Chapter 3 Parallel and Perpendicular Lines Study Guide

3.1 Identify Pairs of Lines/Angles

Parallel Lines Parallel Postulate Perpendicular Postulate Skew Lines Parallel Planes Diagram with a cube/box Transversals Angles formed by transversals Corresponding Angles Alternate Interior Angles Alternate Exterior Angles Consecutive Interior- (Same Side Interior) Angles

3.3 Proving Lines Parallel

**Converses used to show lines are PARALLEL

Corresponding Angles Converse Alternate Interior Angles Converse Alternate Exterior Angles Converse Consecutive Interior- (Same Side Interior) Angles Converse Transitive Property of Parallel Lines

**Don't Forget About: Linear Pairs- Supplementary Vertical Angles- Congruent

3.2- Parallel Lines and Transversals

**Know which angles are congruent and supplementary

Corresponding Angles Postulate Alternate Interior Angles Theorem Alternate Exterior Angles Theorem Consecutive Interior- (Same Side Interior) Angles Theorem

**Know more difficult problems with multiple lines, systems of equations and factoring! (we had 2 worksheets on this!)

3.6 Perpendicular Lines

Theorem 3.8- Two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular

Theorem 3.9- If 2 lines are perpendicular, then they intersect to form 4 right angles

Right Angle Pair Theorem (3.10)- Two angles that make a right angle pair are complementary

Perpendicular Transversal Theorem- If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other

Lines Perpendicular to a Transversal Theorem- If two lines are perpendicular to the same line, then they are perpendicular to each other

Part I: Circle the word that best completes the sentence.

- 1. If two lines are parallel, then they (ALWAYS.....SOMETIMES.....NEVER) intersect.
- 2. If one line is skew to another, then they are (ALWAYS.....SOMETIMES.....NEVER) coplanar.
- 3. If two lines intersect, then they are (ALWAYS.....SOMETIMES.....NEVER) perpendicular.
- 4. If two lines are coplanar, then they are (ALWAYS.....SOMETIMES.....NEVER) parallel.
- 5. If two lines are cut by a transversal such that the alternate interior angles are (CONGRUENT....COMPLEMENTARY.....SUPPLEMENTARY), then the lines are parallel.
- 6. If two lines are cut by a transversal such that the consecutive interior angles are (CONGRUENT....COMPLEMENTARY.....SUPPLEMENTARY), then the lines are parallel.
- 7. If two lines are cut by a transversal such that the corresponding angles are (CONGRUENT....COMPLEMENTARY.....SUPPLEMENTARY), then the lines are parallel.

Part II: Think of each segment in the diagram as part of a line. Complete the statement with PARALLEL, SKEW, or PERPENDICULAR.

WZ and ZR are ______
 WZ and ST are ______
 QT and YS are ______
 Plane WZR and Plane SYZ are _______
 Plane RQT and Plane YXW are _______

Part III: Classify the angle pair as corresponding angles, alternate interior angles, alternate exterior angles, same side (consecutive) interior angles, vertical angles, linear pair, or none.

- 1. *≰*1 *and ≰*5_____
- 3. *45* and *4*16 _____
- 5. *410 and 412*_____
- 7. *4*12 and *4*14 _____
- 9. *47* and *413* _____
- 11. 46 and 47 _____

2. *44* and *46* ______

10. *≰*12 *and ≰*5

12. *4*10 and *4*13 _____

- 4. *≰*16 and *≰*10 _____
 - 6. *411 and 416*_____
 - 8. *4*4 and *4*14 _____
 - 0. 41 unu 411_

Part V. Is there enough information to state that lines p and q are parallel? If so, state the reason.

Part VI. Use the diagram and the given information to determine if $m \parallel n$, $p \parallel q$, or neither.

Part VII. Find the measure of the indicated angle.

 1. $m \neq 1 =$ _____
 2. $m \neq 2 =$ _____

 3. $m \neq 3 =$ _____
 4. $m \neq 4 =$ _____

 5. $m \neq 5 =$ _____
 6. $m \neq 6 =$ ______

Part VIII. Use the diagram.

Part IX. In the diagram, $\overrightarrow{RS} \perp \overrightarrow{ST}$. Find the value of x.

Chapter 3 Review Solutions

Part I:

- 1) Never
- 2) Never
- 3) Sometimes
- 4) Sometimes
- 5) Congruent
- 6) Supplementary
- 7) Congruent

Part II:

- 1) Perpendicular
- 2) Parallel
- 3) Skew
- 4) Perpendicular
- 5) Parallel

Part III:

- 1) Corresponding angles
- 2) Alternate exterior angles
- 3) None
- 4) Alternate interior angles
- 5) Vertical angles
- 6) Consecutive interior angles (same side interior)
- 7) Alternate exterior angles
- 8) None
- 9) Alternate interior angles
- 10)None
- 11)Linear Pairs
- 12)Consecutive Interior

Part IV:

- 1) x = 21, y = 25
- 2) x = 11, y = 25 (system of equations)
- 3) x = 37, y = 111
- 4) x = 9, y = 6 (system of equations)
- 5) x = 84, y = 90, z = 31

Part V:

- 1) No, the sum of the angles is not 180 degrees
- 2) No, Corr. Angles are not congruent (one way to show)
- 3) Yes, alternate exterior angles converse (angles are congruent)

5) p || q Alt. Int. Converse

7) none- No Transversal

6) m ll n Consec. Int. Converse

Part VI:

- 1) m \parallel n Alt. Int. Converse
- 2) Neither-No transversal
- 3) Neither- Need to be sup.
- 4) pllq Consec. Int. Converse

- Part VII:
 - 1) 25
 - 2) 52
 - 3) 25
 4) 25
 - 4) 25 5) 65
 - 6) 65

Part VIII:

- 1) Not enough information
- 2) Not enough information
- 3) Yes, both lines perpendicular to m

Part IX:

- 1) x = 18
- 2) x = 12
- 3) x = 15