
  

Chapter 3. Processes

 We discuss some properties of processes and then describe how process 
switching is performed by the kernel. 

 We also describe how Linux supports multithreaded applications relies on so-
called lightweight processes (LWP).

 The last two sections describe how processes can be created and destroyed. 

 References:

 Understanding Linux Kernel 2nd edition, Chapter 3 

 Linux Kernel Development 2nd edition, Chapter 3

 Intel Documentation



  

Introduction

 The process is one of the fundamental abstractions in Unix operating systems, The other 
fundamental abstraction is files.

 Processes are, however, more than just the executing program code (often called the text 
section in Unix). They also include a set of resources such as open files and pending 
signals, internal kernel data, processor state, an address space, one or more threads of 
execution, and a data section containing global variables. 

 Threads of execution, often shortened to threads, are the objects of activity within the 
process. Each thread includes a unique program counter, process stack, and set of 
processor registers. The kernel schedules individual threads, not processes. 

 In traditional Unix systems, each process consists of one thread. In modern systems, 
however, multithreaded programs—those that consist of more than one thread—are 
common. 

 Linux has a unique implementation of threads: It does not differentiate between threads 
and processes. To Linux, a thread is just a special kind of process.



  

Introduction

 On modern operating systems, processes provide two virtualizations: a virtualized 
processor and virtual memory. 

 The virtual processor gives the process the illusion that it alone monopolizes 
the system, despite possibly sharing the processor among dozens of other 
processes. 

 Virtual memory lets the process allocate and manage memory as if it alone 
owned all the memory in the system. 

 Interestingly, note that threads share the virtual memory abstraction while each 
receives its own virtualized processor.

 Two or more processes can exist that are executing the same program.

 In fact, two or more processes can exist that share various resources, such as 
open files or an address space.



  

Create a new process 

 In Linux, this occurs by means of the fork() system call, which creates a new 
process by duplicating an existing one. 

 The process that calls fork() is the parent, whereas the new process is the child.

 The parent resumes execution and the child starts execution at the same place, 
where the call returns. 

 The fork() system call returns from the kernel twice: once in the parent 
process and again in the newborn child.

 Often, immediately after a fork it is desirable to execute a new, different, program. 
The exec*() family of function calls is used to create a new address space and load 
a new program into it. 



  

Terminate and remove

 Finally, a program exits via the exit() system call. This function terminates the 
process and frees all its resources. 

 A parent process can inquire about the status of a terminated child via the wait4() 
system call, which enables a process to wait for the termination of a specific process. 

  The kernel implements the wait4() system call. Linux systems, via the C library, 
typically provide the wait(),waitpid(),wait3() , and wait4() functions. All these functions 
return status about a terminated process, albeit with slightly different semantics.

 When a process exits, it is placed into a special zombie state that is used to 
represent terminated processes until the parent calls wait() or waitpid().



  

Example code



  

The Process Family Tree

 All processes are descendents of the init process, whose PID is 1. 

 The kernel starts init in the last step of the boot process. 

 The init process, in turn, reads the system init-scripts and executes more 
programs, eventually completing the boot process.

 Every process on the system has exactly one parent. 

 Likewise, every process has zero or more children. 

 Processes that are all direct children of the same parent are called siblings. 



  

Example of pstree



  

3.1. Processes, Lightweight 
Processes, and Threads

 From the kernel's point of view, the purpose of a process is to act as an entity to 
which system resources (CPU time, memory, etc.) are allocated.

 (Traditionally) When a process is created, it is almost identical to its parent. 

 It receives a (logical) copy of the parent's address space and executes the 
same code as the parent

 they have separate copies of the data (stack and heap), so that changes by 
the child to a memory location are invisible to the parent (and vice versa).

 While earlier Unix kernels employed this simple model, modern Unix systems do 
not. 

 They support multithreaded applications user programs having many relatively 
independent execution flows sharing a large portion of the application data structures. 

 Most multithreaded applications are written using standard sets of library functions 
called pthread (POSIX thread).



  

Lightweight processes and 
threads

 Linux uses lightweight processes to offer better support for multithreaded applications. 

 Basically, two lightweight processes may share some resources, like the address 
space, the open files, and so on. Whenever one of them modifies a shared resource, the 
other immediately sees the change. 

 A straightforward way to implement multithreaded applications is to associate a 
lightweight process with each thread.

 Each thread can be scheduled independently by the kernel so that one may sleep while 
another remains runnable. 

 Examples of POSIX-compliant pthread libraries that use Linux's lightweight processes 
are LinuxThreads, Native POSIX Thread Library (NPTL), and IBM's Next Generation 
Posix Threading Package(NGPT).

 multithreaded applications represented by "thread groups": 

 basically a set of lightweight processes that act as a whole with regards to 
some system calls such as getpid( ) , kill( ) , and _exit( ).



  

3.2. Process Descriptor

 To manage processes, the kernel must have a clear picture of what each process is 
doing. 

 the process's priority, whether it is running on a CPU or blocked on an event, what 
address space has been assigned to it, which files it is allowed to address, etc

 This is the role of the process descriptor a task_struct type structure whose fields 
contain all the information related to a single process.

 The process descriptor is rather complex. 

 In addition to a large number of fields containing process attributes, the process 
descriptor contains several pointers to other data structures that, in turn, contain 
pointers to other structures. 

 Figure 3-1 describes the Linux process descriptor schematically. The six data structures on 
the right side of the figure refer to specific resources owned by the process. 

 Most of these resources will be covered in future chapters. This chapter focuses on two 
types of fields that refer to the process state and to process parent/child relationships.



  



  

3.2.1. Process State

 TASK_RUNNING: The process is either executing on a CPU or waiting to be executed.

 TASK_INTERRUPTIBLE: The process is suspended (sleeping) until some condition 
becomes true. Raising a hardware interrupt, releasing a system resource the process is 
waiting for, or delivering a signal are examples of conditions that might wake up the process 
(put its state back to TASK_RUNNING).

 TASK_UNINTERRUPTIBLE: Like TASK_INTERRUPTIBLE, except that delivering a signal 
to the sleeping process leaves its state unchanged. This process state is seldom used. 

 TASK_STOPPED: Process execution has been stopped; the process enters this state after 
receiving a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal.

 TASK_TRACED: Process execution has been stopped by a debugger. When a process is 
being monitored by another (such as when a debugger executes a ptrace( ) system call to 
monitor a test program), each signal may put the process in the TASK_TRACED state.



  

More process states

 Two additional states of the process can be stored both in the state field and in the 
exit_state field of the process descriptor; 

 as the field name suggests, a process reaches one of these two states only when its 
execution is terminated:

 EXIT_ZOMBIE: Process execution is terminated, but the parent process has not yet issued a 
wait4( ) or waitpid( ) system call to return information about the dead process.

 Before the wait( )-like call is issued, the kernel cannot discard the data contained in the 
dead process descriptor because the parent might need it. 

 EXIT_DEAD: The final state: the process is being removed by the system because the parent 
process has just issued a wait4( ) or waitpid( ) system call for it. 

 Changing its state from EXIT_ZOMBIE to EXIT_DEAD avoids race conditions due to 
other threads of execution that execute wait( )-like calls on the same process.



  



  

3.2.2. Identifying a Process

 As a general rule, each execution context that can be independently scheduled 
must have its own process descriptor; 

 therefore, even lightweight processes, which share a large portion of their 
kernel data structures, have their own task_struct structures.

 The 32-bit addresses of the task_struct structure are referred to as process 
descriptor pointers. Most of the references to processes that the kernel makes are 
through process descriptor pointers.

 On the other hand, Unix-like operating systems allow users to identify processes by 
means of a number called the Process ID (or PID), which is stored in the pid field of 
the process descriptor. 

 PIDs are numbered sequentially: the PID of a newly created process is 
normally the PID of the previously created process increased by one. 



  

Thread Groups, tgid and pid

 Linux associates a different PID with each process or lightweight process in the 
system. This approach allows the maximum flexibility, because every execution 
context in the system can be uniquely identified.

 On the other hand, Unix programmers expect threads in the same group to have 
a common PID. POSIX 1003.1c standard states that all threads of a multithreaded 
application must have the same PID.

 For instance, it should be possible to a send a signal specifying a PID that 
affects all threads in the group.

 Linux makes use of thread groups. The identifier shared by the threads is the PID of 
the thread group leader , that is, the PID of the first lightweight process in the 
group; it is stored in the tgid field of the process descriptors. 

 The getpid( ) system call returns the value of tgid relative to the current process 
instead of the value of pid, so all the threads of a multithreaded application share the 
same identifier. 

 Most processes belong to a thread group consisting of a single member; as 
thread group leaders, they have the tgid field equal to the pid field, thus the 
getpid( ) system call works as usual for this kind of process.



  

3.2.2.1. Process descriptors handling

 Process descriptors are stored in dynamic memory rather than in the memory area 
permanently assigned to the kernel. 

 For each process, Linux packs two different data structures in a single per-process 
memory area: 

 a small data structure linked to the process descriptor, namely the thread_info 
structure, 

 and the Kernel Mode process stack. 

 The length of this memory area is usually 8,192 bytes (two page frames). 

 For reasons of efficiency (avoiding fragmentation) the kernel can be configured at 
compilation time so that the memory area including stack and thread_info structure 
spans a single page frame (4,096 bytes).



  

thread_info and kernel stack



  

thread_info and kernel stack

 The esp register is the CPU stack pointer, which is used to address the stack's top 
location. 

 On 80x86 systems, the stack starts at the end and grows toward the beginning of the 
memory area. 

 Right after switching from User Mode to Kernel Mode, the kernel stack of a process is 
always empty, and therefore the esp register points to the byte immediately following the 
stack.

 The value of the esp is decreased as soon as data is written into the stack. Because the 
thread_info structure is 52 bytes long, the kernel stack can expand up to 8,140 bytes.

 The C language allows the thread_info structure and the kernel stack of a process to be 
conveniently represented by means of the following union construct:

  union thread_union { 

        struct thread_info thread_info; 

        unsigned long stack[2048]; /* 1024 for 4KB stacks */ 

    };



  

3.2.2.2. Identifying the current 
process

 benefit in terms of efficiency: the kernel can easily obtain the address of the thread_info 
structure of the process currently running on a CPU from the value of the esp register. 

 In fact, if the thread_union structure is 8 KB (2^13 bytes) long, the kernel masks out the 13 
least significant bits of esp to obtain the base address of the thread_info structure; 

 This is done by the current_thread_info( ) function.

 Most often the kernel needs the address of the process descriptor rather than the address of 
the thread_info structure. 

 To get the process descriptor pointer of the process currently running on a CPU, the kernel 
makes use of the current macro, which is essentially equivalent to 
current_thread_info( )->task :

movl $0xffffe000,%ecx /* or 0xfffff000 for 4KB stacks */ 

andl %esp,%ecx 

movl (%ecx),p

 For example, current->pid returns the process ID of the process currently running on the 
CPU.



  

3.2.2.3. Doubly linked lists

 The Linux kernel defines the list_head data structure, whose only fields next and 
prev represent the forward and back pointers of a generic doubly linked list element, 
respectively. 

 It is important to note, however, that the pointers in a list_head field store the 
addresses of other list_head fields rather than the addresses of the whole data 
structures in which the list_head structure is included; see Figure 3-3 (a).

 A new list is created by using the LIST_HEAD(list_name) macro. 

 It declares a new variable named list_name of type list_head, which is a 
dummy first element that acts as a placeholder for the head of the new list, and 
initializes the prev and next fields of the list_head data structure so as to point to 
the list_name variable itself.



  

Doubly linked lists



  

Several functions and macros 
implement the primitives

 list_add(n,p) Inserts an element pointed to by n right after the specified 
element pointed to by p. (To insert n at the beginning of the 
list, set p to the address of the list head.)

 list_add_tail(n,p) Inserts an element pointed to by n right before the specified 
element pointed to by p. (To insert n at the end of the list, 
set p to the address of the list head.)

 list_del(p) Deletes an element pointed to by p. (There is no need to  
specify the head of the list.)

 list_empty(p) Checks if the list specified by the address p of its head is
 empty.

 list_entry(p,t,m) Returns the address of the data structure of type t in which the 
list_head field that has the name m and the address  p is 
included.

 list_for_each(p,h) Scans the elements of the list specified by the address h 
of the head; in each iteration, a pointer to the list_head 
structure of the list element is returned in p.

 list_for_each_entry(p,h,m) Similar to list_for_each, but returns the address of the 
data structure embedding the list_head structure 

rather than the address of the list_head structure itself.



  

Other Linked lists data type

 The Linux kernel 2.6 sports another kind of doubly linked list, which mainly differs 
from a list_head list because it is not circular; 

 it is mainly used for hash tables, where space is important, and finding the the last 
element in constant time is not. 

 The list head is stored in an hlist_head data structure, which is simply a pointer to 
the first element in the list (NULL if the list is empty). 

 Each element is represented by an hlist_node data structure, which includes a 
pointer next to the next element, and a pointer pprev to the next field of the previous 
element. 

 Because the list is not circular, the pprev field of the first element and the next 
field of the last element are set to NULL. 

 The list can be handled by means of several helper functions and macros similar 
to those listed in Table 3-1: hlist_add_head( ), hlist_del( ), hlist_empty( ), hlist_entry, 
hlist_for_each_entry, and so on.



  

3.2.2.4. The process list 
(or task list)

 The first example of a doubly linked list we will examine is the process list, a list 
that links together all existing process descriptors. 

 Each task_struct structure includes a tasks field of type list_head whose prev and 
next fields point, respectively, to the previous and to the next task_struct element.

 The head of the process list is the init_task task_struct descriptor; it is the process 
descriptor of the so-called process 0 or swapper. 



  

The process descriptor and task list.



  

3.2.2.5. The lists of TASK_RUNNING 
processes

 When looking for a new process to run on a CPU, the kernel has to consider only the 
runnable processes.

 Earlier Linux versions put all runnable processes in the same list called runqueue. The earlier 
schedulers were compelled to scan the whole list in order to select the "best" runnable 
process, an O(n) operation.

 Linux 2.6 implements the runqueue differently. The aim is to allow the scheduler to select the 
best runnable process in constant time O(1), independently of the number of runnable 
processes. 

 The trick consists of splitting the runqueue in many lists of runnable processes, one list per 
process priority. Each task_struct descriptor includes a run_list field of type list_head. If the 
process priority is equal to k (a value ranging between 0 and 139), the run_list field links 
the process descriptor into the list of runnable processes having priority k.

  Furthermore, on a multiprocessor system, each CPU has its own runqueue, that is, its 
own set of lists of processes. 

 This is a classic example of making a data structures more complex to improve 
performance: to make scheduler operations more efficient, the runqueue list has been 
split into 140 different lists!



  

3.2.3. Relationships Among 
Processes  

 Several fields must be introduced in a process descriptor to represent relationships. 

 Processes 0 and 1 are created by the kernel; as we'll see later, process 1 (init) is 
the ancestor of all other processes.

 Table 3-3. Fields of a process descriptor used to express parenthood relationships

 real_parent : Points to the process descriptor of the process that created P or to 
the descriptor of process 1 (init) if the parent process no longer exists.

 parent : Points to the current parent of P (this is the process that must be 
signaled when the child process terminates); its value usually coincides with that 
of real_parent. 

 It may occasionally differ, such as when  another process issues a ptrace( ) 
system call requesting that it be allowed to monitor P.

 children : The head of the list containing all children created by P.

 sibling: The pointers to the next and previous  elements in the list of the sibling 
processes, those that have the same parent as P.



  

Process relationships

 Figure 3-4 illustrates the parent and sibling relationships of a group of processes. Process P0 
successively created P1, P2, and P3. Process P3, in turn, created process P4.



  

Furthermore, there exist other 
relationships among processes:

 a process can be a leader of a process group or of a login session, 

 it can be a leader of a thread group, 

 fields of the process descriptor that establish non-parenthood relationships:

 group_leader: Process descriptor pointer of the group leader of P

 signal->pgrp: PID of the group leader of P

 tgid: PID of the thread group leader of P

 signal->session: PID of the login session leader of P



  

3.2.3.1. The pidhash table and 
chained lists

 In several circumstances, the kernel must be able to derive the process descriptor 
pointer corresponding to a PID. 

 Scanning the process list sequentially and checking the pid fields of the process 
descriptors is feasible but rather inefficient. 

 To speed up the search, four hash tables have been introduced. Process descriptor 
includes fields that represent different types of PID (see Table), and each type of PID 
requires its own hash table.

 Table 3-5. The four hash tables and corresponding fields in the process descriptor

 Hash table type Field name Description

 PIDTYPE_PID pid PID of the process

 PIDTYPE_TGID tgid PID of thread group leader process

 PIDTYPE_PGID pgrp PID of the group leader process

 PIDTYPE_SID session PID of the session leader process



  

Hashing with chaining

 a hash function does not always ensure a one-to-one correspondence between PIDs 
and table indexes. Two different PIDs that hash into the same table index are said to 
be colliding.

 Linux uses chaining to handle colliding PIDs; each table entry is the head of a 
doubly linked list of colliding process descriptors. 

 Hashing with chaining is preferable to a linear transformation. It would be a 
waste of storage to define a table consisting of 32,768 entries, if, at any given 
instance, most such entries are unused.

 The data structures used in the PID hash tables are quite sophisticated, because 
they must keep track of the relationships between the processes. 



  a PID hash table with two lists. The processes having PIDs 2,890 and 29,384 hash into the 
200th element of the table, while the process having PID 29,385 hashes into the 1,466th 
element of the table.



  



  

3.2.4. How Processes Are 
Organized 

 The runqueue lists group all processes in a TASK_RUNNING state. 

 When it comes to grouping processes in other states, the various states call for 
different types of treatment, with Linux opting for one of the choices shown in the 
following list.

 Processes in a TASK_STOPPED, EXIT_ZOMBIE, or EXIT_DEAD state are not 
linked in specific lists. 

 There is no need to group processes in any of these three states, because 
stopped, zombie, and dead processes are accessed only via PID or via 
linked lists of the child processes for a particular parent.

 Processes in a TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state 
are subdivided into many classes, each of which corresponds to a specific 
event. 

 In this case, the process state does not provide enough information to 
retrieve the process quickly, so it is necessary to introduce additional lists of 
processes. These are called wait queues and are discussed next.



  

3.2.4.1. Wait queues
 Wait queues implement conditional waits on events: a process wishing to wait for a 

specific event places itself in the proper wait queue and relinquishes control. 

 Therefore, a wait queue represents a set of sleeping processes, which are woken up 
by the kernel when some condition becomes true. 

 Wait queues are implemented as doubly linked lists whose elements include pointers 
to process descriptors. 

 struct __wait_queue_head{ 

        spinlock_t lock; 

        struct list_head task_list; 

    }; 

    typedef struct __wait_queue_head wait_queue_head_t;

 Because wait queues are modified by interrupt handlers as well as by major kernel 
functions, the doubly linked lists must be protected from concurrent accesses. 



  

Wait queues
Elements of a wait queue list are of type wait_queue_t:

    struct __wait_queue { 

        unsigned int flags; 

        struct task_struct * task; 

        wait_queue_func_t func; 

        struct list_head task_list; 

       }; 

      typedef struct __wait_queue wait_queue_t;

     Each element in the wait queue list represents a sleeping process, which is 
waiting for some event to occur; its descriptor address is stored in the task field. 

     However, it is not always convenient to wake up all sleeping processes in a wait 
queue:

  "thundering herd" with which multiple processes are wakened only to race for a 
resource that can be accessed by one of them, with the result that remaining processes 
must once more be put back to sleep.



  

Exclusive and nonexclusive 
sleeping processes

 Thus, there are two kinds of sleeping processes: 

 exclusive processes (denoted by the value 1 in the flags field of the 
corresponding wait queue element) are selectively woken up by the kernel, 

 while nonexclusive processes (denoted by the value 0 in the flags field) are 
always woken up by the kernel when the event occurs. 

 A process waiting for a resource that can be granted to just one process at a time 
is a typical exclusive process. Processes waiting for an event that may concern any 
of them are nonexclusive. 



  

Symple sleep: wait_event()

 The wait_event and wait_event_interruptible macros put the calling process to 
sleep on a wait queue until a given condition is verified. 

 For instance, the wait_event(wq,condition) macro essentially yields the following 
fragment:

    DEFINE_WAIT(__wait);

    for (;;) {

        prepare_to_wait(&wq, &__wait, TASK_UNINTERRUPTIBLE);

        if (condition)

            break;

        schedule( );

    }

    finish_wait(&wq, &__wait);



  

Wake up ! 

The kernel awakens processes in the wait queues, putting them in the TASK_RUNNING 
state, by means of one of the wake_up family macros

For instance, the wake_up macro is essentially equivalent to the following code 
fragment:

    void wake_up(wait_queue_head_t *q)
    {
        struct list_head *tmp;
        wait_queue_t *curr;

        list_for_each(tmp, &q->task_list) {
            curr = list_entry(tmp, wait_queue_t, task_list);
            if (curr->func(curr, TASK_INTERRUPTIBLE|TASK_UNINTERRUPTIBLE,
                           0, NULL) && curr->flags)
                break;
        }
    }



  

3.2.5. Process Resource Limits   

 Each process has an associated set of resource limits , which specify the amount 
of system resources it can use. 

 These limits keep a user from overwhelming the system (its CPU, disk space, and 
so on). 

 The resource limits for the current process are stored in the current->signal->rlim 
field, that is, in a field of the process's signal descriptor. The field is an array of 
elements of type struct rlimit, one for each resource limit:

    struct rlimit {

        unsigned long rlim_cur;

        unsigned long rlim_max;

    };



  

Table 3-7. Resource limits

 RLIMIT_AS The maximum size of process address space, in bytes. The 
kernel checks this value when the process uses malloc( ) or a related function to 
enlarge its address space.

 RLIMIT_CORE The maximum core dump file size, in bytes. The kernel checks 
this value when a process is aborted, before creating a core file in the current 
directory of the process (see the section "Actions Performed upon Delivering a 
Signal" in Chapter 11). If the limit is 0, the kernel won't create the file.

 RLIMIT_CPU The maximum CPU time for the process, in seconds. If the 
process exceeds the limit, the kernel sends it a SIGXCPU signal, and then, if the 
process doesn't terminate, a SIGKILL signal (see Chapter 11).

 RLIMIT_DATA The maximum heap size, in bytes. The kernel checks this 
value before expanding the heap of the process (see the section "Managing the 
Heap" in Chapter 9).

 RLIMIT_FSIZE The maximum file size allowed, in bytes. If the process tries to 
enlarge a file to a size greater than this value, the kernel sends it a SIGXFSZ signal.

 RLIMIT_LOCKS Maximum number of file locks (currently, not enforced).



  

Table 3-7. Resource limits
 RLIMIT_MEMLOCK The maximum size of nonswappable memory, in bytes. The 

kernel checks this value when the process tries to lock a page frame in memory using 
the mlock( ) or mlockall( ) system calls (see the section "Allocating a Linear Address 
Interval" in Chapter 9).

 RLIMIT_MSGQUEUE Maximum number of bytes in POSIX message queues (see 
the section "POSIX Message Queues" in Chapter 19).

 RLIMIT_NOFILE The maximum number of open file descriptors . The kernel 
checks this value when opening a new file or duplicating a file descriptor (see 
Chapter 12).

 RLIMIT_NPROC The maximum number of processes that the user can own 
(see the section "The clone( ), fork( ), and vfork( ) System Calls" later in this chapter).

 RLIMIT_RSS The maximum number of page frames owned by the process 
(currently, not enforced).

 RLIMIT_SIGPENDING The maximum number of pending signals for the process 
(see Chapter 11).

 RLIMIT_STACK The maximum stack size, in bytes. The kernel checks this 
value before expanding the User Mode stack of the process (see the section "Page 
Fault Exception Handler" in Chapter 9).



  

3.3. Process Switch        

 To control the execution of processes, the kernel must be able to suspend the 
execution of the process running on the CPU and resume the execution of some 
other process previously suspended. 

 This activity goes variously by the names process switch, task switch, or context 
switch. 

 The next sections describe the elements of process switching in Linux. 



  

3.3.1. Hardware Context

 While each process can have its own address space, all processes have to share the 
CPU registers. 

 So before resuming the execution of a process, the kernel must ensure that each such 
register is loaded with the value it had when the process was suspended.

 The set of data that must be loaded into the registers before the process resumes 
its execution on the CPU is called the hardware context . 

 The hardware context is a subset of the process execution context, which includes all 
information needed for the process execution. 

 The 80x86 architecture includes a specific segment type called the Task State Segment 
(TSS), to store hardware contexts.

 In Linux, 

 a part of the hardware context of a process is stored in the process descriptor, 

 while the remaining part is saved in the Kernel Mode stack.
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hardware/software context switch

 Old versions of Linux took advantage of the hardware support offered by the 80x86 
architecture and performed a process switch through a far jmp instruction to the 
selector of the Task State Segment Descriptor of the next process. 

 But Linux 2.6 uses software to perform a process switch for the following 
reasons:

 Step-by-step switching performed through a sequence of mov instructions allows 
better control over the validity of the data being loaded. 

 The amount of time required by the old approach and the new approach is 
about the same. 

 Process switching occurs only in Kernel Mode. 

 The contents of all registers used by a process in User Mode have already been 
saved on the Kernel Mode stack before performing process switching. 

 This includes the contents of the ss and esp pair that specifies the User Mode 
stack pointer address.



  

3.3.2. Task State Segment
 Although Linux doesn't use hardware context switches, it is nonetheless forced to set up a 

TSS for each distinct CPU in the system. This is done for two main reasons:

 When an 80x86 CPU switches from User Mode to Kernel Mode, it fetches the 
address of the Kernel Mode stack from the TSS.

 When a User Mode process attempts to access an I/O port by means of an in or out 
instruction, the CPU may need to access an I/O Permission Bitmap stored in the 
TSS to verify whether the process is allowed to address the port.

 The tss_struct structure describes the format of the TSS. 

 the init_tss array stores one TSS for each CPU on the system. 

 At each process switch, the kernel updates some fields of the TSS so that the 
corresponding CPU's control unit may safely retrieve the information it needs. 

 Thus, the TSS reflects the privilege of the current process on the CPU, but there is no need 
to maintain TSSs for processes when they're not running.



  

3.3.2.1. The thread field 

 At every process switch, the hardware context of the process being replaced must be 
saved somewhere. 

 It cannot be saved on the TSS, as in the original Intel design, because Linux uses a 
single TSS for each processor, instead of one for every process.

 Thus, each process descriptor includes a field called thread of type thread_struct, 
in which the kernel saves the hardware context whenever the process is being 
switched out. 

 As we'll see later, this data structure includes fields for most of the CPU 
registers, except the general-purpose registers such as eax, ebx, etc., which are 
stored in the Kernel Mode stack. 



  

3.3.3. Performing the Process Switch

 A process switch may occur at just one well-defined point: the schedule( ) 
function, which is discussed at length in Chapter 7. Here, we are only concerned 
with how the kernel performs a process switch.

 Essentially, every process switch consists of two steps:

 Switching the Page Global Directory to install a new address space; we'll 
describe this step in Chapter 9.

 Switching the Kernel Mode stack and the hardware context, which provides 
all the information needed by the kernel to execute the new process, including 
the CPU registers. This is performed by the switch_to macro. It is one of the 
most hardware-dependent routines of the kernel.



  

steps performed by switch_to()

The switch_to macro is coded in extended inline assembly language, but we'll describe what the 
switch_to macro typically does on an 80x86 microprocessor by using standard assembly 
language:

1. Saves the values of prev and next in the eax and edx registers, respectively: 

    movl prev, %eax 
    movl next, %edx

2. Saves the contents of the eflags and ebp registers in the prev Kernel Mode stack. They 
must be saved because the compiler assumes that they will stay unchanged until the end of 
switch_to: 
    
    pushfl
    pushl %ebp

3. Saves the content of esp in prev->thread.esp so that the field points to the top of the prev 
Kernel Mode stack: 

    movl %esp,484(%eax)

The 484(%eax) operand identifies the memory cell whose address is the contents of eax plus 
484.



  

steps performed by switch_to()

4. Loads next->thread.esp in esp. From now on, the kernel operates on the Kernel Mode 
stack of next, so this instruction performs the actual process switch from prev to 
next. Because the address of a process descriptor is closely related to that of the Kernel 
Mode stack, changing the kernel stack means changing the current process: 

    movl 484(%edx), %esp

.......

7. Jumps to the _ _switch_to( ) C function (see next): 

    jmp _ _switch_to



  

The steps performed by __switch_to():

1. Executes the code yielded by the __unlazy_fpu( ) macro  to optionally save the 
contents of the FPU, MMX, and XMM registers of the prev_p process. 

    _ _unlazy_fpu(prev_p);

.......

3. Loads next_p->thread.esp0 in the esp0 field of the TSS relative to the local CPU: 

    init_tss[cpu].esp0 = next_p->thread.esp0;

........

8. Updates the I/O bitmap in the TSS, if necessary. This must be done when either 
next_p or prev_p has its own customized I/O Permission Bitmap: 

    if (prev_p->thread.io_bitmap_ptr || next_p->thread.io_bitmap_ptr) 
        handle_io_bitmap(&next_p->thread, &init_tss[cpu]);



  

3.3.4. Saving and Loading the FPU, MMX, 
and XMM Registers    

 Starting with the Intel 80486DX, the arithmetic floating-point unit (FPU) has been integrated 
into the CPU. 

 To maintain compatibility with older models, however, floating-point arithmetic functions 
are performed with ESCAPE instructions , which are instructions with a prefix byte 
ranging between 0xd8 and 0xdf. 

 These instructions act on the set of floating-point registers included in the CPU. Clearly, 
if a process is using ESCAPE instructions, the contents of the floating-point registers 
belong to its hardware context and should be saved.

 In later Pentium models, Intel introduced MMX instructions and are supposed to speed up 
the execution of multimedia applications (because they introduce a single-instruction 
multiple-data (SIMD) pipeline inside the processor)

 MMX instructions act on the floating-point registers of the FPU. 

 The obvious disadvantage of this architectural choice is that programmers cannot mix 
floating-point instructions and MMX instructions. 

 The advantage is that operating system designers can ignore the new instruction set, 
because the same facility of the task-switching code for saving the state of the floating-
point unit can also be relied upon to save the MMX state.



  

SSE & SSE2

 The Pentium III model extends that SIMD capability: it introduces the SSE 
extensions (Streaming SIMD Extensions), which adds facilities for handling floating-
point values contained in eight 128-bit registers called the XMM registers. 

 Such registers do not overlap with the FPU and MMX registers , so SSE and 
FPU/MMX instructions may be freely mixed. 

 The Pentium 4 model introduces yet another feature: the SSE2 extensions, which is 
basically an extension of SSE supporting higher-precision floating-point values. SSE2 
uses the same set of XMM registers as SSE.



  

Hardware support for handling 
the special registers

 The 80x86 microprocessors do not automatically save the FPU, MMX, and XMM 
registers in the TSS. 

 However, they include some hardware support that enables kernels to save these 
registers only when needed. The hardware support consists of a TS (Task-Switching) 
flag in the cr0 register, which obeys the following rules:

 Every time a hardware context switch is performed, the TS flag is set.

 Every time an ESCAPE, MMX, SSE, or SSE2 instruction is executed when the TS 
flag is set, the control unit raises a "Device not available " exception (see Chapter 4).

 The TS flag allows the kernel to save and restore the FPU, MMX, and XMM registers 
only when really needed. 



  

Saving x87 fpu, mmx, sse* during 
task switch



  

3.4. Creating Processes
 Unix operating systems rely heavily on process creation to satisfy user requests. For 

example, the shell creates a new process that executes another copy of the shell whenever 
the user enters a command.

 Traditional Unix systems treat all processes in the same way: resources owned by the 
parent process are duplicated in the child process. This approach makes process 
creation very slow and inefficient. 

 In many cases, the child issues an immediate execve( ) and wipes out the address space 
that was so carefully copied.

 Modern Unix kernels solve this problem by introducing three different mechanisms:

 The Copy On Write technique allows both the parent and the child to read the same 
physical pages. Whenever either one tries to write on a physical page, the kernel copies 
its contents into a new physical page that is assigned to the writing process. 

 Lightweight processes allow both the parent and the child to share many per-process 
kernel data structures, such as the paging tables, the open file tables, and the signal 
dispositions.

 The vfork( ) system call creates a process that shares the memory address space of its 
parent. To prevent the parent from overwriting data needed by the child, the parent's 
execution is blocked until the child exits or executes a new program. 



  

3.4.1. The clone( ), fork( ), and 
vfork( ) System Calls            

 Lightweight processes are created in Linux by using a function named clone( ), which uses the 
following parameters:

 fn: Specifies a function to be executed by the new process; when the function returns, the child 
terminates. The function returns an integer, which represents the exit code for the child 
process.

 arg: Points to data passed to the fn( ) function.

 flags: The low byte specifies the signal number to be sent to the parent process when the child 
terminates; the SIGCHLD signal is generally selected. The remaining three bytes encode a 
group of clone flags.

 child_stack: Specifies the User Mode stack pointer to be assigned to the esp register of the 
child process. The invoking process (the parent) should always allocate a new stack for the 
child.

 tls: Specifies the address of a data structure that defines a Thread Local Storage segment for 
the new lightweight process.

 ptid: Specifies the address of a User Mode variable of the parent process that will hold the PID 
of the new lightweight process.

 ctid: Specifies the address of a User Mode variable of the new lightweight process that will 
hold the PID of such process.



  

Table 3-8. Clone flags

 CLONE_VM: Shares the memory descriptor and all Page Tables (see Chapter 9).

 CLONE_FS: Shares the table that identifies the root directory and the current working directory, 
as well as the value of the bitmask used to mask the initial file permissions of a new file (the so-
called file umask ).

 CLONE_FILES: Shares the table that identifies the open files (see Chapter 12).

 CLONE_SIGHAND: Shares the tables that identify the signal handlers and the blocked and 
pending signals (see Chapter 11). If this flag is true, the CLONE_VM flag must also be set.

 CLONE_PTRACE: If traced, the parent wants the child to be traced too. Furthermore, the 
debugger may want to trace the child on its own; in this case, the kernel forces the flag to 1.

 CLONE_VFORK: Set when the system call issued is a vfork( ) (see later in this section).

 CLONE_PARENT: Sets the parent of the child (parent and real_parent fields in the process 
descriptor) to the parent of the calling process.

 CLONE_THREAD: Inserts the child into the same thread group of the parent, and forces the 
child to share the signal descriptor of the parent. The child's tgid and group_leader fields are set 
accordingly. If this flag is true, the CLONE_SIGHAND flag must also be set.



  

Linux implements fork() and 
vfork() with clone()

 The fork(), vfork(), and __clone() library calls all invoke the clone() system call with 
the requisite flags. The clone() system call, in turn, calls do_fork().

 The traditional fork( ) system call is implemented by Linux as a clone( ) system 
call whose flags parameter specifies both a SIGCHLD signal and all the clone flags 
cleared, and whose child_stack parameter is the current parent stack pointer. 

 Therefore, the parent and child temporarily share the same User Mode stack. But 
thanks to the Copy On Write mechanism, they usually get separate copies of 
the User Mode stack as soon as one tries to change the stack.

 The vfork( ) system call, introduced in the previous section, is implemented by Linux 
as a clone( ) system call whose flags parameter specifies both a SIGCHLD signal 
and the flags CLONE_VM and CLONE_VFORK, and whose child_stack parameter is 
equal to the current parent stack pointer.



  

3.4.1.1. The do_fork( ) function  

 Here are the main steps performed by do_fork( ):

 Allocates a new PID for the child.

 Invokes copy_process() to make a copy of the process descriptor. If all needed 
resources are available, this function returns the address of the task_struct descriptor 
just created. 

 If the CLONE_VFORK flag is specified, it inserts the parent process in a wait queue and 
suspends it until the child releases its memory address space (that is, until the child either 
terminates or executes a new program).



  

3.4.1.2. The copy_process( ) function  
         

 The copy_process( ) function sets up the process descriptor and any other kernel data 
structure required for a child's execution. 

 Its parameters are the same as do_fork( ), plus the PID of the child. Here is a description 
of its most significant steps:

 Sanity checks (CLONE_* flags combinations)

 Invokes dup_task_struct( ) to get the process descriptor for the child.

 Checks whether the value stored in current->signal->rlim[RLIMIT_NPROC].rlim_cur is 
smaller than or equal to the current number of processes owned by the user. If so, an 
error code is returned, unless the process has root privileges

 Checks that the number of processes in the system (stored in the nr_threads 
variable) does not exceed the value of the max_threads variable. 

 The default value of this variable depends on the amount of RAM in the system. 
The general rule is that the space taken by all thread_info descriptors and Kernel 
Mode stacks cannot exceed 1/8 of the physical memory. 

 However, the system administrator may change this value by writing in the 
/proc/sys/kernel/threads-max file.



  

copy_process( )

 Invokes copy_semundo( ), copy_files( ), copy_fs( ), copy_sighand( ), copy_signal( ), 
copy_mm( ), and copy_namespace( ) to create new data structures and copy into them 
the values of the corresponding parent process data structures, unless specified 
differently by the clone_flags parameter.

 Invokes copy_thread( ) to initialize the Kernel Mode stack of the child process with the 
values contained in the CPU registers when the clone( ) system call was issued. 

 However, the function forces the value 0 into the field corresponding to the eax register 
(this is the child's return value of the clone( ) system call). 

 The thread.esp field in the descriptor of the child process is initialized with the base 
address of the child's Kernel Mode stack, and the address of an assembly language 
function (ret_from_fork( )) is stored in the thread.eip field. 

 If the parent process makes use of an I/O Permission Bitmap, the child gets a copy 
of such bitmap. Finally, if the CLONE_SETTLS flag is set, the child gets the TLS 
segment specified by the User Mode data structure pointed to by the tls parameter of 
the clone( ) system call.



  

copy_process( )

 Initializes the tsk->exit_signal field with the signal number encoded in the low bits of the 
clone_flags parameter, unless the CLONE_THREAD flag is set, in which case initializes 
the field to -1. 

 only the death of the last member of a thread group (usually, the thread group 
leader) causes a signal notifying the parent of the thread group leader.

 Invokes sched_fork( ) to complete the initialization of the scheduler data structure of the 
new process. The function also sets the state of the new process to TASK_RUNNING. 

 in order to keep process scheduling fair, the function shares the remaining 
timeslice of the parent between the parent and the child.

 Initializes the fields that specify the parenthood relationships. 



  

Let's go back to what happens after 
do_fork() terminates

 Now we have a complete child process in the runnable state. But it isn't actually 
running. It is up to the scheduler to decide when to give the CPU to this child. 

 At some future process switch, the schedule bestows this favor on the child process 
by loading a few CPU registers with the values of the thread field of the child's 
process descriptor. 

 The new process then starts its execution right at the end of the fork( ), vfork( ), or 
clone( ) system call. 

  The child process executes the same code as the parent, except that the fork returns 
a 0. The developer of the application can exploit this fact, in a manner familiar to Unix 
programmers, by inserting a conditional statement in the program based on the PID 
value that forces the child to behave differently from the parent process.
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