Consider Fig. P3.36 as a general problem for analysis of a mixing ejector pump. If 
all conditions (p, ρ, V) are known at sections 1 and 2 and if the wall friction is negligible, 
derive formulas for estimating (a) V3 and (b) p3. 

Solution: Use the CV in Prob. 3.86 but use symbols throughout. For volume flow, 

 ( )2 2 2 2 2
1 1 2 2 1 3 2 3 1 2 1 2V D V D D V D , or: V V V (1 ), (D /D )
4 4 4
π π π α α α+ − = = + − =  (A) 

Now apply x-momentum, assuming (quite reasonably) that p1 = p2: 

( )2 2 2 2 2 2 2 2
1 3 2 w 2 2 3 2 1 2 1 1(p p ) D D L D V D D V D V

4 4 4 4
π π π πτ π ρ ρ ρ− − = − − −  

where
⎛ ⎞⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠

w   Clean up: .Ans
2

2 2 2 1
3 1 1 2 3

2 2

4L Dp p V (1 )V V
D D

= − + + − − =
τ ρ α α α  

You have to insert V3 into this answer from Eq. (A) above, but the algebra is messy. 
 

3.90 As shown in Fig. P3.90, a liquid 
column of height h is confined in a vertical 
tube of cross-sectional area A by a stopper. 
At t = 0 the stopper is suddenly removed, 
exposing the bottom of the liquid to 
atmospheric pressure. Using a control-
volume analysis of mass and vertical 
momentum, derive the differential equation 
for the downward motion V(t) of the liquid. 
Assume one-dimensional, incompressible, 
frictionless flow. 

 
Fig. P3.90 
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Solution: Let the CV enclose the cylindrical blob of liquid. With density, area, and the 
blob volume constant, mass conservation requires that V = V(t) only. The CV accelerates 
downward at blob speed V(t). Vertical (downward) force balance gives 

( )down rel down out out in in
dF a dm V d m V m V 0
dt

ρ υ∑ − = + − =∫ ∫  

Δblob w w blobor: m g p A A am 0τ+ − − =  

ΔSince p 0 and 0, we are left with Ans.τ= = blob
dVa g
dt

= =  

 

3.91 Extend Prob. 3.90 to include a linear (laminar) average wall shear stress of the form 
τ ≈ cV, where c is a constant. Find V(t), assuming that the wall area remains constant. 

Solution: The downward momentum relation from Prob. 3.90 above now becomes 

blob w blob
blob

dV dV c DL0 m g DL m , or V g, where
dt dt m

πτ π ζ ζ= − − + = =  

where we have inserted the laminar shear τ = cV. The blob mass equals ρ(π/4)D2L. For 
V = 0 at t = 0, the solution to this equation is 

, where Ans.t

blob

g c DL 4cV  (1 e )
m D

−= − = =ζ πζ
ζ ρ

 

 

3.92 A more involved version of Prob. 3.90 
is the elbow-shaped tube in Fig. P3.92, with 
constant cross-sectional area A and diameter 

,D h  L. Assume incompressible flow, 
neglect friction, and derive a differential 
equation for dV/dt when the stopper is 
opened. Hint: Combine two control volumes, 
one for each leg of the tube. 

Solution: Use two CV’s, one for the 
vertical blob and one for the horizontal 
blob, connected as shown by pressure.  
  

 
Fig. P3.92 
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From mass conservation, V1 = V2 = V(t). For CV’s #1 and #2, 

 down rel atm I 1
dVF a dm (mv) 0 (p p )A gAh m
dt

ρ∑ − = Δ = = − + −∫  (No. 1) 

 x rel I atm 2
dVF a dm (mu) 0 (p p )A 0 m
dt

∑ − = Δ = = − + −∫  (No. 2) 

Add these two together. The pressure terms cancel, and we insert the two blob masses: 

dVgAh ( Ah AL) 0, or: .
dt

Ansρ ρ ρ− + =
dV hg
dt L h

=
+

 

 

3.93 Extend Prob. 3.92 to include a linear (laminar) average wall shear stress of the form 
τ ≈ cV, where c is a constant. Find V(t), assuming that the wall area remains constant. 

Solution: For the same two CV’s as in Prob. 3.92 above, we add wall shears: 

 Δ 1
dVpA gAh (cV) Dh m
dt

ρ π+ − =  (No. 1) 

 Δ 2
dVpA 0 (cV) DL m
dt

π− + − =  (No. 2) 

Add together, divide by (ρA), A = πD2/4, and rearrange into a 1st order linear ODE: 

⎛ ⎞
⎜ ⎟
⎝ ⎠

subject to at  .Anso
dV 4c ghV V 0 t 0, h h
dt D L h

+ = = = =
+ρ

 

The blob length (L + h) could be assumed constant, but h = h(t). We could substitute for 
V = −dh/dt and rewrite this relation as a 2nd order ODE for h(t), but we will not proceed 
any further with an analytical solution to this differential equation. 

 

3.94 Attempt a numerical solution of Prob. 3.93 for SAE 30 oil at 20°C. Let h = 20 cm, 
L = 15 cm, and D = 4 mm. Use the laminar shear approximation from Sec. 6.4: τ  ≈ 
8μV/D, where μ is the fluid viscosity. Account for the decrease in wall area wetted by the 
fluid. Solve for the time required to empty (a) the vertical leg and (b) the horizontal leg. 

Solution: For SAE 30 oil, μ ≈ 0.29 kg/(m · s) and ρ ≈ 917 kg/m3. For laminar flow as 
given, c = 8μ/D, so the coefficient (4c/ρD) = 4[8(0.29)/0.004]/[917(0.004)] ≈ 632 s−1. 
[The flow is highly damped.] Then the basic differential equation becomes 

t

0

dV 9.81h632V , with h 0.2 V dt and V(0) 0
dt 0.15 h

+ = = − =
+ ∫  
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We may solve this numerically, e.g., by Runge-Kutta or a spreadsheet or whatever. 
After h reaches zero, we keep h = 0 and should decrease L = 0.15 − ∫ V dt until L = 0. 
The results are perhaps startling: the highly damped system (lubricating oil in a 
capillary tube) quickly reaches a ‘terminal’ (near-zero-acceleration) velocity in 16 ms 
and then slowly moves down until h ≈ 0, t ≈ 70 s. The flow stops, and the horizontal leg 
will not empty. 

The computed values of V and h for the author’s solution are as follows: 
 

t, s: 0 5 10 15 20 30 40 50 60 70 

V, m/s: 0 0.008 0.007 0.006 0.005 0.003 0.001 0.000 0.000 0.000 

h, m: 0.2 0.162 0.121 0.089 0.063 0.028 0.011 0.004 0.001 0.000 
________________________________________________________________________ 

P3.95     A cylindrical water tank discharges through 

a well-rounded orifice to hit a plate, as in Fig. P3.95. 

Use the Torricelli formula of Prob. P3.81 

to estimate the exit velocity. (a) If, at this 

instant, the force F required to hold the 

plate is 40 N, what is the depth h ? 

(b)  If the tank surface is dropping at the 

rate of 5 cm every 2 seconds, what is the tank diameter  D? 

 

Solution:  For water take ρ = 998 kg/m3.  The control volume surrounds the plate and yields 

h 

d = 4 cm

F

D 

CV

).(
)/81.9)(2()04.0)(4/)(/998(

40:

)2()4/(
Thus;2saysTorricelliBut

4
)()(

223

2
2

22

aAns
smmmkg

NhdataGiven

gd
FhghV

VdVVAVmumFF

jet

jetjetjetjetjetjetininx

m1.63==

==

==−−=−==Σ

π

πρ

πρρ

Fig. P3.95
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(b)  In 2 seconds, h drops from 1.63m to 1.58m, not much change.  So, instead of a laborious 
calculus solution, find Qjet,av for an average depth  hav = (1.63+1.58)/2 = 1.605 m: 
 

 

).(
)05.0)(4/(
)2)(00705.0(

)4/(
:or,Equate

/00705.0)605.1)(/81.9(2)04.0(
4

2

tank

322

bAns
m
s

h
tQDhAtQ

smmsmmghAQ avjetav

m0.60≈=
Δ

Δ
=Δ=Δ

≈==

ππ

π
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3.96 Extend Prob. 3.90 to the case of the 
liquid motion in a frictionless U-tube whose 
liquid column is displaced a distance Z 
upward and then released, as in Fig. P3.96. 
Neglect the short horizontal leg and combine 
control-volume analyses for the left and 
right legs to derive a single differential 
equation for V(t) of the liquid column. 

Solution: As in Prob. 3.92, break it up 
into two moving CV’s, one for each leg, as 
shown. By mass conservation, the velocity 
V(t) is the same in each leg. Let pI be the 
bottom pressure in the (very short) cross-
over leg. Neglect wall shear stress. Now 
apply vertical momentum to each leg: 

Leg#1: down relF a dm∑ − ∫  

a I 1 1
dV(p p )A gAh m 0
dt

ρ= − + − =  

 
Fig. P3.96 

 

up rel I a 2 2
dVLeg#2: F a dm (p p )A gAh m 0
dt

ρ∑ − = − − − =∫  

Add these together. The pressure terms will cancel. Substitute for the h’s as follows: 

1 2 1 2 1 2
dV dV dVgA(h h ) gA(2Z) (m m ) A(h h ) AL
dt dt dt

ρ ρ ρ ρ− = = + = + =  

dZSince V , we arrive at, finally,
dt

Ans.= −
2

2
d Z 2g Z 0

Ldt
+ =  

The solution is a simple harmonic oscillation: Z C cos t (2g/L) D sin t (2g/L) .  ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦  
 

3.97 Extend Prob. 3.96 to include a linear (laminar) average wall shear stress resistance 
of the form τ ≈ 8μV/D, where μ is the fluid viscosity. Find the differential equation for 
dV/dt and then solve for V(t), assuming an initial displacement z = zo, V = 0 at t = 0. The 
result should be a damped oscillation tending toward z = 0. 

Solution: The derivation now includes wall shear stress on each leg (see Prob. 3.96): 

down rel 1 w 1 1
dVLeg#1: F a dm p A gAh Dh m 0
dt

ρ τ π∑ − = Δ + − − =∫  
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up rel 2 w 2 2
dVLeg#2: F a dm p A gAh Dh m 0
dt

ρ τ π∑ − = −Δ − − − =∫  

Again add these two together: the pressure terms cancel, and we obtain, if A = πD2/4, 

where Ans.
2

w
w2

4d Z 2g 8 VZ 0,
D L Ddt

+ + = =
τ μτ

ρ
 

The shear term is equal to the linear damping term (32μ/ρD2)(dZ/dt). If we assume an 
initial static displacement Z = Zo, V = 0, at t = 0, we obtain the damped oscillation 

, where and Ans.
2

t/t*
o

DZ Z e cos( t) t* 2g/L
16

−= = =
ρω ω

μ
 

 

3.98 As an extension of Ex. 3.9, let the 
plate and cart be unrestrained, with fric-
tionless wheels. Derive (a) the equation of 
motion for cart velocity Vc(t); and (b) the 
time required for the cart to accelerate to 
90% of jet velocity. (c) Compute numerical 
values for (b) using the data from Ex. 3.9 
and a cart mass of 2 kg.  

Solution: (a) Use Eq. (3.49) with arel equal to the cart acceleration and ∑Fx = 0: 

ρ∑ − = = −∫, . (a)c
x x rel c

dVF a m u dA m Ans
dt j j j cV n A V V⋅ = − −ρ 2( )  

The above 1st-order differential equation can be solved by separating the variables: 

2
0 0

,
( )

cV t
jc

cj c

AdV K dt where K
mV V
ρ

= =
−∫ ∫  

9 : 0.90  (b)
1

jc

j j j

V KtVSolve for if Ans.
V V Kt KV

= = = =
+

c
90%

j j

9mt
A Vρ

 

3 2
9(2 )   3.10 ,   (c)

(1000 kg/m )(0.0003 m )(20 m/s)
kgFor the Example data Ans.= ≈90%t 3.0 s  
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3.99 Let the rocket of Fig. E3.12 start at z = 0, with constant exit velocity and exit mass 
flow, and rise vertically with zero drag. (a) Show that, as long as fuel burning continues, 
the vertical height S(t) reached is given by 

1ζ ζ ζ ζ= − + = −[ ln ], 1e o

o

V M mtS where
m M

 

(b) Apply this to the case Ve = 1500 m/s and Mo = 1000 kg to find the height reached 
after a burn of 30 seconds, when the final rocket mass is 400 kg. 

Solution: (a) Ignoring gravity effects, integrate the equation of the projectile’s velocity 
(from E3.12): 

0

⎡ ⎤⎛ ⎞
= = − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫ ∫( ) ( ) ln 1

t

e
o

mtS t V t dt V dt
M

 

 1 ,    ,
o o

mt mLet then d dt and the becomes
M M

ζ ζ= − = − integral  

1

ζ
ζζ ζ ζ ζ ζ ζ ζ ζ ζ−⎡ ⎤ ⎛ ⎞ ⎛ ⎞= − = − = − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠∫ 1( ) ( ) ( ln ) [ ln ] [ ln 1]o e o e o

e
M V M V MS t V d
m m m

 

(b) Substituting the numerical values given, 

1000 kg 400 kg (20 kg/s)(30 s)20 kg/s 1 0.40
30 s 1000 kg

f oM MMm and
t t

ζ
−Δ −

= = = = = − =
Δ Δ

 

(1500 m/s)(1000 kg)( 30 s) [0.4 ln(0.4) (0.4) 1]  m
(20 kg/s)

S t Ans.= = − + = 17,500  

 

3.100 Suppose that the solid-propellant rocket of Prob. 3.35 is built into a missile of 
diameter 70 cm and length 4 m. The system weighs 1800 N, which includes 700 N of 
propellant. Neglect air drag. If the missile is fired vertically from rest at sea level, estimate 
(a) its velocity and height at fuel burnout and (b) the maximum height it will attain. 

Solution: The theory of Example 3.12 holds until burnout. Now Mo = 1800/9.81 = 
183.5 kg, and recall from Prob. 3.35 that Ve = 1150 m/s and the exit mass flow is 11.8 kg/s. 
The fuel mass is 700/9.81 = 71.4 kg, so burnout will occur at tburnout = 71.4/11.8 = 6.05 
s. Then Example 3.12 predicts the velocity at burnout: 

b
11.8(6.05)V 1150 ln 1 9.81(6.05)   (a)

183.5
Ans.⎛ ⎞= − − − ≈⎜ ⎟

⎝ ⎠
m507
s
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Meanwhile, Prob. 3.99 gives the formula for altitude reached at burnout: 

2
b

183.5(1150) 1S [1 (0.611){ln(0.611) 1}] (9.81)(0.605)  (a)
11.8 2

Ans.= + − − ≈ 1393 m  

where “0.611” = 1 – 11.8(6.05)/183.5, that is, the mass ratio at burnout. After burnout, 
with drag neglected, the missile moves as a falling body. Maximum height occurs at 

oV 507t 51.7 s,  whence
g 9.81

Δ = = =  

2 2
o

1S S g t 1393 (1/2)(9.81)(51.7)   (b)
2

Ans.= + Δ = + ≈ 14500 m  

 

3.101 Modify Prob. 3.100 by accounting for air drag on the missile F ≈ CρD2V2, where 
C ≈ 0.02, ρ is the air density, D is the missile diameter, and V is the missile velocity. 
Solve numerically for (a) the velocity and altitude at burnout and (b) the maximum 
altitude attained. 

Solution: The CV vertical-momentum analysis of Prob. 3.100 is modified to include a 
drag force resisting the upward acceleration: 

4.26
2 2 o

e D o o
o

T BzdVm mV mg C D V , where m m mt, and
dt T

ρ ρ ρ
⎛ ⎞−

= − − = − = ⎜ ⎟
⎝ ⎠

 

o e D
kg mwith numerical values m 183.5 kg, m 11.8 , V 1150 , D 0.7 m, C 0.02
s s

= = = = =  

We may integrate this numerically, by Runge-Kutta or a spreadsheet or whatever, starting 
with V = 0, z = 0, at t = 0. After burnout, t ≈ 6.05 s, we drop the thrust term. The density 
is computed for the U.S. Standard Atmosphere from Table A-6. The writer’s numerical 
solution is shown graphically on the next page. The particular values asked for in the 
problem are as follows: 

At burnout, t 6.05 s: . (a)Ans= V 470 m/s, z  1370 m≈ ≈  

 At maximum altitude:  (b)Ans.maxt 40 s, z 8000 m≈ ≈  

We see that drag has a small effect during rocket thrust but a large effect afterwards. 
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Problem 3.101 – NUMERICAL SOLUTION 

 

3.102 As can often be seen in a kitchen 
sink when the faucet is running, a high-
speed channel flow (V1, h1) may “jump” to 
a low-speed, low-energy condition (V2, 
h2) as in Fig. P3.102. The pressure at 
sections 1 and 2 is approximately 
hydrostatic, and wall friction is negligible. 
Use the continuity and momentum relations 
to find h2 and V2 in terms of (h1, V1). 

 
Fig. P3.102 

Solution: The CV cuts through sections 1 and 2 and surrounds the jump, as shown. 
Wall shear is neglected. There are no obstacles. The only forces are due to hydrostatic 
pressure: 

 x 1 1 2 2 2 1

1 1 2 2

1 1F 0 gh (h b) gh (h b) m(V V ),
2 2
where m V h b V h b

ρ ρ

ρ ρ

∑ = = − = −

= =
 

2 2 1Solve for V and h /h ) .Ans= = 2
1 1 2 1 1

1 1V h /h 1 8V /(gh
2 2

− + +  
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3.103 Suppose that the solid-propellant rocket of Prob. 3.35 is mounted on a 1000-kg 
car to propel it up a long slope of 15°. The rocket motor weighs 900 N, which includes 
500 N of propellant. If the car starts from rest when the rocket is fired, and if air drag 
and wheel friction are neglected, estimate the maximum distance that the car will travel 
up the hill. 

Solution: This is a variation of Prob. 3.100, except that “g” is now replaced by “g sinθ.” 
Recall from Prob. 3.35 that the rocket mass flow is 11.8 kg/s and its exit velocity is 1150 m/s. 
The rocket fires for tb = (500/9.81)/11.8 = 4.32 sec, and the initial mass is Mo = (1000 + 
900/9.81) = 1092 kg. Then the differential equation for uphill powered motion is 

e o
dVm mV mgsin , m M mt
dt

θ= − = −  

e oThis integrates to: V(t) V ln(1 mt/M ) gt sin for t 4.32 s.θ= − − − ≤  

After burnout, the rocket coasts uphill with the usual falling-body formulas with “g sinθ.” 
The distance travelled during rocket power is modified from Prob. 3.99: 

2
o e o o

1S (M V /m)[1 (1 mt/M ){ln(1 mt/M ) 1}] gt sin
2

θ= + − − − −  

Apply these to the given data at burnout to obtain 

burnout
1V 1150 ln(0.9533) (9.81)sin15 (4.32)  m/s
2

= − − ° ≈ 44.0  

2
burnout

1092(1150) 1S [1 0.9533{ln(0.9533) 1}] (9.81)sin15 (4.32) 94 m
11.8 2

= + − − ° ≈  

The rocket then coasts uphill a distance ΔS such that Vb2 = 2gΔS sinθ, or ΔS = 
(44.0)2/[2(9.81)sin 15°] ≈ 381 m. The total distance travelled is 381 + 94 ≈ 475 m Ans. 

 

3.104 A rocket is attached to a rigid 
horizontal rod hinged at the origin as in 
Fig. P3.104. Its initial mass is Mo, and its 
exit properties are m  and Ve relative to the 
rocket. Set up the differential equation for 
rocket motion, and solve for the angular 
velocity ω(t) of the rod. Neglect gravity, air 
drag, and the rod mass. 

 
Fig. P3.104 
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Solution: The CV encloses the rocket and moves at (accelerating) rocket speed Ω(t). 
The rocket arm is free to rotate, there is no force parallel to the rocket motion. Then 
we have 

tangent rel e e o
dF 0 a dm m( V ), or mR mV , where m M mt
dt
Ω

∑ = − = − = = −∫  

Integrate, with 0 at t 0, to obtain .Ans
⎛ ⎞

Ω = = Ω ⎜ ⎟
⎝ ⎠

e

o

V mt  ln 1
R M

= − −  

 

3.105 Extend Prob. 3.104 to the case where the rocket has a linear air drag force F = 
cV, where c is a constant. Assuming no burnout, solve for ω(t) and find the terminal 
angular velocity, i.e., the final motion when the angular acceleration is zero. Apply to the 
case Mo = 6 kg, R = 3 m, m = 0.05 kg/s, Ve = 1100 m/s, and c = 0.075 N·s/m to find the 
angular velocity after 12 s of burning. 

Solution: If linear resistive drag is added to Prob. 3.104, the equation of motion 
becomes 

e
o

mVdm C , where m M mt, with 0 at t 0
dt R
Ω

= − Ω = − Ω = =  

The solution is found by separation of variables: 

e
o0 0

d dtIf B mV /R, then , or: . (a)
B C M mt

t

Ans
Ω ⎡ ⎤⎛ ⎞Ω ⎢ ⎥= = Ω = − −⎜ ⎟− Ω − ⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫

C/m

o

B mt1 1
C M

 

Strictly speaking, there is no terminal velocity, but if we set the acceleration equal to zero 
in the basic differential equation, we obtain an estimate Ωterm = mVe/(RC). Ans. (b) 

For the given data, at t = 12 s, we obtain the angular velocity 
0.075
0.05(0.05)(1100) 0.05(12)At t 12 s: 1 1  . (c)

(3.0)(0.075) 6.0
Ans

⎡ ⎤
⎛ ⎞⎢ ⎥= Ω = − − ≈⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

rad36
sec

 

 

3.106 Extend Prob. 3.104 to the case where the rocket has a quadratic air drag force F = 
kV2, where k is a constant. Assuming no burnout, solve for ω(t) and find the terminal 
angular velocity, i.e., the final motion when the angular acceleration is zero. Apply to the 
case Mo = 6 kg, R = 3 m, m = 0.05 kg/s, Ve = 1100 m/s, and k = 0.0011 N·s2/m2 to find 
the angular velocity after 12 s of burning. 
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Solution: If quadratic drag is added to Prob. 3.104, the equation of motion becomes 

2e
o

mVdm kR , where m M mt, with  at t 0
dt R
Ω

= − Ω = − Ω = 0 =  

The writer has not solved this equation analytically, although it is possible. A numerical 
solution results in the following results for this particular data (Ve = 1100 m/s, etc.): 
 
t, sec: 0 3 6 9 12 15 20 30 40 50 60 70 
Ω, rad/s: 0 9.2 18.4 27.3 35.6 43.1 53.5 66.7 72.0 73.9 74.4 74.5 
 
The answer desired, Ω ≈ 36 rad/s at t = 12 s, is coincidentally the same as Prob. 3.105. 

Note that, in this case, the quadratic drag, being stronger at high Ω, causes the rocket 
to approach terminal speed before the fuel runs out (assuming it has that much fuel): 

e
final 2 2

mVd 0.05(1100)Terminal speed, 0:  .
dt kR 0.0011(3)

AnsΩ
= Ω = = =

rad74.5
s

 

 

3.107 The cart in Fig. P3.107 moves at 
constant velocity Vo = 12 m/s and takes on 
water with a scoop 80 cm wide which dips 
h = 2.5 cm into a pond. Neglect air drag 
and wheel friction. Estimate the force 
required to keep the cart moving.  

Fig. P3.107 

Solution: The CV surrounds the cart and scoop and moves to the left at cart speed Vo. 
Momentum within the cart fluid is neglected. The horizontal force balance is 

x scoop inlet inlet oF Thrust m V , but V V  (water motion relative to scoop)∑ = − = − =  

oTherefore Thrust mV [998(0.025)(0.8)(12)](12) Ans.= = ≈ 2900 N  
 

3.108 A rocket sled of mass M is to be 
decelerated by a scoop, as in Fig. P3.108, 
which has width b into the paper and dips into 
the water a depth h, creating an upward jet at 
60°. The rocket thrust is T to the left. Let the 
initial velocity be Vo, and neglect air drag and 
wheel friction. Find an expression for V(t) of 
the sled for (a) T = 0 and (b) finite T ≠ 0. 

 
Fig. P3.108 
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Solution: The CV surrounds the sled and scoop and moves to the left at sled speed V(t). 
Let x be positive to the left. The horizontal force balance is 

x out out in in
dVF T M m u m u m( V cos ) m( V), m bhV
dt

θ ρ∑ = − = − = − − − =  

2
sled

dVor: M T CV , C bh(1 cos )
dt

ρ θ= − = −  

Whether or not thrust T = 0, the variables can be separated and integrated: 

= = −∫ ∫
o

V t

2
V 0

dV C(a) T 0: dt, or:  (a)
MV

Ans.o

o

VV
1 CV t/M

=
+

 

o

V t

2
V 0

M dV(b) T > 0: dt, or:  (b)
T CV

Ans.=
−∫ ∫ finalV V  tanh[ t ]= +α φ  

where 1/2 1/2 1
final o fV [T/ bg(1 cos )] , [T bh(1 cos )] /M, tanh (V /V )ρ θ α ρ θ φ −= − = − =  

This solution only applies when Vo < Vfinal, which may not be the case for a speedy sled. 
 

3.109 Apply Prob. 3.108 to the following data: Mo = 900 kg, b = 60 cm, h = 2 cm, Vo = 
120 m/s, with the rocket of Prob. 3.35 attached and burning. Estimate V after 3 sec. 

Solution: Recall from Prob. 3.35 that the rocket had a thrust of 13600 N and an exit 
mass flow of 11.8 kg/s. Then, after 3 s, the mass has only dropped to 900 – 11.8(3) = 865 kg, 
so we can approximate that, over 3 seconds, the sled mass is near constant at about 882 kg. 
Compute the “final” velocity if the rocket keeps burning: 

1/2
1/2

final
13600 mV [T/{ bh(1 cos )}] 47.66 

998(0.6)(0.02)(1 cos60 ) s
ρ θ ⎡ ⎤= − = ≈⎢ ⎥− °⎣ ⎦

 

Thus solution (b) to Prob. 3.108 does not apply, since Vo = 120 m/s > Vfinal. We 
therefore effect a numerical solution of the basic differential equation from Prob. 3.108: 

2 2
o

dV dV mM T bh(1 cos )V , or: 882 13600 5.988V , with V 120 
dt dt s

ρ θ= − − = − =  

The writer solved this on a spreadsheet for 0 < t < 3 sec. The results may be tabulated: 

t, sec: 0.0 0.5 1.0 1.5 2.0 2.5 3.0 sec 
V, m/s: 120.0 90.9 75.5 66.3 60.4 56.6 53.9 m/s 

The sled has decelerated to 53.9 m/s, quite near its “steady” speed of about 46 m/s. 
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3.110 The horizontal lawn sprinkler in 
Fig. P3.110 has a water flow rate of 
4.0 gal/min introduced vertically through 
the center. Estimate (a) the retarding torque 
required to keep the arms from rotating and  

 
Fig. P3.110 

(b) the rotation rate (r/min) if there is no re- 
tarding torque. 

Solution: The flow rate is 4 gal/min = 0.008912 ft3/s, and ρ = 1.94 slug/ft3. The 
velocity issuing from each arm is Vo = (0.008912/2)/[(π/4)(0.25/12 ft)2] ≈ 13.1 ft/s. Then: 

o o
2

V T(a) From Example 3.15,   and, if there is no motion ( 0),
R QR

ω ω
ρ

= − =  

o oT QRV (1.94)(0.008912)(6/12)(13.1)  . (a)Ansρ= = ≈ 0.113 ft-lbf  

o no friction o
13.1 ft/s rad(b) If T 0, then V /R 26.14  . (b)
6/12 ft s

Ansω= = = = ≈
rev250
min

 

 

3.111 In Prob. 3.60 find the torque caused 
around flange 1 if the center point of exit 2 
is 1.2 m directly below the flange center. 

Solution: The CV encloses the elbow 
and cuts through flange (1). Recall from 
Prob. 3.60 that D1 = 10 cm, D2 = 3 cm, 
weight flow = 150 N/s, whence V1 = 1.95 m/s 
and V2 = 21.7 m/s. Let “O” be in the center 
of flange (1). Then rO2 = −1.2j and rO1 = 0. 

 
Fig. P3.60 

The pressure at (1) passes through O, thus causes no torque. The moment relation is 
⎛ ⎞∑ = = × − × = − × − −⎜ ⎟
⎝ ⎠

O O O2 2 O1 1
150 kgM m[( ) ( )]  [( 1.2 ) ( 16.6 13.9 )]
9.81 s

T r V r V j i j  

= − ⋅Oor: 305  N m Ans.T k  
 

3.112 The wye joint in Fig. P3.112 splits 
the pipe flow into equal amounts Q/2, 
which exit, as shown, a distance Ro from 
the axis. Neglect gravity and friction. Find 
an expression for the torque T about the 
x axis required to keep the system rotating 
at angular velocity Ω.  

Fig. P3.112 
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Solution: Let the CV enclose the junction, cutting through the inlet pipe and thus 
exposing the required torque T. If y is “up” in the figure, the absolute exit velocities are 

upper o o o lower o o oV cos V sin R ; V cos V sin Rθ θ θ θ= + + Ω = − − ΩV i j k V i j k  

where Vo = Q/(2A) is the exit velocity relative to the pipe walls. Then the moments about 
the x axis are related to angular momentum fluxes by 

( ) ( )
axis o upper o lower inlet inlet

2 2
o o o o o o

T ( Q/2)(R ) ( Q/2)( R ) Q( )

Q QR R V R R V Q(0)
2 2

ρ ρ ρ

ρ ρ ρ

∑ = = × + − × −

= Ω − Ω + Ω + Ω −

M i j V j V r V

i k i k
 

Each arm contributes to the torque via relative velocity (ΩRo). Other terms with Vo cancel. 

ρ= Ω =2
oFinal torque result: T QR .Ans2

omR Ω  
 

3.113 Modify Ex. 3.14 so that the arm 
starts up from rest and spins up to its final 
rotation speed. The moment of inertia of 
the arm about O is Io. Neglect air drag. 
Find dω/dt and integrate to determine ω  (t), 
assuming ω = 0 at t = 0. 

Solution: The CV is shown. Apply clock-
wise moments: 

o
CS

( ) dm ( ) dm,∑ − × = ×∫ ∫relM r a r V  

2
o o o

dor: T I Q(R RV ),
dt
ω ρ ω− − = −  

 
Fig. 3.14 View from above of a single arm of 

a rotating lawn sprinkler. 

2
o o

o o

QRV Td QRor:
dt I I

ρω ρ ω −
+ =  

Integrate this first-order linear differential equation, with ω = 0 at t = 0. The result is: 

Ans.ω
⎛ ⎞ ⎡ ⎤= ⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

2
oQR t/Io o

2
V T 1 e
R QR

ρ

ρ
−− −  
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3.114 The 3-arm lawn sprinkler of  
Fig. P3.114 receives 20°C water through 
the center at 2.7 m3/hr. If collar friction is 
neglected, what is the steady rotation rate 
in rev/min for (a) θ = 0°; (b) θ = 40°? 

Solution: The velocity exiting each arm is 

o 2 2
Q/3 2.7/[(3600)(3)] mV 6.50 

s( /4)d ( /4)(0.007)π π
= = =  

 
Fig. P3.114 

With negligible air drag and bearing friction, 
the steady rotation rate (Example 3.15) is 

o
final

V cos (6.50)cos0 rad(a) 0 : 43.3  . (a)
R 0.15 m s

Ansθω θ ω °
= = ° = = =

rev414
min

 

o(b) cos (414)cos40  . (b)Ansθ ω ω θ= 40° : = = ° =
rev317
min

 

 

3.115 Water at 20°C flows at 30 gal/min 
through the 0.75-in-diameter double pipe 
bend of Fig. P3.115. The pressures are p1 = 
30 lbf/in2 and p2 = 24 lbf/in2. Compute the 
torque T at point B necessary to keep the 
pipe from rotating. 

Solution: This is similar to Example 3.13, 
of the text. The volume flow Q = 30 gal/min = 
0.0668 ft3/s, and ρ = 1.94 slug/ft3. Thus the 
mass flow ρQ = 0.130 slug/s. The velocity 
in the pipe is 

 
Fig. P3.115 

1 2 2
0.0668 ftV V Q/A 21.8 

s( /4)(0.75/12)π
= = = =  

If we take torques about point B, then the distance “h1,” from p. 143, = 0, and h2 = 3 ft. 
The final torque at point B, from “Ans. (a)” on p. 143 of the text, is 

π
= + = + ≈ ⋅2

B 2 2 2 2T h (p A mV ) (3 ft)[(24 psi) (0.75 in) (0.130)(21.8)] .
4

Ans40 ft lbf  
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3.116 The centrifugal pump of Fig. P3.116 
has a flow rate Q and exits the impeller at an 
angle θ2 relative to the blades, as shown. The 
fluid enters axially at section 1. Assuming 
incompressible flow at shaft angular velocity 
ω, derive a formula for the power P required 
to drive the impeller. 

Solution: Relative to the blade, the fluid 
exits at velocity Vrel,2 tangent to the blade, 
as shown in Fig. P3.116. But the Euler 
turbine formula, Ans. (a) from Example 3.14 
of the text, 

2 t2 1 t1

2 t2 t1

Torque T Q(r V r V )
Qr V  (assuming V 0)

ρ
ρ

= −

≈ ≈
 

 
Fig. P3.116 

 

involves the absolute fluid velocity tangential to the blade circle (see Fig. 3.13). To 
derive this velocity we need the “velocity diagram” shown above, where absolute 
exit velocity V2 is found by adding blade tip rotation speed ω r 2 to Vrel,2. With 
trigonometry,  

t2 2 n2 2 n2 exit
2 2

QV r V cot , where V Q/A is the normal velocity
2 r b

ω θ
π

= − = =  

With torque T known, the power required is P = Tω. The final formula is: 

.Ans
⎡ ⎤⎛ ⎞

−⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

2 2 2
2 2

QP Qr r cot
2 r b

= ρ ω ω θ
π

 

 

3.117 A simple turbomachine is con-
structed from a disk with two internal 
ducts which exit tangentially through 
square holes, as in the figure. Water at 
20C enters the disk at the center, as 
shown. The disk must drive, at 250 rev/min, 
a small device whose retarding torque is 
1.5 N⋅m. What is the proper mass flow 
of water, in kg/s? 
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Solution: This problem is a disguised version of the lawn-sprinkler arm in Example 3.15. 
For that problem, the steady rotating speed, with retarding torque To, was 

2 ,          .o o
o

V T where V is the exit velocity and R is the arm radius
R QR

ω
ρ

= −  

Enter the given data, noting that Q = 2Vo ΔLexit2 is the total volume flow from the 
two arms: 

2 2
2 1.5 m m250  ,  
60 s 0.16 m s998(2 )(0.02 m) (0.16 m)

o
o

o

Vrad N solve V
V

πω ⋅⎛ ⎞= = − =⎜ ⎟⎝ ⎠
6.11  

The required mass flow is thus, 

2
3

kg m998 2 6.11 (0.02 m)  .
sm

Q Ansρ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
kgm 2.44
s

 

 

3.118 Reverse the flow in Fig. P3.116, so 
that the system operates as a radial-inflow 
turbine. Assuming that the outflow into 
section 1 has no tangential velocity, derive 
an expression for the power P extracted by 
the turbine.  

Solution: The Euler turbine formula, “Ans. (a)” from Example 3.14 of the text, is valid 
in reverse, that is, for a turbine with inflow at section 2 and outflow at section 1. The 
torque developed is 

o 2 t2 1 t1 2 t2 t1T Q(r V r V ) Qr V if V 0ρ ρ= − ≈ ≈  

The velocity diagram is reversed, as shown in the figure. The fluid enters the turbine 
at angle θ2, which can only be ensured by a guide vane set at that angle. The absolute 
tangential velocity component is directly related to inlet normal velocity, giving the 
final result 

t2 n2 2 n2
2 2

o

QV V cot , V ,
2 r b

thus P T Ans.

θ
π

ω

= =

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
ρ ω θ

π2 2
2 2

QQ r cot
2 r b
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3.119 Revisit the turbine cascade system 
of Prob. 3.78, and derive a formula for the 
power P delivered, using the angular-
momentum theorem of Eq. (3.55). 

Solution: To use the angular momentum 
theorem, we need the inlet and outlet 
velocity diagrams, as in the figure. The 
Euler turbine formula becomes 

 

o 1 t1 2 t2 t1 t2T Q(r V r V ) QR(V V )ρ ρ= − ≈ −  

since the blades are at nearly constant radius R. From the velocity diagrams, we find 

t1 n1 t2 n2 n1 n2 1V u V cot ; V u V cot , where V V V cosα α β1 2 1= + = − = =  

The normal velocities are equal by virtue of mass conservation across the blades. Finally, 

t1 t2P Q R(V V ) ( ) .Ansρ ω= − = +n 1 2QuV cot cotρ α α  
 

3.120 A centrifugal pump delivers 4000 gal/min of water at 20°C with a shaft rotating 
at 1750 rpm. Neglect losses. If r1 = 6 in, r2 = 14 in, b1 = b2 = 1.75 in, Vt1 = 10 ft/s, and Vt2 = 
110 ft/s, compute the absolute velocities (a) V1 and (b) V2, and (c) the ideal horsepower 
required. 

Solution: First convert 4000 gal/min = 8.91 ft3/s and 1750 rpm = 183 rad/s. For water, 
take ρ = 1.94 slug/ft3. The normal velocities are determined from mass conservation: 

n1 n2
1 1 2 2

Q 8.91 ft Q ftV 19.5 ; V 8.34 
2 r b 2 (6/12)(1.75/12) s 2 r b sπ π π

= = = = =  

Then the desired absolute velocities are simply the resultants of Vt and Vn: 

2 2 1/2 2 2 1/2
1 2V [(10) (19.45) ]  V [(110) (8.3) ]  . (a, b)Ans= + = = + =

ft ft22 110
s s

 

The ideal power required is given by Euler’s formula: 

2 t2 1 t1P Q (r V r V ) (1.94)(8.91)(183)[(14/12)(110) (6/12)(10)]

ft-lbf391,000 . (c)
s

Ans

ρ ω= − = −

= ≈ 710 hp
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3.121 The pipe bend of Fig. P3.121 has 
D1 = 27 cm and D2 = 13 cm. When water at 
20°C flows through the pipe at 4000 gal/ 
min, p1 = 194 kPa (gage). Compute the 
torque required at point B to hold the bend 
stationary. 

Solution: First convert Q = 4000 gal/ 
min = 0.252 m3/s. We need the exit velocity: 

 
Fig. P3.121 

2 2 1 12
0.252 m mV Q/A 19.0 Meanwhile, V Q/A 4.4 

s s( /4)(0.13)π
= = = = =  

We don’t really need V1, because it passes through B and has no angular momentum. 
The angular momentum theorem is then applied to point B: 

B B 1 1 2 2p A p A ( ) m( )∑ = + × + × − =1 2 2 2 1 1M T r j r i r V r V× − ×  

But r1 and p2 are zero, 

Bhence m( ) Q[(0.5 0.5 ) (19.0 )]ρ= = +2 2T r V i j i× ×  

Thus, finally, TB = (998)(0.252)(0.5)(19.0)(−k) ≈ −2400 k N · m (clockwise) Ans. 
 

3.122 Extend Prob. 3.46 to the problem 
of computing the center of pressure L of 
the normal face Fn, as in Fig. P3.122. (At 
the center of pressure, no moments are 
required to hold the plate at rest.) Neglect 
friction. Express your result in terms of the 
sheet thickness h1 and the angle θ between 
the plate and the oncoming jet 1.  

Fig. P3.122 

Solution: Recall that in Prob. 3.46 of this Manual, we found h2 = (h1/2)(1 + cosθ) and 
that h3 = (h1/2)(1 − cosθ). The force on the plate was Fn =  ρQVsinθ. Take clockwise 
moments about O and use the angular momentum theorem: 

( )ρ ρ ρ

∑ = − = + −

= + − − = −

| | | | | |o n 2 z 3 z 1 z

2 2 2
2 2 3 3 2 3

M F L m m m

Vh (h V/2) Vh ( h V/2) 0 (1/2) V h h
2O 2 3O 3 1O 1r V r V r V× × ×
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( ) ( )2 2 2 2 2
2 3 2 3

2
11

(1/2) V h h h h
Thus L .

2h sinV h sin
Ans

ρ

θρ θ

− −
= − = = − 1

1 h  cot
2

θ−  

The latter result follows from the (h1, h2, h3) relations in 3.46. The C.P. is below point O. 
 

3.123 The waterwheel in Fig. P3.123 is 
being driven at 200 r/min by a 150-ft/s jet 
of water at 20°C. The jet diameter is 2.5 in. 
Assuming no losses, what is the horse-
power developed by the wheel? For what 
speed Ω r/min will the horsepower developed 
be a maximum? Assume that there are many 
buckets on the waterwheel. 

Solution: First convert Ω = 200 rpm = 
20.9 rad/s. The bucket velocity = Vb =  
ΩR = (20.9)(4) = 83.8 ft/s. From Prob. 3.51 
of this Manual, if there are many buckets, 
the entire (absolute) jet mass flow does the 
work: 

 
Fig. P3.123 

ρ

π

= − − ° = −

⎛ ⎞= −⎜ ⎟4 ⎝ ⎠
⋅

= ≈

jet b jet b jet jet b jet b

2

P m V (V V )(1 cos165 ) A V V (V V )(1.966)

2.5(1.94) (150)(83.8)(150 83.8)(1.966)
12

ft lbf108200 .
s

Ans197 hp

 

Prob. 3.51: Max. power is for Vb = Vjet/2 = 75 ft/s, or Ω = 18.75 rad/s = 179 rpm Ans. 
 

3.124 A rotating dishwasher arm delivers at 60°C to six nozzles, as in Fig. P3.124. The 
total flow rate is 3.0 gal/min. Each nozzle has a diameter of 3

16  in. If the nozzle flows are 
equal and friction is neglected, estimate the steady rotation rate of the arm, in r/min. 

 
Fig. P3.124 
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Solution: First we need the mass flow and velocity from each hole “i,” i = 1 to 6: 

i
i i2

i

Q (3.0/448.8)/6 ft Q 3/448.8 slugV 5.81 m 1.94 0.00216 
A s 6 6 s3/16( /4)

12

ρ

π

⎛ ⎞= = ≈ = = =⎜ ⎟
⎝ ⎠⎛ ⎞

⎜ ⎟
⎝ ⎠

 

Recall Example 3.15 from the text. For each hole, we need the absolute velocity, Vi − Ωri. 
The angular momentum theorem is then applied to moments about point O: 

O O i in in i i i iM T m ( ) m V m r (V cos40° r )∑ = = ∑ − = ∑ − ΩiO i, absr V×  

All the velocities and mass flows from each hole are equal. Then, if TO = 0 (no friction), 

i i i i
i2 2

i i i

m r V cos 40 r 5.33 radV cos40° (5.81)(0.766) 4.25 
5.58 sm r r

Ans.∑ ° ∑
Ω = = = = =

∑ ∑
41 rpm  

 

3.125 A liquid of density ρ flows through 
a 90° bend as in Fig. P3.125 and issues 
vertically from a uniformly porous section 
of length L. Neglecting weight, find a 
result for the support torque M required at 
point O. 

Solution: Mass conservation requires i  
Fig. P3.125 

L

w w w
0

dQQ V ( d)dx V dL, or: dV
dx

π π π= = =∫  

Then the angular momentum theorem applied to moments about point O yields 
L

O O out w w
CS 0

L2 2 2
w 0

( )dm (R x)V dV dx

dV [(R x) R ]
2

ρπ

ρπ

∑ = = = +

= + −

∫ ∫

|

OM T r V× k

k
 

Substitute Vwπ dL = Q and clean up to obtain O w
LQV R
2

ρ ⎛ ⎞= +⎜ ⎟
⎝ ⎠

T k  Ans. 
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3.126 Given a steady isothermal flow  
of water at 20°C through the device in  
Fig. P3.126. Heat-transfer, gravity, and 
temperature effects are negligible. Known 
data are D1 = 9 cm, Q1 = 220 m3/h, p1 = 
150 kPa, D2 = 7 cm, Q2 = 100 m3/h, p2 = 
225 kPa, D3 = 4 cm, and p3 = 265 kPa. 
Compute the rate of shaft work done for 
this device and its direction. 

 
Fig. P3.126 

Solution: For continuity, Q3 = Q1 – Q2 = 120 m3/hr. Establish the velocities at each port: 

1
1 2 32 2 2

1

Q 220/3600 m 100/3600 m 120/3600 mV 9.61 ; V 7.22 ; V 26.5 
A s s s(0.045) (0.035) (0.02)π π π

= = = = = = =  

With gravity and heat transfer and internal energy neglected, the energy equation becomes 
2 2 2

3 3 2 2 1 1
s v 3 2 1

3 2 1

p V p V p VQ W W m m m ,
2 2 2ρ ρ ρ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− − = + + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

2 2

s

2

100 225000 (7.22) 120 265000 (26.5)or: W /
3600 998 2 3600 998 2

220 150000 (9.61)
3600 998 2

ρ
⎡ ⎤ ⎡ ⎤

− = + + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦

 

Solve for the shaft work: sW 998( 6.99 20.56 12.00)= − − + ≈ −15500 W  Ans. 
(negative denotes work done on the fluid) 

 

3.127 A power plant on a river, as in 
Fig. P3.127, must eliminate 55 MW of 
waste heat to the river. The river 
conditions upstream are Q1 = 2.5 m3/s 
and T1 = 18°C. The river is 45 m wide 
and 2.7 m deep. If heat losses to the 
atmosphere and ground are negligible, 
estimate the downstream river conditions 
(Q0, T0). 

 
Fig. P3.127 
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Solution: For water, take cp ≈ 4280 J/kg · °C. For an overall CV enclosing the entire 
sketch, 

out p out in p inQ m (c T ) m (c T ),= −  

out outor: 55,000,000 W (998 2.5)[4280T 4280(18)], solve for T .Ans≈ × − ≈ 23.15 C°  

The power plant flow is “internal” to the CV, hence out inQ Q . .Ans= = 32.5 m /s  
 

3.128 For the conditions of Prob. 3.127, if the power plant is to heat the nearby river 
water by no more than 12°C, what should be the minimum flow rate Q, in m3/s, through 
the plant heat exchanger? How will the value of Q affect the downstream conditions  
(Qo, To)? 

Solution: Now let the CV only enclose the power plant, so that the flow going through 
the plant shows as an inlet and an outlet. The CV energy equation, with no work, gives 

plant out p out in p in plant in outQ m c T m c T (998)Q (4280)(12 C) since Q Q= − = ° =  

plant
55,000,000Solve for Q  .

(998)(4280)(12)
Ans= ≈ 31.07 m /s  

It’s a lot of flow, but if the river water mixes well, the downstream flow is still the same. 
 

3.129 Multnomah Falls in the Columbia River Gorge has a sheer drop of 543 ft. Use the 
steady flow energy equation to estimate the water temperature rise, in °F, resulting. 

Solution: For water, convert cp = 4200 × 5.9798 = 25100 ft·lbf/(slug·°F). Use the 
steady flow energy equation in the form of Eq. (3.66), with “1” upstream at the top of  
the falls: 

2 2
1 1 1 2 2 2

1 1V gz V gz q
2 2

h h+ + = + + −  

Assume adiabatic flow, q = 0 (although evaporation might be important), and neglect the 
kinetic energies, which are much smaller than the potential energy change. Solve for 

p 1 2
32.2(543)c T g(z z ), or: T .

25100
h AnsΔ = Δ ≈ − Δ = ≈ 0.70 �°  
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3.130 When the pump in Fig. P3.130 
draws 220 m3/h of water at 20°C from the 
reservoir, the total friction head loss is 5 m. 
The flow discharges through a nozzle to 
the atmosphere Estimate the pump power 
in kW delivered to the water. 

Solution: Let “1” be at the reservoir surface 
and “2” be at the nozzle exit, as shown. We 
need to know the exit velocity:  

Fig. P3.130 

2 2 12
220/3600 mV Q/A 31.12 , while V 0 (reservoir surface)

s(0.025)π
= = = ≈  

Now apply the steady flow energy equation from (1) to (2): 
2 2

1 1 2 2
1 2 f p

p V p Vz z h h ,
g 2g g 2gρ ρ

+ + = + + + −  

2
p por: 0 0 0 0 (31.12) /[2(9.81)] 2 5 h , solve for h 56.4 m.+ + = + + + − ≈  

The pump power P = ρgQhp = (998)(9.81)(220/3600)(56.4) 

= 33700 W = 33.7 kW Ans. 
 

3.131 When the pump in Fig. P3.130 delivers 25 kW of power to the water, the friction 
head loss is 4 m. Estimate (a) the exit velocity; and (b) the flow rate. 

Solution: The energy equation just above must now be written with V2 and Q 
unknown: 

2
2

p p
V P 250000 0 0 0 2 4 h , where h
2g gQ (998)(9.81)Qρ

+ + = + + + − = =  

2 2
Qand where V . Solve numerically by iteration:

(0.025)π
= V2 ≈ 28.1 m/s Ans. (a) 

and Q = (28.1)π(0.025)2 ≈ 0.0552 m3/s ≈ 200 m3/hr Ans. (b) 
 



260 Solutions Manual • Fluid Mechanics, Fifth Edition 

 
3.132 Consider a turbine extracting energy 
from a penstock in a dam, as in the figure. 
For turbulent flow (Chap. 6) the friction head 
loss is hf = CQ2, where the constant C 
depends upon penstock dimensions and 
water physical properties. Show that, for a 
given penstock and river flow Q, the 
maximum turbine power possible is Pmax = 
2ρgHQ/3 and occurs when Q = (H/3C)1/2. 

 

Solution: Write the steady flow energy equation from point 1 on the upper surface to 
point 2 on the lower surface: 

2 2
1 1 2 2 0

2 2 f turbine
p V p VH h h
g g g gρ ρ

+ + = + + + +  

But p1 = p2 = patm and V1 ≈ V2 ≈ 0. Thus the turbine head is given by 

2,t fh H h H CQ= − = −  
3: tor Power P gQh gQH gCQρ ρ ρ= = = −  

Differentiate and set equal to zero for max power and appropriate flow rate: 

23 0 .dP gH gCQ Ans
dQ

ρ ρ= − = if Q H/3C=  

.Ansρ ⎛ ⎞
⎜ ⎟
⎝ ⎠

Insert Q in P to obtain max
2HP gQ
3

=  

 

3.133 The long pipe in Fig. 3.133 is filled 
with water at 20°C. When valve A is 
closed, p1 − p2 = 75 kPa. When the valve is 
open and water flows at 500 m3/h, p1 − p2 
= 160 kPa. What is the friction head loss 
between 1 and 2, in m, for the flowing 
condition? 

 
Fig. P3.133 
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Solution: With the valve closed, there is no velocity or friction loss: 

1 2 1 2
1 2 2 1

p p p p 75000z z , or: z z 7.66 m
g g g 998(9.81)ρ ρ ρ

−
+ = + − = = ≈  

When the valve is open, the velocity is the same at (1) and (2), thus “d” is not needed: 
2 2

1 2 1 2
f 1 2

p p V V 160000With flow: h (z z ) 0 7.66  .
g 2g 998(9.81)

Ans
ρ
− −

= + + − = + − ≈ 8.7 m  

 

3.134 A 36-in-diameter pipeline carries oil 
(SG = 0.89) at 1 million barrels per day 
(bbl/day) (1 bbl = 42 U.S. gal). The friction 
head loss is 13 ft/1000 ft of pipe. It is planned 
to place pumping stations every 10 mi along 
the pipe. Estimate the horsepower which 
must be delivered to the oil by each pump. 

 

Solution: Since ΔV and Δz are zero, the energy equation reduces to 

f f
p ft-loss fth , and h 0.013 (10 mi) 5280 686 ft
g ft-pipe miρ

Δ ⎛ ⎞= = ≈⎜ ⎟
⎝ ⎠

 

Convert the flow rate from 1E6 bbl/day to 29166 gal/min to 65.0 ft3/s. Then the power is 

γ ⋅
= Δ = = = 5060 f

ft lbfP Q p Qh (62.4)(65.0)(686) 2.78E6 .
s

Ans≈ hp  

 

3.135 The pump-turbine system in  
Fig. P3.135 draws water from the upper 
reservoir in the daytime to produce power 
for a city. At night, it pumps water from 
lower to upper reservoirs to restore the 
situation. For a design flow rate of 15,000 gal/ 
min in either direction, the friction head 
loss is 17 ft. Estimate the power in kW  
(a) extracted by the turbine and (b) delivered 
by the pump. 

 
Fig. P3.135 
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Solution: (a) With the turbine, “1” is upstream: 

2 2
1 1 2 2

1 2 f t
p V p Vz z h h ,

g 2g g 2gρ ρ
+ + = + + + +  

tor: 0 0 150 0 0 25 17 h+ + = + + + =  

Solve for ht = 108 ft. Convert Q = 15000 gal/min = 33.4 ft3/s. Then the turbine power is 

γ ⋅
= = = ≈ 410 hpturb

ft lbfP Qh (62.4)(33.4)(108) 225,000  (a)
s

Ans.  

(b) For pump operation, point “2” is upstream: 
2 2

2 2 1 1
2 1 f p

p V p Vz z h h ,
g 2g g 2gρ ρ

+ + = + + + −  

por: 0 0 25 0 0 150 17 h+ + = + + + −  

pSolve for h 142 ft≈  

The pump power is Ppump = γ Qhp = (62.4)(33.4)(142) = 296000 ft·lbf/s = 540 hp. Ans. (b) 
 

3.136 Water at 20°C is delivered from one reservoir to another through a long 8-cm-
diameter pipe. The lower reservoir has a surface elevation z2 = 80 m. The friction loss in 
the pipe is correlated by the formula hloss ≈ 17.5(V2/2g), where V is the average velocity 
in the pipe. If the steady flow rate through the pipe is 500 gallons per minute, estimate the 
surface elevation of the higher reservoir. 

Solution: We may apply Bernoulli here, 
2

1 2
17.5

2f
Vh z z
g

= = −  

2

3

12
2

17.5 (500 gal/min)(3.785 m /gal)(min/60s) 80 m
2(9.81 m/s ) (0.08 )

4

zπ

⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 Ans.z1 115 m≈  
 



 Chapter 3 • Integral Relations for a Control Volume  263

 
3.137 A fireboat draws seawater (SG = 
1.025) from a submerged pipe and discharges 
it through a nozzle, as in Fig. P3.137. The 
total head loss is 6.5 ft. If the pump efficiency 
is 75 percent, what horsepower motor is 
required to drive it? 

Solution: For seawater, γ = 1.025(62.4) = 
63.96 lbf/ft3. The energy equation becomes 

 
Fig. P3.137 

2 2
1 1 2 2

1 2 f p

2

p

p V p Vz z h h ,
g 2g g 2g

(120)or: 0 0 0 0 10 6.5 h
2(32.2)

ρ ρ
+ + = + + + −

+ + = + + + −

 

Solve for hp = 240 ft. The flow rate is Q = V2A2 = (120)(π/4)(2/12)2 = 2.62 ft3/s. Then 

γ ⋅
= = = ≈ 97 hpp

pump
Q h (63.96)(2.62)(240) ft lbfP 53600 

efficiency 0.75 s
Ans. 

 

3.138 Students in the fluid mechanics lab at Penn State University use the device in the 
figure to measure the viscosity of water: a tank and a capillary tube. The flow is laminar and 
has negligible entrance loss, in which case Chap. 6 theory shows that hf = 32μLV/(ρgd2). 
Students measure water temperature with a 
thermometer and Q with a stopwatch and a 
graduated cylinder. Density is measured by 
weighing a known volume. (a) Write an 
expression for μ as a function of these 
variables. (b) Calculate μ for the following 
actual data: T = 16.5°C, ρ = 998.7 kg/m3, d = 
0.041 in, Q = 0.31 mL/s, L = 36.1 in, and  
H = 0.153 m. (c) Compare this μ with the 
published result for the same temperature. 
(d) Compute the error which would occur  
if one forgot to include the kinetic energy 
correction factor. Is this correction important 
here? 
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Solution: (a) Write the steady flow energy equation from top to bottom: 
2 2 2

1 1 1 2 2 2 2 2
2

32( ) 0 , :
2 2 2f f

p V p V LV VH L h or h H L
g g g g ggd

α α μ α
ρ ρ ρ

+ + + = + + + = = + −  

Noting that, in a tube, Q = Vπ d2/4, we may eliminate V in favor of Q and solve for the 
fluid viscosity: 

(a)Ans.πρ α ρμ
π

= + −
gd QH L
LQ L

4
2( )

128 16
 

(b) For the given data, converting d = 0.041 in = 0.00104 m, L = 36.1 in = 0.917 m, and Q = 
0.31 mL/s = 3.1E−7 m3/s, we may substitute in the above formula (a) and calculate 

4(998.7)(9.81)(0.00104) 2.0(998.7)(3.1 7)(0.153 0.917)
128(0.917)(3.1 7) 16 (0.917)

E
E

πμ
π

−
= + −

−
 

0.001063 0.000013   (b)Ans.= − ≈
kg0.00105

m s⋅
 

(c) The accepted value (see Appendix Table A-1) for water at 16.5°C is μ ≈ 1.11E−3 kg/m·s, 
the error in the experiment is thus about −5.5%. Ans. (c) 
(d) If we forgot the kinetic-energy correction factor α2 = 2.0 for laminar flow, the 
calculation in part (b) above would result in 

0.001063 0.000007  (negligible 0.6% error)  (d)Ans.μ = − ≈ 0.001056 kg/m s⋅  

In this experiment, the dominant (first) term is the elevation change (H + L)—the 
momentum exiting the tube is negligible because of the low velocity (0.36 m/s). 

 

3.139 The horizontal pump in Fig. P3.139 
discharges 20°C water at 57 m3/h. Neglecting 
losses, what power in kW is delivered to the 
water by the pump? 

Solution: First we need to compute the 
velocities at sections (1) and (2): 

 
Fig. P3.139 

1 22 2
1 2

Q 57/3600 m Q 57/3600 mV 2.49 ; V 22.4 
A s A s(0.045) (0.015)π π

= = = = = =  



 Chapter 3 • Integral Relations for a Control Volume  265

Then apply the steady flow energy equation across the pump, neglecting losses: 
2 2

1 1 2 2
1 2 f p

p V p Vz z h h ,
g 2g g 2gρ ρ

+ + = + + + −  

2 2

p p
120000 (2.49) 400000 (22.4)or: 0 0 0 h , solve for h 53.85 m

9790 2(9.81) 9790 2(9.81)
+ + = + + + − ≈  

p p
57Then the pump power is P Qh 9790 (53.85) 8350 W  

3600
Ans.γ ⎛ ⎞= = = =⎜ ⎟

⎝ ⎠
8.4 kW  

 

3.140 Steam enters a horizontal turbine at 350 lbf/in2 absolute, 580°C, and 12 ft/s and 
is discharged at 110 ft/s and 25°C saturated conditions. The mass flow is 2.5 lbm/s, and 
the heat losses are 7 Btu/lb of steam. If head losses are negligible, how much horsepower 
does the turbine develop? 

Solution: We have to use the Steam Tables to find the enthalpies. State (2) is saturated 
vapor at 25°C = 77°F, for which we find h2 ≈ 1095.1 Btu/lbm ≈ 2.74E7 ft·lbf/slug. At 
state (1), 350 psia and 580°C = 1076°F, we find h1 ≈ 1565.3 Btu/lbm ≈ 3.92E7 ft·lbf/slug. 
The heat loss is 7 Btu/lbm ≈ 1.75E5 ft·lbf/slug. The steady flow energy equation is best 
written on a per-mass basis: 

2 2
s 2 2 1 1

1 1q w h V h V , or:
2 2

− = + − −  

2 2
s s

ft-lbf1.75E5 w 2.74E7 (110) /2 3.92E7 (12) /2, solve for w 1.16E7 
slug

− − = + − − ≈  

The result is positive because work is done by the fluid. The turbine power at 100% is 

⎛ ⎞⋅ ⋅⎛ ⎞= = = ≈⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

turb s
2.5 slug ft lbf ft lbfP mw  1.16E7 901000 

32.2 s slug s
Ans.1640 hp  

 

3.141 Water at 20°C is pumped at 1500 gal/ 
min from the lower to the upper reservoir, 
as in Fig. P3.141. Pipe friction losses are 
approximated by hf ≈ 27V2/(2g), where V is 
the average velocity in the pipe. If the 
pump is 75 percent efficient, what horse-
power is needed to drive it?  

Fig. P3.141 
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Solution: First evaluate the average velocity in the pipe and the friction head loss: 
3 2

f2
1500 ft Q 3.34 ft (17.0)Q 3.34 , so V 17.0 and h 27
448.8 s A s 2(32.2)(3/12)π

= = = = = = ≈ 121 ft  

Then apply the steady flow energy equation: 
2 2

1 1 2 2
1 2 f p

p

p V p Vz z h h ,
g 2g g 2g

or: 0 0 50 0 0 150 121 h

ρ ρ
+ + = + + + −

+ + = + + + −

 

p
p pump

Qh (62.4)(3.34)(221)Thus h 221 ft, so P
0.75

γ
η

= = =  

⋅
= ≈

ft lbf61600 .
s

Ans112 hp  

 

3.142 A typical pump has a head which, 
for a given shaft rotation rate, varies with 
the flow rate, resulting in a pump 
performance curve as in Fig. P3.142. 
Suppose that this pump is 75 percent 
efficient and is used for the system in 
Prob. 3.141. Estimate (a) the flow rate, in 
gal/min, and (b) the horsepower needed to 
drive the pump.  

Fig. P3.142 

Solution: This time we do not know the flow rate, but the pump head is hp ≈ 300 − 
50Q, with Q in cubic feet per second. The energy equation directly above becomes, 

2
2V0 0 50 0 0 150 (27) (300 50Q), where Q V (0.5 ft)

2(32.2) 4
π

+ + = + + + − − =  

2 3This becomes the quadratic Q 4.60Q 18.4 0, solve for Q 2.57 ft /s+ − = ≈  

p
pump

Qh (62.4)(2.57)[300 50(2.57)]Then the power is P
0.75

γ
η

−
= =  

⋅
= ≈

ft lbf36700 .
s

Ans67 hp  
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3.143 The insulated tank in Fig. P3.143 is 
to be filled from a high-pressure air supply. 
Initial conditions in the tank are T = 20°C 
and p = 200 kPa. When the valve is opened, 
the initial mass flow rate into the tank is 
0.013 kg/s. Assuming an ideal gas, estimate 
the initial rate of temperature rise of the air in 
the tank. 

 
Fig. P3.143 

Solution: For a CV surrounding the tank, with unsteady flow, the energy equation is 

( )
2

2
in shaft

d p Vˆe d m u gz Q W 0, neglect V /2 and gz
dt 2

ρ υ
ρ

⎛ ⎞
− + + + = − =⎜ ⎟

⎝ ⎠
∫  

v in p in v v
d dT dRewrite as ( c T) m c T c c T
dt dt dt

ρρυ ρυ υ≈ = +  

where ρ and T are the instantaneous conditions inside the tank. The CV mass flow gives 

( ) in in
d dd m 0, or: m
dt dt

ρρ υ υ− = =∫  

Combine these two to eliminate υ(dρ/dt) and use the given data for air: 

p v
tank

3v

m(c c )TdT (0.013)(1005 718)(293)  .
200000dt c (0.2 m )(718)

287(293)

Ans
ρυ

− −
= = ≈

⎡ ⎤
⎢ ⎥⎣ ⎦

C3.2
s

°  

 

3.144 The pump in Fig. P3.144 creates  
a 20°C water jet oriented to travel a maxi-
mum horizontal distance. System friction 
head losses are 6.5 m. The jet may be 
approximated by the trajectory of friction-
less particles. What power must be deli-
vered by the pump? 

 
Fig. P3.144 

Solution: For maximum travel, the jet must exit at θ = 45°, and the exit velocity must be 
1/2

2 max 2
[2(9.81)(25)] mV sin 2g z or: V 31.32 

sin 45 s
θ = Δ = ≈

°
 

The steady flow energy equation for the piping system may then be evaluated: 
2 2

1 1 1 2 2 2 f pp / V /2g z p / V /2g z h h ,γ γ+ + = + + + −  
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2
p por: 0 0 15 0 (31.32) /[2(9.81)] 2 6.5 h , solve for h 43.5 m+ + = + + + − ≈  

2
pump pThen P Qh (9790) (0.05) (31.32) (43.5) .

4
Ansπγ ⎡ ⎤= = ≈⎢ ⎥⎣ ⎦

26200 W  

 

3.145 The large turbine in Fig. P3.145 
diverts the river flow under a dam as 
shown. System friction losses are hf = 
3.5V2/(2g), where V is the average velocity 
in the supply pipe. For what river flow rate 
in m3/s will the power extracted be 25 MW? 
Which of the two possible solutions has a 
better “conversion efficiency”?  

Fig. P3.145 

Solution: The flow rate is the unknown, with the turbine power known: 
2 2

1 1 2 2
1 2 f turb f turb

p V p Vz z h h , or: 0 0 50 0 0 10 h h
2g 2gγ γ

+ + = + + + + + + = + + + +  

2
f pipe p p pipe 2

pipe

Qwhere h 3.5V /(2g) and h P /( Q) and V
( /4)D

γ
π

= = =  

Introduce the given numerical data (e.g. Dpipe = 4 m, Ppump = 25E6 W) and solve: 
3 3Q 35410Q 2.261E6 0, with roots Q 76.5, 137.9,  and 214.4 m /s− + = = + + −  

The negative Q is nonsense. The large Q (=137.9) gives large friction loss, hf ≈ 21.5 m. 
The smaller Q (= 76.5) gives hf ≈ 6.6 m, about right. Select Qriver ≈ 76.5 m3/s. Ans. 

 

3.146 Kerosene at 20°C flows through the 
pump in Fig. P3.146 at 2.3 ft3/s. Head 
losses between 1 and 2 are 8 ft, and the 
pump delivers 8 hp to the flow. What 
should the mercury-manometer reading h ft 
be? 

Solution: First establish the two velocities: 
3

1 2
1

2 1

2.3 ft /s
( /4)(3/12 ft)
ft 1 ft46.9 ; 11.7 
s 4 s

QV
A

V V

π
= =

= = =

 

 
Fig. P3.146 
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For kerosene take ρ = 804 kg/m3 = 1.56 slug/ft3, or γk = 1.56(32.2) = 50.2 lbf/ft3. For 
mercury take γm = 846 lbf/ft3. Then apply a manometer analysis to determine the 
pressure difference between points 1 and 2: 

2 1 3 2( ) (846 50.2) 50.2 (5 ) 796 251 m k k
lbf lbfp p h z h ft h
ft ft

γ γ γ
⎛ ⎞

− = − − Δ = − − = −⎜ ⎟
⎝ ⎠

 

Now apply the steady flow energy equation between points 1 and 2: 

γ γ γ
⋅

+ + = + + + − = = =
2 2

1 1 2 2
1 2 3

8(550) /, where 38.1 
2 2 (50.2)(2.3 / )f p p

k k k

p V p V P ft lbf sz z h h h ft
g g Q ft s

 

2 2
1 2

2 1 2
(46.9) (11.7)Thus: 0 5 8 38.1 Solve 2866 

50.2 2(32.2) 50.2 2(32.2)
p p lbfft p p

ft
+ + = + + + − − =  

Now, with the pressure difference known, apply the manometer result to find h: 
2

2 1 3
2866 251 /2866 796 251, or:  

796 /
lbf ftp p h h Ans.

lbf ft
+

− = = − = = 3.92 ft  

 

3.147 Repeat Prob. 3.49 by assuming that 
p1 is unknown and using Bernoulli’s 
equation with no losses. Compute the new 
bolt force for this assumption. What is the 
head loss between 1 and 2 for the data of 
Prob. 3.49? 

Solution: Use Bernoulli’s equation with 
no losses to estimate p1 with Δz = 0: 

 
Fig. P3.49 

2 2
1

1,ideal
p (14) 15(144) (56) , solve for p

2(32.2) 62.4 2(32.2)γ
+ ≈ + ≈ 34.8 psia  

From the x-momentum CV analysis of Prob. 3.49, the bolt force is given by 

bolts 2,gage 2 2 1

2 2

F p A m(V V )

(34.8 15)(144) (1 ft) 1.94 (1 ft) (14)(56 14) .
4 4

Ansπ π

= − −

⎛ ⎞= − − − ≈⎜ ⎟
⎝ ⎠

1340 lbf
 



270 Solutions Manual • Fluid Mechanics, Fifth Edition 

We can estimate the friction head loss in Prob. 3.49 from the steady flow energy 
equation, with p1 taken to be the value of 38 psia given in that problem: 

2 2

f f
38(144) (14) 15(144) (56) h , solve for h  .

62.4 2(32.2) 62.4 2(32.2)
Ans+ = + + ≈ 7.4 ft  

 

P3.148         Extend the siphon analysis of Ex. 3.22 as follows.  Let p1 = 1 atm and let the fluid 
be hot water at 60°C.  Let z1,2,4  be the same, with z3 unknown.  Find the value of z3 for which 
the water might begin to vaporize. 
 

Solution:   Given p1 = 101350 Pa and recall that z1 = 60 cm, z2  = -25 cm, and  z4  was not 
needed.  Then note that, because of steady-flow one-dimensional continuity, from Ex. 3.22, 

 

For cavitation,  p3  should drop down to the vapor pressure of water at 60°C, which from Table 
A.5 is 19.92 kPa.  And, from Table A.3, the density of water at 60°C is 983 kg/m3.  Now write 
Bernoulli from point 1 to point 3 at the top of the siphon: 

 

That’s pretty high, so the writer does not think cavitation is a problem with this siphon. 

________________________________________________________________________ 
 
 
 
 
 
 
 
 

smzzgVV /08.4)]25.0(6.0)[81.9(2)(2 2123 =−−=−==

.
81.9
4.80,81.93.83.209.501.103

81.9
2

)/08.4(
/983

19920)6.0)(81.9(
2

0
983

101350

22

33

3

2

3

2

3

2
33

1

2
11

AnszSolvez

zsm
mkg
Pam

gz
Vp

gzVp

m8.2=≈++=++

++=++

++=++
ρρ
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3.149 A jet of alcohol strikes the vertical 
plate in Fig. P3.149. A force F ≈ 425 N is 
required to hold the plate stationary. 
Assuming there are no losses in the 
nozzle, estimate (a) the mass flow rate of 
alcohol and (b) the absolute pressure at 
section 1.  
Solution: A momentum analysis of the plate (e.g. Prob. 3.40) will give 

2 2 2
2 2 2 2

2

F mV A V 0.79(998) (0.02) V 425 N,
4

solve for V 41.4 m/s

πρ= = = =

≈
 

2whence m 0.79(998)( /4)(0.02) (41.4)   (a)Ans.π= ≈ 10.3 kg/s  

We find V1 from mass conservation and then find p1 from Bernoulli with no losses: 
2

2
1 2 2 1

2Incompressible mass conservation: V V (D /D ) (41.4) 6.63 m/s
5

⎛ ⎞= = ≈⎜ ⎟
⎝ ⎠

 

( )2 2 2 2
1 2 1 2 2 1

1 0.79(998)Bernoulli, z z : p p V V 101000 [(41.4) (6.63) ]
2 2

ρ= = + − = + −  

(b)Ans.≈ 760,000 Pa  

 

3.150 An airfoil at an angle of attack  
α, as in Fig. P3.150, provides lift by  
a Bernoulli effect, because the lower 
surface slows the flow (high pressure) 
and the upper surface speeds up the flow 
(low pressure). If the foil is 1.5 m long 
and 18 m wide into the paper, and the 
ambient air is 5000 m standard atmo-
sphere, estimate the total lift if the average 
velocities on upper and lower surfaces are 
215 m/s and 185 m/s, respectively. Neglect 
gravity. 

 
Fig. P3.150 
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Solution: A vertical force balance gives, 

( )ρ= − = −

= −

= =

2 2

2 2

1( ) ( )
2

1 (0.7361)(215 185 )(18)(1.5)
2
119,250  

Lift l u planform u lF p p A V V bL

N Ans.119 kN
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3.151 Water flows through a circular 
nozzle, exits into the air as a jet, and strikes 
a plate. The force required to hold the plate 
steady is 70 N. Assuming frictionless one-
dimensional flow, estimate (a) the velocities 
at sections (1) and (2); (b) the mercury man-
ometer reading h. 

Solution: (a) First examine the momen-
tum of the jet striking the plate, 

2
2 2in inF F m u A Vρ∑ = = − = −  

 
Fig. P3.151 

π⎛ ⎞= − ⎜ ⎟
⎝ ⎠

2 2
270 (998) (0.03 )( )   (a)

4
N V Ans.V2 9.96 m/s=  

π

π

⎛ ⎞
⎜ ⎟
⎝ ⎠= =

2

2 2
1

21

(9.96) (0.03 )
4  (a)
(0.1 )

4

V AThen V or Ans.
A

V1 0.9 m/s=  

(b) Applying Bernoulli, 

( )2 2 2 2
2 1 2 1

1 1 (998)(9.96 0.9 ) 49,100 
2 2

p p V V Paρ− = − = − =  

And from our manometry principles, 

ρ
Δ

= = ≈
−

49,100  (b)
(133,100 9790)

ph Ans.
g

0.4 m  

 

3.152 A free liquid jet, as in Fig. P3.152, 
has constant ambient pressure and small 
losses; hence from Bernoulli’s equation  
z + V2/(2g) is constant along the jet. For the 
fire nozzle in the figure, what are (a) the 
minimum and (b) the maximum values of θ 
for which the water jet will clear the corner 
of the building? For which case will the jet 
velocity be higher when it strikes the roof 
of the building? 

 
Fig. P3.152 
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Solution: The two extreme cases are when the jet just touches the corner A of the 
building. For these two cases, Bernoulli’s equation requires that 

2 2 2 2
1 1 A A A A

ftV 2gz (100) 2g(0) V 2gz V 2(32.2)(50), or: V 82.3 
s

+ = + = + = + =  

The jet moves like a frictionless particle as in elementary particle dynamics: 

2
1 1

1Vertical motion: z V sin t gt ; Horizontal motion: x V cos t
2

θ θ= − =  

Eliminate “t” between these two and apply the result to point A: 

2 2
A

A A 2 2 2 2
1

gx (32.2)(40)z 50 x tan 40 tan ; clean up and rearrange:
2V cos 2(100) cos

θ θ
θ θ

= = − = −  

2tan 1.25 0.0644 sec , solve for . (a) and . (b)Ans Ansθ θ θ= + = 85.94 55.40° °  

Path (b) is shown in the figure, where the jet just grazes the corner A and goes over the 
top of the roof. Path (a) goes nearly straight up, to z = 155 ft, then falls down to pt. A. 

 

3.153 For the container of Fig. P3.153 
use Bernoulli’s equation to derive a 
formula for the distance X where the free 
jet leaving horizontally will strike the floor, 
as a function of h and H. For what ratio 
h/H will X be maximum? Sketch the three 
trajectories for h/H = 0.4, 0.5, and 0.6. 

Solution: The velocity out the hole and 
the time to fall from hole to ground are 
given by 

o fallV 2g( ) t 2h/gH h= − =  

Then the distance travelled horizontally is 

= = −o fallX V t Ans.2 h(H h)  

 
Fig. P3.153 
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Maximum X occurs at h = H/2, or Xmax = H. When h = 0.25H or 0.75H, the jet travels 
out to H = 0.866H. These three trajectories are shown in the sketch on the previous page. 

 

P3.154         Water at 20°C, in the pressurized 

tank of Fig. P3.154, flows out and creates a 

vertical jet as shown.  Assuming steady 

frictionless flow, determine the height H 

to which the jet rises. 

 

Solution:  This is a straightforward Bernoulli problem.  Let the water surface 

be (1), the exit plane be (2), and the top of the vertical jet be (3).  Let z2 = 0 for convenience.   

If we are clever, we can bypass (2) and write Bernoulli directly from (1) to (3): 

 

 

If we took an intermediate step from (1) to (2), we would find  V2
2/2g = 8.51 m, and then going 

from (2) to (3) would convert the velocity head into pure elevation, because V3 = 0. 
 

 
 
 
 
 
 

85 cm

H ?

      Air 
75 kPa-gage 

water 

Fig. P3.154

(1) 

(2)

(3)

.85.066.7

0085.0_0
)998)(81.9(

75000

:o,
22 3

2
33

1

2
11

AnsmmHSolve

Hm

rz
g

V
g

p
z

g
V

g
p

m8.51=+=

++=+

++=++
ρρ
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3.155 Bernoulli’s 1738 treatise Hydro-
dynamica contains many excellent sketches 
of flow patterns. One, however, redrawn here 
as Fig. P3.155, seems physically misleading. 
What is wrong with the drawing? 

Solution: If friction is neglected and the 
exit pipe is fully open, then pressure in the 
closed “piezometer” tube would be 
atmospheric and the fluid would not rise at 
all in the tube. The open jet coming from 
the hole in the tube would have V ≈ √(2gh) 
and would rise up to nearly the same height 
as the water in the tank. 

 
Fig. P3.155 

 

P3.156         Extend Prob. 3.13 as follows.  (a) Use Bernoulli’s equation to estimate the 
elevation of the water surface above the exit of the bottom cone.  (b) Then estimate the time 
required for the water surface to drop 20 cm in the cylindrical tank.  If you fail to solve part (a), 
assume that the initial elevation above the exit is 52 cm.  Neglect the possible contraction and 
nonuniformity of the exit jet mentioned in Ex. 3.21. 
 
Solution:   This is a “Torricelli” flow, like Ex. 3.21.   Using the continuity relation in Prob. 
3.tank, we found that V ≈ 3.2 m/s.  (a) Thus we know everything except Δz = hcyl + hcone: 

 
(b)   The time Δt  to drop from 52 cm to 32 cm could be obtained by numerical quadrature, or, 
better, we could solve for Δt  analytically: 

 

________________________________________________________________________ 
 

).(52.0forsolve,)/81.9(2/2.32 2 aAnsmzzsmsmzgV cm52==ΔΔ=≈Δ=

).(
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)81.9(2
3108.0)(
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)32.052.0(2:Result
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3.157 The manometer fluid in Fig. P3.157 
is mercury. Estimate the volume flow in the 
tube if the flowing fluid is (a) gasoline and 
(b) nitrogen, at 20°C and 1 atm. 

Solution: For gasoline (a) take ρ = 1.32 
slug/ft3. For nitrogen (b), R ≈ 297 J/kg ⋅ °C and 
ρ = p/RT = (101350)/[(297)(293)] ≈ 1.165 
kg/m3 = 0.00226 slug/ft3. For mercury, 
take 

 
Fig. P3.157 

ρ ≈ 26.34 slug/ft3. The pitot tube (2) reads stagnation pressure, and the wall hole (1) 
reads static pressure. Thus Bernoulli’s relation becomes, with Δz = 0, 

2
1 1 2 1 2 1

1p V p , or V 2(p p )/
2

ρ ρ+ = = −  

The pressure difference is found from the manometer reading, for each fluid in turn: 

2
Hg(a) Gasoline: p ( ) (26.34 1.32)(32.2)(1/12 ft) 67.1 lbf/ftρ ρ γηΔ = − = − ≈  

2
1/2

1 1 1
ft 3V [2(67.1)/1.32] 10.1 , Q V A (10.1)   (a)
s 4 12

Ans.π⎛ ⎞⎛ ⎞= = = = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

3ft0.495
s

 

2
2 Hg(b) N : p ( )gh (26.34 0.00226)(32.2)(1/12) 70.7 lbf/ftρ ρΔ = − = − ≈  

2
1/2

1 1 1
ft 3V [2(70.7)/0.00226] 250 , Q V A (250)   (b)
s 4 12

Ans.π⎛ ⎞⎛ ⎞= = = = ≈⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

3ft12.3
s
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3.158 In Fig. P3.158 the flowing fluid is 
CO2 at 20°C. Neglect losses. If p1 = 170 kPa 
and the manometer fluid is Meriam red oil 
(SG = 0.827), estimate (a) p2 and (b) the 
gas flow rate in m3/h. 

Solution: Estimate the CO2 density as ρ = 
p/RT = (170000)/[189(293)] ≈ 3.07 kg/m3. 
The manometer reading gives the down-
stream pressure: 

 
Fig. P3.158 

21 2 oil COp p ( )gh [0.827(998) 3.07](9.81)(0.08) 645 Paρ ρ− = − = − ≈  

2Hence p 170,000 645  (a)Ans.= − ≈ 169400 Pa  

Now use Bernoulli to find V2, assuming p1 ≈ stagnation pressure (V1 = 0): 

2 2
1 2 2

1 1p (0) p V ,
2 2

ρ ρ+ ≈ +  

1 2
2

2(p p ) 2(645) mor: V 20.5 
3.07 sρ

−
= = ≈  

2 3
2 2Then Q V A (20.5)( /4)(0.06) 0.058 m /s   (b)Ans.π= = = ≈

3m209
hr

 

 

P3.159     The cylindrical water tank in Fig. P3.159 is being 

filled at a volume flow Q1 = 1.0 gal/min, while the 

water also drains from a bottom hole of diameter d = 

6 mm.  At time t = 0, h = 0.  Find (a) an expression for 

h(t) and (b) the eventual maximum water depth hmax. 

Assume that Bernoulli’s steady-flow equation is valid. 

 
V2 

Q1 

h 

Fig. P3.159

diameter 
D = 20 cm 

CV



 Chapter 3 • Integral Relations for a Control Volume  279

Solution:  Bernoulli predicts that  V2 ≈ √(2gh). 

Convert Q1 =  6.309E-5 m3/s. A control volume around the tank gives the mass balance: 

 

Rearrange, separate the variables, and integrate: 

 

(a)  The integration is a bit tricky and laborious.  Here is the writer’s result: 

 

(a)  A graph of h versus t for the particular given data is as follows: 

                 

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24
0.26

0 200 400 600 800 1000 1200

h, meters

t, sec

 
(b)  The water level rises fast and then slower and is asymptotic to the value hmax = 0.254 m.  

This is when the outflow through the hole exactly equals the inflow from the pipe: 

2
2

2
21 4

and
4

where,2)(0| dADAghAQAh
dt
d

dt
dm

system
ππ

==+−==

∫∫ =
−

tth
dt

AghAQ
dh

0

)(

0 21

1
2

).(

)81.9(2)006.0(
4

5309.6:,2

max

max
2

3

max21

bAnshforSolve

hm
s

mEorghAQ

m0.254=

=−=
π

).(2where,2)ln(
2

2
1

1
2
1 aAnsgAhA

hQ
QAQ

t =−
−

= α
ααα
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3.160 The air-cushion vehicle in Fig. 
P3.160 brings in sea-level standard air 
through a fan and discharges it at high 
velocity through an annular skirt of 3-cm 
clearance. If the vehicle weighs 50 kN, 
estimate (a) the required airflow rate and 
(b) the fan power in kW. 

Solution: The air inside at section 1 is 
nearly stagnant (V ≈ 0) and supports the 
weight and also drives the flow out of the 
interior into the atmosphere: 

 
Fig. P3.160 

2 2
1 o1 o1 atm exit exit2

weight 50,000 N 1 1p p : p p V (1.205)V 1768 Pa
area 2 2(3 m)

ρ
π

≈ − = = = = ≈  

3

exit e e e
mSolve for V 54.2 m/s, whence Q A V (6)(0.03)(54.2) 30.6 
s

π≈ = = =  

Then the power required by the fan is P = QeΔp = (30.6)(1768) ≈ 54000 W Ans. 
 

3.161 A necked-down section in a pipe 
flow, called a venturi, develops a low 
throat pressure which can aspirate fluid 
upward from a reservoir, as in Fig. P3.161. 
Using Bernoulli’s equation with no losses, 
derive an expression for the velocity V1 
which is just sufficient to bring reservoir 
fluid into the throat.  

Fig. P3.161 
 
Solution: Water will begin to aspirate into the throat when pa − p1 = ρgh. Hence: 

2 2 2
1 2 2 1 1 1 atm 2

1 1Volume flow: V V (D /D ) ; Bernoulli ( z 0): p V p V
2 2

ρ ρ= Δ = + ≈ +  
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4 2 2
a 1 2

1

DSolve for p p ( 1)V gh, , or:
2 D

Ans.ρ α ρ α− = − ≥ = 2 4
2ghV

1
≥

−α
 

,Similarly Ans.2
1, min 2, min 4

1 2

2ghV
1 (D /D )

α V= =
−

 

 

3.162 Suppose you are designing a 3 × 6-ft 
air-hockey table, with 1/16-inch-diameter 
holes spaced every inch in a rectangular 
pattern (2592 holes total), the required jet 
speed from each hole is 50 ft/s. You must 
select an appropriate blower. Estimate the 
volumetric flow rate (in ft3/min) and 
pressure rise (in psi) required. Hint: Assume 
the air is stagnant in the large manifold under 
the table surface, and neglect frictional 
losses. 

 

Solution: Assume an air density of about sea-level, 0.00235 slug/ft3. Apply Bernoulli’s 
equation through any single hole, as in the figure: 

ρ ρ
+ = +2 2

1 1 , :
2 2a jetp V p V or  

2 2
1 2

0.00235 (50) 2.94  
2 2required a jet

lbfp p p V Ans.
ft

ρ
Δ = − = = = = 2

lbf0.0204
in

 

The total volume flow required is 
2

1

3

1/16(#   ) 50  (2592 )
4 12

2.76  

hole
ftQ VA of holes ft holes
s

ft Ans.
s

π
−

⎛ ⎞ ⎛ ⎞= = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =
3ft166

min

 

It wasn’t asked, but the power required would be P = Q Δp = (2.76 ft3/s)(2.94 lbf/ft2) = 
8.1 ft·lbf/s, or about 11 watts. 

 

 

 



282 Solutions Manual • Fluid Mechanics, Fifth Edition 

  
3.163 The liquid in Fig. P3.163 is 
kerosine at 20°C. Estimate the flow rate 
from the tank for (a) no losses and (b) pipe 
losses hf ≈ 4.5V2/(2g). 

Solution: For kerosine let γ = 50.3 
lbf/ft3. Let (1) be the surface and (2) the 
exit jet: 

 
Fig. P3.163 

2 2 2
1 2 21 2

1 2 f 2 1 f
V V Vp pz z h , with z 0 and V 0,  h K
2g 2g 2gγ γ

+ + = + + + = ≈ =  

2
2 1 2

1
V p p (20 14.7)(144)Solve for (1 K) z 5 20.2 ft
2g 50.3γ

− −
+ = + = + ≈  

We are asked to compute two cases (a) no losses; and (b) substantial losses, K ≈ 4.5: 

1/2 2

2
2(32.2)(20.2) ft 1(a) K 0: V 36.0 , Q 36.0  . (a)

1 0 s 4 12
Ansπ⎡ ⎤ ⎛ ⎞= = = = ≈⎜ ⎟⎢ ⎥+⎣ ⎦ ⎝ ⎠

3ft0.197
s

 

2

2
2(32.2)(23.0) ft 1(b) K 4.5: V 16.4 , Q 16.4   (b)

1 4.5 s 4 12
Ans.π ⎛ ⎞= = = = ≈⎜ ⎟+ ⎝ ⎠

3ft0.089
s

 

 

3.164 An open water jet exits from a 
nozzle into sea-level air, as shown, and 
strikes a stagnation tube. If the centerline 
pressure at section (1) is 110 kPa and 
losses are neglected, estimate (a) the mass 
flow in kg/s; and (b) the height H of the 
fluid in the tube. 

 
Fig. P3.164 

Solution: Writing Bernoulli and continuity between pipe and jet yields jet velocity: 
4 4

2 2
1

1

998 41 110000 101350 1 ,
2 2 12

jet
a jet jet

D
p p V V

D
ρ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥− = − = − = −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠ ⎢ ⎥⎣ ⎦⎣ ⎦
 

m
sjetsolve V = 4.19  

2    998 (0.04) (4.19)   (a)
4jet jetThen the mass flow is A V Ans.πρ= = =

kgm 5.25
s
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(b) The water in the stagnation tube will rise above the jet surface by an amount equal to 
the stagnation pressure head of the jet: 

2 2(4.19)0.02 m 0.02 0.89   (b)
2 2(9.81)

jet
jet

V
R Ans.

g
= + = + = + =H 0.91 m  

 

3.165 A venturi meter, shown in Fig. 
P3.165, is a carefully designed constriction 
whose pressure difference is a measure of 
the flow rate in a pipe. Using Bernoulli’s 
equation for steady incompressible flow 
with no losses, show that the flow rate Q is 
related to the manometer reading h by 

2
4

2 1

2 ( )

1 ( / )
MA ghQ

D D

ρ ρ
ρ

−
=

−
 

where ρM is the density of the manometer 
fluid. 

 
Fig. P3.165 

Solution: First establish that the manometer reads the pressure difference between 1 
and 2: 

 1 2 Mp p ( )ghρ ρ− = −  (1) 

Then write incompressible Bernoulli’s equation and continuity between (1) and (2): 
2 2
1 2 21 2

2 1 1 2 1 1 2 2
V Vp p( z 0): and V V (D /D ) , Q A V A V
2 2ρ ρ

Δ = + ≈ + = = =  

2 1 2Eliminate V  and (p p ) from (1) above: .Ans− 2 M
4

2 1

A 2gh( )/
Q

1 (D /D )

−
=

−

ρ ρ ρ
 

 

3.166 A wind tunnel draws in sea-level standard air from the room and accelerates it 
into a 1-m by 1-m test section. A pressure transducer in the test section wall measures Δp = 
45 mm water between inside and outside. Estimate (a) the test section velocity in mi/hr; 
and (b) the absolute pressure at the nose of the model. 
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Solution: (a) First apply Bernoulli from the atmosphere (1) to (2), using the known Δp: 

3 2 2
a 2 2 a 1 1 2 2p p 45 mm H O 441 Pa; 1.225 kg/m ; p V p V

2 2
ρ ρρ− = = = + ≈ +  

1 1 a 2
2 p 2(441) mSince V 0 and p p , we obtain V 26.8 . (a)

1.225 s
Ans

ρ
Δ

≈ = = = = =
mi60
hr

 

(b) Bernoulli from 1 to 3: both velocities = 0, so pnose = pa ≈ 101350 Pa. Ans. (b) 
 

3.167 In Fig. P3.167 the fluid is gasoline 
at 20°C at a weight flux of 120 N/s. 
Assuming no losses, estimate the gage 
pressure at section 1. 

Solution: For gasoline, ρ = 680 kg/m3. 
Compute the velocities from the given flow 
rate: 

 
Fig. P3.167 

3

1 22 2

W 120 N/s mQ 0.018 ,
g 680(9.81) s

0.018 m 0.018 mV 3.58 ; V 9.16 
s s(0.04) (0.025)

ρ

π π

= = =

= = = =

 

Now apply Bernoulli between 1 and 2: 

2 2 2 2
1 21 2 1

1 2
V Vp p p (3.58) 0(gage) (9.16)gz gz , or: 0 9.81(12)
2 2 2 680 2ρ ρ ρ

+ + ≈ + + + + ≈ + +  

1Solve for p  Ans.≈ 104, 000 Pa (gage)  
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3.168 In Fig. P3.168 both fluids are at 
20°C. If V1 = 1.7 ft/s and losses are ne-
glected, what should the manometer reading 
h ft be? 

Solution: By continuity, establish V2: 

2 2
2 1 1 2

ftV V (D /D ) 1.7(3/1) 15.3 
s

= = =  

Now apply Bernoulli between 1 and 2 to 
establish the pressure at section 2: 

2 2
1 1 1 2 2 2p V gz p V gz ,

2 2
ρ ρρ ρ+ + = + +  

 
Fig. P3.168 

2 2
1 1or: p (1.94/2)(1.7) 0 0 (1.94/2)(15.3) (62.4)(10), p 848 psf+ + ≈ + + =  

This is gage pressure. Now the manometer reads gage pressure, so 

1 a merc water2
lbfp p 848 ( )gh (846 62.4)h, solve for h  .
ft

Ansρ ρ− = = − = − ≈ 1.08 ft  

 

P3.169         Extend the siphon analysis of Ex. 3.22 to account for friction in the tube, as 
follows.  Let the friction head loss in the tube be correlated as 5.4(Vtube)2/(2g), which 
approximates turbulent flow in a 2-m-long tube.  Calculate the exit velocity in m/s and 
the volume flow rate in cm3/s.  We repeat the sketch of Ex. 3.22 for convenience. 
  

 

 

 

 

 

 

Solution:  Write the steady flow energy equation from the water surface (1) to the exit (2): 

z1= 60 cm 

z2 = − 25  cm 
cm

z4

V2 ? 
Fig. E3.22

z = 0 

d   =   1 cm 

water 

g
V

hhz
g

V
g

p
z

g
V

g
p tube

ff 2
4.5where,

22

2

2

2
22

1

2
11 =+++=++

ρρ
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The tube area is constant, hence Vtube  =  V2.  Also,  p1 =  p2 and  V1   ≈ 0.  Thus we obtain 

 

Tube friction has reduced the flow rate by more than 60%. 

 

3.170 If losses are neglected in Fig. 
P3.170, for what water level h will the flow 
begin to form vapor cavities at the throat of 
the nozzle? 

Solution: Applying Bernoulli from (a) to (2) 
gives Torricelli’s relation: V2 = √(2gh). Also, 

2 2
1 2 2 1 2 2V V (D /D ) V (8/5) 2.56V= = =  

 
Fig. P3.170 

Vapor bubbles form when p1 reaches the vapor pressure at 30°C, pvap ≈ 4242 Pa (from 
Table A.5), while ρ ≈ 996 kg/m3 at 30°C (Table A.1). Apply Bernoulli between 1 and 2: 

2 2 2 2
1 21 2 2  2

1 2
V Vp p 4242 (2.56V ) 100000 Vgz gz , or: 0 0
2 2 996 2 996 2ρ ρ

+ + ≈ + + + + ≈ + +  

2
2Solve for V 34.62 2gh, or h 34.62/[2(9.81)] .Ans= = = ≈ 1.76 m  

 

 

 

.000167.0)01.0(
4

)61.1(

.
4.51

)85.0)(/81.9(2

)4.51(
2

85.0)25.0(6.0

3
2

22

2

2

2
2

21

Ans
s

mm
s
mAVQand

AnsmsmVSolve

g
Vmmmzz

s
cm127

s
m1.61

3
====

=
+

=

+==−−=−

π
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3.171 For the 40°C water flow in Fig. 
P3.171, estimate the volume flow through 
the pipe, assuming no losses; then explain 
what is wrong with this seemingly innocent 
question. If the actual flow rate is Q = 
40 m3/h, compute (a) the head loss in ft and 
(b) the constriction diameter D which causes 
cavitation, assuming that the throat divides 
the head loss equally and that changing the 
constriction causes no additional losses. 

 
Fig. P3.171 

Solution: Apply Bernoulli between 1 and 2: 
2 2
1 21 2

1 2
V Vp pz z , or: 0 0 25 0 0 10, or:
2g 2gγ γ

+ + ≈ + + + + ≈ + + 25 10 ??=  

This is madness, what happened? The answer is that this problem cannot be free of losses. 
There is a 15-m loss as the pipe-exit jet dissipates into the downstream reservoir. Ans. (a) 
(b) Examining analysis (a) shows that the head loss is 15 meters. For water at 40°C, the 
vapor pressure is 7375 Pa (Table A.5), and the density is 992 kg/m3 (Table A.1). Now 
write Bernoulli between (1) and (3), assuming a head loss of 15/2 = 7.5 m: 

2 2
1 331

1 3 f,total 3 2 2
3

V Vpp g Q 40/3600 0.0141gz gz h , where V
2 2 2 A ( /4)D Dρ ρ π

+ + = + + + = = =  

2 2101350 7375 (0.0141/D )Thus 0 9.81(25) 0 (9.81)(7.5)
992 992 2

+ + ≈ + + +  

4 4Solve for D 3.75E 7 m , or D Ans.≈ − ≈ 0.0248 m 25 mm≈  

This corresponds to V3 ≈ 23 m/s. 
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3.172 The 35°C water flow of Fig. 
P3.172 discharges to sea-level standard 
atmosphere. Neglecting losses, for what 
nozzle diameter D will cavitation begin to 
occur? To avoid cavitation, should you 
increase or decrease D from this critical 
value? 

Solution: At 35°C the vapor pressure of 
water is approximately 5600 Pa (Table A.5). 
Bernoulli from the surface to point 3 gives the 

 
Fig. P3.172 

Torricelli result V3 = √(2gh) = √2(32.2)(6) ≈ 19.66 ft/s. We can ignore section 2 and 
write Bernoulli from (1) to (3), with p1 = pvap and Δz = 0: 

2 2 2 2
1 2 1 31 2

2

1 3

V V V Vp p 117 2116, or: ,
2 2 1.93 2 1.93 2

Dbut also V V
1/12

ρ ρ
+ ≈ + + ≈ +

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

4
1 3

ftEliminate V  and introduce V 19.66  to obtain D 3.07E 4,  .
s

Ans= = − D 0.132 ft≈  

To avoid cavitation, we would keep D < 0.132 ft, which will keep p1 > pvapor. 
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3.173 The horizontal wye fitting in Fig. 
P3.173 splits the 20°C water flow rate 
equally, if Q1 = 5 ft3/s and p1 = 25 lbf/in2 
(gage) and losses are neglected, estimate 
(a) p2, (b) p3, and (c) the vector force 
required to keep the wye in place. 

Solution: First calculate the velocities: 
 

Fig. P3.173 

1 2 32 2
1

Q 5.0 ft 2.5 ft ftV 25.46 ; V 50.93 , V 28.65 
A s s s( /4)(6/12) ( /4)(3/12)π π

= = = = = =  

Then apply Bernoulli from 1 to 2 and then again from 1 to 3, assuming Δz ≈ 0: 

( )2 2 2 2
2 1 1 2

1.94p p V V 25(144) [(25.46) (50.93) ] . (a)
2 2

Ansρ
= + − = + − ≈ 1713 psfg  

2 2 2 2
3 1 1 3

1.94p p (V V ) 25(144) [(25.46) (28.65) ] . (b)
2 2

Ansρ
= + − = + − 3433 psfg≈  

(c) to compute the support force R (see figure above), put a CV around the entire wye: 

x x 1 1 2 2 3 3 2 2 3 3 1 1

x x

F R p A p A sin30 p A sin50 Q V sin30 Q V sin50 Q V

R 707 42 229 124 106 247, or: R  (to left) . (c)Ans

ρ ρ ρ∑ = + − ° − ° = ° + ° −

= + − − = + − = −453 lbf
 

y y 2 2 3 3 2 2 3 3

y y

F R p A cos30 p A cos50 Q V cos30 Q ( V )cos50

R 73 193 214 89, or: R   (up) . (c)Ans

ρ ρ∑ = − ° + ° = ° + − °

= − + = − ≈ 5 lbf+
 

 

3.174 In Fig. P3.174 the piston drives 
water at 20°C. Neglecting losses, estimate 
the exit velocity V2 ft/s. If D2 is further 
constricted, what is the maximum possible 
value of V2? 

Solution: Find p1 from a freebody of the 
piston: 

 
Fig. P3.174 

x a 1 1 1 1 a 2 2
10.0 lbf lbfF F p A p A , or: p p 28.65 

( /4)(8/12) ftπ
∑ = + − − = ≈  
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Now apply continuity and Bernoulli from 1 to 2: 
2 2
1 2a1

1 1 2 2 1 2
V Vp1 pV A V A , or V V ;

4 2 2ρ ρ
= = + ≈ +  

2
1 a 1 2

2

2(28.65)Introduce p p  and substitute for V  to obtain V ,
1.94(1 1/16)

V  .Ans

− =
−

=
ft5.61
s

 

If we reduce section 2 to a pinhole, V2 will drop off slowly until V1 vanishes: 

2
2(28.65)Severely constricted section 2: V  .

1.94(1 0)
Ans= ≈

−
ft5.43
s

 

 

3.175 If the approach velocity is not too 
high, a hump in the bottom of a water 
channel causes a dip Δh in the water level, 
which can serve as a flow measurement.  
If, as shown in Fig. P3.175, Δh = 10 cm 
when the bump is 30 cm high, what is the 
volume flow Q1 per unit width, assuming 
no losses? In general, is Δh proportional  
to Q1? 

 
Fig. P3.175 

Solution: Apply continuity and Bernoulli between 1 and 2: 
2 2
1 2

1 1 2 2 1 2
V V

V h V h ; h h H, solve .
2g 2g

Ans= + ≈ + + 2
1 2 2

1 2

2g hV
(h /h ) 1

Δ
≈

−
 

We see that Δh is proportional to the square of V1 (or Q1), not the first power. For the 
given numerical data, we may compute the approach velocity: 

2 1 2
2(9.81)(0.1) mh 2.0 0.3 0.1 1.6 m; V 1.87 

s[(2.0/1.6) 1]
= − − = = =

−
 

1 1 1whence Q V h (1.87)(2.0)  .Ans= = ≈
⋅

3m3.74
s m
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3.176 In the spillway flow of Fig. P3.176, 
the flow is assumed uniform and 
hydrostatic at sections 1 and 2. If losses are 
neglected, compute (a) V2 and (b) the force 
per unit width of the water on the spillway. 

Solution: For mass conservation, 

2 1 1 2 1 1
5.0V V h /h V 7.14V
0.7

= = =  
 

Fig. P3.176 

(a) Now apply Bernoulli from 1 to 2: 

2 2 2 2
1 2 11 2 1

1 2
V V Vp p (7.14V )h h ; or: 0 5.0 0 0.7
2g 2g 2g 2gγ γ

+ + ≈ + + + + ≈ + +  

2
1 1 2 12

2(9.81)(5.0 0.7)Solve for V , or V  , V 7.14V  . (a)
[(7.14) 1]

Ans−
= = = =

−
m m1.30 9.28
s s

 

(b) To find the force on the spillway (F ←), put a CV around sections 1 and 2 to obtain 

2 2
x 1 2 2 1F F h h m(V V ), or, using the given data,

2 2
γ γ

∑ = − + − = −  

2 21F (9790)[(5.0) (0.7) ] 998[(1.30)(5.0)](9.28 1.30)  . (b)
2

Ans= − − − ≈
N68300
m

 

 

3.177 For the water-channel flow of 
Fig. P3.177, h1 = 1.5 m, H = 4 m, and V1 = 
3 m/s. Neglecting losses and assuming 
uniform flow at sections 1 and 2, find the 
downstream depth h2, and show that two 
realistic solutions are possible. 

Solution: Combine continuity and Bernoulli 
between 1 and 2: 

 
Fig. P3.177 

2 2 2 2
1 2 11 2

2 1 1 2 2
2 2

V V Vh 3(1.5) (4.5/h )V V ; h H h 1.5 4 h
h h 2g 2g 2(9.81) 2(9.81)

= = + + ≈ + = + + ≈ +  
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3 2
2 2Combine into a cubic equation: h 5.959 h 1.032 0. The three roots are:− + =  

2 2

2

h 0.403 m (impossible); h  (subcritical);
h  (supercritical) .Ans

= − =
=

+
+

5.93 m
0.432 m

 

 

3.178 For the water channel flow of Fig. 
P3.178, h1 = 0.45 ft, H = 2.2 ft, and V1 =  
16 ft/s. Neglecting losses and assuming 
uniform flow at sections 1 and 2, find the 
downstream depth h2. Show that two realistic 
solutions are possible. 

Solution: The analysis is quite similar to 
Prob. 3.177 - continuity + Bernoulli: 

 
Fig. P3.178

2 2 2 2
1 1 2 1 2

2 1 1 2 2
2 2

h 16(0.45) V V V (7.2/h )V V ; h h H 0.45 h 2.2
h h 2g 2g 2(32.2) 2(32.2)

= = + = + + = + = + +  

Combine into a cubic equation: 3 2
2 2h 2.225 h 0.805 0− + = . The three roots are: 

2 2

2

h 0.540 ft (impossible); h  (subcritical);
h  (supercritical) Ans.

= − =
=

+
+

2.03 ft
0.735 ft

 

 

3.179 A cylindrical tank of diameter D 
contains liquid to an initial height ho. At 
time t = 0 a small stopper of diameter d is 
removed from the bottom. Using Bernoulli’s 
equation with no losses, derive (a) a 
differential equation for the free-surface 
height h(t) during draining and (b) an 
expression for the time to to drain the entire 
tank. 

 

Solution: Write continuity and the unsteady Bernoulli relation from 1 to 2: 

22 2 2
2 2 1 1 1

2 1 2 1 1
21

V p V p V A D ds gz gz ; Continuity: V V V
t 2 2 A d

∂
∂ ρ ρ

⎛ ⎞+ + + = + + = = ⎜ ⎟
⎝ ⎠∫  
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The integral term 1V dV ds  h
t dt

∂
∂

≈∫  is very small and will be neglected, and p1 = p2.. Then 

1 2

1
2ghV

1α
⎡ ⎤≈ ⎢ ⎥−⎣ ⎦

, where α = (D/d)4; but also 1
dhV
dt

= − , separate and integrate: 

o

1/2 4h t

1/2
h o

dh 2g Ddt, or: ,  (a)
1 dh

Ans.α
α

⎡ ⎤⎧ ⎫⎡ ⎤ ⎛ ⎞= − =⎢ ⎥⎨ ⎬ ⎜ ⎟⎢ ⎥−⎣ ⎦ ⎝ ⎠⎩ ⎭⎢ ⎥⎣ ⎦
∫ ∫

21/2
1/2
o

gh h t
2( 1)

= −
−α

 

(b) the tank is empty when [] = 0 in (a) above, or tfinal = [2(α − 1)g/ho]1/2. Ans. (b) 
 

3.180 The large tank of incompressible 
liquid in Fig. P3.180 is at rest when, at t = 0, 
the valve is opened to the atmosphere. 
Assuming h ≈ constant (negligible velocities 
and accelerations in the tank), use the 
unsteady frictionless Bernoulli equation to 
derive and solve a differential equation for 
V(t) in the pipe. 

 
Fig. P3.180 

Solution: Write unsteady Bernoulli from 1 to 2: 
2 2 2

2 1
2 1 1 2 1 2 1

1

V V V ds gz gz , where p p , V 0, z 0, and z h const
t 2 2

∂
∂

+ + ≈ + = ≈ ≈ = =∫  

The integral approximately equals dV L,
dt

 so the diff. eqn. is 2dV2L V 2gh
dt

+ =  

This first-order ordinary differential equation has an exact solution for V = 0 at t = 0: 

⎛ ⎞
⎜ ⎟
⎝ ⎠

, where Ans.final
final final

V tV V tanh V 2gh
2L

= =  

 

3.181 Modify Prob. 3.180 as follows. Let the top of the tank be enclosed and under 
constant gage pressure po. Repeat the analysis to find V(t) in the pipe. 
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Solution: The analysis is the same as Prob. 3.180, except that we now have a (constant) 
surface-pressure term at point 1 which contributes to Vfinal: 

2 2 2 2
o o2 1

2 1
1

p pV V V dV V ds gz gz L gh, with V 0 at t 0.
t 2 2 dt 2

∂
∂ ρ ρ

+ + ≈ + + = + = + = =∫  

⎛ ⎞= ⎜ ⎟
⎝ ⎠

The solution is: , where Ans.final o
final final

V t 2pV V tanh V 2gh
2L

= +
ρ

 

 

3.182 The incompressible-flow form of Bernoulli’s relation, Eq. (3.77), is accurate only 
for Mach numbers less than about 0.3. At higher speeds, variable density must be accounted 
for. The most common assumption for compressible fluids is isentropic flow of an ideal gas, 
or p = Cρk, where k = cp/cv. Substitute this relation into Eq. (3.75), integrate, and eliminate 
the constant C. Compare your compressible result with Eq. (3.77) and comment. 

Solution: We are to integrate the differential Bernoulli relation with variable density: 

k k 1
p vp C , so dp kC d , k c /cρ ρ ρ−= = =  

Substitute this into the Bernoulli relation: 

k 1dp kC dV dV g dz V dV g dz 0ρ ρ
ρ ρ

−

+ + = + + =  

k 2Integrate: kC d V dV g dz 0 constantρ ρ− + + = =∫ ∫ ∫ ∫  

The first integral equals kCρk–1/(k − 1) = kp/[ρ(k − 1)] from the isentropic relation. Thus 
the compressible isentropic Bernoulli relation can be written in the form 

Ans.
2kp V gz constant

(k 1) 2
+ + =

− ρ
 

It looks quite different from the incompressible relation, which only has “p/ρ.” It becomes 
more clear when we make the ideal-gas substitution p/ρ = RT and cp = kR/(k − 1). Then we 
obtain the equivalent of the adiabatic, no-shaft-work energy equation: 

Ans.
2

p
Vc T gz constant
2

+ + =  
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3.183 The pump in Fig. P3.183 draws 
gasoline at 20°C from a reservoir. Pumps 
are in big trouble if the liquid vaporizes 
(cavitates) before it enters the pump. 
(a) Neglecting losses and assuming a flow 
rate of 65 gal/min, find the limitations on 
(x, y, z) for avoiding cavitation. (b) If pipe-
friction losses are included, what additional 
limitations might be important? 

Solution: (a) From Table A.3, ρ = 680 kg/ 
m3 and pv = 5.51E+4. 

1 2
2 1

( )a vp gy pp pz z y z
g g

ρ
ρ ρ

+ −−
− = + = =  

(100,000 55,100) 6.73 
(680)(9.81)

y z y z m−
+ = + =  

 

 

Fig. P3.183 

Thus make length z appreciably less than 6.73 (25% less), or z < 5 m. Ans. (a)  

(b) Total pipe length (x + y + z) restricted by friction losses. Ans. (b) 
 

3.184 For the system of Prob. 3.183, let the pump exhaust gasoline at 65 gal/min to the 
atmosphere through a 3-cm-diameter opening, with no cavitation, when x = 3 m, y =  
2.5 m, and z = 2 m. If the friction head loss is hloss ≈ 3.7(V2/2g), where V is the average 
velocity in the pipe, estimate the horsepower required to be delivered by the pump. 

Solution: Since power is a function of hp, Bernoulli is required. Thus calculate the velocity, 
3

2

m /s(65 gal/min) 6.3083 5
gal/min

5.8 m/s
(0.03 )

4

E
QV
A π

⎛ ⎞
−⎜ ⎟⎝ ⎠

= = =  

The pump head may then be found, 
2

1 2
1 2 2

j
f p

Vp pz z h h
gγ γ

+ = + + − +  

2 2100,000 (680)(9.81)(2.5) 100,000 3.7(5.8 ) (5.8 )2.5 2
(680)(9.81) (680)(9.81) 2(9.81) 2(9.81)ph+

− = + + − +  
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10.05 ph m=  

γ= = (680)(9.81)(0.0041)(10.05)  pP Qh Ans.P 275 W 0.37 hp= =  
 

3.185 Water at 20°C flows through a 
vertical tapered pipe at 163 m3/h. The 
entrance diameter is 12 cm, and the pipe 
diameter reduces by 3 mm for every 2 meter 
rise in elevation. For frictionless flow, if the 
entrance pressure is 400 kPa, at what 
elevation will the fluid pressure be 100 kPa? 

 

Solution: Bernouilli’s relation applies, 

 
2 2

1 1 2 2
1 22 2

1 22 2
p Q p Qz z

gA gAγ γ
+ + = + +  (1) 

Where, 

 2 1 2 1d d 0.0015(z z )= − −  (2) 

Also, Q1 = Q2 = Q = (163 m3/h)(h/3600s) = 0.0453 m3/s; γ = 9790; z1 = 0.0; p1 = 400,000; 
and p2 = 100,000. Using EES software to solve equations (1) and (2) simultaneously, the 
final height is found to be z ≈ 27.2 m. The pipe diameter at this elevation is d2 = 0.079 m = 
7.9 cm. 
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FUNDAMENTALS OF ENGINEERING EXAM PROBLEMS: Answers 

FE3.1 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If 
the flow rate is 160 gal/min, what is the average velocity at section 1? 

(a) 2.6 m/s (b) 0.81 m/s (c) 93 m/s (d) 23 m/s (e) 1.62 m/s 
FE3.2 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If 
the flow rate is 160 gal/min and friction is neglected, what is the gage pressure at section 1? 

(a) 1.4 kPa (b) 32 kPa (c) 43 kPa (d) 22 kPa (e) 123 kPa 
FE3.3 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If 
the exit velocity is V2 = 8 m/s and friction is neglected, what is the axial flange force 
required to keep the nozzle attached to pipe 1? 

(a) 11 N (b) 36 N (c) 83 N (d) 123 N (e) 110 N 
FE3.4 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If 
the manometer fluid has a specific gravity of 1.6 and h = 66 cm, with friction neglected, 
what is the average velocity at section 2? 

(a) 4.55 m/s (b) 2.4 m/s (c) 2.8 m/s (d) 5.55 m/s (e) 3.4 m/s 
FE3.5 A jet of water 3 cm in diameter strikes normal to a plate as in Fig. FE3.5. If the 
force required to hold the plate is 23 N, what is the jet velocity? 

(a) 2.85 m/s (b) 5.7 m/s (c) 8.1 m/s (d) 4.0 m/s (e) 23 m/s 
FE3.6 A fireboat pump delivers water to a vertical nozzle with a 3:1 diameter ratio, as 
in Fig. FE3.6. If friction is neglected and the flow rate is 500 gal/min, how high will the 
outlet water jet rise? 

(a) 2.0 m (b) 9.8 m (c) 32 m (d) 64 m (e) 98 m 
FE3.7 A fireboat pump delivers water to a vertical nozzle with a 3:1 diameter ratio, as 
in Fig. FE3.6. If friction is neglected and the pump increases the pressure at section 1 to  
51 kPa (gage), what will be the resulting flow rate? 

(a) 187 gal/min (b) 199 gal/min (c) 214 gal/min (d) 359 gal/min (e) 141 gal/min 
FE3.8 A fireboat pump delivers water to a vertical nozzle with a 3:1 diameter ratio, as 
in Fig. FE3.6. If duct and nozzle friction are neglected and the pump provides 12.3 feet of 
head to the flow, what will be the outlet flow rate? 

(a) 85 gal/min (b) 120 gal/min (c) 154 gal/min (d) 217 gal/min (e) 285 gal/min 
FE3.9 Water flowing in a smooth 6-cm-diameter pipe enters a venturi contraction with 
a throat diameter of 3 cm. Upstream pressure is 120 kPa. If cavitation occurs in the throat 
at a flow rate of 155 gal/min, what is the estimated fluid vapor pressure, assuming ideal 
frictionless flow? 

(a) 6 kPa (b) 12 kPa (c) 24 kPa (d) 31 kPa (e) 52 kPa 
FE3.10 Water flowing in a smooth 6-cm-diameter pipe enters a venturi contraction with 
a throat diameter of 4 cm. Upstream pressure is 120 kPa. If the pressure in the throat is  
50 kPa, what is the flow rate, assuming ideal frictionless flow? 
(a) 7.5 gal/min (b) 236 gal/min (c) 263 gal/min (d) 745 gal/min (e) 1053 gal/min 
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Fig. FE3.1 

 
Fig. FE3.5 

 

 

Fig. FE3.6 
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COMPREHENSIVE PROBLEMS 
 
C3.1 In a certain industrial process, oil of 
density ρ flows through the inclined pipe in 
the figure. A U-tube manometer with fluid 
density ρm, measures the pressure difference 
between points 1 and 2, as shown. The flow 
is steady, so that fluids in the U-tube are 
stationary. (a) Find an analytic expression  
for p1 − p2 in terms of system parameters.  
(b) Discuss the conditions on h necessary for 
there to be no flow in the pipe. (c) What 
about flow up, from 1 to 2? (d) What about 
flow down, from 2 to 1?  

Solution: (a) Start at 1 and work your way around the U-tube to point 2: 

1 2

2 1

,
: where z z z  (a)

mp gs gh gh gs g z p
or Ans.

ρ ρ ρ ρ ρ+ + − − − Δ =

Δ = −mp p g z gh1 2 ( )− = Δ + −ρ ρ ρ
 

(b) If there is no flow, the pressure is entirely hydrostatic, therefore Δp = ρg and, since 
ρm ≠ ρ, it follows from Ans. (a) above that h = 0 Ans. (b) 

(c) If h is positive (as in the figure above), p1 is greater than it would be for no flow, 
because of head losses in the pipe. Thus, if h > 0, flow is up from 1 to 2. Ans. (c) 

(d) If h is negative, p1 is less than it would be for no flow, because the head losses act 
against hydrostatics. Thus, if h < 0, flow is down from 2 to 1. Ans. (d) 

Note that h is a direct measure of flow, regardless of the angle θ of the pipe. 
 

C3.2 A rigid tank of volume υ = 1.0 m3  
is initially filled with air at 20°C and po = 
100 kPa. At time t = 0, a vacuum pump is 
turned on and evacuates air at a constant 
volume flow rate Q = 80 L/min (regardless 
of the pressure). Assume an ideal gas and an 
isothermal process. (a) Set up a differential 
equation for this flow. (b) Solve this equation 
for t as a function of (υ, Q, p, po). (c) Com- 
pute the time in minutes to pump the tank 
down to p = 20 kPa. [Hint: Your answer 
should lie between 15 and 25 minutes.] 
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Solution: The control volume encloses the tank, as shown. The CV mass flow relation 
becomes 

( ) 0out in
d d m m
dt

ρ υ + ∑ − ∑ =∫  

Assuming that ρ is constant throughout the tank, the integral equals ρυ, and we obtain 

0, : ,  ln
o

d d Q QtQ or dt yielding
dt
ρ ρ ρυ ρ

ρ υ ρ υ
⎛ ⎞

+ = = − = −⎜ ⎟
⎝ ⎠

∫ ∫  

Where ρo is the initial density. But, for an isothermal ideal gas, ρ/ρo = p/po. Thus the 
time required to pump the tank down to pressure p is given by 

⎛ ⎞
⎜ ⎟
⎝ ⎠

(a, b)Ans.
o

pt
Q p

= −
υ ln  

(c) For our particular numbers, noting Q = 80 L/min = 0.080 m3/min, the time to pump a 
1 m3 tank down from 100 to 20 kPa is 

3

3
1.0 m 20ln  (c)

1000.08 m /min
t Ans.⎛ ⎞= − =⎜ ⎟⎝ ⎠

20.1 min  

 

C3.3 Suppose the same steady water jet 
as in Prob. 3.40 (jet velocity 8 m/s and jet 
diameter 10 cm) impinges instead on a cup 
cavity as shown in the figure. The water is 
turned 180° and exits, due to friction, at 
lower velocity, Ve = 4 m/s. (Looking from 
the left, the exit jet is a circular annulus of 
outer radius R and thickness h, flowing 
toward the viewer.) The cup has a radius of 
curvature of 25 cm. Find (a) the thickness h of 
the exit jet, and (b) the force F required to 
hold the cupped object in place. (c) Compare 

 
Fig. C3.3 

part (b) to Prob. 3.40, where F = 500 N, and give a physical explanation as to why F has 
changed. 

Solution: For a steady-flow control volume enclosing the block and cutting through the 
jets, we obtain ΣQin = ΣQout, or: 

π π= − −2 2 2[ ( ) ], :  (a)
4j j eV D V R R h or Ans.j j

e

V D
h R R

V
= − −

2
2

4
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For our particular numbers, 

2
2 8 (0.1)0.25 (0.25) 0.25 0.2398 0.0102 m  (a)

4 4
h Ans.= − − = − = = 1.02 cm  

(b) Use the momentum relation, assuming no net pressure force except for F: 

∑ = − = − −( ) ( ), :  (b)x jet e jet jF F m V m V or Ans.j j j eF V D V V= +
πρ 2 ( )
4

 

For our particular numbers: 

2998(8) (0.1) (8 4)  (b)
4

F Ans.π
= + = 752 N to the left  

(c) The answer to Prob. 3.40 was 502 N. We get 50% more because we turned through 
180°, not 90°. Ans. (c) 

 

C3.4 The air flow beneath an air hockey 
puck is very complex, especially since the air 
jets from the table impinge on the puck at 
various points asymmetrically. A reasonable 
approximation is that, at any given time, the  

gage pressure on the bottom of the puck is halfway between zero (atmospheric) and the 
stagnation pressure of the impinging jets, po = 1/2 ρVjet2. (a) Find the velocity Vjet required to 
support a puck of weight W and diameter d, with air density ρ as a parameter. (b) For W =  
0.05 lbf and d = 2.5 inches, estimate the required jet velocity in ft/s. 

Solution: (a) The puck has atmospheric pressure on the top and slightly higher on the 
bottom: 

ρ π⎛ ⎞− = = +⎜ ⎟
⎝ ⎠

2 21( ) 0 ,  . (a)
2 2 4under a puck jetp p A W V d Solve for Ansjet

WV
d

=
4

πρ
 

For our particular numbers, W = 0.05 lbf and d = 2.5 inches, we assume sea-level air,  
ρ = 0.00237 slug/ft3, and obtain 

3
4 0.05 lbf . (b)

(2.5/12 ft) (0.00237 slug/ft )jetV Ans
π

= = 50 ft/s  
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C3.5 Neglecting friction sometimes leads 
to odd results. You are asked to analyze and 
discuss the following example in Fig. C3.5. 
A fan blows air vertically through a duct 
from section 1 to section 2, as shown. 
Assume constant air density ρ. Neglecting 
frictional losses, find a relation between the 
required fan head hp and the flow rate and 
the elevation change. Then explain what 
may be an unexpected result. 

Solution: Neglecting frictional losses, hf = 
0, and Bernoulli becomes, 

2 2
1 1 2 2

1 22 2 p
p V p Vz z h
g g g gρ ρ

+ + = + + −  
 

Fig. C3.5 
2 2

1 1 2 1 2 2
1 2

( )
2 2 p

p V p g z z Vz z h
g g g g

ρ
ρ ρ

+ −
+ + = + + −  

Since the fan draws from and exhausts to atmosphere, V1 = V2 ≈ 0. Solving for hp, 

Ans.ph g z z gz gz= − + − =ρ ρ ρ1 2 2 1( ) 0  

Without friction, and with V1 = V2, the energy equation predicts that hp = 0! Because the 
air has insignificant weight, as compared to a heavier fluid such as water, the power input 
required to lift the air is also negligible. 

 


