
1 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Chapter 3: Object Oriented Design

Object Oriented Design

The boundaries between analysis and design are fuzzy, although the focus of each is quite distinct. In
analysis, the focus is to fully analyze the problem at hand and to model the world by discovering the
classes and objects that form the vocabulary of the problem domain. In design, we invent the
abstractions and mechanisms in our models that provide the design of the solution to be built.
An object contains encapsulated data and procedures grouped together to represent an entity. The 'object
interface', how the object can be interacted with, is also defined. An object-oriented program is
described by the interaction of these objects.
Object-oriented design is the discipline of defining the objects and their interactions to solve a problem
that was identified and documented during object-oriented analysis.
Object-oriented design is the process of planning a system of interacting objects for the purpose of
solving a software problem. It is one approach to software design.

From Requirements/Analysis to Design

A set of requirements-oriented artifacts (and thought) inspire design-oriented artifacts.

Fig: Showing transition from Analysis models to Design Models

Fig: The phases of OOAD and how the transition from OOA to OOD works

Domain Model Use Case Model
Supplementary Specs

(Req list and
attributes,. . .)

Software Architecture
Document Design Model Data Model

. . .

. . .

2 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Input (sources) for object-oriented design

The input for object-oriented design is provided by the output of object-oriented analysis. Realize that an
output artifact does not need to be completely developed to serve as input of object-oriented design;
analysis and design may occur in parallel, and in practice the results of one activity can feed the other in
a short feedback cycle through an iterative process. Both analysis and design can be performed
incrementally, and the artifacts can be continuously grown instead of completely developed in one shot.
Some typical input artifacts for object-oriented design are:

 Conceptual model: Conceptual model is the result of object-oriented analysis, it captures
concepts in the problem domain. The conceptual model is explicitly chosen to be independent of
implementation details, such as concurrency or data storage.

 Use case: Use case is a description of sequences of events that, taken together, lead to a system
doing something useful. Each use case provides one or more scenarios that convey how the
system should interact with the users called actors to achieve a specific business goal or function.
Use case actors may be end users or other systems. In many circumstances use cases are further
elaborated into use case diagrams. Use case diagrams are used to identify the actor (users or
other systems) and the processes they perform.

 System Sequence Diagram: System Sequence diagram (SSD) is a picture that shows, for a
particular scenario of a use case, the events that external actors generate, their order, and possible
inter-system events.

 User interface documentations (if applicable): Document that shows and describes the look and
feel of the end product's user interface. It is not mandatory to have this, but it helps to visualize
the end-product and therefore helps the designer.

 Relational data model (if applicable): A data model is an abstract model that describes how
data is represented and used. If an object database is not used, the relational data model should
usually be created before the design, since the strategy chosen for object-relational mapping is an
output of the OO design process. However, it is possible to develop the relational data model and
the object-oriented design artifacts in parallel, and the growth of an artifact can stimulate the
refinement of other artifacts.

Designing concepts

 Defining objects, creating class diagram from conceptual diagram: Usually map entity to class.

 Identifying attributes.

 Use design patterns (if applicable): A design pattern is not a finished design, it is a description of a

solution to a common problem, in a context[1]. The main advantage of using a design pattern is that it can

be reused in multiple applications. It can also be thought of as a template for how to solve a problem that

can be used in many different situations and/or applications. Object-oriented design patterns typically

show relationships and interactions between classes or objects, without specifying the final application

classes or objects that are involved.

 Define application framework (if applicable): Application framework is a term usually used to refer to a

set of libraries or classes that are used to implement the standard structure of an application for a

specific operating system. By bundling a large amount of reusable code into a framework, much time is

3 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

saved for the developer, since he/she is saved the task of rewriting large amounts of standard code for

each new application that is developed.

 Identify persistent objects/data (if applicable): Identify objects that have to last longer than a single

runtime of the application. If a relational database is used, design the object relation mapping.

 Identify and define remote objects (if applicable).

Output (deliverables) of object-oriented design

 Sequence Diagrams/Collaboration: Extend the System Sequence Diagram to add specific
objects that handle the system events. A sequence diagram shows, as parallel vertical lines,
different processes or objects that live simultaneously, and, as horizontal arrows, the messages
exchanged between them, in the order in which they occur.

 Design Class diagram: A class diagram is a type of static structure UML diagram that describes
the structure of a system by showing the system's classes, their attributes, and the relationships
between the classes. The messages and classes identified through the development of the
sequence diagrams can serve as input to the automatic generation of the global class diagram of
the system.

How do developers design objects?
 Here are three ways:

1. Code. Design-while-coding (Java, C#, …), ideally with power tools such as refactorings. From mental

model to code.
2. Draw, then code. Drawing some UML on a whiteboard or UML CASE tool, then switching to #1 with a text-

strong IDE (e.g., Eclipse or Visual Studio).
3. Only draw. Somehow, the tool generates everything from diagrams. Many a dead tool vendor has washed

onto the shores of this steep island. "Only draw" is a misnomer, as this still involves a text programming
language attached to UML graphic elements.

Designing Objects:
What are Static and Dynamic Modeling?

There are two kinds of object models: dynamic and static. Dynamic models, such as UML interaction
diagrams sequence diagrams or communication diagrams), help design the logic, the behavior of the
code or the method bodies. They tend to be the more interesting, difficult, important diagrams to create.
Static models, such as UML class diagrams, help design the definition of packages, class names,
attributes, and method signatures (but not method bodies).

4 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Static and dynamic UML
diagrams for object modeling.

There's a relationship between
static and dynamic modeling
and the agile modeling practice
of create models in parallel:
Spend a short period of time on
interaction diagrams
(dynamics), then switch to a
wall of related class diagrams
(statics).

Object Design Techniques:
CRC Cards

A popular text-oriented modeling technique is Class Responsibility Collaboration (CRC) cards, created
by the agile, influential minds of Kent Beck and Ward Cunningham (also founders of the ideas of XP
and design patterns). Class Responsibility Collaboration (CRC) cards are a brainstorming tool used in the
design of object-oriented software.
CRC cards are paper index cards on which one writes the responsibilities and collaborators of classes.
Each card represents one class. A CRC modeling session involves a group sitting around a table,
discussing and writing on the cards as they play "what if" scenarios with the objects, considering what
they must do and what other objects they must collaborate with.

CRC cards are usually created from index cards on which are written:

1. The class name
2. Its Super and Sub classes (if applicable)
3. The responsibilities of the class.
4. The names of other classes with which the class will collaborate to fulfill its responsibilities.
5. Author

Fig: CRC card Format

Fig: CRC card Example

Class

5 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

A Class represents a collection of similar objects. Objects are things of interest in the system being
modeled. They can be a person, place, thing, or any other concept important to the system at hand. The
Class name appears across the top of the CRC card.
Responsibility
A Responsibility is anything that the class knows or does. These responsibilities are things that the class
has knowledge about itself, or things the class can do with the knowledge it has.
For example, a person class might have knowledge (and responsibility) for its name, address, and phone
number. In another example an automobile class might have knowledge of its size, its number of doors,
or it might be able to do things like stop and go. The Responsibilities of a class appear along the left side
of the CRC card.
Collaborator
A Collaborator is another class that is used to get information for, or perform actions for the class at
hand. It often works with a particular class to complete a step (or steps) in a scenario. The Collaborators
of a class appear along the right side of the CRC card.

How do you create CRC models

 Find classes. Finding classes is fundamentally an analysis task because it deals with identifying the
building blocks for your application. A good rule of thumb is that you should look for the three-to-five
main classes right away, such as Student, Seminar, and Professor in Figure .

 Find responsibilities. You should ask yourself what a class does as well as what information you wish to
maintain about it. You will often identify a responsibility for a class to fulfill a collaboration with another
class.

 Define collaborators. A class often does not have sufficient information to fulfill its responsibilities.
Therefore, it must collaborate (work) with other classes to get the job done. Collaboration will be in one
of two forms: a request for information or a request to perform a task.

 Move the cards around. To improve everyone’s understanding of the system, the cards should be placed
on the table in an intelligent manner. Two cards that collaborate with one another should be placed close
together on the table, whereas two cards that don’t collaborate should be placed far apart

Realization of Use case

A use-case realization represents how a use case will be implemented in terms of collaborating objects.
This artifact can take various forms. It can include, for example, a textual description (a document),
class diagrams of participating classes and subsystems, and interaction diagrams (communication and
sequence diagrams) that illustrate the flow of interactions between class and subsystem instances.

The reason for separating the use-case realization from its use case is that doing so allows the use cases
to be managed separately from their realizations. This is particularly important for larger projects or
families of systems where the same use cases can be designed differently in different products within the
product family. Consider the case of a family of telephone switches which have many use cases in
common, but which design and implement them differently according to product positioning,
performance and price.

For larger projects, separating the use case and its realization allows changes to the design of the use
case without affecting the baseline use case itself.

6 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

In a model, a use-case realization is represented as a UML collaboration that groups the diagrams and
other information (such as textual descriptions) that form part of the use-case realization.

UML diagrams that support use-case realizations can be produced in an analysis context, a design
context, or both, depending on the needs of the project. For each use case in the use-case model,
there can be a use-case realization in the analysis/design model with a realization relationship to the use
case. In UML this is shown as a dashed arrow, with an arrowhead like a generalization relationship,
indicating that a realization is a kind of inheritance, as well as a dependency.

Use case realization : Make sure that the sequence diagrams realize (show) the behavior outlined in the use cases
and assign behavior to classes in the class diagram. Together, these three continue to evolve and sharpen each
other. This can be shown as following fig:

Fig: Use case realization process

A use-case realization in the design can be traced to a use case in the use-case model.

Class Diagrams Owned by a Use-Case Realization

For each use-case realization there can be one or more class diagrams depicting its participating classes.
A class and its objects often participate in several use-case realizations. It is important while designing
to coordinate all the requirements on a class and its objects that different use-case realizations can have.
The figure below shows an analysis class diagram for the realization of the Withdraw Cash Item use
case.

7 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Use case realization of Cash Withdraw Use case

The use case Receive Deposit Item and its analysis-level class diagram.

Communication and Sequence Diagrams Owned by a Use-Case Realization

For each use-case realization there can be one or more interaction diagrams depicting its participating
objects and their interactions. There are two types of interaction diagrams: sequence diagrams and
communication diagrams. They express similar information, but show it in different ways. Sequence
diagrams show the explicit sequence of messages and are better when it is important to visualize the
time ordering of messages, whereas communication diagrams show the communication links between
objects and are better for understanding all of the effects on a given object and for algorithm design.

Realizing use cases through interaction diagrams helps to keep the design simple and cohesive.
Assigning responsibilities to classes on the basis of what the use-case scenario explicitly requires
encourages the design to contain the following:

 Only the functionality actually used in support of a use case scenario,
 Functionality that can be tested through an associated test case,
 Functionality that is more easily traceable to requirements and changes,
 Explicitly declared class dependencies that are easier to manage.

8 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

These factors help improve the overall quality of the system.

Example, the simple use case for a automobile navigation system below.

GPS Navigate to Address Use Case

1. Driver starts navigational system
 System prompts for whether the driver needs help finding an address, intersection, or point of interest
2. Driver selects address
 System prompts for address #, street, city
3. Driver provides address info
 System computes location of address
 System computes car's current location
 System computes route from current location to address location
 System locates digital map based on address location
 System displays appropriate digital map with route information

9 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Realizing Use Cases Automobile navigation System through sequence diagram

UML Interaction Diagrams

The UML includes interaction diagrams to illustrate how objects interact via messages. They are used
for dynamic object modeling. There are two common types: sequence and communication interaction
diagrams.

Sequence and Communication Diagrams
The term interaction diagram is a generalization of two more specialized UML diagram types:

 Sequence diagrams
 communication diagrams

Both can express similar interactions.

10 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

A related diagram is the interaction overview diagram; it provides a big-picture overview of how a set
of interaction diagrams are related in terms of logic and process-flow. However, it's new to UML 2, and
so it's too early to tell if it will be practically useful.
Sequence diagrams are the more notationally rich of the two types, but communication diagrams have
their use as well, especially for wall sketching.

Sequence diagrams
A sequence diagram shows interaction among objects as a two dimensional chart. The chart is read from
top to bottom. The objects participating in the interaction are shown at the top of the chart as boxes
attached to a vertical dashed line. Inside the box the name of the object is written with a colon separating
it from the name of the class and both the name of the object and the class is underlined.
The objects appearing at the top signify that the object already existed when the use case execution was
initiated. However, if some object is created during the execution of the use case and participates in the
interaction (e.g. a method call), then the object should be shown at the appropriate place on the diagram
where it is created. The vertical dashed line is called the object’s lifeline. The lifeline indicates the
existence of the object at any particular point of time. The rectangle drawn on the lifetime is called the
activation symbol and indicates that the object is active as long as the rectangle exists. Each message is
indicated as an arrow between the lifeline of two objects. The messages are shown in chronological
order from the top to the bottom. That is, reading the diagram from the top to the bottom would show the
sequence in which the messages occur. Each message is labeled with the message name.
Some control information can also be included.
Two types of control information are particularly valuable:

a. A condition (e.g. [invalid]) indicates that a message is sent, only if the condition is true.
b. An iteration marker shows the message is sent many times to multiple receiver objects as would

happen when a collection or the elements of an array are being iterated. The basis of the
iteration can also be indicated e.g. [for every book object].

Illustrate interactions in a kind of fence format, in which each new object is added to the right,

Fig: Example of Sequence Diagram
What might this represent in code? Probably, that class A has a method named doOne and an attribute
of type B. Also, that class B has methods named doTwo and doThree. Perhaps the partial definition of
class A is:

public class A
{
private B myB = new B();
public void doOne()
{
myB.doTwo();

11 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

myB.doThree();
}
// …
}

Basic Sequence diagram Notation:

Lifeline box

Fig: Notation for lifeline box
Messages

12 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Message and focus of control

Reply or Returns

 Using the message syntax returnVar = message(parameter).
 Using a reply (or return) message line at the end of an activation bar.

Fig: Two ways to show a return result from a message.

Messages to "self" or "this"

Creation of Instances

Object Lifelines and Object Destruction

13 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Diagram Frames

Conditional Messages

14 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Mutually Exclusive Conditional Messages

An ALT frame is placed around the mutually exclusive alternatives.

Nesting of frames.

Example
The sequence diagram for the book renewal use case for the Library Automation Software is shown in
fig. . The development of the sequence diagram in the development methodology would help us in
determining the responsibilities of the different classes; i.e. what methods should be supported by each
class.

15 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Sequence diagram for book renew use case.

16 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Sequence Diagram for Cancel Order

Fig: Sequence diagram for car parking

Frame1Loop for all Item

Order OrderITem InventoryItem OrderPaymentOrderController

1 : CancelOrder()

2 : cancelOrder()

3 : UpdateQTY()

4 : CancelPayment()

17 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Sequence diagram of makePayment use case

The sequence diagram shown in Figure makePayment is read as follows:
1. The message makePayment is sent to an instance of a Register. The sender is not identified.
2. The Register instance sends the makePayment message to a Sale instance.
3. The Sale instance creates an instance of a Payment.

Communication/Collaboration diagrams

A collaboration diagram shows both structural and behavioral aspects explicitly. This is unlike a sequence
diagram which shows only the behavioral aspects. The structural aspect of a collaboration diagram consists
of objects and the links existing between them. In this diagram, an object is also called a collaborator. The
behavioral aspect is described by the set of messages exchanged among the different collaborators. The link
between objects is shown as a solid line and can be used to send messages between two objects. The
message is shown as a labeled arrow placed near the link. Messages are prefixed with sequence numbers
because they are only way to describe the relative sequencing of the messages in this diagram. The use of
the collaboration diagrams in our development process would be to help us to determine which classes are
associated with which other classes.

Illustrate object interactions in a graph or network format, in which objects can be placed anywhere on
the diagram (the essence of their wall sketching advantage), as shown in fig

18 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Communication Diagram (Collaboration)

The collaboration diagram for the example of fig in sequence diagram is shown in fig..

Fig: Collaboration Diagram for book renew use case

19 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Example of collaboration diagram for makePayment

The collaboration diagram shown in Figure 15.3 is read as follows:

1. The message makePayment is sent to an instance of a Register. The sender is not identified.
2. The Register instance sends the makePayment message to a Sale instance.
3. The Sale instance creates an instance of a Payment.

Comparison of Sequence and Collaboration Diagrams

Common Interaction Diagram Notation

Classes and Instances
The UML has adopted a simple and consistent approach to illustrate instances vs. classifiers): For any
kind of UML element (class, actor, ...), an instance uses the same graphic symbol as the type, but the
designator string is underlined.

Fig: Class and corresponding object(instance) notation

1: makePayment(cashTendered)

1.1: create(cashTendered)

: Register :Sale

:Payment

makePayment(cashTendered)

creation indicated with a
"create" message

direction of message

first message

instance

first internal message

link line

parameter

20 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Therefore, to show an instance of a class in an interaction diagram, the regular class box graphic symbol
is used, but the name is underlined. A name can be used to uniquely identify the instance. If none is
used, note that a ":" precedes the class name.

Basic Message Expression Syntax

The UML has a standard syntax for message expressions:
return := message(parameter : parameterType) : returnType
Type information may be excluded if obvious or unimportant. For example:
spec := getProductSpect(id)
spec := getProductSpect(id:ItemID)
spec := getProductSpect(id:ItemID) ProductSpecification

Basic Collaboration Diagram Notation
Links
A link is a connection path between two objects; it indicates some form of navigation and visibility
between the objects is possible . More formally, a link is an instance of an association. For example,
there is a link.or path of navigation.from a Register to a Sale, along which messages may flow, such as
the makePayment message.

Messages
Each message between objects is represented with a message expression and small arrow indicating the
direction of the message. Many messages may flow along this link . A sequence number is added to
show the sequential order of messages in the current thread of control.

Messages to "self" or "this"
A message can be sent from an object to itself .This is illustrated by a link to itself, with messages
flowing along the link.

21 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Notation for self message
Creation of Instances
Any message can be used to create an instance, but there is a convention in the UML to use a message
named create for this purpose. If another (perhaps less obvious) message name is used, the message may
be annotated with a special feature called a UML stereotype, like so: «create». The create message may
include parameters, indicating the passing of initial values. Furthermore, the UML property {new} may
optionally be added to the instance box to highlight the creation.

Message Number Sequencing

The order of messages is illustrated with sequence numbers
1. The first message is not numbered. Thus,msg1() is unnumbered.
2. The order and nesting of subsequent messages is shown with a legal num bering scheme in which
nested messages have a number appended to them.
Nesting is denoted by prepending the incoming message number to the out going message number.

Conditional Messages:

A conditional message is shown by following a sequence number with a conditional clause in square
brackets, similar to an iteration clause. The message is only sent if the clause evaluates to true.

22 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Mutually Exclusive Conditional Paths

In this case it is necessary to modify the sequence expressions with a conditional path letter. The first
letter used is a by convention. Figure states that either 1a or 1b could execute after msg1. Both are
sequence number 1 since either could be the first internal message.
Note that subsequent nested messages are still consistently prepended with their outer message
sequence. Thus Ib. 1 is nested message within Ib.

Iteration or Looping

Iteration notation is shown in Figure below. If the details of the iteration clause
are not important to the modeler, a simple ’*’ can be used.

23 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Class Diagrams

The UML includes class diagrams to illustrate classes, interfaces, and their associations. They are used
for static object modeling. A class diagram describes the static structure of a system. It shows how a
system is structured rather than how it behaves. The static structure of a system comprises of a number
of class diagrams and their dependencies. The main constituents of a class diagram are classes and their
relationships: generalization, aggregation, association, and various kinds of dependencies.

Common Class Diagram Notation

Design Class Diagram(DCD)

24 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

In a conceptual perspective the class diagram can be used to visualize a domain model. For discussion,
we also need a unique term to clarify when the class diagram is used in a software or design perspective.
A common modeling term for this purpose is design class diagram (DCD).

Fig: Different Perspectives in Class Diagram

Classifier

A UML classifier is "a model element that describes behavioral and structure features" . Classifiers can
also be specialized. They are a generalization of many of the elements of the UML, including classes,
interfaces, use cases, and actors. In class diagrams, the two most common classifiers are regular classes
and interfaces.

Types of Relationship In Class Diagrams:

1. Associatation
2. Aggregation
3. Composition
4. Inheritance(Generalization/Specialization)
5. Dependency

25 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Associations
Associations are needed to enable objects to communicate with each other. An association describes a
connection between classes. The association relation between two objects is called object connection or
link. Links are instances of associations. A link is a physical or conceptual connection between object
instances. For example, suppose Amit has borrowed the book Graph Theory.
Here, borrowed is the connection between the objects Amit and Graph Theory book. Mathematically, a
link can be considered to be a tuple, i.e. an ordered list of object instances. An association describes a
group of links with a common structure and common semantics. For example, consider the statement
that
Library Member borrows Books. Here, borrows is the association between the class LibraryMember and
the class Book. Usually, an association is a binary relation (between two classes). However, three or
more different classes can be involved in an association. A class can have an association relationship
with itself (called recursive association). In this case, it is usually assumed that two different objects of
the class are linked by the association relationship.
Association between two classes is represented by drawing a straight line between the concerned
classes. Fig. 7.9 illustrates the graphical representation of the association relation. The name of the
association is written along side the association line. An arrowhead may be placed on the association
line to indicate the reading direction of the association. The arrowhead should not be misunderstood to

26 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

be indicating the direction of a pointer implementing an association. On each side of the association
relation, the multiplicity is noted as an individual number or as a value range. The multiplicity indicates
how many instances of one class are associated with each other. Value ranges of multiplicity are noted
by specifying the minimum and maximum value, separated by two dots, e.g. 1.5. An asterisk is a wild
card and means many (zero or more).

The association of fig should be read
as “Many books may be borrowed
by a Library Member”. Observe that
associations (and links) appear as
verbs in the problem statement.

Aggregation

Aggregation is a special type of association where the involved classes represent a whole-part
relationship. The aggregate takes the responsibility of forwarding messages to the appropriate parts.
Thus, the aggregate takes the responsibility of delegation and leadership. When an instance of one object
contains instances of some other objects, then aggregation (or composition) relationship exists between
the composite object and the component object. Aggregation is represented by the diamond symbol at
the composite end of a relationship. The number of instances of the component class aggregated can also
be shown as in fig.

Aggregation relationship cannot be reflexive (i.e. recursive). That is, an object cannot contain objects of
the same class as itself. Also, the aggregation relation is not symmetric. That is, two classes A and B
cannot contain instances of each other. However, the aggregation relationship can be transitive. In this
case, aggregation may consist of an arbitrary number of levels.

Composition

Composition is a stricter form of aggregation, in which the parts are existence-dependent on the whole.
This means that the life of the parts closely ties to the life of the whole. When the whole is created, the
parts are created and when the whole is destroyed, the parts are destroyed. A typical example of
composition is an invoice object with invoice items. As soon as the invoice object is created, all the
invoice items in it are created and as soon as the invoice object is destroyed, all invoice items in it are
also destroyed. The composition relationship is represented as a filled diamond drawn at the composite-
end. An example of the composition relationship is shown in fig..

27 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Association vs. Aggregation vs. Composition

• Association is the most general (m:n) relationship. Aggregation is a stronger relationship where
one is a part of the other. Composition is even stronger than aggregation, ties the lifecycle of the
part and the whole together.

• Association relationship can be reflexive (objects can have relation to itself), but aggregation
cannot be reflexive. Moreover, aggregation is anti-symmetric (If B is a part of A, A can’t be a
part of B).

• Composition has the property of exclusive aggregation i.e. an object can be a part of only one
composite at a time. For example, a Frame belongs to exactly one Window whereas in simple
aggregation, a part may be shared by several objects. For example, a Wall may be a part of one
or more Room objects.

• In addition, in composition, the whole has the responsibility for the disposition of all its parts, i.e.
for their creation and destruction.

 in general, the lifetime of parts and composite coincides o parts with non-fixed
multiplicity may be created after composite itself

 parts might be explicitly removed before the death of the composite

 For example, when a Frame is created, it has to be attached to an enclosing Window. Similarly,
when the Window is destroyed, it must in turn destroy its Frame parts.

Inheritance vs. Aggregation/Composition

 Inheritance describes ‘is a’ / ‘is a kind of’ relationship between classes (base class - derived
class) whereas aggregation describes ‘has a’ relationship between classes. Inheritance means that
the object of the derived class inherits the properties of the base class; aggregation means that the
object of the whole has objects of the part. For example, the relation “cash payment is a kind of
payment” is modeled using inheritance; “purchase order has a few items” is modeled using
aggregation.

 Inheritance is used to model a “generic-specific” relationship between classes whereas
aggregation/composition is used to model a “whole-part” relationship between classes.

• Inheritance means that the objects of the subclass can be used anywhere the super class may
appear, but not the reverse; i.e. wherever we could use instances of ‘payment’ in the system, we
could substitute it with instances of ‘cash payment’, but the reverse can not be done.

28 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

• Inheritance is defined statically. It can not be changed at run-time. Aggregation is defined
dynamically and can be changed at run-time. Aggregation is used when the type of the object can
change over time.

For example, consider this situation in a business system. A BusinessPartner might be a Customer or a
Supplier or both. Initially we might be tempted to model it as in Fig 7.12(a). But in fact, during its
lifetime, a business partner might become a customer as well as a supplier, or it might change from one
to the other. In such cases, we prefer aggregation instead (see Fig 7.12(b). Here, a business partner is a
Customer if it has an aggregated Customer object, a Supplier if it has an aggregated Supplier object
and a "Customer_Supplier" if it has both.
Here, we have only two types. Hence, we are able to model it as inheritance. But what if there were
several different types and combinations there of? The inheritance tree would be absolutely
incomprehensible.
Also, the aggregation model allows the possibility for a business partner to be neither - i.e. has neither a
customer nor a supplier object aggregated with it.
• The advantage of aggregation is the integrity of encapsulation. The operations of an object are the
interfaces of other objects which imply low implementation dependencies. The significant disadvantage
of aggregation is the increase in the number of objects and their relationships. On the other hand,
inheritance allows for an easy way to modify implementation for reusability. But the significant
disadvantage is that it breaks encapsulation, which implies implementation dependence.

Dependency/Using relationships
Dependency relationship indicates that one element (of any kind, including classes, use cases,
and so on) has knowledge of another element. A dependency is a using relationship that states a
change in specification of one thing may affect another thing that uses it, but not necessarily the
reverse. The dependency relationship is useful to depict non-attribute visibility between
classes, For Parameters and Global or local visibility

Fig: Notation of Dependency

29 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Dependency relationships non-attribute visibility

Attribute Text and Association Lines

Attributes of a classifier (also called structural properties in the UML) are shown several ways:

 Attribute text notation, such as currentSale : Sale.
 Association line notation
 Both together

Figure shows these notations being used to indicate that a Register object has an attribute (a reference
to) one Sale object.

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

...

getSpecification(...)

ProductSpecification

description : Text
price : Money
itemID: ItemID

...

Store

address : Address
name : Text

addSale(...)

Payment

amount : Money

...

Contains

1..*

Contains
1..*

Register

...

endSale()
enterItem(...)
makeNewSale()
makePayment(...)

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

Captures

Houses

Uses

Looks-in

Paid-by

Describes

1 1

1

1 1

1

1
1

1

1

1

1

1

*

A dependency of Register knowing about
ProductSpecification.

Recommended when there is parameter,
global or locally declared visibility.

Logs-completed *

1

30 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Attribute text versus association line notation for a UML attribute.

The full format of the attribute text notation is:
visibility name : type multiplicity = default {property-string}
Also, the UML allows any other programming language syntax to be used for the attribute declaration,
as long as the reader or tool are notified.
visibility marks include + (public), - (private), and so forth.
Guideline: Attributes are usually assumed private if no visibility is given.

Fig: association notation usage in different perspectives.

attribute-as-association line has the following style:

 a navigability arrow pointing from the source (Register) to target (Sale) object, indicating a
Register object has an attribute of one Sale

 a multiplicity at the target end, but not the source end use the multiplicity notation

31 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

 a rolename (currentSale) only at the target end to show the attribute name
 no association name

Fig: Associations with navigability adornments

Notes, Comments, Constraints, and Method Bodies

Note symbols can be used on any UML diagram, but are especially common on class diagrams. A UML
note symbol is displayed as a dog-eared rectangle with a dashed line to the annotated element; A note
symbol may represent several things, such as:

 a UML note or comment, which by definition have no semantic impact
 a UML constraint, in which case it must be encased in braces '{…}'
 a method body the implementation of a UML operation .

Fig: Example of Method body notation in Note Symbol

Association Class

32 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

An association class allows you treat an association itself as a class, and model it with
attributes, operations, and other features. For example, if a Company employs many Persons,
modeled with an Employs association, you can model the association itself as the Employment
class, with attributes such as startDate. In the UML, it is illustrated with a dashed line from the
association to the association class.

Fig: Association Class

Singleton Classes
Active Class

Fig: Active class

An active object runs on and
controls its own thread of
execution. Not surprisingly, the
class of an active object is an
active class. In the UML, it
may be shown with double
vertical lines on the left and
right sides of the class box.

Determining Visibility:

Visibility is the ability of an object to "see" or have a reference to another object. More generally, it is
related to the issue of scope: Is one resource (such as an instance) within the scope of another? There are
four common ways that visibility can be achieved from object A to object B:

 Attribute visibility B is an attribute of A.
 Parameter visibility B is a parameter of a method of A.
 Local visibility B is a (non-parameter) local object in a method of A.
 Global visibility B is in some way globally visible.

For example, to create an interaction diagram in which a message is sent from a Register instance to a
ProductCatalog instance, the Register must have visibility to the ProductCatalog. A typical visibility
solution is that a reference to the ProductCatalog instance is maintained as an attribute of the Register.

Attribute Visibility

33 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Attribute visibility from A to B exists when B is an attribute of A. It is a relatively permanent visibility
because it persists as long as A and B exist. This is a very common form of visibility in object-oriented
systems.
To illustrate, in a Java class definition for Register, a Register instance may have attribute visibility to a
ProductCatalog, since it is an attribute (Java instance variable) of the Register.
public class Register
{
...
private ProductCatalog catalog;
...
}

Fig: Attribute Visibility

Parameter Visibility
Parameter visibility from A to B exists when B is passed as a parameter to a method of A. It is a
relatively temporary visibility because it persists only within the scope of the method. After attribute
visibility, it is the second most common form of visibility in object-oriented systems.
To illustrate, when the makeLineItem message is sent to a Sale instance, a ProductDescription instance
is passed as a parameter. Within the scope of the makeLineItem method, the Sale has parameter visibility
to a ProductDescription

34 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Parameter Visibility

It is common to transform parameter visibility into attribute visibility. When the Sale creates a new
SalesLineItem, it passes the ProductDescription in to its initializing method (in C++ or Java, this would
be its constructor). Within the initializing method, the parameter is assigned to an attribute, thus
establishing attribute visibility

Fig: Parameter to attribute visibility

Local Visibility

Local visibility from A to B exists when B is declared as a local object within a method of A. It is a
relatively temporary visibility because it persists only within the scope of the method. After parameter
visibility, it is the third most common form of visibility in object-oriented systems.
Two common means by which local visibility is achieved are:

 Create a new local instance and assign it to a local variable.
 Assign the returning object from a method invocation to a local variable.

As with parameter visibility, it is common to transform locally declared visibility into attribute visibility.
An example of the second variation (assigning the returning object to a local variable) can be found in
the enterItem method of class Register.

35 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Local visibility

Global Visibility
Global visibility from A to B exists when B is global to A. It is a relatively permanent visibility because
it persists as long as A and B exist. It is the least common form of visibility in object-oriented systems.
One way to achieve global visibility is to assign an instance to a global variable, which is possible in
some languages, such as C++, but not others, such as Java.

Constraints
Constraints may be used on most UML diagrams, but are especially common on class diagrams. A UML
constraint is a restriction or condition on a UML element. It is visualized in text between braces; for
example: { size >= 0 }. The text may be natural language or anything else, such as UML's formal
specification language, the Object Constraint Language.

Fig: Constraint Example

Qualified Association

A qualified association has a qualifier that is used to select an object (or objects) from a larger set of
related objects, based upon the qualifier key. For example, if a ProductCatalog contains many
ProductDescriptions, and each one can be selected by an itemID,

36 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: Qualifier

Template Classes and Interfaces

Many languages (Java, C++, …) support templatized types, also known (with shades of variant
meanings) as templates, parameterized types, and generics.[7] They are most commonly used for the
element type of collection classes, such as the elements of lists and maps. For example, in Java, suppose
that a Board software object holds a List (an interface for a kind of collection) of many Squares. And,
the concrete class that implements the List interface is an ArrayList:

public class Board
{
private List<Square> squares = new ArrayList<Square>();
// …
}

Fig: Interface and Template class

User-Defined Compartments
In addition to common predefined compartments class compartments such as name, attributes, and
operations, user-defined compartments can be added to a class box.

37 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Fig: User defied compartments

Relationship Between Class diagram and interaction diagram

When we draw interaction diagrams, a set of classes and their methods emerge from the creative design
process of dynamic object modeling. For example, if we started with the (trivial for explanation)
makePayment sequence diagram in Figure 16.21, we see that a Register and Sale class definition in a
class diagram can be obviously derived.

What are Patterns?

Experienced OO developers (and other software developers) build up a repertoire of both general
principles and idiomatic solutions that guide them in the creation of software. These principles and
idioms, if codified in a structured format describing the problem and solution and named, may be called
patterns.
Design patterns are reusable solutions to problems that recur in many applications. A pattern serves as a
guide for creating a “good” design. Patterns are based on sound common sense and the application of

38 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

fundamental design principles. These are created by people who spot repeating themes across designs.
The pattern solutions are typically described in terms of class and interaction diagrams. Examples of
design patterns are expert pattern, creator pattern, controller pattern etc.

The pattern facilitates reuse of knowledge. Additionally, the pattern helps in the communication among
software developers – using the name of the pattern conveys a large amount of knowledge in a very
dense way.
A design pattern is a general repeatable solution to a commonly occurring problem in software design. A
design pattern isn't a finished design that can be transformed directly into code. It is a description or
template for how to solve a problem that can be used in many different situations.
A pattern is usually described in four components; these components explain what it is about and how it
is to be used.

Components of Pattern
Pattern name: The pattern name is used to identify the pattern once it has been introduced. It is a way
to communicate the pattern to other people and is therefore vital in spreading its reach, this is a fact
mentioned in.
Problem description: In this section, the problem is described that is the reason for applying the
pattern. It may be accompanied by a list of preconditions that must be fulfilled – only when these
conditions are met, the pattern is applied.
Solution: Here the workings of the pattern are explained: which classes interact when and how these
interactions are achieved. The description is on an abstract level to make sure that it can be applied in
many situations.
Consequences: Here the effects of the pattern are explained. This might be both advantages and
disadvantages of applying the pattern. The consequences are often related to the impact on flexibility,
extensibility and portability the application of the pattern has

For example, here is a sample pattern:

Pattern Name: Information Expert

Problem: What is a basic principle by which to assign responsibilities to objects?

Solution: Assign a responsibility to the class that has the information needed to fulfill it.

In OO design, a pattern is a named description of a problem and solution that can be applied to new
contexts; ideally, a pattern advises us on how to apply its solution in varying circumstances and
considers the forces and trade-offs. Many patterns, given a specific category of problem, guide the
assignment of responsibilities to objects.

Most simply, a good pattern is a named and well-known problem/solution pair that can be applied in
new contexts, with advice on how to apply it in novel situations and discussion of its trade-offs,
implementations, variations, and so forth.

Advantages

39 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Naming a pattern, design idea, or principle has the following advantages:
 It supports chunking and incorporating that concept into our understanding and memory.
 It facilitates communication.

Design patterns are very useful in creating good software design solutions. In addition to providing the model of
a good solution, design patterns include a clear specification of the problem, and also explain the circumstances
in which the solution would and would not work.

Thus, a design pattern has four important parts:

 The problem.
• The context in which the problem occurs.
• The solution.
• The context within which the solution works.

Uses of Design Patterns

 Design patterns can speed up the development process by providing tested, proven development
paradigms

 Design patterns provide general solutions, documented in a format that doesn't require specifics
tied to a particular problem.

 Patterns allow developers to communicate using well-known, well understood names for
software interactions. Common design patterns can be improved over time, making them more
robust than ad-hoc designs.

The design pattern solutions are typically described in terms of class and interaction diagrams. These are
often given in a parameterized form. We now describe a few important patterns:

1. Information Expert
2. Creator
3. Controller
4. Facade
5. Model view Separation pattern
6. Intermediary pattern or proxy

Applying GRASP to Object Design

GRASP stands for General Responsibility Assignment Software Patterns. The name was chosen to suggest the
importance of grasping these principles to successfully design object-oriented software.
There are nine GRASP patterns:

 Creator
 Information Expert
 Controller
 Low Coupling
 High Cohesion .
 Pure Fabrication
 Indirection
 Polymorphism
 Protected Variations

40 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

1. Creator

Problem :Who should be responsible for creating a new instance of some class?

The creation of objects is one of the most common activities in an object-oriented system. Consequently,
it is useful to have a general principle for the assignment of creation responsibilities. Assigned well, the
design can support low coupling, increased clarity, encapsulation, and reusability.

Solution
Assign class B the responsibility to create an instance of class A if one of these is true (the more the
better):

 B "contains" or compositely aggregates A.
 B records A.
 B closely uses A.
 B has the initializing data for A that will be passed to A when it is created. Thus B

is an Expert with respect to creating A.
 B is a creator of A objects.

If more than one option applies, usually prefer a class B which aggregates or contains class A.

2. Information Expert

Problem: Which class should be responsible for doing certain things?
Solution: Assign responsibility to the information expert – the class that has the information necessary
to fulfill the required responsibility. The expert pattern expresses the common intuition that objects do
things related to the information they have.

3. Controller

Problem: Who should be responsible for handling the actor requests?
Solution: For every use case, there should be a separate controller object which would be responsible
for handling requests from the actor. Also, the same controller should be used for all the actor requests
pertaining to one use case so that it becomes possible to maintain the necessary information about the
state of the use case. The state information maintained by a controller can be used to identify the out-of-
sequence actor requests, e.g. whether voucher request is received before arrange payment request.

4. Façade Pattern:

Problem: How should the services be requested from a service package?
Context in which the problem occurs: A package as already discussed is a cohesive set of classes – the
classes have strongly related responsibilities. For example, an RDBMS interface package may contain
classes that allow one to perform various operations on the RDBMS.
Solution: A class (such as DBfacade) can be created which provides a common interface to the services
of the package.

41 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

5. Model view Separation Pattern

Problem: How should the non-GUI classes communicate with the GUI classes?
Context in which the problem occurs: This is a very commonly occurring pattern which occurs in
almost every problem. Here, model is a synonym for the domain layer objects, view is a synonym
for the presentation layer objects such as the GUI objects.
Solution: The model view separation pattern states that model objects should not have direct
knowledge (or be directly coupled) to the view objects. This means that there should not be any
direct calls from other objects to the GUI objects. This results in a good solution, because the GUI
classes are related to a particular application whereas the other classes may be reused.
There are actually two solutions to this problem which work in different circumstances as follows:

Solution 1: Polling or Pull from above
It is the responsibility of a GUI object to ask for the relevant information from the other objects,
i.e. the GUI objects pull the necessary information from the other objects whenever required.

Solution 2: Publish- subscribe pattern

An event notification system is implemented through which the publisher can indirectly notify
the subscribers as soon as the necessary information becomes available. An event manager class
can be defined which keeps track of the subscribers and the types of events they are interested in.
An event is published by the publisher by sending a message to the event manager object.

6. Intermediary Pattern or Proxy

Problem: How should the client and server objects interact with each other?

Context in the problem occurs: The client and server terms as used here refer to software components
existing across a network. The clients are consumers of services provided by the servers.

Solution: A proxy object at the client side can be defined which is a local sit-in for the remote server
object. The proxy hides the details of the network transmission. The proxy is responsible for
determining the server address, communicating the client request to the server, obtaining the server
response and seamlessly passing that to the client. The proxy can also augment (or filter) information
that is exchanged between the client and the server. The proxy could have the same interface as the
remote server object so that the client feels as if it is interacting directly with the remote server object
and the complexities of network transmissions are abstracted out.

7. Low Coupling : “Coupling is a measure of how strongly one element is connected to, has

knowledge of, or relies on other elements. An element with low (or weak) coupling is not dependent on

too many other elements . These elements include classes, subsystems, systems, and so on.” The design

principle of this pattern is to assign the responsibilities so that coupling remains low. This principle can

often be broken down to knowledge: when classes can exist without having knowledge of each other,

42 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

this knowledge should not be added. Low coupling is especially important with unstable objects. It

should not be a problem to couple with highly stable business objects which are at the core of an

application or with the Java API, but it can be a problem to couple with objects of the GUI which might

change anytime

8. Low Cohesion : “Cohesion is a measure of how strongly related and focused the responsibilities

of an element are. An element with highly related responsibilities, an which does not do a tremendous

amount of work, has high cohesion. These elements include classes, subsystems, and so on.”

It is undesirable in OOD and OOP to have classes which have hundreds of methods and attributes - for

the sake of maintainability and usability it is necessary to partition the responsibilities of this class

functionally and draw them out to different classes. This problem often arises with factory classes, being

designed for the creation of objects. When the types of objects get numerous in a system, the factory

class can consist of a collection of a hundred and more methods. The class becomes incomprehensible

and unmaintainable. The solution is to partition of the factory class, in the same way as the objects being

created are partitioned.

Gang of Four (GoF) Patterns in Object :

1. Creational Pattern
2. Structural Pattern
3. Behavioral Pattern

43 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Creational design patterns

This design patterns is all about class instantiation. This pattern can be further divided into class-creation
patterns and object-creational patterns. While class-creation patterns use inheritance effectively in the
instantiation process, object-creation patterns use delegation effectively to get the job done.

Structural design patterns

This design patterns is all about Class and Object composition. Structural class-creation patterns use
inheritance to compose interfaces. Structural object-patterns define ways to compose objects to obtain
new functionality.

Behavioral design patterns

This design patterns is all about Class's objects communication. Behavioral patterns are those patterns
that are most specifically concerned with communication between objects.

For more Visit link :
http://www.oodesign.com/

44 | P a g e O O A D : O b j e c t O r i e n t e d D e s i g n - - - - h p o k h r e l 2 4 @ g m a i l . c o m

Pattern Vs Design Pattern Vs Framework

The terms Pattern, Design Pattern and Framework are most often used interchangeably. However, these
terms are not identical and there is a logical difference among their definitions. Here it goes:

Pattern:

A pattern is a way of doing something, or a way of pursuing intent. This idea applies to cooking, making
fireworks, developing software, and to any other craft. It is a solution to a problem in a context. Patterns
are classified into 1) Design Pattern, 2) Architectural Pattern, 3) Macro – Architecture, 4) Micro –
Architecture, 5) Idioms or Coding Patterns, 6) Language Paradigms etc.

Design Pattern:

Design pattern is a category of patterns that deals with object oriented software. They represent solutions
to problems that arise when developing software within a particular context. Design pattern captures the
static and dynamic structure and collaboration among key participants in software designs. They can be
used across different domains.

Framework:

Framework is made up of group of concrete classes which can be directly implemented on an existing
platform. Frameworks are written in programming languages. It is a large entity comprising of several
design patterns. Frameworks are concerned with specific application domain e.g. database, web
application etc.

Above definition very much clarifies the difference among three. A design pattern is a type of pattern
and is more like a concept, whereas a framework is something already coded to be used repetitively.

Patterns support reuse of software architecture and design
– Patterns capture the static and dynamic structures and collaborations of successful solutions to
problems that arise when building applications in a particular domain
Frameworks support reuse of detailed design and code
– A framework is an integrated set of components that collaborate to provide a reusable architecture for
a family of related application
Together, design patterns and frameworks help to improve software quality and reduce
development time
– e.g., reuse, extensibility, modularity, performance

