CHAPTER 3 MOTOR TRANSPORT

Motor transport is the backbone of the Army's support and sustainment structure, providing mobility on and off the battlefield. Trucks transport personnel, munitions, replacement combat vehicles, petroleum products, critical supply items, and combat casualties. This chapter addresses organizational and operational aspects of the motor transport unit and provides information needed in planning successful operations.

Section I ORGANIZATION AND OPERATIONS

UNIT ADMINISTRATION

Appendix A contains a breakdown of Army motor transport units according to TOE, mission, assignment, and capability. Figure 3-1 is a sample SOP format for motor transport movements within divisions, logistic commands, and higher echelons. See

Figure 3-2, page 3-2, for a sample SOP format for motor transport service. To furnish routine vehicle commitments to subordinate units, use a locally reproduced format. See Figure 3-3, page 3-3, for a sample vehicle commitment work sheet.

Classification

standing operating procedure

1. GENERAL. Policies and factors involved in movements.
a. Highway regulation. Purpose, application/scope, responsibilities, methods and procedures.
b. Convoy clearance. Minimum vehicle requirements; convoy symbols; procedures; format for requesting and furnishing clearance; routing; halts; convoy composition; restrictions on tracked, overweight, or outsize vehicles.
c. Highway regulation points. Purpose, basis for, responsibilities and procedures, required records.
d. Traffic control. Responsibilities, relationship to highway regulation, coordination with provost marshal.
e. Return loads. Policies, methods, and procedures for securing and reporting.
f. Convoy commanders. Appointment, responsibilities, and functions; relationships with transportation personnel; instructions to be furnished.
g. Halts. Types; policies, procedures, and responsibilities; area policing.
h. Security. Responsibilities; defensive measures.
i. Records and reports. Responsibilities, methods, required reports.

Figure 3-1. Sample format for motor transport movements SOP
j. Communications. Responsibilities, means of communication.
k. Environment. Protection, spill prevention, transporting HAZMAT.
2. SUPPLY MOVEMENTS
a. Releases. When required, methods of obtaining, formats, dissemination, actions required.
b. Diversions and reconsignments. Authority, request procedures.
c. Records and reports. Types of required records and reports.

Classification

Figure 3-1. Sample format for motor transport movements SOP (continued)

Classification

sTANDING OPERATING PROCEDURE

1. GENERAL. Policies for control, operation, and maintenance of facilities equipment, and installation; command responsibility; technical supervision required and agencies involved.
2. MISSION. Service provided, extent of operation.
3. ORGANIZATION. Available operating units, location, and operating limits.
4. FUNCTIONS. Scheduled and nonscheduled operations; maintenance of equipment, including responsibilities, procedures, facilities, and inspection practices.
5. PLANNING. Troop and equipment requirements, capability estimates, communication procedure and requirements, rehabilitation requirements.
6. OPERATIONS. Operational procedures and controls, pooling and equipment use.
7. MAINTENANCE. Responsibilities and procedures for maintenance, regulations, and reports.
8. SUPPLY. Responsibilities for supplies, authorized levels, requisitioning procedures, accounting methods, disposal of excesses.
9. INTELLIGENCE AND RECONNAISSANCE. Responsibilities for collection, collation, evaluation, and dissemination of highway transportation intelligence and reconnaissance information.
10. SECURITY. Responsibilities for disaster and defense plans, convoy and cargo security, equipment and facilities.
11. ENVIRONMENT. Responsibilities and procedures for safeguarding water, vegetation, and wildlife. Spill prevention procedures.
12. RECORDS AND REPORTS. Responsibilities for operational and personnel status reports, technical reports, and miscellaneous records/reports.
13. TRAINING. Responsibilities for unit and technical training.

Classification

Figure 3-2. Sample format for motor transport service SOP

Figure 3-3. Sample vehicle commitment work sheet

Convoy Briefing

The commander briefs all convoy members before the convoy departs on its mission. A number of topics should be addressed in an effective briefing. With adjustments to local conditions, this briefing should include the following information.

Situation:

- Enemy forces.
- Friendly forces.
- Support units.

Mission:

- Type of cargo.
- Origin.
- Destination.

Execution:

- General organization.
- Time schedule.
- Routes.
- Convoy speed.
- Catch-up speed.
- Vehicle distance.
- Emergency measures (for accidents, breakdowns, and separation from convoy).
- Action of convoy and security personnel if ambushed.
- Medical support.

Administration and logistics:

- Personnel control.
- Billeting.
- Messing.
- Refueling and servicing of vehicles, complying with spill prevention guidelines.

Command and signal:

- Convoy commander's location.
- Assistant convoy commander designation (succession of command).
- Action of security forces commander.
- Serial commanders' responsibilities.
- Arm and hand signals.
- Other prearranged signals.
- Radio frequencies and call signs (for control personnel, security force commanders, fire support elements, reserve security elements, medical evacuation support).

Sa fety:

- Hazards of route.
- Weather conditions.
- Defensive driving.

Environmental Protection:

- Spill prevention.
- Transporting HAZMAT.

Convoy Commander's Checklist

Before departing, convoy commanders should review the following questions to ensure that arrangements are complete:

- Where is the SP? The RP?
- What route is to be used?
- Has reconnaissance been made? Condition of route determined?
- Can bridges, tunnels, underpasses, and defiles safely accommodate all loaded and tracked vehicles?
- Are criticalpointsknownand listed onstrip maps?
- What is the size of serials?
- What is the size of march units?
- What is the rate of march?
- What is the vehicle interval on an open road?

In built-up areas? At halt?

- What type of column will be used?
- Has provision been made for refueling?
- Has a suitable operations area been selected?
- Have suitable rest- and mess-halt areas been selected?
- Is road movement table needed? Prepared? Submitted?
- Have convoy clearances been obtained? What date?
- Is escort required? Has it been requested?
- Are spare trucks available for emergencies?
- Are vehicles fully serviced and ready for loading?
- Is load properly blocked and braced, neat, and balanced?
- Are drivers properly briefed? By whom? When? Strip maps furnished?
- Is convoy marked front and rear of each march unit? With convoy number when required? Is each vehicle marked? Are convoy flags on the vehicles?
- Are guides in place? Have arrangements been made to post guides?
- Are blackout lights functioning?
- Have maintenance services been alerted?
- Is maintenance truck in rear? Are medics in rear? Is there a loan for casualties?
- Are all interested parties advised of ETA?
- Is officer at rear of convoy ready to take necessary corrective action, such as investigating accidents and unusual incidents and changing loads?
- Who is the trail officer?
- Is there a truck load plan? Who is responsible?
- Is there a truck unload plan? Who is responsible? Do they have the necessary equipment?
- Is there a plan for feeding personnel?
- Have times been established for loading trucks?
- Has time been established for formation of convoy?
- Have times been established for unloading trucks?
- Has time been established for releasing trucks? Who is responsible?
- Is there a carefully conceived plan known to all convoy personnel that can be used in case of an attack?
- Is a written OPORD on hand if required?
- Will a \log of road movement be required at end of trip? Are necessary forms on hand?
- Has a weather forecast been obtained?
- Do all personnel have proper clothing and equipment?
- Is there a communications plan? Where will communications equipment be located? Has all communications equipment been serviced?

Convoy Commander's Report

After the move is completed, the convoy commander prepares a report for submission to his immediate superior officer (if required by higher command). A sample report is shown in Figure 3-4, page 3-6. The report may be submitted in the format shown or in the form of a strip map with an appropriate legend attached.

Convoy Clearance

Units that move convoys on MSRs, ASRs, or other controlled routes that require a movement credit (an alphanumeric identifier) must request and receive clearance before beginning movement. A request to move on a controlled route is known as a movement bid. A movement bid is a form or message that details the itinerary of the move, the number and types of vehicles, and movement planning information. The authority to move is passed to the moving unit as a movement credit. The movement bid is submitted through the chain of command to the DTO or Corps/EAC MC detachment within whose area the movement originates. The information required varies according to local regulations. Based on local SOP, as well as the urgency of the
requirement, the request may be transmitted in hard copy, electronically, or verbally. In CONUS, DD Forms 1265 and 1266 (Figures 3-5, page 3-8, and $3-6$, page $3-10$) serve as movement bids. In NATO, STANAGs 2154 and 2155 govern movement bids. Field manuals that contain detailed information on movements bids are FM 55-10 (overseas theaters) and FM 55-312 (CONUS).

In a theater of operations. Before beginning a road movement over a route requiring a movement credit, the unit submits a movement bid through the chain of command as stated above. The movement bid is a dual-purpose document. It can serve either as a request or as an authorization for movement, or both. The requesting agency uses the form to initiate a movement via highway. The movement control organization uses the form to grant clearance and to issue instructions for the road movement. Once the request is received, the movement control organization schedules the movement for the time and over the route requested (if possible). If the move cannot be scheduled at the requested time or on the requested route, the movement control organization notifies the requester. Alternate times and routes are then arranged. After final coordination and approval, the movement control organization issues the necessary movement credit, convoy movement number, and any other required information. The authorization is returned to the requesting agency.
In CONUS. A military convoy must gain permission from the appropriate state and city officials to travel on public highways. To obtain this permission, the following documents should be submitted through the ITO at point of origin:

- DD Form 1265.
- One copy of operations order.
- Four copies of strip map of the proposed convoy route.
- One copy of each document for each state to be crossed.
- One copy of each document for the local ITO. The request must reach the approving authority (in most cases, the local ITO) at least 10 days before the planned move.

FORWARD LOAD

$\begin{aligned} & 420 \text { Trans Bn } \\ & \text { (Trk) } \end{aligned}$	4401 Trans Co (Lt Trk)
28FEOIC Twelve 2 1/2-Ton Trucks (Convoy No) (No. and type of task vehicles)	16 Feb XX (Date)
TIME	
Departed starting point 0621 hr
Arrived 1st loading point	0630 hr
Departed 1st loading point	0800 hr
Time at 1st loading point	1 hr 30 min
Arrived HRP	1200 hr
Departed HRP	1205 hr
Time at 1st unloading point 33 min
SUPPLIES AND PERSONNEL	
Cargo (STONs)	50.2
Class of supplies I
Number of personnel 0
DISTANCE	
Odometer reading of lead vehicle (at 1st loading point) 21,324 mi
Odometer reading of lead vehicle (at starting point)	.. $21,322 \mathrm{mi}$
Total forward (no load) 2 mi
Odometer reading of lead vehicle (at 1st unloading point)	21,381 mi
Total forward (loaded) ..	57 mi

REMARKS

Starting point - company area, RJ 124/167
Weak bridge 6.4 mi east of 1 st loading point. Road generally in poor condition between starting point and 1 st unloading point.

RETURN LOAD

TIME

Arrived 2d loading point (same as 1st unloading point) .. 1245 hr
Departed 2d loading point ... 1300 hr
Time at 2d loading point .. 15 min
Arrived 2d unloading point .. 1400 hr
Departed 2d unloading point .. 1415 hr
Time at 2d unloading point .. 15 min

Figure 3-4. Sample convoy commander's report
SUPPLIES AND PERSONNEL
Cargo (STONs) 10.0
Class ofsupplies II and IV
Number of personnel 120
DISTANCE
Odometer reading of lead vehicle (at 2 d unloading point) 21,396 mi
Odometer reading of lead vehicle (at 2d loading point) 21,381 mi
Total return (loaded) 15 mi
Odometer reading of lead vehicle (at starting point) $21,346 \mathrm{mi}$
Total return (no load) 40 mi
REMARKS
Road in excellent condition between 2d loading point and starting point.
ROUND TRIP DATA
TIME
Returned to starting point $1,654 \mathrm{mi}$
Total round trip time 10 hr 33 min
Total travel time (including halts) 8 hr
Total loading time 1 hr 45 min
Total unloading time 48 min
SUPPLIES AND PERSONNEL
Cargo (STONs of Class I) 50.2
(STONs of Class II and IV) 10.0
Number of personnel 120
DISTANCE
Total distance (loaded) 72 mi
Totaldistance (unloaded) 42 mi
Total round trip distance 114 mi
REMARKS
Average rate of march $=14.2 \mathrm{MIH}$.
Ton-miles forward $=2,861$; return $=150$.
Passenger-miles forward $=0$; return $=1,800$.
\qquad
/t/ Thomas A. Young
(Convoy commander)
2d Lt, 4401 Trans Co (Lt Trk) (Rank/grade and organization)

Figure 3-4. Sample convoy commander's report (continued)

Interstate 64, State Route 168, State Route 33, Interstate 64, Interstate 95, State Route 207, US 301 to Fort A. P. Hill.

Class I (packaged rations)

DD roskia 1265
Figure 3-5. Sample DD Form 1265, Request for Convoy Clearance

ETA is the time the first vehicle clears the referenced point.
ETD is the time the last vehicle clears the referenced point.

Figure 3-5. Sample DD Form 1265, Request for Convoy Clearance (continued)

Figure 3-6. Sample DD Form 1266, Request for Special Hauling Permit

14 Notwhat OF 	(1)	(2)							$\stackrel{\text { Tarab }}{1}$							
		$\cdots \times-{ }_{5}$														
14. mimaremor	2	4	4	4	4				18							
	11	11	11	11	11											
17. fincsixis	100×20	$1100 \times 201100 \times 20$		1100×20	1100×20											
	8,244	6,958	6,958	5,320	5,320				32,800							
	9,044	8,058	8,058	6,320	6,320				37,800							
antrauefting afener100th Trans Co (Lt Med Trk)																
Charles C. Chestnut, CPT, TC, Commanding																
$\begin{aligned} & \text { branta } \\ & 5 \text { Jan XX } \end{aligned}$					50. $= \pm$ ¢ ${ }^{\text {\% }}$	\pm *.										
orverati: samplete itterary and explanution ol hy mbyumnt De forriaded to the Approflute he adquetiere. 					the tors. reculued. wrifetbl. 											

TM

Figure 3-6. Sample DD Form 1266, Request for Special Hauling Permit (continued)

Special hauling permit. In CONUS, the DD Form 1266 is used to request permission to move oversize or overweight vehicles over public roads. Four copies of the form are required, plus a copy for each state to be crossed. The request must reach the approving authority at least 15 days before the planned move. Only identical vehicles with loads of uniform weight and dimensions may be listed on the same DD Form 1266.

PLANNING

Planning ensures the allocation of transportation assets to meet mission requirements based on command priorities and to identify potential shortfalls.

General PlanningFactors

Motor transport planning, particularly in its early stages, must be based on a set of broad planning factors and assumptions. These planning factors should be used only in the absence of specific data relating to the current situation. Because of the different services performed, loads carried, and terrain crossed, caution should be exercised when using the following:

- Task vehicle availability rate - the average number of assigned task vehicles not in maintenance and available for daily mission support. See Appendix C for TVAR data on specific vehicle types.
- Vehicle payload capacity - the rated cargo capacity of the vehicle. During planning, the offroad payload capacity of the equipment is used to determine allowable highway load capacities.
- Operational hours per shift - the number of hours per shift in which vehicles and drivers are normally employed. Use 10 hours per shift for planning purposes.
- Operational day - the number of hours per day in which vehicles and drivers are normally employed. Use 20 hours (two 10 -hour shifts) per day for planning purposes. The remaining 4 hours of the day are for scheduled maintenance.
- Daily round trips - the average number of daily round trips a vehicle can make per day,
use an average of two trips per day (1 trip per shift $\times 2$ shifts) for vehicles involved in linehaul operations and four trips per day (2 trips per shift x 2 shifts) for local haul operations.
- Operational distance per shift - the average one-way distance that cargo can be hauled within allotted operational hours per shift. Use 90 miles/ 144 kilometers for line-haul operations and 20 miles $/ 32$ kilometers for local haul operations.
- Rate of march in the hour - the average number of miles/kilometers that can be covered in an hour (includes all halts during movement). Use 20 MIH (32 KMIH) if traveling over good roads and 10 MIH (16 KMIH) for bad roads. In addition to the road surface, consideration must be given to any terrain, weather, or hostile activity that may effect the rate of march.
- Delay times - basically any time taken away from the physical forward movement of cargo (any time not included in the rate of march). Delay times include loading and unloading, line-haul relay time, rest halts, and any other delays en route that can be anticipated but are not included in rate of march calculations.
- Straight trucks: 2.5 hours for loading and unloading time per round trip (straight haul).
- Semitrailers: 2.5 hours for loading and unloading time per round trip (straight haul).
- Container transporters: 1.5 hours for loading and unloading time per round trip (straight haul).
- Truck tractors in semitrailer relay operations: 1 hour per line-haul segment (per relay round trip in semitrailer relay operations).
- Palletized Load System: 0.5 hours for loading and unloading time per round trip (straight haul).

Movement Requirement Formulas

Use the following formulas to compute unit and vehicle requirements on the basis of planning estimates, actual operational data, or a combination of both. Be sure to compute the load in the appropriate commodity unit (STONs, containers, gallons, etc.).

Turnaround time: total time consumed in a round trip movement (including delays). Delay factors must be accurate. To determine turnaround time use the following formula.

$$
\begin{gathered}
\text { turnaround time }=\frac{2 \times \text { distance }}{\text { rate of march }}+\text { delays } \\
(\text { MIH } / \text { KIH })
\end{gathered}
$$

Unit lift operations: the amount of cargo a truck company can move at one time (one-time lift). To determine the number of vehicles or truck companies to move a given commodity in one lift, use the following formulas.
required vehicles $=\frac{\text { commodity quantity to be moved }}{\text { capacity* per vehicle }}$ $\begin{aligned} \text { required companies }= & \frac{\text { commodity quantity to be moved }}{\text { capacity* per vehicle }} \begin{array}{c}\text { X average number of }\end{array} \\ & \text { vehicles available per company }\end{aligned}$

* Appropriate commodity capacity (STONs, containers, gallons, etc.)

Daily lift operations: the amount of cargo a truck company can move in a day making a number of trips. The amount of cargo moved will vary based on running times, delays, terrain, and weather. Use the following formula (steps) to compute the number of truck companies required to move a given amount in sustained operations.

Step 1: Compute the trip turnaround time $=$

$$
\frac{2 \times \text { distance }}{\text { rate of march }}+\text { delays }
$$

Step 2: Compute the required companies $=$ commodity quantity to be moved capacity per vehicle x average number of vehicles available per company x operational day
The number of vehicles required can be determined by omitting the vehicle availability factor from the formula.

$$
\text { required vehicles }=\frac{\text { commodity quantity to be moved }}{\begin{array}{c}
\text { capacity per vehicle } \\
X \text { vehicle availability }
\end{array}}
$$

Specific loads: loads consisting of one or more items that, because of their peculiarities, involve a variation in the normal planning process to determine vehicle requirements for the operation. Items may or may not be packaged with unusual size, shape, cube, or weight. In such cases, attempt first to determine vehicle requirements by test loading or by using operational data available from previous similar operations. If test loading is not feasible or operational data unavailable, use the following steps to determine vehicle requirements.

NOTE: The vehicle payload and compartment cube capacity can be obtained from the vehicle data plate, technical manual, or Section II of this chapter. The weight and cubic volume of a specific item or load can be obtained from the shipper, service representative, or applicable technical manual.

Step 1: Determine the number of items that may be loaded onto one vehicle by cargo weight.

$$
\frac{\text { vehicle payload capacity }}{\text { weight of item to be transported }}
$$

Step 2: Determine the number of items that may be loaded onto one vehicle by cube capacity.

$$
\frac{\text { vehicle compartment capacity }}{\text { cube of item to be transported }}
$$

If the value using cargo weight is the lesser value, then the weight of the computed load will exceed the vehicle's payload capacity before all available compartment space is filled. If the value using cargo cube is the lesser, the computed cargo load will "cube out" (exceed the cubic cargo space available in the vehicle) before it "weighs out" (exceeds the vehicle payload capacity).

Step 3: Determine the number of vehicles required to transport the load based on mission necessity (onetime lift or daily sustained operation).
> number of items to be transported
> number of items that can be transported
> per vehicle
> (select the lesser value of Steps 1 and 2)

Local haul calculations: Use the following steps to determine the number of truck companies required to support a local haul network.

Step 1: Compute the turnaround time $=$ $\frac{2 \times \text { distance }}{\text { rate of march (MIH) }}+$ delays

Step 2: Compute required companies $=$ commodity quantity to be moved x turnaround time (from Step 1)
capacity per vehicle
x average number of vehicles available per company x operational day

Local haul backhaul calculations: Use the following steps to determine the number of truck companies required to support a local haul backhaul operation.

Step 1: Compute the turnaround time $=$

$$
\frac{2 \times \text { distance }}{\text { rate of march }(\mathrm{MIH})}+\text { delays }
$$

Step 2: Compute required companies = commodity quantity to be moved x turnaround time (from Step 1)
capacity per vehicle
X average number of vehicles available per company x operational day

Step 3: Compute required additional companies $=$ commodity quantity to be backhaul x delay time
capacity per vehicle
x average number of vehicles available per company x operational day

Line-haul calculations: Use the following steps to determine the number of truck companies required to support a line-haul leg.

Step 1: Compute the segment distance $=$
(operational hours per shift - delays)
X rate of march
2

Step 2: Compute the number of segments required per leg.
$\frac{\text { total distance to travel }}{\text { segment distance from (Step 1) }}$
Step 3: Compute the turnaround time $=$ $\underline{2 \times \text { distance }}+$ delays (delay time $\times \#$ of segments) rate of march
(MIH)
Step 4: Compute required companies $=$ commodity quantity to be moved x turnaround time (from Step 3)
capacity per vehicle
x average number of vehicles available per company x operational day

Line-Haul Operational Planning Exercise

The seven procedural steps that follow demonstrate how to systematically plan and establish a motor transport network.

Step 1: Determine requirements and resources available. The following daily cargo tonnage and container (20 -foot) requirements are provided by the staff movements officer:

Origin	Destination	STONs	Containers
Red Port	SB \#1	1200	100
Red Port	SB \#2	900	50
SB \#1	SB \#2	700	
Bravo Beach	SB \#1	500	

By conducting a thorough map reconnaissance, you determine the need for the following transport units to support the transportation network (Figure 3-7, page 3-15):

- Medium truck company, TOE 55727L100 (equipped with M915 tractors and M872 trailers) to support all line-haul operations. To facilitate an efficient port clearance, this truck company will also be used for local haul operations between the port and TT \#3.
- Medium truck company, TOE 55728L100 (equipped with M931 tractors and M871 trailers) to support the local haul operations at TT \#1 and TT \#2.

For the purpose of this exercise use the following planning factors to compute requirements:

- Operational day: 20 hours (two 10 -hour shifts).
- Vehicle availability percentage: 84.7 percent.
- Rate of march:
- 32 KIH - between the origin and destination TTs on the MSR.
- 24 KIH - between Port Red and TT \#3, TT \#1 and SB \#1, TT \#2 and SB \#2.
- 16 KIH - between Bravo Beach and TT \#3.
- Delays:
- 2.5 hours per round-trip for all local haul operations (1.25 hours for loading and 1.25 hours for unloading).
- 1 hour per segment (relay round trip) for linehaul operations.
- Vehicle capacity (from Table 3-1, page 3-16, and Table 3-2, page 3-21).

Figure 3-7. Transportation network

FM 55-15

Table 3-1. Truck performance data

Table 3-1. Truck performance data (continued)

Table 3-1. Truck performance data (continued)

Table 3-1. Truck performance data (continued)

FM 55-15

Table 3-1. Truck performance data (continued)

Table 3-2. Truck performance data - Family of Medium Tactical Vehicles (FMTV)

Step 2: Establish a motor transport schematic (Figure 3-8). The schematic assists the planner by providing a graphical representation of the transportation distribution network.

Step 3: Determine network workload requirements. Determine the total workload throughout the transportation infrastructure and annotate requirements on the transport schematic (which now becomes a workload schematic). The workload schematic (Figure 3-9, page 3-23) depicts commodity by segment and assists the planner in the efficient allocation of resources.

Step 4: Assess the highway tonnage capability. The tonnage capabilities of roads and bridges are important considerations when selecting routes. The gross weight of the heaviest load vehicle should not exceed the rated tonnage capacity of the weakest bridge. It is difficult to determine exact tonnage capabilities of a highway for sustained
operations because conditions vary. In the absence of more accurate data, use Table 3-3, page 3-23, as a guide for highway tonnage capabilities. This table gives estimates of supply support tonnage capabilities for various conditions involved with sustained operations. The following steps will enable the planner to assess a highway's capabilities. When more than one condition is involved in a step, apply the most restrictive factor.

- Select the type of road surface.
- Select the area of operation.
- Apply the narrow roadway factor as applicable.
- Apply one of the three limiting terrain factors to the new capability (if applicable). Apply only the most restrictive terrain factor.
- Apply the bad weather factor to the new capability (if weather is expected for a sustained period).
- Determine the workload requirement (convert all commodities to STONs).
- Identify excess or shortfall capacity.

Figure 3-8. Transportation distribution network

Figure 3-9. Transportation network workload

Table 3-3. Highway tonnage capabilities

HIGHWAYTYPE	DAILY TONNAGE FORWARD(STONs)			REDUCTION FACTORS FOR VARIOUS CONDITIONS (\%)				
	Optimum Dispatch (Rear Area)	Supply Traffic (COMMZ)	Supply Traffic (CZ)	Narrow Roadway (Less than 24 ft or 7.20 m)	Rolling Terrain	Hills with Curves	Mountains	Seasonal Bad Weather
Concrete	60,000	36,000	8,400	25	10	30	60	20
Bituminous	45,000	27,000	7,300	25	10	30	60	30
Bituminoustreated	30,000	18,000	5,800	25	20	40	65	40
Gravel	10,150	6,090	3,400	25	20	50	70	60
Dirt	4,900	2,940	1,600	25	25	60	80	90

Step 5: Determine the number of required truck companies. Use Table A-1, page A-9, and Table A-2, page A-12, to determine planning capabilities of the appropriate truck companies. All three units are authorized 60 tractors each (cargo trucks for the light truck company), rendering 50 (60×84.7 percent)
trucks available for daily tasking and planning purposes. To determine the line-haul and local haul truck company requirements see Figure 3-10. For the types of vehicles used in this exercise, the most restrictive TVAR is used.

LINE-HAUL TRUCK COMPANY REQUIREMENTS

- Line-haul leg between TT \#3 and TT \#1

Step 1: Segmentdistance $=$

$$
(10-1) \times 32 \mathrm{KIH}=144 \mathrm{~km}
$$

Step 2: Number of segments =
$325 \mathrm{~km}=2.26=3$ segments 144 km
Step 3: Turnaround time $=$
$2 \times 325 \mathrm{~km}+3=23.31 \mathrm{hr} 32 \mathrm{KIH}$
Step 4: Truck companies required
STONs $=\frac{2600 \text { STONs } \times 23.31 \mathrm{hr}}{7.02 \text { STONs } \times 50 \mathrm{veh} \times 20 \mathrm{hr}}=\frac{60,606}{7,020}=8.6$
Contrs $=\frac{150 \text { contrs } \times 23.31 \mathrm{hr}}{2 \text { contrs } \times 50 \text { veh } \times 20 \mathrm{hr}}=\frac{3,495.5}{2,000}=1.7$

- Line-haul leg between TT \#1 and TT \#2

Step 1: SegmentDistance $=$

$$
\frac{(10-1) \times 32 \mathrm{KIH}}{2}=144 \mathrm{~km}
$$

Step 2: Number of Segments =

$$
\frac{150 \mathrm{~km}}{144 \mathrm{~km}}=1.04=1 \text { segment }
$$

Step 3: Turnaround time $=$

$$
\frac{2 \times 150 \mathrm{~km}}{32 \mathrm{KIH}}+1=10.37 \mathrm{hr}
$$

LOCAL HAUL TRUCK COMPANY REQUIREMENTS

- Local haul network between Port Red and TT \#3

Step 1: Turnaround time $=\frac{2 \times 10 \mathrm{~km}}{24 \mathrm{KIH}}+2.5=3.33 \mathrm{hr}$
Step 2: Truck companies required
STONs $=\frac{2100 \text { STONs } \times 3.33 \mathrm{hr}}{7.02 \text { STONs } \times 50 \mathrm{veh} \times 20 \mathrm{hr}}=\frac{6,993}{7,020}=1.0$
Contrs $=\frac{150 \text { contrs } \times 3.33 \mathrm{hr}}{2 \text { contrs } \times 50 \mathrm{veh} \times 20 \mathrm{hr}}=\frac{499.5}{2,000}=.25$

- Local haul network between TT \#1 and SB \#1

Step 1: Turnaround time $=\frac{2 \times 10 \mathrm{~km}}{24 \mathrm{KIH}}=2.5=3.33 \mathrm{hr}$
Step 2: Truck companies required
STONs $=\frac{1700 \text { STONs } \times 3.33 \mathrm{hr}}{4.8 \text { STONs } \times 50 \text { veh } \times 20 \mathrm{hr}}=\frac{5,661}{4,800}=1.2$
Contrs $=\frac{100 \text { contrs } \times 3.33 \mathrm{hr}}{1 \mathrm{STON} \times 50 \mathrm{veh} \times 20 \mathrm{hr}}=\frac{333}{1,000}=.33$
Step 3: Additional Truck companies required
STONs $=\frac{700 \text { STONs } \times 2.5 \mathrm{hr}}{4.8 \mathrm{STONs} \times 50 \mathrm{veh} \times 20 \mathrm{hr}}=\frac{1,750}{4,800}=.36$

- Local haul network between TT \#2 and SB \#2

Step 1: Turnaround time $=\frac{2 \times 10 \mathrm{~km}}{24 \mathrm{KIH}}+2.5=3.33 \mathrm{hr}$
Step 2: Truck companies required
STONs $=\frac{1600 \text { STONs } \times 3.33 \mathrm{hr}}{4.8 \text { STONs } \times 50 \mathrm{veh} \times 20 \mathrm{hr}}=\frac{5,328}{4,800}=1.1$
Contrs $=\frac{50 \text { contrs } \times 3.33 \mathrm{hr}}{1 \text { STON } \times 50 \text { veh } \times 20 \mathrm{hr}}=\frac{166.5}{1,000}=.17$

- Local haul network between Bravo Beach and TT \#1
Step 1: Turnaround time $=$

$$
\frac{2 \times 10 \mathrm{~km}}{16 \mathrm{KIH}}+2.5=3.75 \mathrm{hr}
$$

Step 2: Truck companies required
STONs $=\frac{500 \text { STONs } \times 3.75 \mathrm{hr}}{4.8 \text { STONs } \times 50 \mathrm{veh} \times 20 \mathrm{hr}}=\frac{1,875}{4,800}=.39$

Figure 3-10. Line-haul and local haul truck company requirements

Step 6: Total truck companies required by TOE type:

- 55727L100 (MED TRK) - 14.26
- 55728L100 (MED TRK) - 3.55

See Table 3-4 for number of truck companies required by segment.

Step 7: Establish command and control structure:

- Total truck companies required: $17.81=18$
- Total battalions required: $3.6=4$
- Total groups required: $.80=1$
- TTPs required: 2
- TTP teams required: 10 (3 truck terminals and 2 TTPs $\times 2$ teams per location)

TRANSPORT OPERATIONS

Transport operations support a variety of missions depending on unit locations and situations. Whether in CONUS or overseas, motor transport units are usually employed in a general support role within a specified area or along specific routes. The following paragraphs address various aspects of motor transport operations.

Motor Park Facility

The layout of motor parks varies, depending on space and conditions (Figure 3-11, page 3-26). For new construction, a single structure should be built to economize on construction costs and
operating expenses. The typical motor park should include the following facilities:

- Motor park office. This office should be in the motor park operations area.
- Dispatch office. All vehicular operations are controlled through this office. If at all possible, it should be at the exit of the motor park. This allows the dispatcher to visibly check vehicles leaving the parking area.
- Driver's room. For orderly operation, the drivers' room should be near, but separate from, the dispatch office.
- Vehicle washing facilities. These facilities should be available in all weather conditions. They should be located so that drainage flows away from parking areas and buildings. Automatic washing facilities should be considered when feasible.
- Motor pool/shop operations. Activities in the motor pool/shop include regularly scheduled preventive maintenance and services, general repairs, spot painting, minor body work, carpentry, and welding.

Fire hazards and environmental restrictions may require that some functions be performed at other locations. For example, painting and welding must be carried out in separate areas. Mission requirements and vehicle availability determine which work is performed first.

- Parts room. This facility is centrally located within the main shop building to afford easy access to parts and tools. It should include an issue counter, bins, and tool racks.

Table 3-4. Number of truck companies required by segment

	STONs	CONTRS	ADDNL	TOTAL
TT \#3 to TT \#I line-haul leg	8.6	1.75		10.35
TT \#1 to TT \#2 line-haul leg	2.4	0.26	2.66	
Red Port to TT \#3 local haul	1.0	0.25	1.25	
TT \#I to SB \#1 local haul	1.2	0.33	0.36	1.89
TT \#2 to SB \#2 local haul	1.1	0.17		1.27
Bravo Beach to TT \#3 local haul	0.39		0.36	0.39
TOTAL	14.69	2.76	17.81	

Figure 3-11. Motor park facility layout

Vehicle Loading

The driver is responsible for the proper loading of the vehicle. To begin, place heavy supplies at the bottom of the load, distributing them evenly over the cargo floor. Distributing weight equally ensures that the load will not shift. The following rules also apply to vehicle loading:

- Do not distribute the load loosely or build it too high. High, loosely distributed loads cause swaying, making the vehicle difficult to handle and increasing the danger of overturning or losing cargo. Generally, cargo is not stacked above the top of the side rails.
- If the truck has an open body, put a tarpaulin over the cargo to protect against sun, dust, rain, and pilferage.
- Place barrels and drums on their sides parallel with the length of the truck; brace and pyramid them. If the possibility of leakage prohibits this placement, set the drums upright. Note that fewer drums can be loaded in the same space with the upright arrangement.
- Combine boxed, crated, and packaged cargo with like items or items of compatible shapes or transportability codes.
- Load sacked cargo separately, ensuring that the sacks cannot be punctured by odd-shaped items. Stack sacked cargo in overlapping layers to prevent shifting.
Figure 3-12 shows the right and wrong placements of loads in trucks and semitrailers.

Figure 3-12. Load placement in trucks and semitrailers

WRONG
This load bends the frame, overloads rear tires, and makes steering almost impossible.

RIGHT
Set a concentrated load just ahead of the rear axle with the longest side on the floor, if possible.

Distribute trailer loads equally between the rear tires and the fifth wheel. This placement transfers the load to the tractor.

WRONG
This placement overloads one spring and set of tires. Brakes lock on the light side, causing skids.

RIGHT

Nothing is overloaded; frame will not twist and loosen cross-member rivets.

WRONG

This placement shortens tire life and bends the truck rear-axle housing. Applying the trailer brakes may lock the wheels and cause flat spots and skidding.

RIGHT
Distribute the load over the full trailer floor.

WRONG

This placement overloads trailer rear wheels so that brakes will not function properly and rubber scuffs away.

Figure 3-12. Load placement in trucks and semitrailers (continued)

Road Movement Tables

Convoy commanders use road movement tables (Figure 3-13) to track progress during movement. These tables help to ensure that convoys arrive and clear each CP on schedule. They are particularly useful if including such details in the body of the OPORD would complicate it or make it unduly long. Road movement tables often require a wider distribution than normal OPORDs. Copies are issued to convoy operating personnel, movement regulating team personnel, and traffic control posts. For security reasons, tables may not include dates or locations. The road movement table is assigned a security
classification based on its contents. The table's classification is not necessarily the same as that of the OPORDs. The road movement table may be issued as an annex to the OPORD. If issued alone the table must be signed and authenticated in the same way as other orders.

The road movement table shows the date of the move, units involved, number of vehicles, and load class of the heaviest vehicle. It also shows the routes and times when serials will arrive at and clear critical points.
(Classification)

Annex B - "Movement Table" to Operation Order for Movement No Map: General Data:

1. Average speed:
2. Traffic density:
3. Halts:
4. Routes (between start points and release points):
5. Critical points:
(a) Start points.
(b) Release points.
(c) Other critical points.
6. Main routes to start points:
7. Main routes from release points:

Authentication:
 Appendixes:
 Distribution:

(Classification)

Figure 3-13. Suggested format for road movement table

A strip map (Figure 3-14) may also be published as an annex to an OPORD. When a strip map is used, its details should correspond to the data in the road movement table, and it should be distributed to the lowest practical level. Where practical and appropriate, a strip map may include the following data-

- Start point.
- Release point.
- Route numbers.
- Town names.
- Critical points.
- Check points.
- Distance between CPs.
- Total distance.
- North orientation.

Route Reconnaissance

A route reconnaissance overlay (Figure 3-15, page 3-31) is an accurate and concise report of the conditions affecting traffic flow along a specified route. It is the preferred method of preparing a route reconnaissance report. A route or road reconnaissance can be either technical or tactical and is required for both the hasty and deliberate reconnaissance. An overlay and DA Form 1711-R (engineer reconnaissance report) normally satisfy the requirements of hasty route reconnaissance. However, if more detail is required to support the reconnaissance, the overlay is supplemented with written reports describing critical route characteristics in more detail. See Figure 3-16, page 3-32, for an explanation of route reconnaissance overlay symbols.

The following checklist should be reviewed when preparing reconnaissance reports:

- Identification and location of the reconnoitered route.
- Distance between points that should be easily recognized both on the ground and on the map.
- Percent of slope and length of grades that have a 7 percent slope or greater.
- Sharp curves with a radius of 82 feet or less.
- Bridge military load classifications, limiting dimensions, and suitable bypasses.
- Locations and limiting data for fords and ferries.
- Route constrictions, such as underpasses, that are below minimum standard and, if appropriate, the distances these constrictions extend.
- Locations and limiting dimensions of tunnels and suitable bypasses.
- Suitable areas for short halts and bivouacs that offer drive-off facilities, adequate dispersion cover, and concealment.
- Areas of rockfalls and rockslides that may present a traffic hazard.
- Environmentally sensitive or protected areas.

Figure 3-14. Sample strip map

Figure 3-15. Sample route reconnaissance overlay

SYMBOL	DESCRIPTION
57	Axial route. Use a solid line and identify the route by an odd number.
$\begin{aligned} & \leftarrow \\ & \leftarrow \end{aligned}$	Bypasseasy. Use when the obstacle can be crossed in the immediate vicinity by a US $21 / 2$-ton truck (or NATO equivalent) without work to improve the bypass.
	Bypass difficult. Use when the obstacle can be crossed in the immediate vicinity, but some work to improve the bypass is necessary.
$\stackrel{\perp}{\longleftarrow}$	Bypassimpossible. Use when the obstacle can be crossed only by repairing or constructing a feature, or by detouring around the obstacle.
	Civil or military route designation. Write the designation in parentheses along the route. Drawn to scale of map.
$\begin{array}{l\|l} 0 & \wedge \\ 0 & \wedge \\ 0 & \wedge \\ 0 & \Lambda \end{array}$ O_{0} $\left\{\begin{array}{l} \hat{\Lambda}_{\wedge}^{\wedge} \hat{\Lambda}_{\wedge}^{\prime} \\ \hat{\Lambda}_{\wedge}^{\wedge} \end{array}\right.$	Concealment. Show roads lined with trees by a single line of circles for deciduous trees and a single line of inverted Vs for evergreen trees. Show woods bordering a road by several rows of circles for deciduous trees and several rows of inverted V s for evergreen trees.
$\widehat{3}$	Critical points. Number, in order, and describe critical points on DA Form 1711-R. Use critical points to show features not adequately covered by other symbols on the overlay.
H 7	Damage or destruction.
	Ferry. Draw arrow to the map location of the ferry. The data above the symbol shows, in order, the left approach, ferry serial number, ferry type, and right approach. The data inside the symbol shows, from left to right, the military load classification and the dead weight capacity in tons. The number below the symbol shows the turnaround time in minutes. A question mark indicates unknown information. Difficult approaches are shown by a straight line. Ferry type $-\mathrm{V}=$ vehicular, $\mathrm{P}=$ pedestrian

Figure 3-16. Route reconnaissance symbols

Figure 3-16. Route reconnaissance symbols (continued)
Limits of sector. Show the beginning and ending of the
reconnoitered section of a route or road with this symbol.

Figure 3-16. Route reconnaissance symbols (continued)

SYMBOL	DESCRIPTION
$\begin{gathered} 10.5 \mathrm{~m} / \mathrm{X} / 120 / 00 \\ 6 \mathrm{~m} / \mathrm{Z} / 30 / 4.1 \mathrm{~m} /(\mathrm{OB}) \\ 9 \mathrm{~m} / \mathrm{V} / 40 / 5 \mathrm{~m} /(\mathrm{OB})(\mathrm{W}) \end{gathered}$	Routes classification formula. Express the formula in the order of route width, route type, military load classification, minimum overhead clearance, obstructions, if present, and special conditions. Route types - X = all-weather route Y = limited all-weather route $\mathrm{A}=$ fair-weather route Special conditions $(T)=$ regularsnow blockage (W) = regular flooding
	Tunnel. Draw arrow to map location of tunnel. Place bypass condition symbol on arrow. Show minimum and maximum overhead clearances to the left of the symbol, the tunnel serial number inside the symbol, and the total tunnel length to the right of the symbol. Below the symbol, show the traveled way width. If sidewalks are present, follow with a slash and the total traveled way, including sidewalks. Underline the traveled way if the road entering the tunnel is wider than the traveled way of the tunnel. Use a question mark to show unknown information.
	Turnout. Use this symbol to show the possibility of driving off the road. Draw the arrow in the direction of the turnout (right or left of road). For wheeled vehicles, draw a small circle on the shaft of the arrow. For tracked vehicles, draw a small square on the shaft of the arrow and place the length of the turnout, in meters, at the tip of the arrow. When a turnout is longer than 1 kilometer, use double arrows.
	Traffic control headquarters.
(9)	Traffic control post.
	Underpass constrictions. Draw the symbol over the road. Place the width of the traveled way, in meters, to the left of the symbol. Ifsidewalks are present, follow the traveled way width with a slash and the total width, including sidewalks. Underline the traveled way width if the road entering the underpass if wider than the underpass traveled way. Show the overhead clearance, in meters, to the right of the symbol. Show both minimum and maximum overhead clearances, if different.

Figure 3-16. Route reconnaissance symbols (continued)

SYMBOL	DESCRIPTION
Unknown ordoubtful information.	

Figure 3-16. Route reconnaissance symbols (continued)

Traffic Circulation Plan

A traffic circulation plan (Figure 3-17, page 3-37) is a map overlay or graphic representation that shows a road net and gives necessary information and traffic restrictions. The circulation plan establishes one-way, two-way, and alternating routes of traffic flow. Routes must be available for a circular flow in the required directions. A one-way route normally requires a return route in the opposite direction. Adequate access and egress routes must be provided to prevent congestion of MSRs. The traffic circulation plan includes-

- All MSRs, checkpoints, and highway regulation points.
- Route names, direction of travel, boundaries, and principal supply activities.
- Any restrictive route features, critical points, and rest and refuel areas.
- Traffic control points if provided by the provost marshal before publication.

Traffic circulation plans frequently combine a standard map with an overlay to give the needed information. If the necessary information is too much to put on one overlay, use separate overlays for different types of information.

Tonnage capacities of roads and bridges are important considerations when selecting routes. The gross
weight of the heaviest loaded vehicle should not exceed the rated tonnage capacity of the weakest bridge. It is difficult to determine exact tonnage capabilities of highways for sustained operations because conditions will vary. Also, the volume of tactical, administrative, and local traffic using supply routes may exceed that of cargo-hauling vehicles. This traffic further restricts highway transport capabilities.

In the absence of more accurate data, refer back to Table 3-3, page 3-23, as a guide for highway tonnage capabilities. This table gives estimates of supply support tonnage capabilities for various conditions. Sustained operations, adequate road maintenance, and two-way traffic are assumed. When more than one limiting condition is involved, apply the reduction factors in the same order as they appear in the table (left to right):

- First, narrow roadway.
- Second, terrain (rolling hills or mountains).
- Third, weather (if conditions are sustained).

Size and weight limits change periodically as a result of road and bridge construction. Planners must verify local limits and clearance and exemption methods with local military or civilian agencies before putting vehicles on the road.

Figure 3-17. Sample traffic circulation plan

Military Load Classification System

The military load classification system is a loadcapacity rating system based on vehicle weight and its effect on routes and bridges. In this classification system, whole numbers are assigned to vehicles, bridges, and routes. Most allied military vehicles are externally marked with their respective classification number. Military load classifications are assigned to bridges and routes based on their safe-load capacity and physical dimensions. See FM 5-36 for a detailed discussion of the military load classification system.

Vehicles. Except for prime movers, self-propelled vehicles in Class 3 or higher and towed vehicles in Class 1 or higher are marked to indicate their class. Prime movers are marked either with their own class or the class of the normal combination of prime mover with trailer or semitrailer. Markings on trucks should be on the right front, on or above the
bumper, and below the driver's vision. Markings are lusterless black numerals on a lusterless forest green background. See Figure 3-18 for examples of truck markings. See FM 5-170 for weight classification listings of specific vehicles.

Bridges. Every military bridge is posted with a number capacity to indicate the highest weight-class vehicle that can safely cross. Heavier vehicles are barred except in special cases; for example, crossing at reduced speed or in limited numbers. Fixed bridges may also be marked with the length in feet of the span which corresponds to the posted capacity.

There are two types of bridge signs: classification (circular) signs and information (rectangular) signs. In both types, symbols or letters appear in black on a yellow background. See Figure 3-19, page 3-39, and Figure 3-20, page 3-40, for examples.

Figure 3-18. Vehicle classification markings

Figure 3-19. Typical bridge signs

Figure 3-20. Typical placement of bridge signs

Routes. Routes are classified according to the route classification formula. The formula is a brief description of the route that is used with a route reconnaissance overlay. The route classification formula reflects the following:

- Route width.
- Route type.
- Lowest military load classification.
- Obstructions, if any, to traffic flow.
- Overhead clearance.
- Special conditions on the route.

The width of a route, including bridges, tunnels, roads, and other constrictions, is the narrowest width of the traveled way and is expressed in meters or feet. Minimum route widths for wheeled and tracked vehicles in single- and double-flow traffic are shown in Table 3-5.
Type. For classification purposes, the type of route is based on its resistance to the effects of weather. The worst section of the route determines its type. Route types are defined as follows:

- Type X - an all-weather route that, with reasonable maintenance, is passable throughout the year to maximum capacity traffic. Roads on a Type X route normally have waterproof surfaces and are only slightly affected by precipitation and temperature fluctuations. At no time is the route closed to traffic due to weather except for temporary snow or flood blockage.
- Type Y - an all-weather route which, with reasonable maintenance, can be kept open in all weather, although sometimes it is open to less than maximum capacity traffic. Roads on a Type Y route usually do not have waterproof surfaces and are considerably affected by precipitation and temperature fluctuations. Adverse weather conditions may cause traffic to be completely halted for short periods of up to one day at a time, during which heavy use of the road may cause complete collapse of the surface.
- Type Z - a fair-weather route which quickly becomes impassable in adverse weather and can then be kept open only by major repairs/construction. A Type Z route is so seriously affected by weather that traffic may be brought to a halt for long periods.

Table 3-5. Minimum route widths for wheeled and tracked vehicles

TRAFFIC FLOW	WIDTHS	
	Wheeled Vehicles	Tracked Vehicles
	18 to 24 ft $(5.5$ to 7.3 m$)$ Double Der 24 ft $(7.3 \mathrm{~m})$	19.5 to 26 ft $(6$ to 8 m$)$ Over 26 ft $(8 \mathrm{~m})$

Load. Route load classification is usually determined by the lowest bridge or ferry military load number (regardless of vehicle type or traffic conditions). Using the lowest bridge classification number ensures that the route will not be overloaded. When a proposed route has a military load classification lower than that of the vehicles that must cross it, this fact is shown on the route reconnaissance overlay. A special reconnaissance determines if a change in traffic control procedures, such as a single-flow crossing, would make the route safe for these vehicles. If there is no bridge on the route, the worst section of road governs the route classification.
Obstructions. Obstructions affect the type, amount, and speed of traffic flow. Route obstructions are indicated in the route classification formula by the letters "OB." (An exception is bridge capacities reported separately as a military load classification.) Reconnaissance overlay symbols are used to describe the nature of each obstruction on the overlay. The following obstructions must be reported:

- Overhead obstructions, such as bridges, tunnels, underpasses, wires, and overhanging buildings, that have an overhead clearance under 14 feet (4.3 m).
- Reductions in traveled-way widths which are below the standard minimums prescribed in FM 5-170 for the type of traffic flow. Examples are width reduction due to bridges, tunnels, craters, lanes through mine areas, and projecting buildings or rubble.
- Gradients (slopes) of 7 percent or greater.
- Curves with radius of less than 82 feet (25 meters).
- Ferries.
- Fords.

NOTE: Slopes of 5 percent or more and curves of 45 meters or less must be reported on the reconnaissance overlay (even though they do not meet the obstruction criteria) to ensure that minimal tra fficability requirements are reported.
If an obstruction appears in the route classification formula, refer to the route reconnaissance overlay to determine the exact type and location of the obstruction.
F ormulas. Examples of typical route classification formulas are shown in Table 3-6.

ConvoyMovement

A convoy is a group of vehicles moving from the same origin to destination that are organized under a single commander for the purpose of control. All vehicles
normally move at the same march rate. The number of vehicles that make up a convoy will be determined by theater policy, standardization agreements, or host nation traffic regulations. In the absence of policies to the contrary, convoys should consist of six or more vehicles. Also, when 10 or more vehicles per hour are dispatched to the same destination over the same route, they will be considered a convoy.

To aid in control, large columns may be broken down into serials, and serials may be broken down into march units. Each column and each organized element must include the following personnel:

- Commander, either officer or noncommissioned officer, whose place in the column varies to best control the convoy.
- Pacesetter, in the first vehicle of the first element, to lead the column and regulate its speed.
- Trail officer, in each column, travels in the rear of each element to deal with problems that occur within the column.

Table 3-6. Typical route classification formulas

FORMULA	MINIMUM WIDTH OF TRAVELED WAY	ROUTE TYPE	$\begin{gathered} \text { MILITARY } \\ \text { LOAD } \\ \text { CLASSIFICATION } \end{gathered}$	REMARKS
20 ft Z 10	20 ft	fair weather	10	Based on 20-ft min width of travled way, accommodates wheeled and tracked, single-flow traffic. No obstructions.
$\begin{aligned} & 20 \mathrm{ft} \mathrm{Z} 10 \\ & (\mathrm{OB}) \end{aligned}$	20 ft	fair weather	10	If used for double-flow traffic, min width of traveled way (20 ft) is considered an obstruction.
$\begin{aligned} & 7 \text { M Y } 50 \\ & \text { (OB) } \end{aligned}$	7 M	limited all weather	50	If used for wheeled or tracked vehicles in double-flow traffic, min width of traveled way (7 M) is considered an obstruction.
$\begin{aligned} & 10.5 \mathrm{M} \mathrm{X} \\ & 120 \text { (OB) } \end{aligned}$	10.5 M	allweather	120	Based on $10.5-\mathrm{m}$ min width of traveled way, accommodates wheeled and tracked vehicles in double-flow traffic.

Column identification. Each column is identified according to STANAG 2027 guidance. For example, a blue flag on the lead vehicle, a green flag on the last vehicle. When moving at night the lead vehicle also shows a blue light and the last vehicle a green light. The column commander's vehicle displays a flag bisected by a diagonal line to form two triangles. The upper triangle is white; the lower is black. In areas where vehicles drive on the left side of the roadway, flags are mounted on the right side of the vehicle; otherwise, they are mounted on the left side.

Each column is identified for the entire movement by a number known as a "movement number" or "identification serial number." The controlling and scheduling movement control organization assigns this number at the time it assigns the movement credit. Command directives or STANAGs normally prescribe that moving units chalk the movement credit on the sides of their vehicles and, if possible, in the front of their vehicles to identify that the movement is authorized. In Europe, the movement number includes a date, organizing authority, and sequence number, as follows:

- Two digits indicating the day of the month when movement is scheduled.
- Three or four letters indicating the organizing authority. First two letters are the national symbols shown in STANAG 1059.
- Two or three digits indicating the serial number assigned by the responsible authority; one letter to identify elements of the column (optional).

For example, movement number 15-JSV-412D identifies column number 8, composed of V Corps vehicles, which will be moved by US authority on the third day of the current month. The elements of a convoy may be identified by adding a letter behind the movement number. Based on circumstances, columns may also be identified IAW theater policy, HN guidance, or other STANAGs.
In CONUS, movement numbers normally include a command identifier, Julian date, and sequence number. For example, a unit from Fort Bragg, NC will move on Julian date 010, and the credit was the first issued for that date. The movement credit would
be FB-010-01. Codes may be added after the sequence number to further identify the unit or type of movement. See FM 55-10 for more information.

NOTE: Command directives will determine the makeup of movement numbers in any theater not governed by a STANAG. For a description of how to develop a movement number in CONUS, see FM 55-312.

Movement credit. A movement credit is an allocation granted to one or more vehicles in order to move over a controlled route in a fixed time according to movement instructions. Besides the allocation of a movement number or identification serial number, a movement credit indicates times at which the first and last vehicle of a column are scheduled to pass the entry and exit points. These are the points where the column enters and leaves the controlled route. The credit is a control number. Policies for determining the codes used for movement credits are governed by STANAGs, HN traffic regulations, or command directives.

Preparing for Vehicle Air Movement

Units which must be ready for immediate air movement should make preparations well in advance to avoid delays in loading vehicles on transporting aircraft. Essential items of information which should be known beforehand for each vehicle are-

- Weight with load.
- Dimensions.
- Center of balance.
- Prepared hazardous materials (IAW TM 38-250).

Weight and dimensions. The weight and dimensions of almost all Army equipment can be found in TB 55-46-1. If this publication is not available but a scale is, weigh the item. If an item of equipment is too big to manhandle onto a scale, load it on a vehicle and weigh it on a vehicle scale. Make sure that scales are calibrated.

Center of balance. The CB of cargo items must be determined before the weight and balance of a loaded aircraft can be computed. The shipping
agency is responsible for marking each item of cargo with the correct gross weight and a CB point. Mark all items measuring 10 feet or longer and those having a balance point other than at center. Mark vehicles with load-carrying capability to show an empty or loaded CB, whichever is appropriate. Items not marked according to these guidelines will not be accepted for airlift.
The weight and CB of a vehicle is determined after all secondary loads are secured. Secondary loads are items of baggage or cargo transported in truck beds and trailers that must be included in total vehicle weight. Nothing can be added to or removed from a vehicle that has been weighed without afterwards reweighing the vehicle.

Terms used in measuring and weighing vehicles include:

- RDL-reference datum line. Predetermined point from which all measurements are taken.
- FOH - front overhang. Distance in inches from front bumper to center of front axle.
- WB-wheelbase. Distance in inches from center of front axle to center of rear axle or center of tandem axles.
- ROH - rear overhang. Distance from rear or center of tandem axles to rear bumper.
- FAW - front axle weight in pounds.
- RAW - rear axle weight in pounds.
- MOMENT - the product obtained by multiplying the weight at a given point by its distance in inches from the RDL.

To compute the CB of a vehicle, multiply the weight of each axle by its distance from the RDL. The result is called the moment. Next divide the moment by the gross weight of the vehicle. The resulting CB figure is the number of inches measured aft from the RDL to the point where the vehicle will balance. Compute CB to the nearest whole inch.

$$
\frac{\left(\mathrm{W}_{1} \times \mathrm{D}_{1}\right)+\left(\mathrm{W}_{2} \times \mathrm{D}_{2}\right)}{\text { gross weight }}=\mathrm{CB}
$$

where $\mathrm{W}_{1}=$ front axle weight
$\mathrm{W}_{2}=$ rear axle weight
$\mathrm{D}_{1}=$ distance from RDL to front axle
$\mathrm{D}_{2}=$ distance from RDL to rear axle
See Figure 3-21 for illustrations of weight and measurement points.

Figure 3-21. Weight and measurement points

After computing CB, mark both sides of the vehicle with masking tape to form a "T" shape. Use a grease pencil or magic marker to write the gross weight in the crossbar of the "T." Write the letters "CB" in the vertical bar to mark exact CB position. Mark axle weights above each axle. See Figure 3-22, page 3-46, for an example of a CB marker. The following examples illustrate methods to determine weight and CB of typical cargo. The examples include single-axle, multiaxle, and tracked vehicles and skid-mounted cargo.

Example 1-vehicles:
Step 1. Determine front and rear axle weights.
Step 2. Determine distance from front and rear axles to the RDL.

Step 3. Enter the weights and distances into the CB formula:
$\frac{(5,000 \times 60)+(10,000 \times 180)}{15,000}=\frac{300,000+1,800,000}{15,000}$
Step 4. Divide the total moment by the gross weight.

$$
=\frac{2,100,000}{15,000}=140 \text { inches }
$$

The CB of the vehicle measured from the front end (RDL) is 140 inches.

Example 2 - trailers:
When using the formula to compute CB of a trailer, consider the tongue to be the front axle; consider the actual axle to be the rear axle.

Step 1. Weigh tongue and axle.
Step 2. Measure the distance from the end of the tongue to the center of the axle.

Step 3. Enter the weights and distances into the formula.

$$
\begin{aligned}
& \frac{(150 \times 1)+(3,600 \times 80)}{3,750}= \\
& \frac{150+288,000}{3,750}=\frac{288,150}{3,750}=76.84
\end{aligned}
$$

The CB of the trailer measured from the tongue (RDL) is 77 inches.

Example 3 - multiaxle vehicles:
Step 1. Determine all axle weights.
Step 2. Determine distance from each axle to the RDL.

Step 3. Enter the weights and distances into the formula.

$$
\begin{aligned}
& \frac{(10,000 \times 42)+(13,600 \times 209)+(11,200 \times 463)}{34,800}= \\
& \frac{420,000+2,842,000+5,185,600}{34,800}=\frac{8,448,000}{34,800}
\end{aligned}
$$

Step 4. Divide the total moment by the gross weight.

$$
\frac{8,448,000}{34,800}=243 \text { inches }
$$

The CB of the vehicle measured from the front end (RDL) is 243 inches.

Example 4-tracked vehicles:
Step 1. Weigh the vehicle on a platform scale (truck scale, coal yard scale) large enough to accommodate the entire vehicle. Record weight.

Step 2. Drive the vehicle onto a wooden beam or pole until the vehicle tilts forward. Mark the CB and gross weight on the side of the vehicle at the point of tilt.

Example 5 -skid-mounted cargo:
Step 1. If the skid-mounted cargo will fit on the scale, weigh the whole load.

Step 2. Place the load on a pipe and center it until it balances. Mark the CB at the balance point.

Example 6-skid-mounted cargo:
If the skid-mounted cargo is too large to fit on a scale at one time, use the CB formula. Consider the support braces between the skids to be axles.

Step 1. Support the overhang at the same height as the scale with a block of wood.

Step 2. Measure the distance from the RDL to the front and rear points of support (same as axles).

Step 3. Enter the weights and distances into the formula.

$$
\begin{aligned}
& \frac{(1,500 \times 50)+(2,050 \times 110)}{3,550}=\frac{75,000+225,500}{3,550}= \\
& \frac{300,000}{3,550}=84.6 \text { inches }
\end{aligned}
$$

The CB of the cargo measured from the RDL is 85 inches.

International Markings and Road Signs. Personnel serving in overseas locations should be able to readily identify standardized vehicle markings and road signs. For guidelines concerning NATO military vehicle markings and illustrations of various road signs prescribed by NATO and the Geneva Convention, refer to Appendix D.

Hazardous Materials. Packages, freight containers, and means of transport containing hazardous materials must be marked, labeled, and placarded IAW 49 CFR, Part 172. Refer to Appendix E of this manual for guidance and illustrations of hazardous materials marking, labeling, and placarding for all modes of transportation.

Figure 3-22. Center of balance marker

Section II MOTOR TRANSPORT DATA

The information included here provides the motor transport planner with vehicle characteristics and capabilities. Other planning information includes statistics on safe vehicle distances, local and line-haul operations, and highway tonnage capabilities.

VEHICLE CHARACTERISTICS

Tables 3-7 through 3-22, pages 3-47 through 3-73 list mechanical data on authorized motor transport vehicles. This information includes truck performance data; CB of single-unit trucks; and axle weights, dimensions, and capacities for prime movers and towed vehicles.

PLANNING STATISTICS

Table 3-23, page 3-73, contains average vehicle stopping distances for prime movers and passenger vehicles. Use this table to determine safe vehicle gaps at various speeds on average, hard-surfaced roads. Since well trained drivers can reduce the distance traveled during the perception and reaction periods, the planner should consider the physical condition and training of drivers for a particular
operation. Keep in mind that rain, snow, or ice present special conditions. Braking distances are based on the assumption that vehicles are loaded and have good brakes, tires, and traction. The average values in Table 3-23 have been determined from the standpoint of safety only; the tactical situation may require larger or smaller gaps. In the absence of definite information, the rule of thumb method may be used for certain speeds to determine the gap between vehicles in a convoy: speedometer reading $(\mathrm{MPH}) \times 2=$ gap in yards (or speedometer reading $(\mathrm{KPH}) \times 1.2=$ gap in meters $)$. Use this method only for speeds marked with an asterisk in Table 3-23. See Figure 3-23, page 3-75, for illustrations of Army motor transport vehicles. See Appendix A for motor transport unit capabilities.

Table 3-7. Vehicle axle weights

Table 3-7. Vehicle axle weights (continued)

Table 3-7. Vehicle axle weights (continued)

Table 3-7. Vehicle axle weights (continued)

Table 3-7. Vehicle axle weights (continued)

VEHICLE	CURB WEIGHT (LB)						GROSS WEIGHT, PAYLOAD \& PERSONNEL (LB)					
	AXLE LOAD W/WINCH			AXLE LOAD W/O WINCH			AXLE LOAD W/WINCH			AXLE LOAD W/O WINCH		
	Front	Rear	Total									
$\begin{gathered} \text { Truck, trac, } \\ 5-\mathrm{T}, 6 \times 6 \\ \text { M52A2 } \end{gathered}$	9,020	9,680	18,700	8,030	9,810	17,840	9,384	24,612	33,996	8,539	24,330	33,313
$\begin{aligned} & \text { Truck, trac, } \\ & 5-\mathrm{T}, 6 \times 6 \\ & \text { M818 } \end{aligned}$	10,260	9,905	20,165	9,470	10,030	19,500	10,635	24,530	35,165	9,845	24,655	34,500
$\begin{aligned} & \text { Truck, trac, } \\ & 5-\mathrm{T}, 6 \times 6 \\ & \text { M819 } \end{aligned}$	14,665	20,400	35,065	-	-	-	14,665	32,400	47,065	-	-	-
$\begin{aligned} & \text { Truck, trac, } \\ & 5-\mathrm{T}, 6 \times 6 \\ & \text { M931 } \end{aligned}$	-	-	-	10,077	13,751	23,828	-	-	-	10,710	25,430	36,140
$\begin{gathered} \text { Truck, trac, } \\ 5-\mathrm{T}, 6 \times 6 \\ \text { M931A1 } \end{gathered}$	-	-	-	10,340	10,800	21,140	-	-	-	10,710	25,430	36,140
$\begin{aligned} & \text { Truck, trac, } \\ & 5-\mathrm{T}, 6 \times 6 \\ & \mathrm{M} 931 \mathrm{~A} 2 \end{aligned}$	-	-	-	9,065	10,830	19,895	-	-	-	9,435	25,460	34,895
$\begin{aligned} & \text { Truck, trac, } \\ & 5-\mathrm{T}, 6 \times 6 \\ & \text { M932 } \end{aligned}$	10,679	13,761	22,440	-	-	-	11,770	25,470	37,240	-	-	-
$\begin{gathered} \text { Truck, trac, } \\ 5-\mathrm{T}, 6 \times 6 \\ \mathrm{M} 932 \mathrm{~A} 1 \end{gathered}$	11,400	10,840	22,240	-	-	-	11,770	25,470	37,240	-	-	-
$\begin{gathered} \text { Truck, trac, } \\ 5-\mathrm{T}, 6 \times 6 \\ \text { M932A2 } \end{gathered}$	10,125	10,870	20,995	-	-	-	10,495	25,500	35,995	-	-	-
Truck, trac, wkr, 5-T, 6×6, M62	9,325	24,000	33,325	-	-	-	5,027	35,298	40,325	-	-	-
$\begin{aligned} & \text { Truck, wkr, } \\ & 5-\mathrm{T}, 6 \times 6, \\ & \text { M543A1, } \\ & \text { M543A2 } \end{aligned}$	9,090	25,160	34,250	-	-	-	5,115	36,535	41,650	-	-	-

Table 3-7. Vehicle axle weights (continued)

Table 3-7. Vehicle axle weights (continued)

Table 3-7. Vehicle axle weights (continued)

Table 3－7．Vehicle axle weights（continued）

$\begin{aligned} & \widetilde{\sim} \\ & \underset{\sim}{\underset{\sim}{u}} \end{aligned}$	민	$\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{\circ}}$	N N \％	n N －	8 \vdots \vdots	\circ $\stackrel{\circ}{\infty}$ ∞ ∞	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \text { oj } \end{aligned}$	$\begin{aligned} & \circ \stackrel{\circ}{\infty} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & \vdots \\ & \dot{y} \end{aligned}$		－80\％	$\stackrel{\text { ® }}{\stackrel{6}{0}}$	－
		$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{1}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{O}{0} \\ & \stackrel{+}{N} \\ & \underset{N}{\prime} \end{aligned}$		$\begin{aligned} & \text { Ǹ } \\ & \underset{\sim}{N} \end{aligned}$	$\underset{\substack{\infty \\ \underset{\sim}{\circ} \\ \hline}}{ }$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{-}{\sim} \end{aligned}$	O O N	O ¢ N	O Nin N
$\begin{aligned} & \infty \\ & \stackrel{\alpha}{\alpha} \\ & \stackrel{1}{2} \end{aligned}$		－	｜	｜	｜	｜	｜	｜	1	｜	｜	｜	｜
$\underset{\text { d }}{\stackrel{\rightharpoonup}{x}}$		$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\circ}}$	｜	｜	｜	｜	｜	｜	1	｜	｜	｜	｜
$\begin{aligned} & \overline{\mathrm{O}} \\ & \stackrel{W}{3} \end{aligned}$	雄	$\stackrel{\text { ㄷ．}}{\text { ®．}}$	｜	I	｜	｜	｜	｜	1	｜	｜	1	｜
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$		䓂	｜	｜	｜	｜	｜	｜	1	｜	｜	｜	1
		$\stackrel{\overline{\text { ® }}}{\stackrel{\text { ® }}{\circ}}$	$\begin{aligned} & \stackrel{\text { N}}{N} \end{aligned}$	－	－	$\stackrel{\text { O}}{\sim}$ $\underset{\sim}{+}$		\circ $\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$			® － $\stackrel{\text { N }}{ }$	$\begin{aligned} & \text { O} \\ & \stackrel{8}{\mathrm{~N}} \end{aligned}$	$\stackrel{\sim}{\sim}$
			$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\text { 앋 }}{\text {－}}$	－	$\begin{aligned} & \text { N } \\ & \text { No } \\ & \end{aligned}$	$\stackrel{\text { ㅇN }}{\stackrel{-}{*}}$	\circ 0 0 -	$\stackrel{\text { ¢ }}{\text {＋}}$	－	0 j j	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	－
$\begin{aligned} & \underset{2}{2} \\ & \stackrel{1}{\mathrm{I}} \end{aligned}$		宕	｜	｜	｜	｜	｜	｜	1	｜	｜	｜	｜
$\begin{aligned} & s \\ & \infty \\ & \stackrel{\infty}{s} \end{aligned}$			｜	｜	｜	｜	｜	｜	｜	｜	｜	｜	｜
				｜	｜	｜	｜	｜	1	｜	｜	｜	｜
		䓂	｜	｜	｜	｜	｜	｜	｜	｜	｜	1	1
		ய $\stackrel{U}{\text { U }}$ $\stackrel{\text { I }}{\text { ¢ }}$								N		${ }_{\text {c }}^{\substack{\text { ¢ }}}$	

Table 3-7. Vehicle axle weights (continued)

Table 3-7. Vehicle axle weights (continued)

Table 3-8. Center of balance: location on single-unit vehicles

Table 3-8. Center of balance: location on single-unit vehicles (continued)

$$
\begin{aligned}
& \begin{array}{cc}
\text { RIBUTED PAYLOAD } \\
\text { LOCATION } \\
\text { W/O WINCH } \\
\hline & \text { Behind } \\
\begin{array}{c}
\text { Above } \\
\text { Ground } \\
\text { (In) }
\end{array} & \begin{array}{c}
\text { Front } \\
\text { (In) }
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Truck, dump, } \\
2 \text { 1/2-T, } 6 \times 6, \text { M342A2 }
\end{array} \\
& \text { Truck, cargo, } \\
& \text { Truck, cargo, } \\
& \text { Truck, cargo, } \\
& \begin{array}{l}
\text { 5-T, } 6 \times 6, \text { M54A2C } \\
\text { Truck, cargo, }
\end{array} \\
& \text { 5-T, } 6 \times 6, \text { M55 } \\
& \begin{array}{l}
\text { Truck, cargo, } \\
5-\mathrm{T}, 6 \times 6, \mathrm{M} 55 \mathrm{~A} 2
\end{array} \\
& \text { Truck, cargo, } \\
& \text { 5-T, } 6 \times 6, \text { M813 } \\
& \begin{array}{l}
\text { Truck, cargo, } \\
\text { 5-T, } 6 \times 6, \mathrm{M} 813 \mathrm{~A} 1
\end{array} \\
& \begin{array}{l}
\text { Truck, cargo, } \\
5-\mathrm{T}, 6 \times 6, \mathrm{M} 814
\end{array} \\
& \text { Truck, cargo, } \\
& \text { Truck, cargo, } \\
& \text { Truck, cargo, } \\
& \text { 5-T, } 6 \times 6, \text { M925A1 } \\
& \text { Truck, cargo, } \\
& \text { Truck, cargo, }
\end{aligned}
$$

Table 3-8. Center of balance: location on single-unit vehicles (continued)

Table 3-8. Center of balance: location on single-unit vehicles (continued)

Table 3-8. Center of balance: location on single-unit vehicles (continued)

			$\begin{array}{llll}\circ & 0 & \infty \\ \underset{\sim}{\dot{J}} & \stackrel{\infty}{\sim} & 1 & \infty \\ \sim & \sim & & 0\end{array}$ $\begin{array}{llll}0 & 0 & \\ 10 & 10 & \mid & 1 \\ 0 & 0 & 1\end{array}$

Table 3-9. Dimensions and loading capacity for cargo truck bodies

Table 3-9. Dimensions and loading capacity for cargo truck bodies (continued)

VEHICLE TYPE	CARGO DECK DIMENSIONS			CARGO BODY LOADING MEASUREMENTS					
	Length (in)	Width (in)	Height Above Ground (in)	${ }_{\text {(in) }}$	Bows (cu ft)		op of Racks (cu ft)	Stee (in)	op of g Wheel (cu ft)
M925A1, M925A2	168.0	88.3	59.8	57.4	$468.0{ }^{12}$	36.5	$298.8{ }^{15}$	32.3	277.3
M927, M928	244.0	88.3	56.8	57.4	$468.0{ }^{12,15}$	36.5	$298.8{ }^{18}$	29.3	237.0^{18}
M927A1, M928A1	244.0	88.3	59.8	57.4	$468.0{ }^{12,15}$	36.5	$298.8{ }^{18}$	32.3	402.7
10-ton:									
M977	216.0	90.0	65.0	$48.0{ }^{9}$	$540.0{ }^{18}$	(16)	(17)	$38.0{ }^{2}$	427.5^{2}
M985	216.0	90.0	65.0	$48.0{ }^{14}$	$540.0{ }^{18}$	(17)	(7)	$38.0{ }^{2}$	427.5^{2}
1 Cubic capacity reduced 5.6 cubic feet for wheel wells.									
2 Height and cube measured to top of cab.									
3 Cubic capacity reduced 27.3 feet for communications kit.									
4 Cubic capacity reduced 0.8 cubic feet for communications tie-down brackets.									
5 Cubic capacity reduced 40.1 cubic feet for communications									
Cubic capacity reduced 6.6 cubic feet for curve of bows									
7 See Top of Steering									
8 Cubic capacity reduced 8.5 cubic feet for curve of bows									
Cubic capacity reduced 27.0 cubic feet for spare tire and carrier in cargo									
10 Cubic capacity reduced 26.1 cubic feet for spare tire and carrier in cargo b									
11 Cubic capacity reduced 7.0 cubic feet for curve of bows									
12 Cubic capacity reduced 10.2 cubic									
13 Height and cube measured to top of bulkhead.									
14 Height over spare tire.									
15 Cubic capacity reduced 14.5 cubic feet for spare tire and carrier in cargo									
${ }^{16}$ Cubic capacity reduced 93.8 cubic feet for wheel wells.									
17 See Top of Steering Wheel column for height. Steering wheel is higher than side racks.									
18 Cube measured to top of spare tire.									

Table 3-10. Dimensions and loading capacity for dump truck bodies

$\begin{aligned} & \text { VEHICLE } \\ & \text { TYPE } \end{aligned}$	CARGO DECK DIMENSIONS			CARGO BODY LOADING MEASUREMENTS					
	Length (in)	Width (in)	Height Above Ground (in)	(in)	s (cu ft)	Stee (in)	Wheel (cu ft)	(in)	(cu ft)
2 1/2-ton:									
M342A2	130.0	70.0	53.0	24.5	${ }^{(1)}$	26.5	(1)	52.0	273.8
5-ton									
M51	123.0	82.0	59.0	25.0	(1)	27.0	(1)	51.0	297.6
M51A2	123.0	82.0	59.0	25.0	${ }^{(1)}$	27.0	(1)	51.0	297.6
M817	124.8	81.9	59.0	25.0	${ }^{(1)}$	27.1	${ }^{(1)}$	51.8	306.3
M929	124.8	81.9	59.0	28.0	(1)	27.1	${ }^{(1)}$	51.8	306.3
M930	124.8	81.9	59.0	25.0	(1)	27.1	${ }^{(1)}$	51.8	306.3
20-ton:									
F5070	191.5	85.1	66.5	34.3	${ }^{(2)}$	NA	${ }^{(2)}$	58.8	$537.0^{3,4}$
M917	216.0	84.0	68.0	31.0	${ }^{(2)}$	NA	${ }^{(2)}$	${ }^{(2)}$	$753.6{ }^{3}$
${ }^{1}$ Removed cab shield stowed in dump body. See Top of Cab Shield column for cube. ${ }^{2}$ Cab shield cannot be removed. See Top of Cab Shield column for cube. ${ }^{3}$ Cube capacity reduced 12.9 cubic feet for hoist doghouse in dump body. ${ }^{4}$ Cube capacity reduced 1.8 cubic feet for ribs in dump body.									

Table 3-11. Dimensions and loading capacity for cargo trailer bodies

Table 3-12. Dimensions and loading capacity for stake and platform semitrailer cargo bodies

VEHICLE TYPE	CARGO DECK DIMENSIONS		CARGO BODY LOADING MEASUREMENTS		
	Length (in)	Width (in)	Height Above Ground (in)	Height (in)	Capacity (cu ft)
12-ton:					
M127	335.8	88.8	60.6	47.8	824.8
M127A1	335.8	88.8	60.5	47.8	824.8
M127A1C	335.8	88.8	60.5	48.0	828.3
M237A2C	335.8	88.8	59.8	48.0	828.3
M270A1	459.8	84.0	51.8	48.8	1,090.7
22 1/2-ton:					
M871	349.3	87.3	55.4	48.0	847.1
$\begin{aligned} & \text { M871A1, } \\ & \text { M871A2 } \end{aligned}$	372.0	87.3	55.0	48.0	902.1
34-ton:					
$\begin{aligned} & \text { M872, } \\ & \text { M872A2 } \end{aligned}$	484.8	93.0	60.0	52.0	1,356.8
$\begin{aligned} & \text { M872A1, } \\ & \text { M872A3 } \end{aligned}$	484.8	93.0	55.0	52.0	1,356.8

Table 3-13. Dimensions and loading capacity for van semitrailer cargo bodies

VEHICLE TYPE	CARGO DECK DIMENSIONS		CARGO BODY LOADING MEASUREMENTS		
	Length (in)	Width (in)	Height Above Ground (in)	Height (in)	Capacity (cu ft)
12-ton:					
M128, M128A1	335.5	89.0	57.0	78.5	1,356.4
M128A1C	336.0	89.0	57.0	78.5	1,358.4
M128A2C	337.5	89.5	60.0	78.5	1,372.2

FM 55-15

Table 3-14. Shipping dimensions and cube for cargo trucks

VEHICLE TYPE	LENGTH (in)	WIDTH (in)	TOP OF SIDE RACKS		TOP OF STEERING WHEEL	
			Height (in)	Cube (cu ft)	Height (in)	Cube (cu ft)
1 1/4-ton:						
M880, M881	219	80	NA	NA	$74{ }^{3}$	$751{ }^{3}$
M882	219	82	NA	NA	74^{3}	$769{ }^{3}$
M883, M884, M885	219	80	NA	NA	$74{ }^{3}$	$751{ }^{3}$
M890, M891	219	80	NA	NA	71^{3}	$720{ }^{3}$
M892	219	82	NA	NA	71^{3}	$738{ }^{3}$
2 1/2-ton:						
M35A1, M35A2	265	96	$89{ }^{1}$	$1,311^{2}$	81^{1}	1,193 ${ }^{2}$
M35A1 WWN, M35A2 WWN	279	96	$89{ }^{1}$	1,380 ${ }^{1}$	81^{1}	1,256 ${ }^{2}$
M35A2C	265	98	$89{ }^{1}$	1,338 ${ }^{2}$	82^{1}	1,233 ${ }^{2}$
M35A2C WWN	279	98	$89{ }^{1}$	1,409 ${ }^{2}$	82^{1}	1,298 ${ }^{2}$
M36A2	329	96	$89{ }^{1}$	1,597 ${ }^{2}$	$81{ }^{1}$	1,458 ${ }^{2}$
M36A2 WWN	344	96	$89{ }^{1}$	1,701 ${ }^{2}$	81^{1}	1,548 ${ }^{2}$
5-ton:						
M54, M54A1	297	98	93^{1}	$1,566{ }^{2}$	86^{1}	1,449 ${ }^{2}$
M54 WWN, M54A1 WWN	314	98	$93{ }^{1}$	1,657 ${ }^{2}$	$86{ }^{1}$	1,532 ${ }^{2}$
M54A1C, M54A2C	298	99	92^{1}	1,571 ${ }^{2}$	86^{1}	1,469 ${ }^{2}$
M54A1C WWN	315	99	$92{ }^{1}$	1,661 ${ }^{2}$	$86{ }^{1}$	1,552 ${ }^{2}$
M54A2	297	98	$93{ }^{1}$	1,566 ${ }^{2}$	86^{1}	1,449 ${ }^{2}$
M54A2 WWN	314	98	$93{ }^{1}$	1,657 ${ }^{2}$	$86{ }^{1}$	1,532 ${ }^{2}$
M54A2C WWN	314	99	92^{1}	1,655 ${ }^{2}$	86^{1}	1,547 ${ }^{2}$
5-ton:						
M55, M55A2	377	98	93^{1}	1,989 ${ }^{2}$	$86{ }^{1}$	1,839 ${ }^{2}$
M55 WWN,						
M812	399	124	$139{ }^{6}$	3,980 ${ }^{6}$	(7)	(6)
M813	304	98	94^{1}	1,621 ${ }^{2}$	87^{1}	1,500 ${ }^{2}$
M813 WWN	320	98	94^{1}	1,706 ${ }^{2}$	87^{1}	1,579 ${ }^{2}$
M813A1	307	99	94^{1}	1,654 ${ }^{2}$	87^{1}	1,531 ${ }^{2}$

Table 3-14. Shipping dimensions and cube for cargo trucks (continued)

VEHICLE TYPE	LENGTH (in)	WIDTH (in)	TOP OF SIDE RACKS		TOP OF STEERING WHEEL	
			Height (in)	Cube (cu ft)	Height (in)	Cube (cu ft)
M813A1 WWN	323	99	94^{1}	1,740 ${ }^{2}$	87^{1}	1,620 ${ }^{2}$
M814	378	98	94^{1}	2,016 ${ }^{2}$	$89{ }^{1}$	$1908{ }^{2}$
M814 WWN	396	98	94^{1}	2,111 ${ }^{2}$	89^{1}	1,999 ${ }^{2}$
M821 WWN	379	115	$113^{1,5}$	2,851 ${ }^{2,5}$	$(1,5)$	$(2,5)$
M923	314	98	94^{1}	1,674 ${ }^{2}$	87	1,550
M923A1, M923A2	311	97	97^{1}	1,694 ${ }^{2}$	94	1,641
M925 WWN	327	98	94^{1}	1,744 ${ }^{2}$	87	1,614
M925A1, M925A2 WWN	332	98	$97{ }^{1}$	1,827 ${ }^{2}$	94	1,770
M927	389	98	94^{1}	2,074 ${ }^{2}$	91	2,008
M927A1, M925A2	386	98	97^{1}	2,124 ${ }^{2}$	94	2,058
M928 WWN	402	98	94^{1}	2,143 ${ }^{2}$	91	2,075
M928A1, M928A1 WWN Bridge Transporter	408 373	98 116	$\begin{gathered} 97^{1} \\ 116^{1,5} \end{gathered}$	$\begin{aligned} & 2,245^{2} \\ & 1,905^{2,5} \end{aligned}$	$\begin{array}{r} 94 \\ (1,5) \end{array}$	$\begin{array}{r} 2,175 \\ (2,5) \end{array}$
10-ton: M977 WOWN, M977 WWN M985 WOWN, M985 WWN	$\begin{aligned} & 401 \\ & 401 \end{aligned}$	$\begin{array}{r} 96 \\ 101 \end{array}$	(8) (8)		$\begin{aligned} & 101^{3} \\ & 101^{3} \end{aligned}$	$\begin{aligned} & 2,268^{3} \\ & 2,268^{3} \end{aligned}$
${ }^{1}$ For height over bows or top of cab shield, use operational height of vehicle listed in TB 55-46-1. ${ }^{2}$ For shipping cube over side rack/bows and/or top of cab shield, use operational cube of vehicle listed in TB 55-46-1. ${ }^{3}$ Height and cube measured to top of cab. ${ }^{4}$ See Top of Steering Wheel column for cube. ${ }^{5}$ Height and cube measured to top of bulkhead. ${ }^{6}$ Cube capacity over materials-handling crane mounted in body. ${ }^{7}$ Height over spare tire. ${ }^{8}$ Steering wheel is higher than side panels. See Top of Steering Wheel column for height.						

FM 55-15

Table 3-15. Shipping dimensions and cube for dump trucks

VEHICLE TYPE	LENGTH (in)	WIDTH (in)	TOP OF STEERING WHEEL		TOP OF SIDE PANELS	
			Height (in)	Cube (cu ft)	Height (in)	Cube (cu ft)
2 1/2-ton:						
M342A2	261	96	(1, 2)	$(3,4)$	$83{ }^{5}$	1,204 4,6
M342A2 WWN	273	96	$(1,2)$	$(3,4)$	$83{ }^{5}$	1,259 ${ }^{4,6}$
5-ton:						
M51, M51A1, M51A2	266	98	(1, 2)	$(3,4)$	$89{ }^{5}$	1,337 ${ }^{\text {4,6 }}$
M51 WWN, M51A1 WWN,						
M817	274	98	$(1,2)$	$(3,4)$	91^{5}	1,411 ${ }^{\text {4,6 }}$
M817 WWN	289	98	$(1,2)$	$(3,4)$	91^{5}	1,488 ${ }^{4,6}$
M929	275	98	$(1,2)$	$(3,4)$	91^{5}	1,420 4,6
M930 WWN	289	98	(1, 2)	$(3,4)$	91^{5}	1,492 ${ }^{\text {4,6 }}$
20-ton:						
F5070	313	103	(2)	$(3,4)$	125^{5}	2,333 ${ }^{\text {4,6 }}$
M917	351	98	(2)	$(3,4)$	$141{ }^{2}$	2,807 ${ }^{4}$
${ }^{1}$ Side panels stowe ${ }^{2}$ For height over b ${ }^{3}$ See Top of Side ${ }^{4}$ For shipping cube TB 55-46-1. ${ }^{5}$ Height of cab shie ${ }^{6}$ Cube with cab sh	argo body top of ca column f side racks wed in du owed in d	her than s d, use op and/or top dy. dy.	g wheel. nal heigh ab shield	op of Sid ehicle lis peratio	els colum TB 55-46 be of veh	r height. listed in

Table 3-16. Shipping dimensions and cube for cargo trailers

VEHICLE TYPE	LENGTH (in)	WIDTH (in)	TOP OF SIDE RACKS		TOP OF SIDE PANELS			
			Height (in)	Cube (cu ft)	Height (in)	Cube (cu ft)		
1/4-ton:								
M100	108	57	NA	NA	43^{1}	$154{ }^{2}$		
3/4-ton:								
M101A1, M101A2	147	74	65^{1}	410^{2}	50^{1}	315^{2}		
1 1/2-ton:								
M104A1	166	84	84^{1}	$678{ }^{2}$	57^{1}	460^{2}		
M105, M105A1, M105A2	166	83	82^{1}	$654{ }^{2}$	55^{1}	439^{2}		
${ }^{1}$ For height over top of cab, use operational height of vehicle listed in TB 55-46-1. ${ }^{2}$ For shipping cube over side racks/bows and/or top of cab shield, use operational cube of vehicle listed in TB 55-46-1.								

Table 3-17. Shipping dimensions and cube for stake and platform semitrailers

VEHICLE TYPE	LENGTH (in)	WIDTH (in)	TOP OF SIDE RACKS		TOP OF SIDE PANELS	
			Height (in)	Cube (cu ft)	Height (in)	Cube (cu ft)
12-ton:						
M127, M127A1	346	98	109	2,107	61	NA
M127A1C	349	98	109	2,144	61	NA
M127A2C	352	98	108	2,145	60	NA
22 1/2-ton:						
M871	358	96	103	2,049	55	NA
M871A2	377	96	103	2,129	55	NA
34-ton:						
M872, M872A1, M872A2	492	96	106	2,898	58	NA
M872A3	493	96	106	2,904	58	NA
40-ton:						
M870	510	96	70	1,984	40	NA
M870A1	505	96	70	1,964	40	NA

Table 3-18. Shipping dimensions and cube for van semitrailers

			TOP OF VAN
VEHICLE TYPE	LENGTH (in)	WIDTH (in)	Height (in)
12-ton:			Cube (cu ft)
M128	344	97	140

Table 3-19. Shipping dimensions and cube for fuel tankers

			HEIGHT
VEHICLE TYPE	LENGTH (in)	WIDTH OF (in)	SIDE PANELS (in)
			SHIPPING CUBE
M131A4C	374	96	107
M131A5C	376	96	107
M967, M969	368	97	105
M1062	433		123

Table 3-20. Shipping dimensions and cube for heavy equipment transport trailers

VEHICLE TYPE	LENGTH (in)	WIDTH (in)	HEIGHT TOP OF SIDE PANELS (in)	SHIPPING CUBE (cu ft)
M747	513	137	105	4,208
M1000	622	144	144	7,464

Table 3-21. Shipping dimensions and cube for PLS

VEHICLE TYPE	LENGTH (in)	WIDTH (in)	HEIGHT TOP OF SIDE PANELS (in)	SHIPPING CUBE (cu ft)
M1074	431	96	127	3,050
M1075	431	96	128	3,065
M1076	299	96	117	1944

Table 3-22. Shipping dimensions and cube for FMTV trailers

VEHICLE TYPE	LENGTH (in)	WIDTH (in)	HEIGHT TOP OF SIDE PANELS (in)	SHIPPING CUBE (cu ft)
2 1/2-ton:				
M1082	209	96	58	674
5-ton:				
M1095	220	96	58	709

Table 3-23. Average vehicle stopping distances

MPH	SPEED		AVERAGE DISTANCE							
	KPH	$\mathrm{ft} / \mathrm{sec}$	Perception		Reaction		Braking		Total ${ }^{1}$	
			(ft)	(m)	(ft)	(m)	(ft)	(m)	(ft)	(m)
Passenger vehicles ${ }^{2}$:										
20*	32.2	29.3	22	6.7	22	6.7	25	7.6	69	21.0
25*	40.3	36.7	28	8.5	28	8.5	35	10.7	91	27.7
30*	48.3	44.0	33	10.0	33	10.0	48	14.6	114	34.6
35*	56.3	51.3	39	11.9	39	11.9	67	20.4	145	44.2
40*	64.4	58.7	44	13.4	44	13.4	90	27.4	178	54.2
45*	72.4	66.0	50	15.3	50	15.3	117	35.7	217	66.3
50*	80.5	73.4	55	16.8	55	16.8	148	45.2	258	78.8
55	88.5	80.7	61	18.6	61	18.6	185	56.4	307	93.6
60	96.6	88.0	66	20.1	66	20.1	228	69.6	360	109.8
65	104.6	95.4	72	21.9	72	21.9	275	83.9	419	127.7
70	112.6	102.7	77	23.5	77	23.5	332	102.5	486	149.5

Table 3-23. Average vehicle stopping distances (continued)

MPH	SPEED		AVERAGE DISTANCE							
	KPH	$\mathrm{ft} / \mathrm{sec}$	Perception		Reaction		Braking		Total ${ }^{1}$	
					(ft)	(m)	(ft)	(m)	(ft)	(m)
Single-unit vehicles (gross weight less than 10,000 pounds):										
20*	32.2	29.3	22	6.7	22	6.7	30	9.2	74	22.6
25*	40.3	36.7	28	8.5	28	8.5	42	12.8	98	29.8
30*	43.3	44.0	33	10.0	33	10.0	58	17.7	124	37.7
35*	56.3	51.3	39	11.9	39	11.9	80	24.4	158	48.2
40*	64.4	58.7	44	13.4	44	13.4	106	31.4	194	58.2
45*	72.4	66.0	50	15.3	50	15.3	138	42.1	238	72.7
50	80.5	73.4	55	16.8	55	16.8	177	54.0	287	87.6
55	88.5	80.7	61	18.6	61	18.6	222	67.5	344	104.7
60	96.6	88.0	66	20.1	66	20.1	273	83.3	405	123.5

Single-unit, two-axle vehicles (gross weight of 10,000 pounds or more):

20^{*}	32.2	29.3	22	6.7	22	6.7	40	12.2	84	25.6
25^{*}	40.3	36.7	28	8.5	28	8.5	64	19.5	120	36.5
30	48.3	44.0	33	10.0	33	10.0	92	28.0	158	48.0
35	56.3	51.3	39	11.9	39	11.9	126	38.4	204	62.2
40	64.4	58.7	44	13.4	44	13.4	165	50.3	253	77.1
45	72.4	66.0	50	15.3	50	15.3	208	63.4	308	94.0
50	80.5	73.4	55	16.8	55	16.8	256	78.1	366	111.7
55	88.5	80.7	61	18.6	61	18.6	310	94.5	432	131.7
60	96.6	88.0	66	20.1	66	20.1	372	113.5	504	153.7

Single-unit, multiaxle vehicles and combination vehicles ${ }^{3}$ (gross weight of 10,000 pounds or more):

20^{*}	32.2	29.3	22	6.7	22	6.7	50	15.3	94	28.7
25	40.3	36.7	28	8.5	28	8.5	80	24.4	136	41.1
30	48.3	44.0	33	10.0	33	10.0	115	35.1	181	55.1
35	56.3	51.3	39	11.9	39	11.9	157	47.9	235	71.7
40	64.4	58.7	44	13.4	44	13.4	205	62.5	293	89.3
45	72.4	66.0	50	15.3	50	15.3	260	79.3	360	109.9
50	80.5	73.4	55	16.8	55	16.8	320	97.6	430	131.2
55	88.5	80.7	61	18.6	61	18.6	388	118.3	510	155.5
60	96.6	88.0	66	20.1	66	20.1	465	141.9	597	182.1

${ }^{1}$ Add 30 feet or 9 meters to each total stopping distance shown to determine actual gap to use between vehicles.
${ }^{2}$ Does not include buses. Refer to section with weights and axles corresponding to buses.
${ }^{3}$ Tractor trucks, semitrailers, and trailers.

* Rule of thumb method may be used at this speed.

Figure 3-23. Army motor transport vehicles

Figure 3-23. Army motor transport vehicles (continued)

Figure 3-23. Army motor transport vehicles (continued)

Figure 3-23. Army motor transport vehicles (continued)

TRAILERS

M1000, 8 X 8, 70-TON, SEMITRAILER (HET)

M1076, 16.5-TON, TRAILER (PLS)

M131A5C, $4 \times 4,5,000-G A L L O N, ~ S E M I T R A I L E R, ~ T A N K, ~ F U E L ~$

M1062, $4 \times 4,7,500-G A L L O N$, SEMITRAILER, TANK, FUEL

Figure 3-23. Army motor transport vehicles (continued)

