Chapter 3, Problem 1.

Determine I_{x} in the circuit shown in Fig. 3.50 using nodal analysis.

Figure 3.50 For Prob. 3.1.

Chapter 3, Solution 1

Let V_{x} be the voltage at the node between $1-\mathrm{k} \Omega$ and $4-\mathrm{k} \Omega$ resistors.

$$
\begin{aligned}
& \frac{9-V_{x}}{1 k}+\frac{6-V_{x}}{4 k}=\frac{V_{k}}{2 k} \longrightarrow V_{x}=6 \\
& I_{x}=\frac{V_{x}}{2 k}=\underline{3 \mathrm{~mA}}
\end{aligned}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 2.

For the circuit in Fig. 3.51, obtain $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$.

Figure 3.51

Chapter 3, Solution 2

At node 1,

$$
\begin{equation*}
\frac{-v_{1}}{10}-\frac{v_{1}}{5}=6+\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{2} \longrightarrow 60=-8 \mathrm{v}_{1}+5 \mathrm{v}_{2} \tag{1}
\end{equation*}
$$

At node 2,

$$
\begin{equation*}
\frac{\mathrm{v}_{2}}{4}=3+6+\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{2} \longrightarrow 36=-2 \mathrm{v}_{1}+3 \mathrm{v}_{2} \tag{2}
\end{equation*}
$$

Solving (1) and (2),

$$
\mathrm{v}_{1}=\underline{\mathbf{0 V}}, \mathrm{v}_{2}=\underline{\mathbf{1 2} \mathbf{V}}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 3.

Find the currents \boldsymbol{i}_{1} through \boldsymbol{i}_{4} and the voltage $\boldsymbol{v}_{\boldsymbol{o}}$ in the circuit in Fig. 3.52.

Figure 3.52

Chapter 3, Solution 3

Applying KCL to the upper node,

$$
\begin{aligned}
& 10=\frac{\mathrm{v}_{0}}{10}+\frac{\mathrm{v}_{0}}{20}+\frac{\mathrm{v}_{\mathrm{o}}}{30}+2+\frac{\mathrm{v}_{0}}{60} \longrightarrow \mathrm{v}_{0}=\underline{\mathbf{4 0 ~ V}} \\
& i_{1}=\frac{\mathrm{v}_{0}}{10}=\underline{\mathbf{4 A}}, i_{2}=\frac{\mathrm{v}_{0}}{20}=\underline{\mathbf{2 A}}, i_{3}=\frac{\mathrm{v}_{0}}{30}=\underline{\mathbf{1 . 3 3 3 3}}, i_{4}=\frac{\mathrm{v}_{0}}{60}=\underline{\mathbf{6 6 6 . 7} \mathbf{~ m A}}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 4.

Given the circuit in Fig. 3.53, calculate the currents \boldsymbol{i}_{1} through $\boldsymbol{i}_{\mathbf{4}}$.

Figure 3.53

Chapter 3, Solution 4

At node 1,

$$
4+2=v_{1} /(5)+v_{1} /(10) \longrightarrow v_{1}=20
$$

At node 2,

$$
\begin{aligned}
& 5-2=v_{2} /(10)+v_{2} /(5) \longrightarrow v_{2}=10 \\
& i_{1}=v_{1} /(5)=\underline{\mathbf{4 A}}, i_{2}=v_{1} /(10)=\underline{\mathbf{2} \mathbf{A}}, i_{3}=v_{2} /(10)=\underline{\mathbf{1} \mathbf{A}}, i_{4}=v_{2} /(5)=\underline{\mathbf{2} \mathbf{A}}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 5.

Obtain v_{0} in the circuit of Fig. 3.54.

Figure 3.54

Chapter 3, Solution 5

Apply KCL to the top node.

$$
\frac{30-\mathrm{v}_{0}}{2 \mathrm{k}}+\frac{20-\mathrm{v}_{0}}{5 \mathrm{k}}=\frac{\mathrm{v}_{0}}{4 \mathrm{k}} \longrightarrow \mathrm{v}_{0}=\underline{\mathbf{2 0 ~ V}}
$$

Chapter 3, Problem 6.

Use nodal analysis to obtain $\boldsymbol{v}_{\boldsymbol{0}}$ in the circuit in Fig. 3.55.

Figure 3.55

Chapter 3, Solution 6

$$
\begin{aligned}
& \mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=0 \quad \frac{\mathrm{v}_{2}-12}{4}+\frac{\mathrm{v}_{0}}{6}+\frac{\mathrm{v}_{0}-10}{2}=0 \\
& \quad \text { or } \mathrm{v}_{0}=\underline{\mathbf{8 . 7 2 7} \mathbf{V}}
\end{aligned}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 7.

Apply nodal analysis to solve for V_{x} in the circuit in Fig. 3.56.

Figure 3.56 For Prob. 3.7.

Chapter 3, Solution 7

$$
\begin{aligned}
& -2+\frac{\mathrm{V}_{\mathrm{x}}-0}{10}+\frac{\mathrm{V}_{\mathrm{x}}-0}{20}+0.2 \mathrm{~V}_{\mathrm{x}}=0 \\
& 0.35 \mathrm{~V}_{\mathrm{x}}=2 \text { or } \mathrm{V}_{\mathrm{x}}=\mathbf{5 . 7 1 4 \mathrm { V }}
\end{aligned}
$$

Substituting into the original equation for a check we get,

$$
0.5714+0.2857+1.1428=1.9999 \text { checks! }
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 8.

Using nodal analysis, find $\boldsymbol{v}_{\boldsymbol{0}}$ in the circuit in Fig. 3.57.

Figure 3.57

Chapter 3, Solution 8

$$
\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=0 \longrightarrow \frac{\mathrm{v}_{1}}{5}+\frac{\mathrm{v}_{1}-3}{1}+\frac{\mathrm{v}_{1}-4 \mathrm{v}_{0}}{5}=0
$$

But $\quad \mathrm{v}_{0}=\frac{2}{5} \mathrm{v}_{1}$ so that $\mathrm{v}_{1}+5 \mathrm{v}_{1}-15+\mathrm{v}_{1}-\frac{8}{5} \mathrm{v}_{1}=0$
or $\mathrm{v}_{1}=15 \times 5 /(27)=2.778 \mathrm{~V}$, therefore $\mathrm{v}_{\mathrm{o}}=2 \mathrm{v}_{1} / 5=\underline{\mathbf{1 . 1 1 1 1} \mathrm{V}}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 9.

Determine I_{b} in the circuit in Fig. 3.58 using nodal analysis.

Figure 3.58 For Prob. 3.9.

Chapter 3, Solution 9

Let V_{1} be the unknown node voltage to the right of the $250-\Omega$ resistor. Let the ground reference be placed at the bottom of the $50-\Omega$ resistor. This leads to the following nodal equation:

$$
\frac{\mathrm{V}_{1}-24}{250}+\frac{\mathrm{V}_{1}-0}{50}+\frac{\mathrm{V}_{1}-60 \mathrm{I}_{\mathrm{b}}-0}{150}=0
$$

simplifying we get
$3 \mathrm{~V}_{1}-72+15 \mathrm{~V}_{1}+5 \mathrm{~V}_{1}-300 \mathrm{I}_{\mathrm{b}}=0$
But $\mathrm{I}_{\mathrm{b}}=\frac{24-\mathrm{V}_{1}}{250}$. Substituting this into the nodal equation leads to

$$
24.2 \mathrm{~V}_{1}-100.8=0 \text { or } \mathrm{V}_{1}=4.165 \mathrm{~V}
$$

Thus,

$$
\mathrm{I}_{\mathrm{b}}=(24-4.165) / 250=\underline{\mathbf{7 9 . 3 4} \mathbf{~ m A}} .
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 10.

Find \boldsymbol{i}_{0} in the circuit in Fig. 3.59.

Figure 3.59

Chapter 3, Solution 10

At the non-reference node,

$$
\begin{equation*}
\frac{12-\mathrm{v}_{1}}{3}=\frac{\mathrm{v}_{1}}{8}+\frac{\mathrm{v}_{1}-2 \mathrm{v}_{0}}{6} \tag{1}
\end{equation*}
$$

But

$$
\begin{equation*}
-12+\mathrm{v}_{0}+\mathrm{v}_{1}=0 \longrightarrow \mathrm{v}_{0}=12-\mathrm{v}_{1} \tag{2}
\end{equation*}
$$

Substituting (2) into (1),

$$
\frac{12-\mathrm{v}_{1}}{3}=\frac{\mathrm{v}_{1}}{8}+\frac{3 \mathrm{v}_{1}-24}{6} \longrightarrow \mathrm{v}_{0}=\underline{3.652 \mathrm{~V}}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 11.

Find V_{o} and the power dissipated in all the resistors in the circuit of Fig. 3.60.

Figure 3.60 For Prob. 3.11.

Chapter 3, Solution 11

At the top node, KVL gives

$$
\begin{aligned}
& \frac{\mathrm{V}_{\mathrm{O}}-36}{1}+\frac{\mathrm{V}_{\mathrm{o}}-0}{2}+\frac{\mathrm{V}_{\mathrm{O}}-(-12)}{4}=0 \\
& 1.75 \mathrm{~V}_{\mathrm{o}}=33 \text { or } \mathrm{V}_{\mathrm{o}}=18.857 \mathrm{~V} \\
& \mathrm{P}_{1 \Omega}=(36-18.857)^{2} / 1=\underline{\mathbf{2 9 3 . 9} \mathbf{~ W}} \\
& \mathrm{P}_{2 \Omega}=\left(\mathrm{V}_{\mathrm{o}}\right)^{2} / 2=(18.857)^{2} / 2=\underline{\mathbf{1 7 7 . 7 9} \mathbf{~ W}} \\
& \mathrm{P}_{4 \Omega}=(18.857+12)^{2} / 4=\underline{\mathbf{2 3 8} \mathbf{~ W}} .
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 12.

Using nodal analysis, determine V_{o} in the circuit in Fig. 3.61.

Figure 3.61 For Prob. 3.12.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 12

There are two unknown nodes, as shown in the circuit below.

At node 1,

$$
\begin{align*}
& \frac{\mathrm{V}_{1}-30}{10}+\frac{\mathrm{V}_{1}-0}{2}+\frac{\mathrm{V}_{1}-\mathrm{V}_{\mathrm{o}}}{1}=0 \tag{1}\\
& 16 \mathrm{~V}_{1}-10 \mathrm{~V}_{\mathrm{o}}=30
\end{align*}
$$

At node o,

$$
\begin{align*}
& \frac{\mathrm{V}_{\mathrm{o}}-\mathrm{V}_{1}}{1}-4 \mathrm{I}_{\mathrm{x}}+\frac{\mathrm{V}_{\mathrm{o}}-0}{5}=0 \tag{2}\\
& -5 \mathrm{~V}_{1}+6 \mathrm{~V}_{\mathrm{o}}-20 \mathrm{I}_{\mathrm{x}}=0
\end{align*}
$$

But $I_{x}=V_{1} / 2$. Substituting this in (2) leads to

$$
\begin{equation*}
-15 \mathrm{~V}_{1}+6 \mathrm{~V}_{\mathrm{o}}=0 \text { or } \mathrm{V}_{1}=0.4 \mathrm{~V}_{\mathrm{o}} \tag{3}
\end{equation*}
$$

Substituting (3) into 1,

$$
16\left(0.4 \mathrm{~V}_{\mathrm{o}}\right)-10 \mathrm{~V}_{\mathrm{o}}=30 \text { or } \mathrm{V}_{\mathrm{o}}=-\mathbf{8 . 3 3 3 \mathrm { V }} .
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 13.

Calculate $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$ in the circuit of Fig. 3.62 using nodal analysis.

Figure 3.62

Chapter 3, Solution 13

At node number 2, $\left[\left(\mathrm{v}_{2}+2\right)-0\right] / 10+\mathrm{v}_{2} / 4=3$ or $\mathrm{v}_{2}=\underline{\mathbf{8} \text { volts }}$
But, $I=\left[\left(v_{2}+2\right)-0\right] / 10=(8+2) / 10=1 \mathrm{amp}$ and $\mathrm{v}_{1}=8 \times 1=\underline{\text { 8volts }}$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 14.

Using nodal analysis, find $\boldsymbol{v}_{\boldsymbol{o}}$ in the circuit of Fig. 3.63.

Figure 3.63

Chapter 3, Solution 14

At node $1, \frac{\mathrm{v}_{1}-\mathrm{v}_{0}}{2}+5=\frac{40-\mathrm{v}_{0}}{1} \longrightarrow \mathrm{v}_{1}+\mathrm{v}_{0}=70$

At node $0, \frac{\mathrm{v}_{1}-\mathrm{v}_{0}}{2}+5=\frac{\mathrm{v}_{0}}{4}+\frac{\mathrm{v}_{0}+20}{8} \longrightarrow 4 \mathrm{v}_{1}-7 \mathrm{v}_{0}=-20$
Solving (1) and (2), $\mathrm{v}_{0}=\underline{\mathbf{2 7 . 2 7} \mathrm{V}}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 15.

Apply nodal analysis to find \boldsymbol{i}_{o} and the power dissipated in each resistor in the circuit of Fig. 3.64.

Figure 3.64

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 15

Nodes 1 and 2 form a supernode so that $\mathrm{v}_{1}=\mathrm{v}_{2}+10$
At the supernode, $2+6 \mathrm{v}_{1}+5 \mathrm{v}_{2}=3\left(\mathrm{v}_{3}-\mathrm{v}_{2}\right) \longrightarrow 2+6 \mathrm{v}_{1}+8 \mathrm{v}_{2}=3 \mathrm{v}_{3}$
At node $3,2+4=3\left(\mathrm{v}_{3}-\mathrm{v}_{2}\right) \longrightarrow \mathrm{v}_{3}=\mathrm{v}_{2}+2$
Substituting (1) and (3) into (2),

$$
\begin{aligned}
& 2+6 \mathrm{v}_{2}+60+8 \mathrm{v}_{2}=3 \mathrm{v}_{2}+6 \longrightarrow \mathrm{v}_{2}=\frac{-56}{11} \\
& \mathrm{v}_{1}=\mathrm{v}_{2}+10=\frac{54}{11} \\
& \mathrm{i}_{0}=6 \mathrm{v}_{\mathrm{i}}=\underline{\mathbf{2 9 . 4 5 \mathbf { A }}} \\
& \mathrm{P}_{65}=\frac{\mathrm{v}_{1}^{2}}{\mathrm{R}}=\mathrm{v}_{1}^{2} \mathrm{G}=\left(\frac{54}{11}\right)^{2} 6=\underline{\mathbf{1 4 4 . 6} \mathbf{~ W}} \\
& \mathrm{P}_{55}=\mathrm{v}_{2}^{2} \mathrm{G}=\left(\frac{-56}{11}\right)^{2} 5=\underline{\mathbf{1 2 9 . 6} \mathbf{~ W}} \\
& \mathrm{P}_{35}=\left(\mathrm{v}_{\mathrm{L}}-\mathrm{v}_{3}\right)^{2} \mathrm{G}=(2)^{2} \mathbf{3}=\underline{\mathbf{1 2} \mathbf{~ W}}
\end{aligned}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 16.

Determine voltages v_{1} through v_{3} in the circuit of Fig. 3.65 using nodal analysis.

Figure 3.65

Chapter 3, Solution 16

At the supernode,

$$
\begin{equation*}
2=v_{1}+2\left(v_{1}-v_{3}\right)+8\left(v_{2}-v_{3}\right)+4 v_{2} \text {, which leads to } 2=3 v_{1}+12 v_{2}-10 v_{3} \tag{1}
\end{equation*}
$$

But

$$
\mathrm{v}_{1}=\mathrm{v}_{2}+2 \mathrm{v}_{0} \text { and } \mathrm{v}_{0}=\mathrm{v}_{2} .
$$

Hence

$$
\begin{align*}
\mathrm{v}_{1} & =3 \mathrm{v}_{2} \tag{2}\\
\mathrm{v}_{3} & =13 \mathrm{~V} \tag{3}
\end{align*}
$$

Substituting (2) and (3) with (1) gives,

$$
\mathrm{v}_{1}=18.858 \mathrm{~V}, \mathrm{v}_{2}=6.286 \mathrm{~V}, \mathrm{v}_{3}=13 \mathrm{~V}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 17.

Using nodal analysis, find current i_{o} in the circuit of Fig. 3.66.

Figure 3.66

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 17

At node $1, \frac{60-\mathrm{v}_{1}}{4}=\frac{\mathrm{v}_{1}}{8}+\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{2} \quad 120=7 \mathrm{v}_{1}-4 \mathrm{v}_{2}$
At node $2,3 i_{0}+\frac{60-\mathrm{v}_{2}}{10}+\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{2}=0$
But $\mathrm{i}_{0}=\frac{60-\mathrm{v}_{1}}{4}$.
Hence

$$
\begin{equation*}
\frac{3\left(60-v_{1}\right)}{4}+\frac{60-v_{2}}{10}+\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{2}=0 \longrightarrow 1020=5 \mathrm{v}_{1}+12 \mathrm{v}_{2} \tag{2}
\end{equation*}
$$

Solving (1) and (2) gives $\mathrm{v}_{1}=53.08 \mathrm{~V}$. Hence $\mathrm{i}_{0}=\frac{60-\mathrm{v}_{1}}{4}=\underline{\mathbf{1 . 7 3 ~ A}}$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 18.

Determine the node voltages in the circuit in Fig. 3.67 using nodal analysis.

Figure 3.67

Chapter 3, Solution 18

(a)

(b)

At node 2, in Fig. (a), $5=\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{2}+\frac{\mathrm{v}_{2}-\mathrm{v}_{3}}{2} \longrightarrow 10=-\mathrm{v}_{1}+2 \mathrm{v}_{2}-\mathrm{v}_{3}$

At the supernode, $\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{2}+\frac{\mathrm{v}_{2}-\mathrm{v}_{3}}{2}=\frac{\mathrm{v}_{1}}{4}+\frac{\mathrm{v}_{3}}{8} \longrightarrow 40=2 \mathrm{v}_{1}+\mathrm{v}_{3}$
From Fig. (b), $-\mathrm{v}_{1}-10+\mathrm{v}_{3}=0 \longrightarrow \mathrm{v}_{3}=\mathrm{v}_{1}+10$
Solving (1) to (3), we obtain $\mathrm{v}_{1}=\underline{\mathbf{1 0} \mathrm{V}}, \mathrm{v}_{2}=\underline{\mathbf{2 0} \mathbf{V}}=\mathrm{v}_{3}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 19.

Use nodal analysis to find v_{1}, v_{2}, and v_{3} in the circuit in Fig. 3.68.

Figure 3.68

Chapter 3, Solution 19

At node 1,
$5=3+\frac{V_{1}-V_{3}}{2}+\frac{V_{1}-V_{2}}{8}+\frac{V_{1}}{4} \quad \longrightarrow \quad 16=7 V_{1}-V_{2}-4 V_{3}$
At node 2,
$\frac{V_{1}-V_{2}}{8}=\frac{V_{2}}{2}+\frac{V_{2}-V_{3}}{4} \quad \longrightarrow \quad 0=-V_{1}+7 V_{2}-2 V_{3}$
At node 3,
$3+\frac{12-V_{3}}{8}+\frac{V_{1}-V_{3}}{2}+\frac{V_{2}-V_{3}}{4}=0 \quad \longrightarrow \quad-36=4 V_{1}+2 V_{2}-7 V_{3}$
From (1) to (3),
$\left(\begin{array}{ccc}7 & -1 & -4 \\ -1 & 7 & -2 \\ 4 & 2 & -7\end{array}\right)\left(\begin{array}{l}V_{1} \\ V_{2} \\ V_{3}\end{array}\right)=\left(\begin{array}{c}16 \\ 0 \\ -36\end{array}\right) \quad \longrightarrow \quad A V=B$
Using MATLAB,
$V=A^{-1} B=\left[\begin{array}{c}10 \\ 4.933 \\ 12.267\end{array}\right] \longrightarrow \quad V_{1}=10 \mathrm{~V}, V_{2}=4.933 \mathrm{~V}, V_{3}=12.267 \mathrm{~V}$
PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 20.

For the circuit in Fig. 3.69, find v_{1}, v_{2}, and v_{3} using nodal analysis.

Figure 3.69

Chapter 3, Solution 20

Nodes 1 and 2 form a supernode; so do nodes 1 and 3. Hence
$\frac{V_{1}}{4}+\frac{V_{2}}{1}+\frac{V_{3}}{4}=0 \quad V_{1}+4 V_{2}+V_{3}=0$

Between nodes 1 and 3,
$-V_{1}+12+V_{3}=0 \longrightarrow \quad V_{3}=V_{1}-12$
Similarly, between nodes 1 and 2,

$$
\begin{equation*}
V_{1}=V_{2}+2 i \tag{3}
\end{equation*}
$$

But $i=V_{3} / 4$. Combining this with (2) and (3) gives

$$
\begin{equation*}
V_{2}=6+V_{1} / 2 \tag{4}
\end{equation*}
$$

Solving (1), (2), and (4) leads to

$$
V_{1}=-3 \mathrm{~V}, \quad V_{2}=4.5 \mathrm{~V}, V_{3}=-15 \mathrm{~V}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 21.

For the circuit in Fig. 3.70, find v_{1} and v_{2} using nodal analysis.

Figure 3.70

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 21

Let v_{3} be the voltage between the $2 \mathrm{k} \Omega$ resistor and the voltage-controlled voltage source. At node 1,

$$
\begin{equation*}
3 \times 10^{-3}=\frac{v_{1}-v_{2}}{4000}+\frac{v_{1}-v_{3}}{2000} \longrightarrow 12=3 \mathrm{v}_{1}-\mathrm{v}_{2}-2 \mathrm{v}_{3} \tag{1}
\end{equation*}
$$

At node 2,

$$
\begin{equation*}
\frac{v_{1}-v_{2}}{4}+\frac{v_{1}-v_{3}}{2}=\frac{v_{2}}{1} \longrightarrow 3 v_{1}-5 v_{2}-2 v_{3}=0 \tag{2}
\end{equation*}
$$

Note that $\mathrm{v}_{0}=\mathrm{v}_{2}$. We now apply KVL in Fig. (b)

$$
\begin{equation*}
-\mathrm{v}_{3}-3 \mathrm{v}_{2}+\mathrm{v}_{2}=0 \longrightarrow \mathrm{v}_{3}=-2 \mathrm{v}_{2} \tag{3}
\end{equation*}
$$

From (1) to (3),

$$
\mathrm{v}_{1}=\underline{\mathbf{1} \mathbf{V}}, \mathrm{v}_{2}=\underline{\mathbf{3} \mathbf{V}}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 22.

Determine $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$ in the circuit in Fig. 3.71.

Figure 3.71

Chapter 3, Solution 22

At node $1, \frac{12-\mathrm{v}_{0}}{2}=\frac{\mathrm{v}_{1}}{4}+3+\frac{\mathrm{v}_{1}-\mathrm{v}_{0}}{8} \longrightarrow 24=7 \mathrm{v}_{1}-\mathrm{v}_{2}$

At node $2,3+\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{8}=\frac{\mathrm{v}_{2}+5 \mathrm{v}_{2}}{1}$

But, $\mathrm{v}_{1}=12-\mathrm{v}_{1}$

Hence, $24+\mathrm{v}_{1}-\mathrm{v}_{2}=8\left(\mathrm{v}_{2}+60+5 \mathrm{v}_{1}\right)=4 \mathrm{~V}$

$$
\begin{equation*}
456=41 v_{1}-9 v_{2} \tag{2}
\end{equation*}
$$

Solving (1) and (2),

$$
\mathrm{v}_{1}=-\mathbf{1 0 . 9 1 \mathrm { V }}, \mathrm{v}_{2}=-\mathbf{1 0 0 . 3 6 \mathrm { V }}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 23.

Use nodal analysis to find V_{o} in the circuit of Fig. 3.72.

Figure 3.72 For Prob. 3.23.

Chapter 3, Solution 23

We apply nodal analysis to the circuit shown below.

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{o}}-30}{1}+\frac{\mathrm{V}_{\mathrm{o}}-0}{2}+\frac{\mathrm{V}_{\mathrm{o}}-\left(2 \mathrm{~V}_{\mathrm{o}}+\mathrm{V}_{1}\right)}{4}=0 \rightarrow 1.25 \mathrm{~V}_{\mathrm{o}}-0.25 \mathrm{~V}_{1}=30 \tag{1}
\end{equation*}
$$

At node 1,

$$
\begin{equation*}
\frac{\left(2 \mathrm{~V}_{\mathrm{o}}+\mathrm{V}_{1}\right)-\mathrm{V}_{\mathrm{o}}}{4}+\frac{\mathrm{V}_{1}-0}{16}-3=0 \rightarrow 5 \mathrm{~V}_{1}+4 \mathrm{~V}_{\mathrm{o}}=48 \tag{2}
\end{equation*}
$$

From (1), $\mathrm{V}_{1}=5 \mathrm{~V}_{\mathrm{o}}-120$. Substituting this into (2) yields

$$
29 \mathrm{~V}_{\mathrm{o}}=648 \text { or } \mathrm{V}_{\mathrm{o}}=\underline{\mathbf{2 2 . 3 4} \mathbf{~ V}} .
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 24.

Use nodal analysis and MATLAB to find V_{o} in the circuit in Fig. 3.73.

Figure 3.73 For Prob. 3.24.

Chapter 3, Solution 24

Consider the circuit below.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{align*}
& \frac{\mathrm{V}_{1}-0}{1}-4+\frac{\mathrm{V}_{1}-\mathrm{V}_{4}}{8}=0 \rightarrow 1.125 \mathrm{~V}_{1}-0.125 \mathrm{~V}_{4}=4 \tag{1}\\
& +4+\frac{\mathrm{V}_{2}-0}{2}+\frac{\mathrm{V}_{2}-\mathrm{V}_{3}}{4}=0 \rightarrow 0.75 \mathrm{~V}_{2}-0.25 \mathrm{~V}_{3}=-4 \tag{2}\\
& \frac{\mathrm{~V}_{3}-\mathrm{V}_{2}}{4}+\frac{\mathrm{V}_{3}-0}{2}+2=0 \rightarrow-0.25 \mathrm{~V}_{2}+0.75 \mathrm{~V}_{3}=-2 \tag{3}\\
& -2+\frac{\mathrm{V}_{4}-\mathrm{V}_{1}}{8}+\frac{\mathrm{V}_{4}-0}{1}=0 \rightarrow-0.125 \mathrm{~V}_{1}+1.125 \mathrm{~V}_{4}=2 \tag{4}\\
& {\left[\begin{array}{cccc}
1.125 & 0 & 0 & -0.125 \\
0 & 0.75 & -0.25 & 0 \\
0 & -0.25 & 0.75 & 0 \\
-0.125 & 0 & 0 & 1.125
\end{array}\right] \mathrm{V}=\left[\begin{array}{c}
4 \\
-4 \\
-2 \\
2
\end{array}\right]}
\end{align*}
$$

Now we can use MATLAB to solve for the unknown node voltages.

$$
\begin{aligned}
& \gg Y=[1.125,0,0,-0.125 ; 0,0.75,-0.25,0 ; 0,-0.25,0.75,0 ;-0.125,0,0,1.125] \\
& \mathrm{Y}= \\
& 1.1250 \quad 0 \quad 0 \quad-0.1250 \\
& \begin{array}{llll}
0 & 0.7500 & -0.2500 & 0
\end{array} \\
& \begin{array}{llll}
0 & -0.2500 & 0.7500 & 0
\end{array} \\
& \begin{array}{llll}
-0.1250 & 0 & 0 & 1.1250
\end{array} \\
& \gg \mathrm{I}=[4,-4,-2,2]^{\prime} \\
& \mathrm{I}= \\
& 4 \\
& \text {-4 } \\
& \text {-2 } \\
& 2 \\
& \gg \mathrm{~V}=\operatorname{inv}(\mathrm{Y})^{*} \mathrm{I} \\
& \mathrm{~V}= \\
& 3.8000 \\
& \text {-7.0000 } \\
& \text {-5.0000 } \\
& 2.2000 \\
& \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{1}-\mathrm{V}_{4}=3.8-2.2=\underline{\mathbf{1 . 6} \mathbf{V}} .
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 25.

Use nodal analysis along with MATLAB to determine the node voltages in Fig. 3.74.

Figure 3.74 For Prob. 3.25.

Chapter 3, Solution 25

Consider the circuit shown below.

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

At node 1.
$4=\frac{V_{1}-V_{2}}{1}+\frac{V_{1}-V_{4}}{20} \longrightarrow 80=2 \mathrm{~N}_{1}-20 \mathrm{~V}_{2}-\mathrm{V}_{4}$
At node 2,
$\frac{V_{1}-V_{2}}{1}=\frac{V_{2}}{8}+\frac{V_{2}-V_{3}}{10} \longrightarrow 0=-80 V_{1}+98 V_{2}-8 V_{3}$

At node 3,
$\frac{V_{2}-V_{3}}{10}=\frac{V_{3}}{20}+\frac{V_{3}-V_{4}}{10} \longrightarrow 0=-2 V_{2}+5 V_{3}-2 V_{4}$
At node 4,
$\frac{\mathrm{V}_{1}-\mathrm{V}_{4}}{20}+\frac{\mathrm{V}_{3}-\mathrm{V}_{4}}{10}=\frac{\mathrm{V}_{4}}{30} \longrightarrow 0=3 \mathrm{~V}_{1}+6 \mathrm{~V}_{3}-1 \mathrm{~N}_{4}$

Putting (1) to (4) in matrix form gives:

$$
\begin{aligned}
& {\left[\begin{array}{c}
80 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{cccc}
21 & -20 & 0 & -1 \\
-80 & 98 & -8 & 0 \\
0 & -2 & 5 & -2 \\
3 & 0 & 6 & -11
\end{array}\right]\left[\begin{array}{l}
\mathrm{V}_{1} \\
\mathrm{~V}_{2} \\
\mathrm{~V}_{3} \\
\mathrm{~V}_{4}
\end{array}\right]} \\
& \mathrm{B}=\mathrm{A} V \rightarrow \mathrm{~V}=\mathrm{A}^{-1} \mathrm{~B}
\end{aligned}
$$

Using MATLAB leads to

$$
\mathrm{V}_{1}=\underline{\mathbf{2 5 . 5 2} \mathrm{V}}, \quad \mathrm{~V}_{2}=\underline{22.05 \mathrm{~V}}, \quad \mathrm{~V}_{3}=\underline{14.842 \mathrm{~V}}, \quad \mathrm{~V}_{4}=\underline{15.055 \mathrm{~V}}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 26.

Calculate the node voltages v_{1}, v_{2}, and v_{3} in the circuit of Fig. 3.75.

Figure 3.75

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 26

At node 1,

$$
\begin{equation*}
\frac{15-V_{1}}{20}=3+\frac{V_{1}-V_{3}}{10}+\frac{V_{1}-V_{2}}{5} \quad \longrightarrow \quad-45=7 V_{1}-4 V_{2}-2 V_{3} \tag{1}
\end{equation*}
$$

At node 2,
$\frac{V_{1}-V_{2}}{5}+\frac{4 I_{o}-V_{2}}{5}=\frac{V_{2}-V_{3}}{5}$
But $I_{o}=\frac{V_{1}-V_{3}}{10}$. Hence, (2) becomes
$0=7 V_{1}-15 V_{2}+3 V_{3}$
At node 3,
$3+\frac{\mathrm{V}_{1}-\mathrm{V}_{3}}{10}+\frac{-10-\mathrm{V}_{3}}{15}+\frac{\mathrm{V}_{2}-\mathrm{V}_{3}}{5}=0 \quad \longrightarrow \quad 70=-3 \mathrm{~V}_{1}-6 \mathrm{~V}_{2}+11 \mathrm{~V}_{3}$
Putting (1), (3), and (4) in matrix form produces

$$
\left(\begin{array}{ccc}
7 & -4 & -2 \\
7 & -15 & 3 \\
-3 & -6 & 11
\end{array}\right)\left(\begin{array}{l}
\mathrm{V}_{1} \\
\mathrm{~V}_{2} \\
\mathrm{~V}_{3}
\end{array}\right)=\left(\begin{array}{c}
-45 \\
0 \\
70
\end{array}\right) \quad \longrightarrow \quad \mathrm{AV}=\mathrm{B}
$$

Using MATLAB leads to

$$
\mathrm{V}=\mathrm{A}^{-1} \mathrm{~B}=\left(\begin{array}{c}
-7.19 \\
-2.78 \\
2.89
\end{array}\right)
$$

Thus,

$$
\mathrm{V}_{1}=\underline{-7.19 \mathrm{~V}} ; \mathrm{V}_{2}=\underline{-2.78 \mathrm{~V}} ; \mathrm{V}_{3}=\underline{\mathbf{2 . 8 9 V}} .
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 27.

Use nodal analysis to determine voltages $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}$, and $\boldsymbol{v}_{\mathbf{3}}$ in the circuit in Fig. 3.76.

Figure 3.76

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 27

At node 1,

$$
\begin{gather*}
2=2 v_{1}+v_{1}-v_{2}+\left(v_{1}-v_{3}\right) 4+3 i_{0}, \quad i_{0}=4 v_{2} . \text { Hence, } \\
2=7 v_{1}+11 v_{2}-4 v_{3} \tag{1}
\end{gather*}
$$

At node 2,

$$
\begin{equation*}
\mathrm{v}_{1}-\mathrm{v}_{2}=4 \mathrm{v}_{2}+\mathrm{v}_{2}-\mathrm{v}_{3} \longrightarrow 0=-\mathrm{v}_{1}+6 \mathrm{v}_{2}-\mathrm{v}_{3} \tag{2}
\end{equation*}
$$

At node 3,

$$
2 \mathrm{v}_{3}=4+\mathrm{v}_{2}-\mathrm{v}_{3}+12 \mathrm{v}_{2}+4\left(\mathrm{v}_{1}-\mathrm{v}_{3}\right)
$$

or

$$
\begin{equation*}
-4=4 v_{1}+13 v_{2}-7 v_{3} \tag{3}
\end{equation*}
$$

In matrix form,

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
7 & 11 & -4 \\
1 & -6 & 1 \\
4 & 13 & -7
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{2} \\
\mathrm{v}_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
-4
\end{array}\right]} \\
& \Delta=\left|\begin{array}{ccc}
7 & 11 & -4 \\
1 & -6 & 1 \\
4 & 13 & -7
\end{array}\right|=176, \Delta_{1}=\left|\begin{array}{ccc}
2 & 11 & -4 \\
0 & -6 & 1 \\
-4 & 13 & -7
\end{array}\right|=110 \\
& \Delta_{2}=\left|\begin{array}{ccc}
7 & 2 & -4 \\
1 & 0 & 1 \\
4 & -4 & -7
\end{array}\right|=66, \quad \Delta_{3}=\left|\begin{array}{ccc}
7 & 11 & 2 \\
1 & -6 & 0 \\
4 & 13 & -4
\end{array}\right|=286 \\
& \mathrm{v}_{1}=\frac{\Delta_{1}}{\Delta}=\frac{110}{176}=0.625 \mathrm{~V}, \mathrm{v}_{2}=\frac{\Delta_{2}}{\Delta}=\frac{66}{176}=0.375 \mathrm{~V} \\
& \mathrm{v}_{3}=\frac{\Delta_{3}}{\Delta}=\frac{286}{176}=1.625 \mathrm{~V} . \\
& \mathrm{v}_{1}=\underline{\mathbf{6 2 5} \mathbf{~ m V}, \mathrm{v}_{2}}=\underline{\mathbf{3 7 5} \mathbf{m V}, \mathrm{v}_{3}=\underline{\mathbf{1 . 6 2 5} \mathbf{V}} .}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 28.

Use MATLAB to find the voltages at nodes a, b, c, and d in the circuit of Fig. 3.77.

Figure 3.77

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 28

At node c,
$\frac{V_{d}-V_{c}}{10}=\frac{V_{c}-V_{b}}{4}+\frac{V_{c}}{5} \quad \longrightarrow \quad 0=-5 V_{b}+11 V_{c}-2 V_{d}$
At node b,
$\frac{V_{a}+45-V_{b}}{8}+\frac{V_{c}-V_{b}}{4}=\frac{V_{b}}{8} \quad \longrightarrow \quad-45=V_{a}-4 V_{b}+2 V_{c}$
At node a,
$\frac{V_{a}-30-V_{d}}{4}+\frac{V_{a}}{16}+\frac{V_{a}+45-V_{b}}{8}=0 \quad \longrightarrow \quad 30=7 V_{a}-2 V_{b}-4 V_{d}$
At node d,
$\frac{V_{a}-30-V_{d}}{4}=\frac{V_{d}}{20}+\frac{V_{d}-V_{c}}{10} \quad \longrightarrow \quad 150=5 V_{a}+2 V_{c}-7 V_{d}$
In matrix form, (1) to (4) become

$$
\left(\begin{array}{cccc}
0 & -5 & 11 & -2 \\
1 & -4 & 2 & 0 \\
7 & -2 & 0 & -4 \\
5 & 0 & 2 & -7
\end{array}\right)\left(\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c} \\
V_{d}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-45 \\
30 \\
150
\end{array}\right) \longrightarrow A V=B
$$

We use MATLAB to invert A and obtain

$$
V=A^{-1} B=\left(\begin{array}{c}
-10.14 \\
7.847 \\
-1.736 \\
-29.17
\end{array}\right)
$$

Thus,

$$
V_{a}=-10.14 \mathrm{~V}, V_{b}=7.847 \mathrm{~V}, V_{c}=-1.736 \mathrm{~V}, V_{d}=-29.17 \mathrm{~V}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 29.

Use MATLAB to solve for the node voltages in the circuit of Fig. 3.78.

Figure 3.78

Chapter 3, Solution 29

At node 1,
$5+V_{1}-V_{4}+2 V_{1}+V_{1}-V_{2}=0 \quad \longrightarrow \quad-5=4 V_{1}-V_{2}-V_{4}$
At node 2,
$V_{1}-V_{2}=2 V_{2}+4\left(V_{2}-V_{3}\right)=0 \quad \longrightarrow 0=-V_{1}+7 V_{2}-4 V_{3}$
At node 3,
$6+4\left(V_{2}-V_{3}\right)=V_{3}-V_{4} \longrightarrow 6=-4 V_{2}+5 V_{3}-V_{4}$
At node 4,
$2+V_{3}-V_{4}+V_{1}-V_{4}=3 V_{4} \longrightarrow 2=-V_{1}-V_{3}+5 V_{4}$
In matrix form, (1) to (4) become

$$
\left(\begin{array}{cccc}
4 & -1 & 0 & -1 \tag{4}\\
-1 & 7 & -4 & 0 \\
0 & -4 & 5 & -1 \\
-1 & 0 & -1 & 5
\end{array}\right)\left(\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right)=\left(\begin{array}{c}
-5 \\
0 \\
6 \\
2
\end{array}\right) \longrightarrow A V=B
$$

Using MATLAB,
$V=A^{-1} B=\left(\begin{array}{c}-0.7708 \\ 1.209 \\ 2.309 \\ 0.7076\end{array}\right)$
i.e.

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
V_{1}=-0.7708 \mathrm{~V}, V_{2}=1.209 \mathrm{~V}, V_{3}=2.309 \mathrm{~V}, V_{4}=0.7076 \mathrm{~V}
$$

Chapter 3, Problem 30.

Using nodal analysis, find $\boldsymbol{v}_{\boldsymbol{o}}$ and $\boldsymbol{i}_{\boldsymbol{o}}$ in the circuit of Fig. 3.79.

Figure 3.79

Chapter 3, Solution 30

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

At node 1,

$$
\begin{equation*}
\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{40}=\frac{100-\mathrm{v}_{1}}{10}+\frac{4 \mathrm{v}_{\mathrm{o}}-\mathrm{v}_{1}}{20} \tag{1}
\end{equation*}
$$

But, $\mathrm{v}_{\mathrm{o}}=120+\mathrm{v}_{2} \longrightarrow \mathrm{v}_{2}=\mathrm{v}_{\mathrm{o}}-120$. Hence (1) becomes

$$
\begin{equation*}
7 \mathrm{v}_{1}-9 \mathrm{v}_{\mathrm{o}}=280 \tag{2}
\end{equation*}
$$

At node 2,

$$
\begin{gathered}
\mathrm{I}_{\mathrm{o}}+2 \mathrm{I}_{\mathrm{o}}=\frac{\mathrm{v}_{\mathrm{o}}-0}{80} \\
3\left(\frac{\mathrm{v}_{1}+120-\mathrm{v}_{\mathrm{o}}}{40}\right)=\frac{\mathrm{v}_{\mathrm{o}}}{80}
\end{gathered}
$$

or

$$
\begin{equation*}
6 \mathrm{v}_{1}-7 \mathrm{v}_{\mathrm{o}}=-720 \tag{3}
\end{equation*}
$$

from (2) and (3),

$$
\begin{aligned}
& {\left[\begin{array}{ll}
7 & -9 \\
6 & -7
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{\mathrm{o}}
\end{array}\right]=\left[\begin{array}{c}
280 \\
-720
\end{array}\right]} \\
& \Delta=\left|\begin{array}{ll}
7 & -9 \\
6 & -7
\end{array}\right|=-49+54=5
\end{aligned}
$$

$$
\begin{gathered}
\Delta_{1}=\left|\begin{array}{cc}
280 & -9 \\
-720 & -7
\end{array}\right|=-8440, \quad \Delta_{2}=\left|\begin{array}{cc}
7 & 280 \\
6 & -720
\end{array}\right|=-6720 \\
\mathrm{v}_{1}=\frac{\Delta_{1}}{\Delta}=\frac{-8440}{5}=-1688, \quad \mathrm{v}_{\mathrm{o}}=\frac{\Delta_{2}}{\Delta}=\frac{-6720}{5}-1344 \mathrm{~V} \\
\mathrm{I}_{\mathrm{o}}=\underline{-\mathbf{5 . 6 ~ A}}
\end{gathered}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 31.

Find the node voltages for the circuit in Fig. 3.80.

Figure 3.80

Chapter 3, Solution 31

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

At the supernode,

$$
\begin{equation*}
1+2 \mathrm{v}_{0}=\frac{\mathrm{v}_{1}}{4}+\frac{\mathrm{v}_{2}}{1}+\frac{\mathrm{v}_{1}-\mathrm{v}_{3}}{1} \tag{1}
\end{equation*}
$$

But $v_{o}=v_{1}-v_{3}$. Hence (1) becomes,

$$
\begin{equation*}
4=-3 v_{1}+4 v_{2}+4 v_{3} \tag{2}
\end{equation*}
$$

At node 3,

$$
2 v_{o}+\frac{v_{3}}{4}=v_{1}-v_{3}+\frac{10-v_{3}}{2}
$$

or

$$
\begin{equation*}
20=4 \mathrm{v}_{1}+0 \mathrm{v}_{2}-\mathrm{v}_{3} \tag{3}
\end{equation*}
$$

At the supernode, $v_{2}=v_{1}+4 i_{0}$. But $i_{o}=\frac{v_{3}}{4}$. Hence,

$$
\begin{equation*}
\mathrm{v}_{2}=\mathrm{v}_{1}+\mathrm{v}_{3} \tag{4}
\end{equation*}
$$

Solving (2) to (4) leads to,

$$
\mathrm{v}_{1}=\underline{4.97 \mathrm{~V}}, \mathrm{v}_{2}=\underline{4.85 \mathrm{~V}}, \mathrm{v}_{3}=\underline{-0.12 \mathrm{~V}} .
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 32.

Obtain the node voltages $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}$, and $\boldsymbol{v}_{\mathbf{3}}$ in the circuit of Fig. 3.81.
Figure 3.81

Chapter 3, Solution 32

We have a supernode as shown in figure (a). It is evident that $\mathrm{v}_{2}=12 \mathrm{~V}$, Applying KVL to loops land 2 in figure (b), we obtain,

$$
-\mathrm{v}_{1}-10+12=0 \text { or } \mathrm{v}_{1}=2 \text { and }-12+20+\mathrm{v}_{3}=0 \text { or } \mathrm{v}_{3}=-8 \mathrm{~V}
$$

Thus,

$$
\mathrm{v}_{1}=\underline{2 \mathrm{~V}}, \mathrm{v}_{2}=\underline{12 \mathrm{~V}}, \mathrm{v}_{3}=\underline{-8 \mathrm{~V}} .
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 33.

Which of the circuits in Fig. 3.82 is planar? For the planar circuit, redraw the circuits with no crossing branches.

Figure 3.82

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 33

(a) This is a planar circuit. It can be redrawn as shown below.

(b) This is a planar circuit. It can be redrawn as shown below.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 34.

Determine which of the circuits in Fig. 3.83 is planar and redraw it with no crossing branches.

(b)

Figure 3.83

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 34

(a) This is a planar circuit because it can be redrawn as shown below,

(b) This is a non-planar circuit.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 35.

Rework Prob. 3.5 using mesh analysis.
Chapter 3, Problem 5
Obtain $\boldsymbol{v}_{\mathbf{0}}$ in the circuit of Fig. 3.54.

Figure 3.54

Chapter 3, Solution 35

Assume that i_{1} and i_{2} are in mA. We apply mesh analysis. For mesh 1,

$$
\begin{equation*}
-30+20+7 \mathrm{i}_{1}-5 \mathrm{i}_{2}=0 \text { or } 7 \mathrm{i}_{1}-5 \mathrm{i}_{2}=10 \tag{1}
\end{equation*}
$$

For mesh 2,

$$
\begin{equation*}
-20+9 i_{2}-5 i_{1}=0 \text { or }-5 i_{1}+9 i_{2}=20 \tag{2}
\end{equation*}
$$

Solving (1) and (2), we obtain, $\mathrm{i}_{2}=5$.

$$
\mathrm{v}_{0}=4 \mathrm{i}_{2}=\underline{\mathbf{2 0} \text { volts. } . ~}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 36.

Rework Prob. 3.6 using mesh analysis.

Chapter 3, Problem 6
Use nodal analysis to obtain \boldsymbol{v}_{0} in the circuit in Fig. 3.55.

Figure 3.55

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 36

Applying mesh analysis gives,

$$
12=10 \mathrm{I}_{1}-6 \mathrm{I}_{2}
$$

$$
-10=-6 \mathrm{I}_{1}+8 \mathrm{I}_{2}
$$

or

$$
\begin{gathered}
{\left[\begin{array}{c}
6 \\
-5
\end{array}\right]=\left[\begin{array}{cc}
5 & -3 \\
-3 & 4
\end{array}\right]\left[\begin{array}{c}
\mathrm{I}_{1} \\
\mathrm{I}_{2}
\end{array}\right]} \\
\Delta=\left|\begin{array}{cc}
5 & -3 \\
-3 & 4
\end{array}\right|=11, \quad \Delta_{1}=\left|\begin{array}{cc}
6 & -3 \\
-5 & 4
\end{array}\right|=9, \quad \Delta_{2}=\left|\begin{array}{cc}
5 & 6 \\
-3 & -5
\end{array}\right|=-7 \\
\mathrm{I}_{1}=\frac{\Delta_{1}}{\Delta}=\frac{9}{11}, \quad \mathrm{I}_{2}=\frac{\Delta_{2}}{\Delta}=\frac{-7}{11} \\
\mathrm{i}_{1}=-\mathrm{I}_{1}=-9 / 11=-0.8181 \mathrm{~A}, \quad \mathrm{i}_{2}=\mathrm{I}_{1}-\mathrm{I}_{2}=10 / 11=1.4545 \mathrm{~A} . \\
\mathrm{V}_{\mathrm{o}}=6 \mathrm{i}_{2}=6 \times 1.4545=\underline{\mathbf{8 . 7 2 7} \mathbf{V}} .
\end{gathered}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 37.

Rework Prob. 3.8 using mesh analysis.
Chapter 3, Problem 8
Using nodal analysis, find \boldsymbol{v}_{0} in the circuit in Fig. 3.57.

Figure 3.57

Chapter 3, Solution 37

Applying mesh analysis to loops 1 and 2, we get,

$$
\begin{align*}
& 6 i_{1}-1 i_{2}+3=0 \text { which leads to } i_{2}=6 i_{1}+3 \tag{1}\\
& -1 i_{1}+6 i_{2}-3+4 v_{0}=0 \tag{2}\\
& \text { But, } v_{0}=-2 i_{1} \tag{3}
\end{align*}
$$

Using (1), (2), and (3) we get $\mathrm{i}_{1}=-5 / 9$.
Therefore, we get $\mathrm{v}_{0}=-2 \mathrm{i}_{1}=-2(-5 / 9)=\mathbf{1 . 1 1 1 1}$ volts

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 38.

Apply mesh analysis to the circuit in Fig. 3.84 and obtain I_{0}.

2A
Figure 3.84 For Prob. 3.38.

Chapter 3, Solution 38

Consider the circuit below with the mesh currents.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{equation*}
\mathrm{I}_{1}=-2 \mathrm{~A} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& 1\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+2\left(\mathrm{I}_{2}-\mathrm{I}_{4}\right)+9+4 \mathrm{I}_{2}=0 \\
& 7 \mathrm{I}_{2}-\mathrm{I}_{4}=-11 \tag{2}
\end{align*}
$$

$$
\begin{align*}
& -24+4 \mathrm{I}_{3}+3 \mathrm{I}_{4}+1 \mathrm{I}_{4}+2\left(\mathrm{I}_{4}-\mathrm{I}_{2}\right)+2\left(\mathrm{I}_{3}-\mathrm{I}_{1}\right)=0(\text { super mesh }) \\
& -2 \mathrm{I}_{2}+6 \mathrm{I}_{3}+6 \mathrm{I}_{4}=+24-4=20 \tag{3}
\end{align*}
$$

But, we need one more equation, so we use the constraint equation $-I_{3}+I_{4}=4$. This now gives us three equations with three unknowns.

$$
\left[\begin{array}{ccc}
7 & 0 & -1 \\
-2 & 6 & 6 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
I_{2} \\
I_{3} \\
I_{4}
\end{array}\right]=\left[\begin{array}{c}
-11 \\
20 \\
4
\end{array}\right]
$$

We can now use MATLAB to solve the problem.

$$
\begin{aligned}
& \gg \mathrm{Z}=[7,0,-1 ;-2,6,6 ; 0,-1,0] \\
& \text { Z = } \\
& 7 \quad 0 \quad-1 \\
& \begin{array}{lll}
-2 & 6 & 6
\end{array} \\
& \begin{array}{lll}
0 & -1 & 0
\end{array} \\
& \gg \mathrm{~V}=[-11,20,4]^{\prime} \\
& V= \\
& \text {-11 } \\
& 20 \\
& 4 \\
& \gg \mathrm{I}=\operatorname{inv}(\mathrm{Z}) * \mathrm{~V} \\
& \mathrm{I}= \\
& \text {-0.5500 } \\
& \text {-4.0000 } \\
& 7.1500 \\
& \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{1}-\mathrm{I}_{2}=-2-4=\underline{-6 \mathbf{A}} .
\end{aligned}
$$

Check using the super mesh (equation (3)): $1.1-24+42.9=20$!

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 39.

Determine the mesh currents i_{1} and i_{2} in the circuit shown in Fig. 3.85.

Figure 3.85

Chapter 3, Solution 39

For mesh 1,

$$
-10-2 I_{x}+10 I_{1}-6 I_{2}=0
$$

But $I_{x}=I_{1}-I_{2}$. Hence,
$10=-2 \mathrm{I}_{1}+2 \mathrm{I}_{2}+10 \mathrm{I}_{1}-6 \mathrm{I}_{2} \quad \longrightarrow \quad 5=4 \mathrm{I}_{1}-2 \mathrm{I}_{2}$
For mesh 2,
$12+8 I_{2}-6 I_{1}=0 \longrightarrow 6=3 I_{1}-4 I_{2}$
Solving (1) and (2) leads to

$$
\underline{I_{1}=0.8 \mathrm{~A}, \quad I_{2}=-0.9 \mathrm{~A}}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 40.

For the bridge network in Fig. 3.86, find $\boldsymbol{I}_{\boldsymbol{o}}$ using mesh analysis.

Figure 3.86

Chapter 3, Solution 40

Assume all currents are in mA and apply mesh analysis for mesh 1.

$$
\begin{equation*}
30=12 \mathrm{i}_{1}-6 \mathrm{i}_{2}-4 \mathrm{i}_{3} \quad \longrightarrow \quad 15=6 \mathrm{i}_{1}-3 \mathrm{i}_{2}-2 \mathrm{i}_{3} \tag{1}
\end{equation*}
$$

for mesh 2,

$$
\begin{equation*}
0=-6 \mathrm{i}_{1}+14 \mathrm{i}_{2}-2 \mathrm{i}_{3} \quad \longrightarrow 0=-3 \mathrm{i}_{1}+7 \mathrm{i}_{2}-\mathrm{i}_{3} \tag{2}
\end{equation*}
$$

for mesh 2,

$$
\begin{equation*}
0=-4 i_{1}-2 i_{2}+10 i_{3} \quad 0=-2 i_{1}-i_{2}+5 i_{3} \tag{3}
\end{equation*}
$$

Solving (1), (2), and (3), we obtain,

$$
\mathrm{i}_{\mathrm{o}}=\mathrm{i}_{1}=\underline{4.286 \mathrm{~mA}} .
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 41.

Apply mesh analysis to find $\boldsymbol{i}_{\boldsymbol{o}}$ in Fig. 3.87.

Figure 3.87

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 41

For loop 2,

$$
\begin{equation*}
-8=-2 i_{1}+7 i_{2}-i_{3} \tag{2}
\end{equation*}
$$

For loop 3,

$$
\begin{equation*}
-8+6+6 \mathrm{i}_{3}-\mathrm{i}_{2}=0 \quad \longrightarrow \quad 2=-\mathrm{i}_{2}+6 \mathrm{i}_{3} \tag{3}
\end{equation*}
$$

We put (1), (2), and (3) in matrix form,

$$
\begin{gathered}
{\left[\begin{array}{lll}
6 & -1 & 0 \\
2 & -7 & 1 \\
0 & -1 & 6
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
8 \\
2
\end{array}\right]} \\
\Delta=\left|\begin{array}{lll}
6 & -1 & 0 \\
2 & -7 & 1 \\
0 & -1 & 6
\end{array}\right|=-234, \Delta_{2}=\left|\begin{array}{lll}
6 & 3 & 0 \\
2 & 8 & 1 \\
0 & 2 & 6
\end{array}\right|=240 \\
\Delta_{3}=\left|\begin{array}{lll}
6 & -1 & 3 \\
2 & -7 & 8 \\
0 & -1 & 2
\end{array}\right|=-38
\end{gathered}
$$

At node $0, \mathrm{i}+\mathrm{i}_{2}=\mathrm{i}_{3}$ or $\mathrm{i}=\mathrm{i}_{3}-\mathrm{i}_{2}=\frac{\Delta_{3}-\Delta_{2}}{\Delta}=\frac{-38-240}{-234}=\underline{\mathbf{1 . 1 8 8 \mathbf { A }}}$
PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 42.

Determine the mesh currents in the circuit of Fig. 3.88.

Figure 3.88

Chapter 3, Solution 42

For mesh 1,

$$
\begin{equation*}
-12+50 I_{1}-30 I_{2}=0 \quad \longrightarrow \quad 12=50 I_{1}-30 I_{2} \tag{1}
\end{equation*}
$$

For mesh 2,

$$
\begin{equation*}
-8+100 I_{2}-30 I_{1}-40 I_{3}=0 \longrightarrow 8=-30 I_{1}+100 I_{2}-40 I_{3} \tag{2}
\end{equation*}
$$

For mesh 3,

$$
\begin{equation*}
-6+50 I_{3}-40 I_{2}=0 \quad \longrightarrow \quad 6=-40 I_{2}+50 I_{3} \tag{3}
\end{equation*}
$$

Putting eqs. (1) to (3) in matrix form, we get

$$
\left(\begin{array}{ccc}
50 & -30 & 0 \\
-30 & 100 & -40 \\
0 & -40 & 50
\end{array}\right)\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\left(\begin{array}{c}
12 \\
8 \\
6
\end{array}\right) \quad \longrightarrow \quad A I=B
$$

Using Matlab,

$$
I=A^{-1} B=\left(\begin{array}{l}
0.48 \\
0.40 \\
0.44
\end{array}\right)
$$

i.e. $\underline{I}_{1}=0.48 \mathrm{~A}, \underline{I}_{2}=0.4 \mathrm{~A}, \underline{I}_{\underline{3}}=0.44 \mathrm{~A}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 43.

Use mesh analysis to find $\boldsymbol{v}_{a b}$ and $\boldsymbol{i}_{\boldsymbol{o}}$ in the circuit in Fig. 3.89.

Figure 3.89
Chapter 3, Solution 43

For loop 1,

$$
\begin{equation*}
80=70 \mathrm{i}_{1}-20 \mathrm{i}_{2}-30 \mathrm{i}_{3} \quad \longrightarrow 8=7 \mathrm{i}_{1}-2 \mathrm{i}_{2}-3 \mathrm{i}_{3} \tag{1}
\end{equation*}
$$

For loop 2,

$$
\begin{equation*}
80=70 \mathrm{i}_{2}-20 \mathrm{i}_{1}-30 \mathrm{i}_{3} \quad \longrightarrow 8=-2 \mathrm{i}_{1}+7 \mathrm{i}_{2}-3 \mathrm{i}_{3} \tag{2}
\end{equation*}
$$

For loop 3,

$$
\begin{equation*}
0=-30 \mathrm{i}_{1}-30 \mathrm{i}_{2}+90 \mathrm{i}_{3} \quad \longrightarrow 0=\mathrm{i}_{1}+\mathrm{i}_{2}-3 \mathrm{i}_{3} \tag{3}
\end{equation*}
$$

Solving (1) to (3), we obtain $\mathrm{i}_{3}=16 / 9$

$$
\begin{gathered}
\mathrm{I}_{\mathrm{o}}=\mathrm{i}_{3}=16 / 9=\underline{1.7778 \mathrm{~A}} \\
\mathrm{~V}_{\mathrm{ab}}=30 \mathrm{i}_{3}=\underline{\mathbf{5 3 . 3 3 - V}} .
\end{gathered}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 44.

Use mesh analysis to obtain $\boldsymbol{i}_{\boldsymbol{o}}$ in the circuit of Fig. 3.90.

Figure 3.90

Chapter 3, Solution 446 V

Loop 1 and 2 form a supermesh. For the supermesh,

$$
\begin{equation*}
6 i_{1}+4 i_{2}-5 i_{3}+12=0 \tag{1}
\end{equation*}
$$

For loop 3,

$$
\begin{equation*}
-\mathrm{i}_{1}-4 \mathrm{i}_{2}+7 \mathrm{i}_{3}+6=0 \tag{2}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\mathrm{i}_{2}=3+\mathrm{i}_{1} \tag{3}
\end{equation*}
$$

Solving (1) to (3), $i_{1}=-3.067, i_{3}=-1.3333 ; i_{o}=i_{1}-i_{3}=\underline{\mathbf{- 1} .7333 \mathrm{~A}}$
PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 45.

Find current \boldsymbol{i} in the circuit in Fig. 3.91.

Figure 3.91

Chapter 3, Solution 45

For loop 1, $\quad 30=5 \mathrm{i}_{1}-3 \mathrm{i}_{2}-2 \mathrm{i}_{3}$
For loop 2, $\quad 10 \mathrm{i}_{2}-3 \mathrm{i}_{1}-6 \mathrm{i}_{4}=0$
For the supermesh, $\quad 6 i_{3}+14 i_{4}-2 i_{1}-6 i_{2}=0$

But $\quad i_{4}-i_{3}=4$ which leads to $i_{4}=i_{3}+4$
Solving (1) to (4) by elimination gives $\mathrm{i}=\mathrm{i}_{1}=\underline{\mathbf{8 . 5 6 1} \mathrm{A}}$.

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 46.

Calculate the mesh currents i_{1} and i_{2} in Fig. 3.92.

Figure 3.92

Chapter 3, Solution 46

For loop 1,
$-12+11 i_{1}-8 i_{2}=0 \quad \longrightarrow \quad 11 i_{1}-8 i_{2}=12$
For loop 2,
$-8 i_{1}+14 i_{2}+2 v_{o}=0$

But $v_{o}=3 i_{1}$,
$-8 i_{1}+14 i_{2}+6 i_{1}=0 \quad \longrightarrow \quad i_{1}=7 i_{2}$

Substituting (2) into (1), $77 i_{2}-8 i_{2}=12 \longrightarrow \quad i_{2}=0.1739 \mathrm{~A}$ and $i_{1}=7 i_{2}=1.217 \mathrm{~A}$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 47.

Rework Prob. 3.19 using mesh analysis.
Chapter 3, Problem 3.19
Use nodal analysis to find $\mathbf{V}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}}$, and $\mathbf{V}_{\mathbf{3}}$ in the circuit in Fig. 3.68.

Figure 3.68

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 47

First, transform the current sources as shown below.

For mesh 1,

$-20+14 I_{1}-2 I_{2}-8 I_{3}=0 \quad \longrightarrow \quad 10=7 I_{1}-I_{2}-4 I_{3}$
For mesh 2,
$12+14 I_{2}-2 I_{1}-4 I_{3}=0 \longrightarrow-6=-I_{1}+7 I_{2}-2 I_{3}$
For mesh 3,
$-6+14 I_{3}-4 I_{2}-8 I_{1}=0 \longrightarrow 3=-4 I_{1}-2 I_{2}+7 I_{3}$
Putting (1) to (3) in matrix form, we obtain
$\left(\begin{array}{ccc}7 & -1 & -4 \\ -1 & 7 & -2 \\ -4 & -2 & 7\end{array}\right)\left(\begin{array}{l}I_{1} \\ I_{2} \\ I_{3}\end{array}\right)=\left(\begin{array}{c}10 \\ -6 \\ 3\end{array}\right) \quad \longrightarrow \quad A I=B$
Using MATLAB,
$I=A^{-1} B=\left[\begin{array}{c}2 \\ 0.0333 \\ 1.8667\end{array}\right] \longrightarrow I_{1}=2.5, I_{2}=0.0333, I_{3}=1.8667$
But

$$
\begin{aligned}
& I_{1}=\frac{20-V}{4} \longrightarrow V_{1}=20-4 I_{1}=10 \mathrm{~V} \\
& V_{2}=2\left(I_{1}-I_{2}\right)=4.933 \mathrm{~V}
\end{aligned}
$$

Also,

$$
I_{2}=\frac{V_{3}-12}{8} \quad \longrightarrow \quad V_{3}=12+8 I_{2}=12.267 \mathrm{~V}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 48.

Determine the current through the $10-\mathrm{k} \Omega$ resistor in the circuit in Fig. 3.93 using mesh analysis.

Figure 3.93

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 48

We apply mesh analysis and let the mesh currents be in mA.

For mesh 1,
$-12+8+5 I_{1}-I_{2}-4 I_{4}=0 \longrightarrow 4=5 I_{1}-I_{2}-4 I_{4}$
For mesh 2,
$-8+13 I_{2}-I_{1}-10 I_{3}-2 I_{4}=0 \longrightarrow 8=-I_{1}+13 I_{2}-10 I_{3}-2 I_{4}$
For mesh 3,
$-6+15 I_{3}-10 I_{2}-5 I_{4}=0 \longrightarrow 6=-10 I_{2}+15 I_{3}-5 I_{4}$
For mesh 4,

$$
-4 I_{1}-2 I_{2}-5 I_{3}+14 I_{4}=0
$$

Putting (1) to (4) in matrix form gives

$$
\left(\begin{array}{cccc}
5 & -1 & 0 & -4 \tag{4}\\
-1 & 13 & -10 & -2 \\
0 & -10 & 15 & -5 \\
-4 & -2 & -5 & 14
\end{array}\right)\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4}
\end{array}\right)=\left(\begin{array}{l}
4 \\
8 \\
6 \\
0
\end{array}\right) \quad \longrightarrow \quad A I=B
$$

Using MATLAB,
$I=A^{-1} B=\left(\begin{array}{c}7.217 \\ 8.087 \\ 7.791 \\ 6\end{array}\right)$
The current through the $10 \mathrm{k} \Omega$ resistor is $\mathrm{I}_{0}=\mathrm{I}_{2}-\mathrm{I}_{3}=\underline{0.2957 \mathrm{~mA}}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 49.

Find $\boldsymbol{v}_{\boldsymbol{o}}$ and $\boldsymbol{i}_{\boldsymbol{o}}$ in the circuit of Fig. 3.94.

Figure 3.94

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 49

For the supermesh in figure (a),

$$
\begin{equation*}
3 \mathrm{i}_{1}+2 \mathrm{i}_{2}-3 \mathrm{i}_{3}+16=0 \tag{1}
\end{equation*}
$$

At node $0, \quad i_{2}-i_{1}=2 i_{0}$ and $i_{0}=-i_{1}$ which leads to $i_{2}=-i_{1}$
For loop 3, $\quad-i_{1}-2 i_{2}+6 i_{3}=0$ which leads to $6 i_{3}=-i_{1}$
Solving (1) to (3), $\mathrm{i}_{1}=(-32 / 3) \mathrm{A}, \mathrm{i}_{2}=(32 / 3) \mathrm{A}, \mathrm{i}_{3}=(16 / 9) \mathrm{A}$
$i_{0}=-i_{1}=\underline{10.667 \mathrm{~A}}$, from fig. (b), $\mathrm{v}_{0}=\mathrm{i}_{3}-3 \mathrm{i}_{1}=(16 / 9)+32=\underline{\mathbf{3 3 . 7 8} \mathbf{V}}$.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 50.

Use mesh analysis to find the current $\boldsymbol{i}_{\boldsymbol{o}}$ in the circuit in Fig. 3.95.

Figure 3.95

Chapter 3, Solution 50

For loop 1, $\quad 16 i_{1}-10 i_{2}-2 i_{3}=0$ which leads to $8 i_{1}-5 i_{2}-i_{3}=0$
For the supermesh, $-60+10 \mathrm{i}_{2}-10 \mathrm{i}_{1}+10 \mathrm{i}_{3}-2 \mathrm{i}_{1}=0$
or

$$
\begin{equation*}
-6 \mathrm{i}_{1}+5 \mathrm{i}_{2}+5 \mathrm{i}_{3}=30 \tag{2}
\end{equation*}
$$

Also, $3 i_{0}=i_{3}-i_{2}$ and $i_{0}=i_{1}$ which leads to $3 i_{1}=i_{3}-i_{2}$
Solving (1), (2), and (3), we obtain $\mathrm{i}_{1}=1.731$ and $\mathrm{i}_{0}=\mathrm{i}_{1}=\underline{1.731 \mathrm{~A}}$
PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 51.

Apply mesh analysis to find $\boldsymbol{v}_{\boldsymbol{o}}$ in the circuit in Fig. 3.96.

Figure 3.96

Chapter 3, Solution 51

For loop 1, $\quad \mathrm{i}_{1}=5 \mathrm{~A}$
For loop 2, $\quad-40+7 \mathrm{i}_{2}-2 \mathrm{i}_{1}-4 \mathrm{i}_{3}=0$ which leads to $50=7 \mathrm{i}_{2}-4 \mathrm{i}_{3}$
For loop 3, $\quad-20+12 \mathrm{i}_{3}-4 \mathrm{i}_{2}=0$ which leads to $5=-\mathrm{i}_{2}+3 \mathrm{i}_{3}$
Solving with (2) and (3), $\quad \mathrm{i}_{2}=10 \mathrm{~A}, \mathrm{i}_{3}=5 \mathrm{~A}$
And,

$$
\mathrm{v}_{0}=4\left(\mathrm{i}_{2}-\mathrm{i}_{3}\right)=4(10-5)=\underline{\mathbf{2 0} \mathbf{V}} .
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 52.

Use mesh analysis to find $\boldsymbol{i}_{\mathbf{1}}, \boldsymbol{i}_{\mathbf{2}}$, and $\boldsymbol{i}_{\mathbf{3}}$ in the circuit of Fig. 3.97.

Figure 3.97

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 52

For mesh 1,

$$
\begin{equation*}
2\left(i_{1}-i_{2}\right)+4\left(i_{1}-i_{3}\right)-12=0 \text { which leads to } 3 i_{1}-i_{2}-2 i_{3}=6 \tag{1}
\end{equation*}
$$

For the supermesh, $2\left(i_{2}-i_{1}\right)+8 i_{2}+2 v_{0}+4\left(i_{3}-i_{1}\right)=0$
But $\mathrm{v}_{0}=2\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)$ which leads to $-\mathrm{i}_{1}+3 \mathrm{i}_{2}+2 \mathrm{i}_{3}=0$
For the independent current source, $\mathrm{i}_{3}=3+\mathrm{i}_{2}$
Solving (1), (2), and (3), we obtain,

$$
i_{1}=\underline{3.5 \mathrm{~A}}, i_{2}=\underline{-0.5 \mathrm{~A}}, \mathrm{i}_{3}=\underline{2.5 \mathrm{~A}} .
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 53.

Find the mesh currents in the circuit of Fig. 3.98 using MATLAB.

Figure 3.98 For Prob. 3.53.

Chapter 3, Solution 53

Applying mesh analysis leads to;

$$
\begin{align*}
& -12+4 \mathrm{kI}_{1}-3 \mathrm{kI}_{2}-1 \mathrm{kI}_{3}=0 \tag{1}\\
& -3 \mathrm{kI}_{1}+7 \mathrm{kI}_{2}-4 \mathrm{kI}_{4}=0 \\
& -3 \mathrm{kI}_{1}+7 \mathrm{kI}_{2}=-12 \tag{2}\\
& -1 \mathrm{kI}_{1}+15 \mathrm{kI}_{3}-8 \mathrm{kI}_{4}-6 \mathrm{kI}_{5}=0 \\
& -1 \mathrm{kI}_{1}+15 \mathrm{kI}_{3}-6 \mathrm{k}=-24 \tag{3}\\
& \mathrm{I}_{4}=-3 \mathrm{~mA} \tag{4}\\
& -6 \mathrm{kI}_{3}-8 \mathrm{kI}_{4}+16 \mathrm{kI}_{5}=0 \\
& -6 \mathrm{kI}_{3}+16 \mathrm{kI}_{5}=-24 \tag{5}
\end{align*}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Putting these in matrix form (having substituted $\mathrm{I}_{4}=3 \mathrm{~mA}$ in the above),

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
4 & -3 & -1 & 0 \\
-3 & 7 & 0 & 0 \\
-1 & 0 & 15 & -6 \\
0 & 0 & -6 & 16
\end{array}\right] \mathrm{k}\left[\begin{array}{c}
\mathrm{I}_{1} \\
\mathrm{I}_{2} \\
\mathrm{I}_{3} \\
\mathrm{I}_{5}
\end{array}\right]=\left[\begin{array}{c}
12 \\
-12 \\
-24 \\
-24
\end{array}\right]} \\
& \mathrm{ZI}=\mathrm{V}
\end{aligned}
$$

Using MATLAB,

$$
\left.\begin{array}{l}
\gg Z=[4,-3,-1,0 ;-3,7,0,0 ;-1,0,15,-6 ; 0,0,-6,16] \\
Z= \\
4
\end{array}\right] \begin{array}{rrrr}
4 & -3 & -1 & 0 \\
-3 & 7 & 0 & 0 \\
-1 & 0 & 15 & -6 \\
0 & 0 & -6 & 16 \\
\gg V=[12,-12,-24,-24]^{\prime} \\
V= \\
12 \\
-12 \\
-24 \\
-24
\end{array}
$$

We obtain,

$$
\begin{aligned}
& \gg \mathrm{I}=\operatorname{inv}(\mathrm{Z})^{*} \mathrm{~V} \\
& \mathrm{I}= \\
& \frac{\frac{1.6196 \mathrm{~mA}}{-1.0202 \mathrm{~mA}}}{\frac{-2.461 \mathrm{~mA}}{3 \mathrm{~mA}}} \\
& \frac{-2.423 \mathrm{~mA}}{}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 54.

Find the mesh currents i_{1}, i_{2}, and i_{3} in the circuit in Fig. 3.99.

Figure 3.99

Chapter 3, Solution 54

Let the mesh currents be in mA. For mesh 1,

$$
\begin{equation*}
-12+10+2 I_{1}-I_{2}=0 \quad \longrightarrow \quad 2=2 I_{1}-I_{2} \tag{1}
\end{equation*}
$$

For mesh 2,

$$
\begin{equation*}
-10+3 I_{2}-I_{1}-I_{3}=0 \quad \longrightarrow \quad 10=-I_{1}+3 I_{2}-I_{3} \tag{2}
\end{equation*}
$$

For mesh 3,
$-12+2 I_{3}-I_{2}=0 \quad \longrightarrow \quad 12=-I_{2}+2 I_{3}$
Putting (1) to (3) in matrix form leads to

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \\
10 \\
12
\end{array}\right) \quad \longrightarrow \quad A I=B
$$

Using MATLAB,
$I=A^{-1} B=\left[\begin{array}{c}5.25 \\ 8.5 \\ 10.25\end{array}\right] \longrightarrow I_{1}=5.25 \mathrm{~mA}, I_{2}=8.5 \mathrm{~mA}, I_{3}=10.25 \mathrm{~mA}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 55.

In the circuit of Fig. 3.100, solve for $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}$, and $\boldsymbol{i}_{\mathbf{3}}$.

Figure 3.100

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 55

It is evident that $\mathrm{I}_{1}=4$
For mesh $4, \quad 12\left(\mathrm{I}_{4}-\mathrm{I}_{1}\right)+4\left(\mathrm{I}_{4}-\mathrm{I}_{3}\right)-8=0$
For the supermesh $\quad 6\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+10+2 \mathrm{I}_{3}+4\left(\mathrm{I}_{3}-\mathrm{I}_{4}\right)=0$

$$
\begin{equation*}
\text { or }-3 \mathrm{I}_{1}+3 \mathrm{I}_{2}+3 \mathrm{I}_{3}-2 \mathrm{I}_{4}=-5 \tag{3}
\end{equation*}
$$

At node $\mathrm{c}, \quad \mathrm{I}_{2}=\mathrm{I}_{3}+1$
Solving (1), (2), (3), and (4) yields, $I_{1}=4 \mathrm{~A}, \mathrm{I}_{2}=3 \mathrm{~A}, \mathrm{I}_{3}=2 \mathrm{~A}$, and $\mathrm{I}_{4}=4 \mathrm{~A}$
At node $\mathrm{b}, \quad \mathrm{i}_{1}=\mathrm{I}_{2}-\mathrm{I}_{1}=\underline{\mathbf{- 1} \mathbf{A}}$
At node $\mathrm{a}, \quad \mathrm{i}_{2}=4-\mathrm{I}_{4}=\underline{\mathbf{0 A}}$
At node $0, \quad \mathrm{i}_{3}=\mathrm{I}_{4}-\mathrm{I}_{3}=\underline{\mathbf{2} \mathbf{A}}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 56.

Determine $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$ in the circuit of Fig. 3.101.

Figure 3.101

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 56

For loop 1, $12=4 i_{1}-2 i_{2}-2 i_{3}$ which leads to $6=2 i_{1}-i_{2}-i_{3}$
For loop 2, $0=6 \mathrm{i}_{2}-2 \mathrm{i}_{1}-2 \mathrm{i}_{3}$ which leads to $0=-\mathrm{i}_{1}+3 \mathrm{i}_{2}-\mathrm{i}_{3}$
For loop 3, $0=6 i_{3}-2 i_{1}-2 i_{2}$ which leads to $0=-i_{1}-i_{2}+3 i_{3}$
In matrix form (1), (2), and (3) become,

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right]=\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right]} \\
\Delta=\left|\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right|=8, \Delta_{2}=\left|\begin{array}{ccc}
2 & 6 & -1 \\
-1 & 3 & -1 \\
-1 & 0 & 3
\end{array}\right|=24 \\
\Delta_{3}=\left|\begin{array}{ccc}
2 & -1 & 6 \\
-1 & 3 & 0 \\
-1 & -1 & 0
\end{array}\right|=24, \text { therefore } i_{2}=i_{3}=24 / 8=3 \mathrm{~A}, \\
\mathrm{v}_{1}=2 \mathrm{i}_{2}=\underline{\mathbf{6} \text { volts, }, ~}=2 \mathrm{i}_{3}=\underline{\mathbf{6} \text { volts }}
\end{gathered}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 57.

In the circuit in Fig. 3.102, find the values of R, V_{1}, and V_{2} given that $i_{o}=18 \mathrm{~mA}$.

Figure 3.102

Chapter 3, Solution 57

Assume R is in kilo-ohms.
$V_{2}=4 k \Omega \times 18 m A=\underline{72 \mathrm{~V}}, \quad V_{1}=100-V_{2}=100-72=\underline{28 \mathrm{~V}}$
Current through R is
$i_{R}=\frac{3}{3+R} i_{0}, \quad V_{1}=i_{R} R \quad \longrightarrow \quad 28=\frac{3}{3+R}(18) R$
This leads to $\mathrm{R}=84 / 26=\underline{\mathbf{3 . 2 3} \mathbf{k}} \underline{\Omega}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 58.

Find $\mathbf{i}_{1}, \boldsymbol{i}_{2}$, and \boldsymbol{i}_{3} the circuit in Fig. 3.103.

Figure 3.103

Chapter 3, Solution 58

For loop 1, $120+40 i_{1}-10 i_{2}=0$, which leads to $-12=4 i_{1}-i_{2}$
For loop 2, $50 i_{2}-10 i_{1}-10 i_{3}=0$, which leads to $-i_{1}+5 i_{2}-i_{3}=0$
For loop 3, $-120-10 i_{2}+40 i_{3}=0$, which leads to $12=-i_{2}+4 i_{3}$
Solving (1), (2), and (3), we get, $i_{1}=\underline{\mathbf{- 3}}, i_{2}=\underline{\mathbf{0}}$, and $i_{3}=\underline{\mathbf{3} \mathbf{A}}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 59.

Rework Prob. 3.30 using mesh analysis.
Chapter 3, Problem 30.
Using nodal analysis, find $\boldsymbol{v}_{\boldsymbol{o}}$ and $\boldsymbol{i}_{\boldsymbol{o}}$ in the circuit of Fig. 3.79.

Figure 3.79

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 59

For loop 1, $-100+30 i_{1}-20 i_{2}+4 v_{0}=0$, where $v_{0}=80 i_{3}$

$$
\begin{equation*}
\text { or } 5=1.5 \mathrm{i}_{1}-\mathrm{i}_{2}+16 \mathrm{i}_{3} \tag{1}
\end{equation*}
$$

For the supermesh, $60 \mathrm{i}_{2}-20 \mathrm{i}_{1}-120+80 \mathrm{i}_{3}-4 \mathrm{v}_{0}=0$, where $\mathrm{v}_{0}=80 \mathrm{i}_{3}$

$$
\begin{equation*}
\text { or } 6=-i_{1}+3 i_{2}-12 i_{3} \tag{2}
\end{equation*}
$$

Also, $2 \mathrm{I}_{0}=\mathrm{i}_{3}-\mathrm{i}_{2}$ and $\mathrm{I}_{0}=\mathrm{i}_{2}$, hence, $3 \mathrm{i}_{2}=\mathrm{i}_{3}$
From (1), (2), and (3), $\quad\left[\begin{array}{ccc}3 & -2 & 32 \\ -1 & 3 & -12 \\ 0 & 3 & -1\end{array}\right]\left[\begin{array}{l}i_{1} \\ i_{2} \\ i_{3}\end{array}\right]=\left[\begin{array}{c}10 \\ 6 \\ 0\end{array}\right]$

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
3 & -2 & 32 \\
-1 & 3 & -12 \\
0 & 3 & -1
\end{array}\right|=5, \Delta_{2}=\left|\begin{array}{ccc}
3 & 10 & 32 \\
-1 & 6 & -12 \\
0 & 0 & -1
\end{array}\right|=-28, \Delta_{3}=\left|\begin{array}{ccc}
3 & -2 & 10 \\
-1 & 3 & 6 \\
0 & 3 & 0
\end{array}\right|=-84 \\
& \mathrm{I}_{0}=\mathrm{i}_{2}=\Delta_{2} / \Delta=-28 / 5=\underline{\mathbf{- 5 . 6 ~ \mathbf { ~ A }}} \\
& \mathrm{v}_{0}=8 \mathrm{i}_{3}=(-84 / 5) 80=\underline{\mathbf{- 1 . 3 4 4} \text { kvolts }}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 60.

Calculate the power dissipated in each resistor in the circuit in Fig. 3.104.

Figure 3.104

Chapter 3, Solution 60

At node $1,\left(\mathrm{v}_{1} / 1\right)+\left(0.5 \mathrm{v}_{1} / 1\right)=\left(10-\mathrm{v}_{1}\right) / 4$, which leads to $\mathrm{v}_{1}=10 / 7$
At node $2,\left(0.5 \mathrm{v}_{1} / 1\right)+\left(\left(10-\mathrm{v}_{2}\right) / 8\right)=\mathrm{v}_{2} / 2$ which leads to $\mathrm{v}_{2}=22 / 7$

$$
\begin{aligned}
& \mathrm{P}_{1 \Omega}=\left(\mathrm{v}_{1}\right)^{2} / 1=\underline{\mathbf{2 . 0 4 1} \text { watts }}, \mathrm{P}_{2 \Omega}=\left(\mathrm{v}_{2}\right)^{2} / 2=\underline{4.939 \text { watts }} \\
& \mathrm{P}_{4 \Omega}=\left(10-\mathrm{v}_{1}\right)^{2} / 4=\underline{\mathbf{1 8 . 3 8} \text { watts, }} \mathrm{P}_{8 \Omega}=\left(10-\mathrm{v}_{2}\right)^{2} / 8=\underline{\mathbf{5 . 8 8} \text { watts }}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 61.

Calculate the current gain $\boldsymbol{i}_{o} / \mathbf{i}_{s}$ in the circuit of Fig. 3.105.

Figure 3.105

Chapter 3, Solution 61

At node $1, i_{s}=\left(v_{1} / 30\right)+\left(\left(v_{1}-v_{2}\right) / 20\right)$ which leads to $60 i_{s}=5 \mathrm{v}_{1}-3 \mathrm{v}_{2}$
But $v_{2}=-5 v_{0}$ and $v_{0}=v_{1}$ which leads to $v_{2}=-5 v_{1}$
Hence, $60 \mathrm{i}_{\mathrm{s}}=5 \mathrm{v}_{1}+15 \mathrm{v}_{1}=20 \mathrm{v}_{1}$ which leads to $\mathrm{v}_{1}=3 \mathrm{i}_{\mathrm{s}}, \mathrm{v}_{2}=-15 \mathrm{i}_{\mathrm{s}}$

$$
\mathrm{i}_{0}=\mathrm{v}_{2} / 50=-15 \mathrm{i}_{\mathrm{s}} / 50 \text { which leads to } \mathrm{i}_{0} / \mathrm{i}_{\mathrm{s}}=-15 / 50=\underline{\mathbf{0} .3}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 62.

Find the mesh currents $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}$, and \boldsymbol{i}_{3} in the network of Fig. 3.106.

Figure 3.106

Chapter 3, Solution 62

We have a supermesh. Let all R be in $\mathrm{k} \Omega$, i in mA , and v in volts.
For the supermesh, $-100+4 i_{1}+8 i_{2}+2 i_{3}+40=0$ or $30=2 i_{1}+4 i_{2}+i_{3}$
At node A, $\quad i_{1}+4=i_{2}$
At node B,

$$
\begin{equation*}
\mathrm{i}_{2}=2 \mathrm{i}_{1}+\mathrm{i}_{3} \tag{2}
\end{equation*}
$$

Solving (1), (2), and (3), we get $i_{1}=\underline{\mathbf{2 m} \mathbf{A}}, i_{2}=\underline{\mathbf{6 m} \mathbf{A}}$, and $i_{3}=\underline{\mathbf{2 m A}}$.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 63.

Find $\boldsymbol{v}_{\boldsymbol{x}}$, and $\boldsymbol{i}_{\boldsymbol{x}}$ in the circuit shown in Fig. 3.107.

Figure 3.107

Chapter 3, Solution 63

For the supermesh, $-50+10 i_{1}+5 i_{2}+4 i_{x}=0$, but $i_{x}=i_{1}$. Hence,

$$
\begin{equation*}
50=14 i_{1}+5 i_{2} \tag{1}
\end{equation*}
$$

At node $A, i_{1}+3+\left(v_{x} / 4\right)=i_{2}$, but $\mathrm{v}_{\mathrm{x}}=2\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)$, hence, $\mathrm{i}_{1}+2=\mathrm{i}_{2}$
Solving (1) and (2) gives $\mathrm{i}_{1}=2.105 \mathrm{~A}$ and $\mathrm{i}_{2}=4.105 \mathrm{~A}$

$$
v_{x}=2\left(i_{1}-i_{2}\right)=\underline{-4} \text { volts and } i_{x}=i_{2}-2=\underline{\mathbf{2 . 1 0 5}} \mathbf{~ a m p}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 64.

Find $\boldsymbol{v}_{\boldsymbol{o}}$, and $\boldsymbol{i}_{\boldsymbol{o}}$ in the circuit of Fig. 3.108.

Figure 3.108

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 64

For mesh 2, $\quad 20 i_{2}-10 i_{1}+4 i_{0}=0$
But at node $A, i_{o}=i_{1}-i_{2}$ so that (1) becomes $i_{1}=(16 / 6) i_{2}$
For the supermesh, $-100+50 \mathrm{i}_{1}+10\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)-4 \mathrm{i}_{0}+40 \mathrm{i}_{3}=0$
or

$$
\begin{equation*}
50=28 i_{1}-3 i_{2}+20 i_{3} \tag{3}
\end{equation*}
$$

At node B,

$$
\begin{equation*}
\mathrm{i}_{3}+0.2 \mathrm{v}_{0}=2+\mathrm{i}_{1} \tag{4}
\end{equation*}
$$

But, $\quad \mathrm{v}_{0}=10 \mathrm{i}_{2}$ so that (4) becomes $\mathrm{i}_{3}=2+(2 / 3) \mathrm{i}_{2}$
Solving (1) to (5), $\mathrm{i}_{2}=0.11764$,

$$
\mathrm{v}_{0}=10 \mathrm{i}_{2}=\underline{\mathbf{1 . 1 7 6 4} \text { volts }}, \quad \mathrm{i}_{0}=\mathrm{i}_{1}-\mathrm{i}_{2}=(5 / 3) \mathrm{i}_{2}=\underline{196.07 \mathrm{~mA}}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 65.

Use MATLAB to solve for the mesh currents in the circuit of Fig. 3.109.

Figure 3.109

Chapter 3, Solution 65

For mesh 1,

$$
\begin{align*}
& -12+12 \mathrm{I}_{1}-6 \mathrm{I}_{2}-\mathrm{I}_{4}=0 \text { or } \\
& 12=12 I_{1}-6 I_{2}-I_{4} \tag{1}
\end{align*}
$$

For mesh 2,

$$
\begin{equation*}
-6 \mathrm{I}_{1}+16 \mathrm{I}_{2}-8 \mathrm{I}_{3}-\mathrm{I}_{4}-\mathrm{I}_{5}=0 \tag{2}
\end{equation*}
$$

For mesh 3,

$$
\begin{align*}
& -8 \mathrm{I}_{2}+15 \mathrm{I}_{3}-\mathrm{I}_{5}-9=0 \text { or } \\
& 9=-8 \mathrm{I}_{2}+15 \mathrm{I}_{3}-\mathrm{I}_{5} \tag{3}
\end{align*}
$$

For mesh 4,

$$
\begin{align*}
& -\mathrm{I}_{1}-\mathrm{I}_{2}+7 \mathrm{I}_{4}-2 \mathrm{I}_{5}-6=0 \text { or } \\
& 6=-\mathrm{I}_{1}-\mathrm{I}_{2}+7 \mathrm{I}_{4}-2 \mathrm{I}_{5} \tag{4}
\end{align*}
$$

For mesh 5,

$$
\begin{align*}
& -\mathrm{I}_{2}-\mathrm{I}_{3}-2 \mathrm{I}_{4}+8 \mathrm{I}_{5}-10=0 \text { or } \\
& 10=-I_{2}-I_{3}-2 I_{4}+8 I_{5} \tag{5}
\end{align*}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Casting (1) to (5) in matrix form gives

$$
\left(\begin{array}{ccccc}
12 & -6 & 0 & 1 & 0 \\
-6 & 16 & -8 & -1 & -1 \\
0 & -8 & 15 & 0 & -1 \\
-1 & -1 & 0 & 7 & -2 \\
0 & -1 & -1 & -2 & 8
\end{array}\right)\left(\begin{array}{l}
\mathrm{I}_{1} \\
\mathrm{I}_{2} \\
\mathrm{I}_{3} \\
\mathrm{I}_{4} \\
\mathrm{I}_{5}
\end{array}\right)=\left(\begin{array}{c}
12 \\
0 \\
9 \\
6 \\
10
\end{array}\right) \quad \longrightarrow \quad \mathrm{AI}=\mathrm{B}
$$

Using MATLAB we input:
$\mathrm{Z}=[12,-6,0,-1,0 ;-6,16,-8,-1,-1 ; 0,-8,15,0,-1 ;-1,-1,0,7,-2 ; 0,-1,-1,-2,8]$ and $\mathrm{V}=[12 ; 0 ; 9 ; 6 ; 10]$

This leads to

$$
\begin{aligned}
& \text { >> } \mathrm{Z}=[12,-6,0,-1,0 ;-6,16,-8,-1,-1 ; 0,-8,15,0,-1 ;-1,-1,0,7,-2 ; 0,-1,-1,-2,8] \\
& \text { Z = } \\
& \begin{array}{lllll}
12 & -6 & 0 & -1 & 0
\end{array} \\
& \begin{array}{lllll}
-6 & 16 & -8 & -1 & -1
\end{array} \\
& \begin{array}{lllll}
0 & -8 & 15 & 0 & -1
\end{array} \\
& \begin{array}{lllll}
-1 & -1 & 0 & 7 & -2
\end{array} \\
& \begin{array}{lllll}
0 & -1 & -1 & -2 & 8
\end{array} \\
& \gg V=[12 ; 0 ; 9 ; 6 ; 10] \\
& \mathrm{V}= \\
& 12 \\
& 0 \\
& 9 \\
& 6 \\
& 10 \\
& \gg \mathrm{I}=\operatorname{inv}(\mathrm{Z}) * \mathrm{~V} \\
& \mathrm{I}= \\
& 2.1701 \\
& 1.9912 \\
& 1.8119 \\
& 2.0942 \\
& 2.2489
\end{aligned}
$$

Thus,

$$
\mathbf{I}=[2.17,1.9912,1.8119,2.094,2.249] \mathbf{A} .
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 66.

Write a set of mesh equations for the circuit in Fig. 3.110. Use MATLAB to determine the mesh currents.

Figure 3.110 For Prob. 3.66.

Chapter 3, Solution 66

The mesh equations are obtained as follows.

$$
-12+24+30 I_{1}-4 I_{2}-6 I_{3}-2 I_{4}=0
$$

or

$$
\begin{equation*}
30 \mathrm{I}_{1}-4 \mathrm{I}_{2}-6 \mathrm{I}_{3}-2 \mathrm{I}_{4}=-12 \tag{1}
\end{equation*}
$$

$$
-24+40-4 \mathrm{I}_{1}+30 \mathrm{I}_{2}-2 \mathrm{I}_{4}-6 \mathrm{I}_{5}=0
$$

or

$$
\begin{align*}
& -4 \mathrm{I}_{1}+30 \mathrm{I}_{2}-2 \mathrm{I}_{4}-6 \mathrm{I}_{5}=-16 \tag{2}\\
& -6 \mathrm{I}_{1}+18 \mathrm{I}_{3}-4 \mathrm{I}_{4}=30 \tag{3}\\
& -2 \mathrm{I}_{1}-2 \mathrm{I}_{2}-4 \mathrm{I}_{3}+12 \mathrm{I}_{4}-4 \mathrm{I}_{5}=0 \tag{4}\\
& -6 \mathrm{I}_{2}-4 \mathrm{I}_{4}+18 \mathrm{I}_{5}=-32 \tag{5}
\end{align*}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Putting (1) to (5) in matrix form

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
30 & -4 & -6 & -2 & 0 \\
-4 & 30 & 0 & -2 & -6 \\
-6 & 0 & 18 & -4 & 0 \\
-2 & -2 & -4 & 12 & -4 \\
0 & -6 & 0 & -4 & 18
\end{array}\right] I=\left[\begin{array}{c}
-12 \\
-16 \\
30 \\
0 \\
-32
\end{array}\right]} \\
\mathrm{ZI}=\mathrm{V}
\end{gathered}
$$

Using MATLAB,

$$
\begin{aligned}
& \gg \mathrm{Z}=[30,-4,-6,-2,0 \text {; } \\
& \text {-4,30,0,-2,-6; } \\
& \text {-6,0,18,-4,0; } \\
& -2,-2,-4,12,-4 \text {; } \\
& \text { 0,-6,0,-4,18] } \\
& \mathrm{Z}= \\
& \begin{array}{lllll}
30 & -4 & -6 & -2 & 0
\end{array} \\
& \begin{array}{lllll}
-4 & 30 & 0 & -2 & -6
\end{array} \\
& \begin{array}{lllll}
-6 & 0 & 18 & -4 & 0
\end{array} \\
& \begin{array}{lllll}
-2 & -2 & -4 & 12 & -4
\end{array} \\
& \begin{array}{lllll}
0 & -6 & 0 & -4 & 18
\end{array} \\
& \gg V=[-12,-16,30,0,-32]^{\prime} \\
& \mathrm{V}= \\
& \text {-12 } \\
& \text {-16 } \\
& 30 \\
& 0 \\
& \text {-32 } \\
& \gg \mathrm{I}=\operatorname{inv}(\mathrm{Z})^{*} \mathrm{~V} \\
& \mathrm{I}= \\
& \text { - } 0.2779 \text { A } \\
& -1.0488 \mathrm{~A} \\
& 1.4682 \mathrm{~A} \\
& -\mathbf{- 0 . 4 7 6 1 ~ A} \\
& \text {-2.2332 A }
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 67.

Obtain the node-voltage equations for the circuit in Fig. 3.111 by inspection. Then solve for V_{o}.

Figure 3.111 For Prob. 3.67.

Chapter 3, Solution 67

Consider the circuit below.

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Since we actually have four unknowns and only three equations, we need a constraint equation.

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{2}-\mathrm{V}_{3}
$$

Substituting this back into the matrix equation, the first equation becomes,

$$
0.35 \mathrm{~V}_{1}-3.25 \mathrm{~V}_{2}+3 \mathrm{~V}_{3}=-2
$$

This now results in the following matrix equation,

$$
\left[\begin{array}{ccc}
0.35 & -3.25 & 3 \\
-0.25 & 0.95 & -0.5 \\
0 & -0.5 & 0.5
\end{array}\right] \mathrm{V}=\left[\begin{array}{c}
-2 \\
0 \\
6
\end{array}\right]
$$

Now we can use MATLAB to solve for V .

$$
\begin{aligned}
& \gg Y=[0.35,-3.25,3 ;-0.25,0.95,-0.5 ; 0,-0.5,0.5] \\
& \mathrm{Y}= \\
& \begin{array}{rrr}
0.3500 & -3.2500 & 3.0000 \\
-0.2500 & 0.9500 & -0.5000 \\
& 0 & -0.5000
\end{array} \quad 0.5000 \\
& \gg \mathrm{I}=[-2,0,6]^{\prime} \\
& \mathrm{I}= \\
& \quad-2 \\
& 0 \\
& \quad 6 \\
& \gg
\end{aligned}
$$

Let us now do a quick check at node 1 .

$$
\begin{aligned}
& -3(-12)+0.1(-164.21)+0.25(-164.21+77.89)+2= \\
& +36-16.421-21.58+2=-0.001 ; \text { answer checks! }
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 68.

Find the voltage V_{o} in the circuit of Fig. 3.112.

Figure 3.112 For Prob. 3.68.

Chapter 3, Solution 68

Consider the circuit below. There are two non-reference nodes.

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\left[\begin{array}{cc}
0.125 & -0.1 \\
-0.1 & 0.19
\end{array}\right] \mathrm{V}=\left[\begin{array}{c}
+4+3 \\
-3+24 / 25
\end{array}\right]=\left[\begin{array}{c}
7 \\
-2.04
\end{array}\right]
$$

Using MATLAB, we get,

$$
\begin{aligned}
& \gg \mathrm{Y}=[0.125,-0.1 ;-0.1,0.19] \\
& Y= \\
& 0.1250-0.1000 \\
& -0.1000 \quad 0.1900 \\
& \gg \mathrm{I}=[7,-2.04]^{\prime} \\
& \text { I = } \\
& 7.0000 \\
& \text {-2.0400 } \\
& \gg \mathrm{V}=\operatorname{inv}(\mathrm{Y}) * \mathrm{I} \\
& V= \\
& 81.8909 \\
& 32.3636 \\
& \text { Thus, } \mathrm{V}_{\mathrm{o}}=\underline{\mathbf{3 2 . 3 6} \mathrm{V}} \text {. }
\end{aligned}
$$

We can perform a simple check at node V_{o},

$$
\begin{aligned}
& 3+0.1(32.36-81.89)+0.05(32.36)+0.04(32.36-24)= \\
& 3-4.953+1.618+0.3344=-0.0004 ; \text { answer checks! }
\end{aligned}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 69.

For the circuit in Fig. 3.113, write the node voltage equations by inspection.

Figure 3.113

Chapter 3, Solution 69

Assume that all conductances are in mS , all currents are in mA , and all voltages are in volts.

$$
\begin{aligned}
& \mathrm{G}_{11}=(1 / 2)+(1 / 4)+(1 / 1)=1.75, \mathrm{G}_{22}=(1 / 4)+(1 / 4)+(1 / 2)=1, \\
& \mathrm{G}_{33}=(1 / 1)+(1 / 4)=1.25, \mathrm{G}_{12}=-1 / 4=-0.25, \mathrm{G}_{13}=-1 / 1=-1, \\
& \mathrm{G}_{21}=-0.25, \mathrm{G}_{23}=-1 / 4=-0.25, \mathrm{G}_{31}=-1, \mathrm{G}_{32}=-0.25 \\
& \mathrm{i}_{1}=20, \mathrm{i}_{2}=5, \text { and } \mathrm{i}_{3}=10-5=5
\end{aligned}
$$

The node-voltage equations are:

$$
\left[\begin{array}{ccc}
1.75 & -0.25 & -1 \\
-0.25 & 1 & -0.25 \\
-1 & -0.25 & 1.25
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{2} \\
\mathrm{v}_{3}
\end{array}\right]=\left[\begin{array}{c}
20 \\
5 \\
5
\end{array}\right]
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 70.

Write the node-voltage equations by inspection and then determine values of V_{1} and V_{2} in the circuit in Fig. 3.114.

Figure 3.114 For Prob. 3.70.

Chapter 3, Solution 70

$$
\left[\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right] \mathrm{V}=\left[\begin{array}{c}
4 \mathrm{I}_{\mathrm{x}}+4 \\
-4 \mathrm{I}_{\mathrm{x}}-2
\end{array}\right]
$$

With two equations and three unknowns, we need a constraint equation,

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{x}}=2 \mathrm{~V}_{1} \text {, thus the matrix equation becomes, } \\
& {\left[\begin{array}{cc}
-5 & 0 \\
8 & 5
\end{array}\right] \mathrm{V}=\left[\begin{array}{c}
4 \\
-2
\end{array}\right]}
\end{aligned}
$$

This results in $\mathrm{V}_{1}=4 /(-5)=\mathbf{- \mathbf { 0 . 8 V }}$ and

$$
\mathrm{V}_{2}=[-8(-0.8)-2] / 5=[6.4-2] / 5=\underline{\mathbf{0 . 8 8} \mathbf{V}} .
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 71.

Write the mesh-current equations for the circuit in Fig. 3.115. Next, determine the values of $\mathrm{I}_{1}, \mathrm{I}_{2}$, and I_{3}.

Figure 3.115 For Prob. 3.71.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 71

$$
\left[\begin{array}{ccc}
9 & -4 & -5 \\
-4 & 7 & -1 \\
-5 & -1 & 9
\end{array}\right] I=\left[\begin{array}{c}
10 \\
-5 \\
0
\end{array}\right]
$$

We can now use MATLAB solve for our currents.

$$
\begin{aligned}
& \gg \mathrm{R}=[9,-4,-5 ;-4,7,-1 ;-5,-1,9] \\
& \mathrm{R}= \\
& \begin{array}{rrr}
9 & -4 & -5 \\
-4 & 7 & -1 \\
-5 & -1 & 9
\end{array} \\
& \gg \mathrm{~V}=[10,-5,0]^{\prime} \\
& \mathrm{V}= \\
& 10 \\
& -5 \\
& 0 \\
& \gg \mathrm{I}=\mathrm{inv}(\mathrm{R})^{*} \mathrm{~V} \\
& \mathrm{I}= \\
& \\
& \underline{\text { 2.085 A }} \\
& \underline{\underline{653.3} \mathbf{~ m} \mathbf{A}} \\
& \underline{\mathbf{1 . 2 3 1 2 ~ A}}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 72.

By inspection, write the mesh-current equations for the circuit in Fig. 3.116.

Figure 3.116

Chapter 3, Solution 72

$$
\mathrm{R}_{11}=5+2=7, \mathrm{R}_{22}=2+4=6, \mathrm{R}_{33}=1+4=5, \mathrm{R}_{44}=1+4=5,
$$

$$
\mathrm{R}_{12}=-2, \mathrm{R}_{13}=0=\mathrm{R}_{14}, \mathrm{R}_{21}=-2, \mathrm{R}_{23}=-4, \mathrm{R}_{24}=0, \mathrm{R}_{31}=0,
$$

$$
R_{32}=-4, R_{34}=-1, R_{41}=0=R_{42}, R_{43}=-1 \text {, we note that } R_{i j}=R_{j i} \text { for }
$$ all i not equal to j .

$\mathrm{v}_{1}=8, \mathrm{v}_{2}=4, \mathrm{v}_{3}=-10$, and $\mathrm{v}_{4}=-4$
Hence the mesh-current equations are:

$$
\left[\begin{array}{cccc}
7 & -2 & 0 & 0 \\
-2 & 6 & -4 & 0 \\
0 & -4 & 5 & -1 \\
0 & 0 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4}
\end{array}\right]=\left[\begin{array}{c}
8 \\
4 \\
-10 \\
-4
\end{array}\right]
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 73.

Write the mesh-current equations for the circuit in Fig. 3.117.

Figure 3.117

Chapter 3, Solution 73

$$
\begin{aligned}
& R_{11}=2+3+4=9, R_{22}=3+5=8, R_{33}=1+1+4=6, R_{44}=1+1=2, \\
& R_{12}=-3, R_{13}=-4, R_{14}=0, R_{23}=0, R_{24}=0, R_{34}=-1 \\
& v_{1}=6, v_{2}=4, v_{3}=2, \text { and } v_{4}=-3
\end{aligned}
$$

Hence,

$$
\left[\begin{array}{cccc}
9 & -3 & -4 & 0 \\
-3 & 8 & 0 & 0 \\
-4 & 0 & 6 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4}
\end{array}\right]=\left[\begin{array}{c}
6 \\
4 \\
2 \\
-3
\end{array}\right]
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 74.

By inspection, obtain the mesh-current equations for the circuit in Fig. 3.11.

Figure 3.118

Chapter 3, Solution 74

$$
\begin{aligned}
& R_{11}=R_{1}+R_{4}+R_{6}, R_{22}=R_{2}+R_{4}+R_{5}, R_{33}=R_{6}+R_{7}+R_{8}, \\
& R_{44}=R_{3}+R_{5}+R_{8}, R_{12}=-R_{4}, R_{13}=-R_{6}, R_{14}=0, R_{23}=0, \\
& R_{24}=-R_{5}, R_{34}=-R_{8}, \text { again, we note that } R_{i j}=R_{j i} \text { for all i not equal to } j \text {. }
\end{aligned}
$$

$$
\begin{gathered}
\text { The input voltage vector is }=\left[\begin{array}{c}
\mathrm{V}_{1} \\
-\mathrm{V}_{2} \\
\mathrm{~V}_{3} \\
-\mathrm{V}_{4}
\end{array}\right] \\
{\left[\begin{array}{cccc}
\mathrm{R}_{1}+\mathrm{R}_{4}+\mathrm{R}_{6} & -\mathrm{R}_{4} & -\mathrm{R}_{6} & 0 \\
-\mathrm{R}_{4} & \mathrm{R}_{2}+\mathrm{R}_{4}+\mathrm{R}_{5} & 0 & -\mathrm{R}_{5} \\
-\mathrm{R}_{6} & 0 & \mathrm{R}_{6}+\mathrm{R}_{7}+\mathrm{R}_{8} & -\mathrm{R}_{8} \\
0 & -\mathrm{R}_{5} & -\mathrm{R}_{8} & \mathrm{R}_{3}+\mathrm{R}_{5}+\mathrm{R}_{8}
\end{array}\right]\left[\begin{array}{c}
\mathrm{i}_{1} \\
\mathrm{i}_{2} \\
\mathrm{i}_{3} \\
\mathrm{i}_{4}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{V}_{1} \\
-\mathrm{V}_{2} \\
\mathrm{~V}_{3} \\
-\mathrm{V}_{4}
\end{array}\right]}
\end{gathered}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 75.

Use PSpice to solve Prob. 3.58.
Chapter 3, Problem 58
Find $\mathbf{i}_{1}, \boldsymbol{i}_{2}$, and \boldsymbol{i}_{3} the circuit in Fig. 3.103.

Figure 3.103

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 75

```
* Schematics Netlist *
R_R4 $N_0002 $N_0001 30
R_R2 $N-0001 $N_0003 10
R_R1 $N-0005 $N-0004 30
R_R3 $N-0003 $N-0004 10
R-R5 $N-0006 $N-0004 30
V_V4 $N-0003 0 120V
v_V3 $N-0005 $N_0001 0
v_V2 0 $N_0006 0
v_V1 0 $N_0002 0
```


Clearly, $i_{1}=\underline{-3 \mathrm{amps}}, i_{2}=\underline{0 \mathrm{amps}}$, and $i_{3}=\underline{3 \mathrm{amps}}$, which agrees with the answers in Problem 3.44.

Chapter 3, Problem 76.

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Use PSpice to solve Prob. 3.27.
Chapter 3, Problem 27
Use nodal analysis to determine voltages $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}$, and $\boldsymbol{v}_{\mathbf{3}}$ in the circuit in Fig. 3.76.

Figure 3.76

Chapter 3, Solution 76

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

* Schematics Netlist *

I_I2 0 \$N_0001 DC 4A
\$N_0002 \$N_0001 0.25
R-R3
R^{-}R2
$\mathrm{F}^{-} \mathrm{F} 1$
VF F1
R_ $\overline{\mathrm{R}} 4$
R_R6
\$N_0003 \$N_0001 1
\$N-0002 \$N-0003 1
\$N_0002 \$N-0001 VF_F1 3
\$N_0003 \$N_0004 0V

I-I1 0 \$N_0002 DC 2A
0 \$N_0002 0.5
$\begin{array}{lll}R_{-}^{-} R 5 & 0 & \$ N^{-} 0004 \\ 0.25\end{array}$

Clearly, $\mathrm{v}_{1}=\underline{\mathbf{6 2 5} \mathbf{m V o l t s}}, \mathrm{v}_{2}=\underline{\mathbf{3 7 5} \mathbf{~ m V o l t s}}$, and $\mathrm{v}_{3}=\underline{\mathbf{1 . 6 2 5} \text { volts, } \text {, which agrees with }, ~}$ the solution obtained in Problem 3.27.

Chapter 3, Problem 77.

Solve for V_{1} and V_{2} in the circuit of Fig. 3.119 using PSpice.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Figure 3.119 For Prob. 3.77.

Chapter 3, Solution 77

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

As a check we can write the nodal equations,

$$
\left[\begin{array}{cc}
1.7 & -0.2 \\
-1.2 & 1.2
\end{array}\right] \mathrm{V}=\left[\begin{array}{c}
5 \\
-2
\end{array}\right]
$$

Solving this leads to $\mathrm{V}_{1}=\underline{\mathbf{3 . 1 1 1} \mathrm{V}}$ and $\mathrm{V}_{2}=\underline{\mathbf{1 . 4 4 4 4} \mathrm{V}}$. The answer checks!

Chapter 3, Problem 78.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Solve Prob. 3.20 using PSpice.
Chapter 3, Problem 20
For the circuit in Fig. 3.69, find V_{1}, V_{2}, and V_{3} using nodal analysis.

Figure 3.69

Chapter 3, Solution 78

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The schematic is shown below. When the circuit is saved and simulated the node voltages are displaced on the pseudocomponents as shown. Thus,
$V_{1}=-3 \mathrm{~V}, \quad V_{2}=4.5 \mathrm{~V}, V_{3}=-15 \mathrm{~V}$,

Chapter 3, Problem 79.

Rework Prob. 3.28 using PSpice.
PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 28
Use MATLAB to find the voltages at nodes $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d in the circuit of Fig. 3.77.

Figure 3.77

Chapter 3, Solution 79

The schematic is shown below. When the circuit is saved and simulated, we obtain the node voltages as displaced. Thus,
$\mathrm{V}_{\mathrm{a}}=-5.278 \mathrm{~V}, \mathrm{~V}_{\mathrm{b}}=10.28 \mathrm{~V}, \mathrm{~V}_{\mathrm{c}}=0.6944 \mathrm{~V}, \mathrm{~V}_{\mathrm{d}}=-26.88 \mathrm{~V}$

Chapter 3, Problem 80.

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Find the nodal voltage $\boldsymbol{v}_{\mathbf{1}}$ through $\boldsymbol{v}_{\mathbf{4}}$ in the circuit in Fig. 3.120 using PSpice.

Figure 3.120

Chapter 3, Solution 80

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
* Schematics Netlist *
```

H_H1 \$N_OOO2 \$N_OOO3 VH_H1 6
VH_H1 0 §N_0001 $\overline{0} V$
I_II $\$ \mathrm{~N}$ _OO04 $\$ \mathrm{~N}=0005 \mathrm{DC}$ 8A
V-V1 \$N_0002 0 $\overline{2} 0 \mathrm{~V}$
R_R4 $0 \quad \overline{\$} N _00034$
R_R1 $\quad \$ N _0 \overline{0} 05$ \$N_0003 10
R_R2 $\quad \$ N_{-}^{-} 0003$ \$N_0002 12
R_R5 0 \$N_0004 - 1
R_R3 \$N_0 004 \$N_0001 2

Clearly, $\mathrm{v}_{1}=\underline{84}$ volts, $\mathrm{v}_{2}=\underline{4}$ volts, $\mathrm{v}_{3}=\underline{20}$ volts, and $\mathrm{v}_{4}=\underline{-5.333 \text { volts }}$

Chapter 3, Problem 81.

Use PSpice to solve the problem in Example 3.4
PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Example 3.4

Find the node voltages in the circuit of Fig. 3.12.

Figure 3.12

Chapter 3, Solution 81

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

 which agrees with the results of Example 3.4.

This is the netlist for this circuit.

* Schematics Netlist *

R_R1 O \$N_0001 2
R_R2 \$N_O003 \$N_0002 6
R-R3 $\quad 0$ §N_0002-4
R-R4 0 \$N-0004 1
R_R5 $\$ \mathrm{~N}$ _O 001 \$N_0004
I-I1 $\quad 0$ \$N_0003 D DC 10A
V_V1 \$N_0001 \$N_0003 20V
E_E1 \$N_0002 \$N_0004 \$N_0001 \$N_0004 3

Chapter 3, Problem 82.

If the Schematics Netlist for a network is as follows, draw the network.
PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

R_R1	1	2	2 K		
R_R2	2	0	4 K		
R_R3	2	0	8 K		
R_R4	3	4	6 K		
R_R5	1	3	3 K		
V_-VS	4	0	DC	100	
I_IS	0	1	DC	4	
I_I	1	3	VF_F1	2	
F_F1	1	0 C			
VF_F1	5	0	0 V		
E_E1	3	2	1	3	3

Chapter 3, Solution 82

This network corresponds to the Netlist.

Chapter 3, Problem 83.

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The following program is the Schematics Netlist of a particular circuit. Draw the circuit and determine the voltage at node 2 .

R_R1	1	2	20	
R_R2	2	0	50	
R_R3	2	3	70	
R_R4	3	0	30	
V_VS	1	0	20 V	
I_IS	2	0	DC	2A

Chapter 3, Solution 83

The circuit is shown below.

When the circuit is saved and simulated, we obtain $\mathrm{v}_{2}=\underline{\mathbf{1 2} .5}$ volts

Chapter 3, Problem 84.

Calculate $\boldsymbol{v}_{\boldsymbol{o}}$ and $\boldsymbol{i}_{\boldsymbol{o}}$ in the circuit of Fig. 3.121.

Figure 3.121

Chapter 3, Solution 84

From the output loop, $\mathrm{v}_{0}=50 \mathrm{i}_{0} \times 20 \times 10^{3}=10^{6} \mathrm{i}_{0}$
From the input loop, $3 \times 10^{-3}+4000 \mathrm{i}_{0}-\mathrm{v}_{0} / 100=0$
From (1) and (2) we get, $\mathrm{i}_{0}=\underline{\mathbf{0} 5 \boldsymbol{5} \boldsymbol{A} \text { and } \mathrm{v}_{0}=\underline{\mathbf{0} .5} \text { volt. }}$

Chapter 3, Problem 85.

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

An audio amplifier with resistance 9Ω supplies power to a speaker. In order that maximum power is delivered, what should be the resistance of the speaker?

Chapter 3, Solution 85

The amplifier acts as a source.

For maximum power transfer,

$$
R_{L}=R_{s}=\underline{9 \Omega}
$$

Chapter 3, Problem 86.

For the simplified transistor circuit of Fig. 3.122, calculate the voltage $\boldsymbol{v}_{\boldsymbol{o}}$.

Figure 3.122

Chapter 3, Solution 86

Let v_{1} be the potential across the 2 k -ohm resistor with plus being on top. Then,

$$
\begin{equation*}
\left[\left(0.03-\mathrm{v}_{1}\right) / 1 \mathrm{k}\right]+400 \mathrm{i}=\mathrm{v}_{1} / 2 \mathrm{k} \tag{1}
\end{equation*}
$$

Assume that i is in mA . But, $\mathrm{i}=\left(0.03-\mathrm{v}_{1}\right) / 1$
Combining (1) and (2) yields,
$\mathrm{v}_{1}=29.963 \mathrm{mVolts}$ and $\mathrm{i}=37.4 \mathrm{nA}$, therefore,
$\mathrm{v}_{0}=-5000 \times 400 \times 37.4 \times 10^{-9}=\underline{\mathbf{- 7 4 . 8} \text { mvolts }}$

Chapter 3, Problem 87.

For the circuit in Fig. 3.123, find the gain $\boldsymbol{v}_{o} / v_{s}$.
PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Figure 3.123

Chapter 3, Solution 87

$\mathrm{v}_{1}=500\left(\mathrm{v}_{\mathrm{s}}\right) /(500+2000)=\mathrm{v}_{\mathrm{s}} / 5$
$\mathrm{v}_{0}=-400\left(60 \mathrm{v}_{1}\right) /(400+2000)=-40 \mathrm{v}_{1}=-40\left(\mathrm{v}_{\mathrm{s}} / 5\right)=-8 \mathrm{v}_{\mathrm{s}}$,
Therefore, $\mathrm{v}_{0} / \mathrm{v}_{\mathrm{s}}=\underline{-8}$

Chapter 3, Problem 88.

Determine the gain $\boldsymbol{v}_{\boldsymbol{o}} / \boldsymbol{v}_{s}$ of the transistor amplifier circuit in Fig. 3.124.

Figure 3.124

Chapter 3, Solution 88

Let v_{1} be the potential at the top end of the 100 -ohm resistor.

$$
\begin{equation*}
\left(\mathrm{v}_{\mathrm{s}}-\mathrm{v}_{1}\right) / 200=\mathrm{v}_{1} / 100+\left(\mathrm{v}_{1}-10^{-3} \mathrm{v}_{0}\right) / 2000 \tag{1}
\end{equation*}
$$

For the right loop, $\mathrm{v}_{0}=-40 \mathrm{i}_{0}(10,000)=-40\left(\mathrm{v}_{1}-10^{-3}\right) 10,000 / 2000$,

$$
\begin{equation*}
\text { or, } \mathrm{v}_{0}=-200 \mathrm{v}_{1}+0.2 \mathrm{v}_{0}=-4 \times 10^{-3} \mathrm{v}_{0} \tag{2}
\end{equation*}
$$

Substituting (2) into (1) gives, $\left(\mathrm{v}_{\mathrm{s}}+0.004 \mathrm{v}_{1}\right) / 2=-0.004 \mathrm{v}_{0}+\left(-0.004 \mathrm{v}_{1}-0.001 \mathrm{v}_{0}\right) / 20$
This leads to $0.125 \mathrm{v}_{0}=10 \mathrm{v}_{\mathrm{s}}$ or $\left(\mathrm{v}_{0} / \mathrm{v}_{\mathrm{s}}\right)=10 / 0.125=\underline{\mathbf{8 0}}$

Chapter 3, Problem 89.

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

For the transistor circuit shown in Fig. 3.125, find I_{B} and V_{CE}. Let $\beta=100$ and $\mathrm{V}_{\mathrm{BE}}=$ 0.7 V .

Figure 3.125 For Prob. 3.89.

Chapter 3, Solution 89

Consider the circuit below.

For the left loop, applying KVL gives
$-3-0.7+100 \times 10^{3} I_{B}+V_{B E}=0 \quad \xrightarrow{V_{B E}=0.7} \mathrm{I}_{\mathrm{B}}=\underline{30 \mu \mathrm{~A}}$
For the right loop,
$-V_{C E}+15-I_{C}\left(1 \times 10^{3}\right)=0$
But $\quad \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}=100 \times 30 \mu \mathrm{~A}=3 \mathrm{~mA}$

$$
V_{C E}=15-3 \times 10^{-3} \times 10^{3}=\underline{12 \mathrm{~V}}
$$

Chapter 3, Problem 90.

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Calculate $\boldsymbol{v}_{\boldsymbol{s}}$ for the transistor in Fig. 3.126, given that $\boldsymbol{v}_{\boldsymbol{o}}=4 \mathrm{~V}, \beta=150, \mathrm{~V}_{B E}=0.7 \mathrm{~V}$.

Figure 3.126

Chapter 3, Solution 90

For loop 1, $-\mathrm{v}_{\mathrm{s}}+10 \mathrm{k}\left(\mathrm{I}_{\mathrm{B}}\right)+\mathrm{V}_{\mathrm{BE}}+\mathrm{I}_{\mathrm{E}}(500)=0=-\mathrm{v}_{\mathrm{s}}+0.7+10,000 \mathrm{I}_{\mathrm{B}}+500(1+\beta) \mathrm{I}_{\mathrm{B}}$ which leads to $\mathrm{v}_{\mathrm{s}}+0.7=10,000 \mathrm{I}_{\mathrm{B}}+500(151) \mathrm{I}_{\mathrm{B}}=85,500 \mathrm{I}_{\mathrm{B}}$

But, $\mathrm{V}_{0}=500 \mathrm{I}_{\mathrm{E}}=500 \times 151 \mathrm{I}_{\mathrm{B}}=4$ which leads to $\mathrm{I}_{\mathrm{B}}=5.298 \times 10^{-5}$
Therefore, $\mathrm{v}_{\mathrm{s}}=0.7+85,500 \mathrm{I}_{\mathrm{B}}=\underline{5.23 \text { volts }}$

Chapter 3, Problem 91.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

For the transistor circuit of Fig. 3.127, find $\boldsymbol{I}_{\boldsymbol{B}}, \mathbf{V}_{\boldsymbol{C E}}$, and $\boldsymbol{v}_{\boldsymbol{o}}$. Take $\beta=200, \mathrm{~V}_{B E}=0.7 \mathrm{~V}$. $5 \mathrm{k} \Omega$

Figure 3.127

Chapter 3, Solution 91

We first determine the Thevenin equivalent for the input circuit.

$$
\mathrm{R}_{\mathrm{Th}}=6| | 2=6 \mathrm{x} 2 / 8=1.5 \mathrm{k} \Omega \text { and } \mathrm{V}_{\mathrm{Th}}=2(3) /(2+6)=0.75 \text { volts }
$$

For loop 1, $-0.75+1.5 \mathrm{kI}_{\mathrm{B}}+\mathrm{V}_{\mathrm{BE}}+400 \mathrm{I}_{\mathrm{E}}=0=-0.75+0.7+1500 \mathrm{I}_{\mathrm{B}}+400(1+\beta) \mathrm{I}_{\mathrm{B}}$

$$
\begin{aligned}
\mathrm{I}_{\mathrm{B}} & =0.05 / 81,900=\underline{\mathbf{0 . 6 1 ~ \mu \mathbf { A }}} \\
\mathrm{v}_{0}=400 \mathrm{I}_{\mathrm{E}} & =400(1+\beta) \mathrm{I}_{\mathrm{B}}=\underline{\mathbf{4 9 ~ m \mathbf { ~ M }}}
\end{aligned}
$$

For loop 2, $-400 \mathrm{I}_{\mathrm{E}}-\mathrm{V}_{\mathrm{CE}}-5 \mathrm{kI}_{\mathrm{C}}+9=0$, but, $\mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}$ and $\mathrm{I}_{\mathrm{E}}=(1+\beta) \mathrm{I}_{\mathrm{B}}$

$$
\mathrm{V}_{\mathrm{CE}}=9-5 \mathrm{k} \beta \mathrm{I}_{\mathrm{B}}-400(1+\beta) \mathrm{I}_{\mathrm{B}}=9-0.659=\underline{\mathbf{8 . 6 4 1} \text { volts }}
$$

Chapter 3, Problem 92.

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Find $\boldsymbol{I}_{\boldsymbol{B}}$ and $\mathbf{V}_{\boldsymbol{C}}$ for the circuit in Fig. 3.128. Let $\beta=100, \mathrm{~V}_{B E}=0.7 \mathrm{~V}$.

Figure 3.128
Chapter 3, Solution 92

$\mathrm{I}_{1}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}=(1+\beta) \mathrm{I}_{\mathrm{B}}$ and $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{1}$
Applying KVL around the outer loop,

$$
\begin{aligned}
& 4 \mathrm{kI}_{\mathrm{E}}+\mathrm{V}_{\mathrm{BE}}+10 \mathrm{kI}_{\mathrm{B}}+5 \mathrm{kI}_{1}=12 \\
& 12-0.7=5 \mathrm{k}(1+\beta) \mathrm{I}_{\mathrm{B}}+10 \mathrm{kI}_{\mathrm{B}}+4 \mathrm{k}(1+\beta) \mathrm{I}_{\mathrm{B}}=919 \mathrm{kI}_{\mathrm{B}} \\
& \mathrm{I}_{\mathrm{B}}=11.3 / 919 \mathrm{k}=12.296 \mu \mathrm{~A}
\end{aligned}
$$

Also, $12=5 \mathrm{kI}_{1}+\mathrm{V}_{\mathrm{C}}$ which leads to $\mathrm{V}_{\mathrm{C}}=12-5 \mathrm{k}(101) \mathrm{I}_{\mathrm{B}}=\underline{\mathbf{5 . 7 9 1} \text { volts }}$

Chapter 3, Problem 93

Rework Example 3.11 with hand calculation.
PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

In the circuit in Fig. 3.34, determine the currents $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}$, and \boldsymbol{i}_{3}.

Figure 3.34

Chapter 3, Solution 93

From (b), $-\mathrm{v}_{1}+2 \mathrm{i}-3 \mathrm{v}_{0}+\mathrm{v}_{2}=0$ which leads to $\mathrm{i}=\left(\mathrm{v}_{1}+3 \mathrm{v}_{0}-\mathrm{v}_{2}\right) / 2$
At node 1 in $(a),\left(\left(24-v_{1}\right) / 4\right)=\left(v_{1} / 2\right)+\left(\left(v_{1}+3 v_{0}-v_{2}\right) / 2\right)+\left(\left(v_{1}-v_{2}\right) / 1\right)$, where $v_{0}=v_{2}$ or $24=9 \mathrm{v}_{1}$ which leads to $\mathrm{v}_{1}=\underline{\mathbf{2 . 6 6 7} \text { volts }}$

At node $2,\left(\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) / 1\right)+\left(\left(\mathrm{v}_{1}+3 \mathrm{v}_{0}-\mathrm{v}_{2}\right) / 2\right)=\left(\mathrm{v}_{2} / 8\right)+\mathrm{v}_{2} / 4, \mathrm{v}_{0}=\mathrm{v}_{2}$

$$
\mathrm{v}_{2}=4 \mathrm{v}_{1}=\underline{\mathbf{1 0} .66} \text { volts }
$$

Now we can solve for the currents, $i_{1}=v_{1} / 2=\underline{\mathbf{1 . 3 3 3 ~ A}}, i_{2}=\underline{\mathbf{1 . 3 3 3} \mathbf{A}}$, and

$$
\mathrm{i}_{3}=\underline{2.6667} \mathrm{~A} .
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

