Chapter 3: Organic Compounds: Alkanes and Cycloalkanes

>11 million organic compounds which are classified into families according to structure and reactivity

Functional Group (FG): group of atoms which are part of a large molecule that have characteristic chemical behavior. FG's behave similarly in every molecule they are part of.

The chemistry of the organic molecule is defined by the function groups it contains

Carbon - Carbon Multiple Bonds

Alkanes and Alkane Isomers

Alkanes: organic compounds with only C-C and C-H single (\square) bonds.
general formula for alkanes: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{(2 \mathrm{n}+2)}$
Saturated hydrocarbons
Hydrocarbons: contains only carbon and hydrogen
Saturated" contains only single bonds
Isomers: compounds with the same chemical formula, but different arrangement of atoms
Constitutional isomer: have different connectivities (not limited to alkanes)

Naming Alkanes

General Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{(2 \mathrm{n}+2)}$
suffix: -ane

Parent Names:

1	CH_{4}	Methane	CH_{4}
2	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$
3	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$
4	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$	Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$
5	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	Pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$
6	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	Hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$
7	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$	Heptane	$\mathrm{C}_{7} \mathrm{H}_{16}$
8	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$	Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$
9	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	Nonane	$\mathrm{C}_{9} \mathrm{H}_{20}$
10	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}$	Decane	$\mathrm{C}_{10} \mathrm{H}_{22}$

Alkyl substituents (group): carbon chains which are a substructue of a molecule

$\mathrm{R}=$ Rest of the molecule (mainchain)

1	$\mathrm{CH}_{3}-\mathrm{R}$	Methyl
2	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{R}$	Ethyl 3
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{R}$	Propyl	
4	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}-\mathrm{R}$	Butyl
5	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}-\mathrm{R}$	Pentyl
6	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2}-\mathrm{R}$	Hexyl
7	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{2}-\mathrm{R}$	Heptyl
8	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2}-\mathrm{R}$	Octyl
9	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{2}-\mathrm{R}$	Nonyl
10	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{2}-\mathrm{R}$	Decyl

Rules for Systematic Nomenclature of Alkanes

1. Find the parent chain
a. Identify the longest continuous carbon chain as the parent chain.

b. If more than one different chains are of equal length (number of carbons), choose the one with the greater number of branch points (substituents) as the parent.

2. Numbering the carbons of the parent chain
a. Number the carbon atoms of the parent chain so that any branch points have the lowest possible number

branch pts. at carbons 3 and 4
branch pts. at carbons 4 and 5
b. If there is branching equidistant from both ends of the parent chain, number so the second branch point has the lowest number.

3. Substituents

a. Identify and number the substituents and list them in alphabetical order.

b. If there are two substituents on the same carbon, assign them the same number.
4. Write out the name
a. Write out the name as a single word:
hyphens (-) separate prefixes
commas (,) separate numbers
b. Substituents are listed in alphabetical order

4 c . If two or more identical substituents are present use the prefixes:

> di- for two
> tri- for three
tetra- for four
note: these prefixes (di-, tri-, tetra-, etc.) are not used for alphabetizing purposes

3- ethyl-4,7-dimethylnonane

5. Complex Substituents (substituents with branching)

a. Named by applying the four previous rules with some modification
b. Number the complex substituent separately from the parent. Begin numbering at the point of attachment to the parent chain.
c. Complex substituents are set off by parenthesis.

Nonsystematic (trivial) Names:

3-carbons:

4-Carbons:

sec-butyl-
(1-methylpropyl)

Isopentyl-, isoamyl
(3-methylbutyl)
Alphabetizing trivial names:
Iso- and neo are part of the alkyl group name and are used for alphabetizing. sec- and tert- are not included in the alphabetical order.

Degrees of Substitution

Primary $\left(1^{\circ}\right)$ Carbon: carbon which is bonded to only one other carbon Secondary (2°) Carbon: carbon which is bonded to two other carbons Tertiary (3°) Carbon: carbon which is bonded to three other carbons Quarternary $\left(4^{\circ}\right)$ Carbon: carbon whohc is bonded to four other carbons

1° Hydrogens- hydrogens on a primary carbon. $-\mathrm{CH}_{3}$ (methyl group)
2° Hydrogens- hydrogens on a secondary carbon. - CH_{2} - (methylene group)
3° Hydrogens- hydrogens on a tertiary carbon. CH (methane group)

methyl group: 1° hydrogens
methylene group: 2° hydrogens
methine group: 3° hydrogens

Applied to other functional groups:

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$
n-butanol
1° alcohols

sec-butanol
$\mathbf{2}^{\circ}$ alcohol

tert-butanol 3° alcohol

Alkanes show: regular increase in bp and mp as the molecular weight increase. Branching lowers the bp or alkanes n-pentane $\mathrm{bp}=36.1^{\circ} \mathrm{C}$
i-penatane $\mathrm{bp}=27.9^{\circ} \mathrm{C}$
 neo-pentane $\mathrm{bp}=9.5^{\circ} \mathrm{C}$

Van der Waals Forces: small temporary dipoles that are a result of a Distortion of the electron clouds. There is an attraction between molecules as result of these temporary dipoles

Naming Cycloalkanes

General Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{(2 \mathrm{n})}$

1. Parent Chain
a. Use the cycloalkane as the parent chain if it has a greater number of carbons than any alkyl substituent.
b. If an alkyl chain off the cycloalkane has a greater number of carbons, then use the alkyl chain as the parent and the cycloalkane as a cycloalkyl- substituent.

Methylcyclopentane

2-Cyclopropylbutane

2. Numbering the Cycloalkane

a. When numbering the carbons of a cycloalkane, start with a substituted carbon so that the substituted carbons have the lowest numbers (sum).

1,3-Dimethylcyclohexane

-not-
1,5-Dimethylcyclohexane

1,2,4-Trimethylcyclohexane $(1+2+4=7)$

-not(1) $(1+3+4=8)$
2. b. When two or more different substituents are present, number according to alphabetical order.

1-Ethyl-2-methylcyclohexane

-not-
2-Ethyl-1-methylcyclohexane

3. Halogen Substituents

Halogen substituents are treated exactly like alkyl groups:

-F	fluoro- chloro- -Cl -Br -I
bromo- iodo-	
$C_{C l}^{\mathrm{CH}_{3}}$	1-Chloro-2-methylcyclobutane

