Chapter-3

LOGIC GATES

> Introduction:

- Gate: A Gate is a simply an electronic circuit which operates on one or more input signals and always produces an output signal.
- Gates are digital (two state) circuits because the input and output signals are either low voltage (0) or high voltage (1).
- Gates are often called logic circuits because they can be analyzed with Boolean algebra.
- Gates are classified into two types:

Basic Gates:

> NOT Gate:

- A NOT gate has only one input and one output.
- The output state is always the opposite of the input state.
- A NOT Gate is also called as *Inverter* gate, because the output is not same as the input.
- The output is sometimes called the complement (opposite) of the input.
- The logical symbol and the truth table of NOT gate are given below.

> OR Gate:

- A OR gate has two or more input signal but only one output signal.
- If any of the input signals is 1 (high), then the output is 1 (high).
- The logical symbol for two-input OR gate and the truth table is given below.

X	Y	$\mathbf{F} = \mathbf{X} + \mathbf{Y}$
0	0	0
0	1	1
1	0	1
1	1	1

> AND Gate:

- A AND gate has two or more input signal but only one output signal.
- When all the input signals are 1 (high), the output is 1 (high), otherwise the output is 0.
- The logical symbol for two-input AND gate and the truth table is given below.

Χ	Y	$\mathbf{F} = \mathbf{X} \cdot \mathbf{Y}$
0	0	0
0	1	0
1	0	0
1	1	1

> NOR Gate:

- A NOR gate has two or more input signal but only one output signal.
- The NOR gate is a complemented of OR gate.
- The output of NOR gate will be 1 only when all inputs are 0 and output will be 0 if any input represents a 1.
- NOR is short form of NOT-OR.
- The symbol \downarrow is used to represent a NOR operation. So \neg and \neg can be written as X NOR Y or X \downarrow
- The logical structure shows an OR gate and NOT gate. For input X and Y, the output of the OF will be X+Y which is fed as input to the NOT gate. So the output of NOR gate is given by which is equal to \overline{X} . \overline{Y}

• The logical symbol for two-input NOR gate and the truth tabages given below.

X	Y	$\mathbf{F} = \mathbf{F}$
0	0	1
0	1	0
1	0	0
1	1	0

X	Y	Z	$\mathbf{F} = \mathbf{e}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

> NAND Gate:

- A NAND gate has two or more input signal but only one output signal.
- The NAND gate is a complemented of AND gate.
- The output of NAND gate will be 0 only when all inputs are 1 and output will be 0 if any input represents a 0.
- NAND is short form of NOT-AND.
- The symbol \uparrow is used to represent a NOR operation. So $\Box \Box \Psi$ can be written as X NAND Y or X \uparrow Y.
- inde logical structure shows an AND gate and NOT gate. For input X and Y, the output of the OR
 will be X .Y which is fed as input to the NOT gate. So the output of NAND gate is given by
 which is equal to X + Y

• The logical symbol for two-input NAND gate and the truth table is given below.

Х	Y	F = prover
0	0	1
0	1	1
1	0	1
1	1	0

Χ	Y	Z	$\mathbf{F} = \mathbf{F}$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

> XOR (Exclusive-OR) Gate:

- An exclusive-OR has two or more input signal but only one output signal.
- Exclusive-OR gate is different form of OR gate.
- Exclusive-OR gate produces output 1 for only those input combinations that have odd number of 1's.
- The output is 0 if there are even number of 1's in the input.
- The output is 1 if there are odd number of 1's in the input.
- In Boolean algebra, Θ sign stands for XOR operation. Thus X XOR Y can be written as X Θ Y
- If the output is given by:

 $F = X \Theta Y$

$$\mathbf{F} = \mathbf{X} \ \overline{\mathbf{Y}} + \ \overline{\mathbf{X}} \ \mathbf{Y}$$

• The XOR gate has a symbol similar to OR gate, except the additional curved line of the input side.

$$\begin{array}{c|c} X \\ Y \end{array} F = X \Theta Y = X \overline{Y} + \overline{X} Y$$

• The following truth table illustrates XOR operation for 2 and 3 inputs.

Number	Input		Output
Of 1's	X	Y	$\mathbf{F} = \mathbf{X} \mathbf{\Theta} \mathbf{Y}$
EVEN	0	0	0
ODD	0	1	1
ODD	1	0	1
EVEN	1	1	0

Number of 1's	X	Y	Z	$\mathbf{F} = \mathbf{X} \Theta \mathbf{Y} \Theta \mathbf{Z}$
EVEN	0	0	0	0
ODD	0	0	1	1
ODD	0	1	0	1
EVEN	0	1	1	0
ODD	1	0	0	1
EVEN	1	0	1	0
EVEN	1	1	0	0
ODD	1	1	1	1

> XNOR (Exclusive-NOR) Gate:

- The XNOR gate is complement of XOR gate.
- The output of XNOR is 1 only when the logic values of both X and Y is same i.e. either both are equal to 1 or both are 0.
- Its output is 0 when its inputs are different.
- In Boolean algebra, sign stands for XNOR operation. Thus X XNOR Y can be written as X Y
- If the output is given by:

$$F = X Y$$
$$F = XY + \boxed{[]}$$

• The XNOR gate has a symbol similar to NOR gate, except the additional curved line of the input side.

$$\begin{array}{c|c} X \\ Y \end{array} \begin{array}{c} F = X \\ Y \end{array} \begin{array}{c} Y = XY \\ F = X \end{array}$$

• The following truth table illustrates XOR operation for 2 and 3 inputs.

Number	Inj	out	Outpu	ıt
Of 1's	X	Y	$\mathbf{F} = \mathbf{X}$	Y
EVEN	0	0	1	
ODD	0	1	0	
ODD	1	0	0	
EVEN	1	1	1	

Number of 1's	X	Y	Z	$\mathbf{F} = \mathbf{X} \mathbf{Y}$	Ζ
EVEN	0	0	0	1	
ODD	0	0	1	0	
ODD	0	1	0	0	
EVEN	0	1	1	1	
ODD	1	0	0	0	
EVEN	1	0	1	1	
EVEN	1	1	0	1	
ODD	1	1	1	0	

Universal Gate (NAND & NOR):

- Universal gate is a gate using which all the basic gates can be designed.
- NAND and NOR gate re called as Universal Gates, because all the Boolean functions can also be implemented using these two gates.
- NAND and NOR gates are more popular as these are less expensive and easier to design.

Realization of all basic gates using NAND gate:

> NAND to NOT:

• In the figure we have two input NAND gate has a purposely connected together so that the same input is applied to both.

$$X \longrightarrow \overline{X \cdot X} = \overline{X}$$

From the diagram X NAND X = $\overline{X \cdot X}$ = $\overline{X} +$

 $= \overline{X} + \overline{X} // \text{DeMorgan's } 2^{nd} \text{ Theorem}$ = $\overline{X} = \overline{X} + \overline{X} = \overline{X}$ = Inverted Input = NOT gate

- > NAND to AND:
- In the figure we have two NAND gates connected so that the AND or rations is performed.
- NAND gate 2 is used as a NOT gate.

> NAND to OR:

- The OR operation can be implemented using NAND gates connected as shown in figure.
- NAND gate 1 and NAND gate 2 are used as NOT to invert the inputs.

- From the diagram X NAND Y
 - $\overline{\mathbf{X}} = \overline{\mathbf{X}} + \overline{\mathbf{X}} = \overline{\mathbf{X}}$ F_1 = $\|\overline{V},\overline{Y} - \overline{W},\overline{Y} + \overline{Y} = \overline{Y}$ F_2 = F1.F2 F3 = // DeMorgan's 2nd Theorem F1 + F2= $\overline{X} = X$ and $\overline{Y} = Y$ $\overline{\overline{X}} + \overline{\overline{Y}}$ =X + Y F_3 =OR gate =
- Realization of all basic gates using NOR gate:
- > NOR to NOT:
- Figure shows that NOR gate with its inputs commented together behaves as a NOT gate.

> NOR to AND:

• The AND operation can be implemented with NOR gate as shown in figure. Here NOR gate 1 and NOR gate 2 are used as NOT gate to invert inputs.

• From the diagram X NOR Y

$$\begin{array}{rcl} F_1 & = & \hline H & \hline H & = & \overline{X} \cdot \overline{X} = \overline{X} \\ F_2 & = & \hline H + \overline{H} = & \overline{Y} \cdot \overline{Y} = \overline{Y} \\ F_3 & = & \overline{F1 + F2} \\ & = & \overline{F1 \cdot F2} & // \text{ DeMorgan's 1}^{\text{st}} \text{ Theorem} \\ & = & \overline{\overline{X}} \cdot \overline{\overline{Y}} & \overline{\overline{X}} = X \text{ and } \overline{\overline{Y}} = Y \\ F_3 & = & X.Y \\ & = & \text{AND gate} \end{array}$$

> NAND to OR:

•

- In the figure two NOR gates are arranged so that the OR operation is performed.
- NOR gate 2 is used as NOT gate.

- > Designing of Logic Circuit using all basic gates :
- > Designing of Logic Circuit using NAND and NOR gates:

CHAPTER – LOGIC GATES BLUE PRINT					
VSA (1 marks) LA (3 Marks) - Total					
01 Question	01 Question	-	02 Questions		
Question No 1	Question No 20	-	04 Marks		