Chapter 3. Processes

= We discuss some properties of processes and then describe how process
switching is performed by the kernel.

= We also describe how Linux supports multithreaded applications relies on so-
called lightweight processes (LWP).

= The last two sections describe how processes can be created and destroyed.

= References:

= Understanding Linux Kernel 2" edition, Chapter 3
= Linux Kernel Development 2™ edition, Chapter 3

= |ntel Documentation

Introduction

The process is one of the fundamental abstractions in Unix operating systems, The other
fundamental abstraction is files.

Processes are, however, more than just the executing program code (often called the text
section in Unix). They also include a set of resources such as open files and pending
signals, internal kernel data, processor state, an address space, one or more threads of
execution, and a data section containing global variables.

Threads of execution, often shortened to threads, are the objects of activity within the
process. Each thread includes a unique program counter, process stack, and set of
processor registers. The kernel schedules individual threads, not processes.

In traditional Unix systems, each process consists of one thread. In modern systems,
however, multithreaded programs—those that consist of more than one thread—are
common.

Linux has a unique implementation of threads: It does not differentiate between threads
and processes. To Linux, a thread is just a special kind of process.

Introduction

= On modern operating systems, processes provide two virtualizations: a virtualized
processor and virtual memory.

= The virtual processor gives the process the illusion that it alone monopolizes
the system, despite possibly sharing the processor among dozens of other
processes.

= Virtual memory lets the process allocate and manage memory as if it alone
owned all the memory in the system.

= |nterestingly, note that threads share the virtual memory abstraction while each
receives its own virtualized processor.

= Two or more processes can exist that are executing the same program.

= In fact, two or more processes can exist that share various resources, such as
open files or an address space.

Create a new process

In Linux, this occurs by means of the fork() system call, which creates a new
process by duplicating an existing one.

The process that calls fork() is the parent, whereas the new process is the child.

The parent resumes execution and the child starts execution at the same place,
where the call returns.

The fork() system call returns from the kernel twice: once in the parent
process and again in the newborn child.

Often, immediately after a fork it is desirable to execute a new, different, program.
The exec* () family of function calls is used to create a new address space and load
a new program into it.

Terminate and remove

Finally, a program exits via the exit() system call. This function terminates the
process and frees all its resources.

A parent process can inquire about the status of a terminated child via the wait4()
system call, which enables a process to wait for the termination of a specific process.

The kernel implements the wait4() system call. Linux systems, via the C library,
typically provide the wait(),waitpid(),wait3() , and wait4() functions. All these functions
return status about a terminated process, albeit with slightly different semantics.

When a process exits, it is placed into a special zombie state that is used to
represent terminated processes until the parent calls wait() or waitpid().

Example code

/* example fork exec together */
void main() {
int pid;

pid = fork();

/* child executing 1ls program */
if (pid == 0) {

execl("/bin/1s", "1ls", "-1", (char *)0);
¥

/* parent waits for child to finish */
if (pid > 0)
wait((int *)0);

The Process Family Tree

All processes are descendents of the 1nit process, whose PID is 1.

The kernel starts init in the last step of the boot process.

The init process, in turn, reads the system init-scripts and executes more
programs, eventually completing the boot process.

Every process on the system has exactly one parent.

Likewise, every process has zero or more children.

Processes that are all direct children of the same parent are called siblings.

Example of pstree

G =l =l Tl TRl TRl Rl TRl W 1 I

root@zetabook: fhome/matiasz

v ‘ ’} _...- sun Mar 2t

File Edit \iew Terminal Tabs Help

matiasz@zetabook: fusr/srcflinux-2.6/arch/xB86finclude/asm ¥ root@zetabook: fhomefmatiasz ¥ root@zetabook: fhome/matiasz

rootdzetabook: fhome! mtiasz# pstree
init——acpid

I—ama rokapy ruby

|:’—IZE"[{Enrra rokappl]
—atd
—awahi - daemon—avahi - daemon
—bluetoothd
—bonobo-activati—-{bonobo-activati}
Ichipearddd—chipearddd
econsole-kit-dae—6&3*[{console-kit-dae}]
—cpufreq-applet
—cran
—cupsd

—2*[dbus - daeman]
Hdbus -Launch

dcopserver
—dhclient
—ewolution-data-—2*[{evolution-data-}]1
geanfd-2
—gdm—gdm—EHorg
X - SESSL10N - MEna evolution-alarm—-I{evolution-alarmt
gnome -keyring-d
gnome - panel
metacity
nautilus
pythen b‘
seahorse-agent
update-notifier
icd-client
{x-session-managh
e [getty]

I—gnome - keyboard-
—gnome-keyring-d
—gnome - power - man—~e* [{ gnome - power - man} 1
|-grome - screensav
-gnome -settings-—I{gnome - settings-}
I—gnome - term.nal—bhash—su—bash—su—~hash
bash—su—-bash—pstres
bash—su—bhbash—ui
gnome - pty - helpe
{gnome - terminal}
Hgwfs-fuse-daesme—A4*[{gvfs- fuse-daemal 1
—gwfs-gphote2-vo
gwfs-hal-walume
gufsd
gwfsd-burn
gwfsd-http
gwfsd-trash
I—hald—hald- runner—hald-adden-acpL
hald-addon - cpuf
hald-addon-dell
hald-adden-inpu
hald-adden-ster
hded
Fhdeirit—rkin file
—Ek'l.auncher
Hklagd
Hld-Tinux.sa. 2
—libvirtd—dnsmasq

-mixer_appletz—I{mixer_applet2}
-multiload-apple
LAY LA

3.1. Processes, Lightweight

Processes, and Threads

From the kernel's point of view, the purpose of a process is to act as an entity to
which system resources (CPU time, memory, etc.) are allocated.

(Traditionally) When a process is created, it is almost identical to its parent.

= |t receives a (logical) copy of the parent's address space and executes the
same code as the parent

= they have separate copies of the data (stack and heap), so that changes by
the child to a memory location are invisible to the parent (and vice versa).

While earlier Unix kernels employed this simple model, modern Unix systems do
not.

They support multithreaded applications user programs having many relatively
independent execution flows sharing a large portion of the application data structures.

Most multithreaded applications are written using standard sets of library functions
called pthread (POSIX thread).

Lightweight processes and

threads

Linux uses lightweight processes to offer better support for multithreaded applications.

Basically, two lightweight processes may share some resources, like the address
space, the open files, and so on. Whenever one of them modifies a shared resource, the
other immediately sees the change.

A straightforward way to implement multithreaded applications is to associate a
lightweight process with each thread.

Each thread can be scheduled independently by the kernel so that one may sleep while
another remains runnable.

Examples of POSIX-compliant pthread libraries that use Linux's lightweight processes
are LinuxThreads, Native POSIX Thread Library (NPTL), and IBM's Next Generation
Posix Threading Package(NGPT).

multithreaded applications represented by "thread groups™:

= basically a set of lightweight processes that act as a whole with regards to
some system calls such as getpid(), kill() , and _exit().

3.2. Process Descriptor

To manage processes, the kernel must have a clear picture of what each process is
doing.

= the process's priority, whether it is running on a CPU or blocked on an event, what
address space has been assigned to it, which files it is allowed to address, etc

This is the role of the process descriptor a task_struct type structure whose fields
contain all the information related to a single process.

The process descriptor is rather complex.

= |n addition to a large number of fields containing process attributes, the process
descriptor contains several pointers to other data structures that, in turn, contain
pointers to other structures.

Figure 3-1 describes the Linux process descriptor schematically. The six data structures on
the right side of the figure refer to specific resources owned by the process.

Most of these resources will be covered in future chapters. This chapter focuses on two
types of fields that refer to the process state and to process parent/child relationships.

task_struct

tate thread_info
th‘ﬂd_iﬂfﬂ T ST I T I Tr r T . -
usage Low-level information
for the process
ags
mm_struct
. s P 4 1
run_list i, . » Fointers to memary
i S areadescriptors
tasks : I
......... + E
mim :
tty_struct
T .
[Eﬂ|_|:|i fEﬂI [ETETEPRTe -3 ”'}I- Hﬁﬂf.':ﬂ?fd wﬂh EhE' pfﬂ{ﬂi
parent | -
fs_struct
B e
'['[:u' S [’unrm‘dfmrmry
files_struct
L gleereiet > —
thread : =i Ppinters fo filg
P e dlescriptors
i N |
fs i
I Eem e —————————— E)
fles signal_struct
a
S-II]ﬂ-H| e e Sjgnﬂfs recefved
pending

3.2.1. Process State

TASK_RUNNING: The process is either executing on a CPU or waiting to be executed.

TASK_INTERRUPTIBLE: The process is suspended (sleeping) until some condition
becomes true. Raising a hardware interrupt, releasing a system resource the process is

waiting for, or delivering a signal are examples of conditions that might wake up the process
(put its state back to TASK_RUNNING).

TASK_UNINTERRUPTIBLE: Like TASK INTERRUPTIBLE, except that delivering a signal
to the sleeping process leaves its state unchanged. This process state is seldom used.

TASK_STOPPED: Process execution has been stopped; the process enters this state after
receiving a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal.

TASK_TRACED: Process execution has been stopped by a debugger. When a process is
being monitored by another (such as when a debugger executes a ptrace() system call to
monitor a test program), each signal may put the process in the TASK _TRACED state.

More process states

Two additional states of the process can be stored both in the state field and in the
exit_state field of the process descriptor;

as the field name suggests, a process reaches one of these two states only when its
execution is terminated:

EXIT_ZOMBIE: Process execution is terminated, but the parent process has not yet issued a
wait4() or waitpid() system call to return information about the dead process.

= Before the wait()-like call is issued, the kernel cannot discard the data contained in the
dead process descriptor because the parent might need it.

EXIT_DEAD: The final state: the process is being removed by the system because the parent
process has just issued a wait4() or waitpid() system call for it.

= Changing its state from EXIT_ZOMBIE to EXIT_DEAD avoids race conditions due to
other threads of execution that execute wait()-like calls on the same process.

existing task calls
fork{) and creates
a new process

schedular dispatchas task to run:
schedule{) calls cantext_switch()
task forks /// \\ lask exils via do_exit()

TASK_RUNNING

(ready but
not running)

TASK_RUNNING

task is preempted
by higher priorty task

TASK_INTERRUPTIBLE
ar

TASK _UNINTERRUPTIBLE

(waiting)

ewant occurs and task is woken up
and placed back on the run queue

task sleeps on wait queus
for a specilic event

3.2.2. ldentifying a Process

As a general rule, each execution context that can be independently scheduled
must have its own process descriptor;

= therefore, even lightweight processes, which share a large portion of their
kernel data structures, have their own task_struct structures.

The 32-bit addresses of the task_struct structure are referred to as process
descriptor pointers. Most of the references to processes that the kernel makes are
through process descriptor pointers.

On the other hand, Unix-like operating systems allow users to identify processes by
means of a number called the Process ID (or PID), which is stored in the pid field of
the process descriptor.

= PIDs are numbered sequentially: the PID of a newly created process is
normally the PID of the previously created process increased by one.

Thread Groups, tgid and pid

Linux associates a different PID with each process or lightweight process in the
system. This approach allows the maximum flexibility, because every execution
context in the system can be uniquely identified.

On the other hand, Unix programmers expect threads in the same group to have
a common PID. POSIX 1003.1¢c standard states that all threads of a multithreaded
application must have the same PID.

= For instance, it should be possible to a send a signal specifying a PID that
affects all threads in the group.

Linux makes use of thread groups. The identifier shared by the threads is the PID of
the thread group leader , that is, the PID of the first lightweight process in the
group; it is stored in the tgid field of the process descriptors.

The getpid() system call returns the value of tgid relative to the current process
instead of the value of pid, so all the threads of a multithreaded application share the
same identifier.

= Most processes belong to a thread group consisting of a single member; as
thread group leaders, they have the tgid field equal to the pid field, thus the
getpid() system call works as usual for this kind of process.

3.2.2.1. Process descriptors handling

= Process descriptors are stored in dynamic memory rather than in the memory area
permanently assigned to the kernel.

= For each process, Linux packs two different data structures in a single per-process
memory area:

= a small data structure linked to the process descriptor, namely the thread_info
structure,

= and the Kernel Mode process stack.

= The length of this memory area is usually 8,192 bytes (two page frames).

= For reasons of efficiency (avoiding fragmentation) the kernel can be configured at
compilation time so that the memory area including stack and thread_info structure
spans a single page frame (4,096 bytes).

thread _info and kernel stack

1S
00151000 |
001562878 |

[hma[!:-l.r:l.l:?-.#.ﬁ'.'-.ﬁd}

(01512034

(w1 542000

. '.-I, S

thread _info and kernel stack

= The esp register is the CPU stack pointer, which is used to address the stack's top
location.

= On 80x86 systems, the stack starts at the end and grows toward the beginning of the
memory area.

= Right after switching from User Mode to Kernel Mode, the kernel stack of a process is
always empty, and therefore the esp register points to the byte immediately following the
stack.

= The value of the esp is decreased as soon as data is written into the stack. Because the
thread_info structure is 52 bytes long, the kernel stack can expand up to 8,140 bytes.

= The C language allows the thread_info structure and the kernel stack of a process to be
conveniently represented by means of the following union construct:

union thread_union {
struct thread_info thread_info;

unsigned long stack[2048]; /* 1024 for 4KB stacks */

3.2.2.2. Identifying the current

process

benefit in terms of efficiency: the kernel can easily obtain the address of the thread_info
structure of the process currently running on a CPU from the value of the esp register.

In fact, if the thread_union structure is 8 KB (213 bytes) long, the kernel masks out the 13
least significant bits of esp to obtain the base address of the thread_info structure;

= This is done by the current_thread_info() function.

Most often the kernel needs the address of the process descriptor rather than the address of
the thread_info structure.

To get the process descriptor pointer of the process currently running on a CPU, the kernel
makes use of the current macro, which is essentially equivalent to
current_thread_info()->task :

mov! $0xffffe000,%ecx /* or 0xfffff000 for 4KB stacks */
andl %esp,%ecx
movl (%ecx),p

For example, current->pid returns the process ID of the process currently running on the
CPU.

3.2.2.3. Doubly linked lists

= The Linux kernel defines the list_head data structure, whose only fields next and
prev represent the forward and back pointers of a generic doubly linked list element,
respectively.

= |t is important to note, however, that the pointers in a list_head field store the
addresses of other list_head fields rather than the addresses of the whole data
structures in which the list_head structure is included; see Figure 3-3 (a).

= A new list is created by using the LIST_HEAD(list_ name) macro.

= |t declares a new variable named list_name of type list_head, which is a
dummy first element that acts as a placeholder for the head of the new list, and
initializes the prev and next fields of the list_head data structure so as to point to
the list_name variable itself.

Doubly linked lists

data structure 1 data structure 2 data structure 3
v list_head list_head list_head
]
list head —» next — ‘ > next — ‘ » next
next L J "‘=— prev prev. prev
prev
|
{a} adoubly linked listed with three elements
list head
(b) an empty doubly linked list next —

——— prev i

Several functions and macros

iImplement the primitives

list_add(n,p)

list_add_tail(n,p)

list_del(p)

list_empty(p)

list_entry(p,t,m)

list_for_each(p,h)

Inserts an element pointed to by n right after the specified
element pointed to by p. (To insert n at the beginning of the
list, set p to the address of the list head.)

Inserts an element pointed to by n right before the specified
element pointed to by p. (To insert n at the end of the list,
set p to the address of the list head.)

Deletes an element pointed to by p. (There is no need to
specify the head of the list.)

Checks if the list specified by the address p of its head is
empty.

Returns the address of the data structure of type t in which the
list_head field that has the name m and the address p is
included.

Scans the elements of the list specified by the address h
of the head; in each iteration, a pointer to the list _head
structure of the list element is returned in p.

list for_each_entry(p,h,m) Similar to list for _each, but returns the address of the

data structure embedding the list head structure
rather than the address of the list_head structure itself.

Other Linked lists data type

The Linux kernel 2.6 sports another kind of doubly linked list, which mainly differs
from a list_head list because it is not circular;

it is mainly used for hash tables, where space is important, and finding the the last
element in constant time is not.

The list head is stored in an hlist_head data structure, which is simply a pointer to
the first element in the list (NULL if the list is empty).

Each element is represented by an hlist_node data structure, which includes a
pointer next to the next element, and a pointer pprev to the next field of the previous
element.

Because the list is not circular, the pprev field of the first element and the next
field of the last element are set to NULL.

The list can be handled by means of several helper functions and macros similar
to those listed in Table 3-1: hlist_ add_head(), hlist_del(), hlist_empty(), hlist_entry,
hlist_for_each_entry, and so on.

3.2.2.4. The process list

or task list

The first example of a doubly linked list we will examine is the process list, a list
that links together all existing process descriptors.

Each task_struct structure includes a tasks field of type list_ head whose prev and
next fields point, respectively, to the previous and to the next task_struct element.

The head of the process list is the init_task task_struct descriptor; it is the process
descriptor of the so-called process 0 or swapper.

SUULL L3R _SLi ULl

struct task_struct

struct task_struct

struct task_struct

unsigned long state;

int prio;

unsigned long policy;
struct task_struct *parent;
struct list_head tasks;

pid_t pid;

process descriptor

~"
the task list

3.2.2.5. The lists of TASK_RUNNING

Processes

When looking for a new process to run on a CPU, the kernel has to consider only the
runnable processes.

Earlier Linux versions put all runnable processes in the same list called runqueue. The earlier
schedulers were compelled to scan the whole list in order to select the "best" runnable
process, an O(n) operation.

Linux 2.6 implements the runqueue differently. The aim is to allow the scheduler to select the
best runnable process in constant time O(1), independently of the number of runnable
processes.

The trick consists of splitting the runqueue in many lists of runnable processes, one list per
process priority. Each task_struct descriptor includes a run_list field of type list _head. If the
process priority is equal to k (a value ranging between 0 and 139), the run_list field links
the process descriptor into the list of runnable processes having priority k.

Furthermore, on a multiprocessor system, each CPU has its own runqueue, that is, its
own set of lists of processes.

= This is a classic example of making a data structures more complex to improve
performance: to make scheduler operations more efficient, the runqueue list has been
split into 140 different lists!

3.2.3. Relationships Among

Processes

Several fields must be introduced in a process descriptor to represent relationships.

Processes 0 and 1 are created by the kernel; as we'll see later, process 1 (init) is
the ancestor of all other processes.

Table 3-3. Fields of a process descriptor used to express parenthood relationships

real_parent : Points to the process descriptor of the process that created P or to
the descriptor of process 1 (init) if the parent process no longer exists.

= parent : Points to the current parent of P (this is the process that must be
signaled when the child process terminates); its value usually coincides with that
of real_parent.

= |t may occasionally differ, such as when another process issues a ptrace()
system call requesting that it be allowed to monitor P.

= children: The head of the list containing all children created by P.

= sibling: The pointers to the next and previous elements in the list of the sibling
processes, those that have the same parent as P.

Process relationships

IIIIIIIIIIIIIII

————— = Siblinngnext

mmeeeesesnen - - sifing. prev
- - e Frildren.next

— = = —— = == hildren. prev

Figure 3-4 illustrates the parent and sibling relationships of a group of processes. Process PO
successively created P1, P2, and P3. Process P3, in turn, created process P4.

Furthermore, there exist other

relationships amonag processes:

a process can be a leader of a process group or of a login session,
it can be a leader of a thread group,
fields of the process descriptor that establish non-parenthood relationships:

= group_leader: Process descriptor pointer of the group leader of P
= signal->pgrp: PID of the group leader of P
= tgid: PID of the thread group leader of P

= signal->session: PID of the login session leader of P

3.2.3.1. The pidhash table and

chained lists

In several circumstances, the kernel must be able to derive the process descriptor
pointer corresponding to a PID.

Scanning the process list sequentially and checking the pid fields of the process
descriptors is feasible but rather inefficient.

To speed up the search, four hash tables have been introduced. Process descriptor
includes fields that represent different types of PID (see Table), and each type of PID
requires its own hash table.

Table 3-5. The four hash tables and corresponding fields in the process descriptor

Hash table type Field name Description

PIDTYPE_PID pid PID of the process
PIDTYPE_TGID tgid PID of thread group leader process
PIDTYPE_PGID pgrp PID of the group leader process

PIDTYPE_SID session PID of the session leader process

Hashing with chaining

a hash function does not always ensure a one-to-one correspondence between PIDs
and table indexes. Two different PIDs that hash into the same table index are said to
be colliding.

Linux uses chaining to handle colliding PIDs; each table entry is the head of a
doubly linked list of colliding process descriptors.

Hashing with chaining is preferable to a linear transformation. It would be a
waste of storage to define a table consisting of 32,768 entries, if, at any given
instance, most such entries are unused.

The data structures used in the PID hash tables are quite sophisticated, because
they must keep track of the relationships between the processes.

FID hash table

|
PID
199 29384
+ nextelement

1466
I FI - I.— pmrmHE Eklmm;

2047

a PID hash table with two lists. The processes having PIDs 2,890 and 29,384 hash into the
200th element of the table, while the process having PID 29,385 hashes into the 1,466th
element of the table.

R P TGID hash table
nid_hash I ‘ | | ‘ i 0 70 2047
i

process descriptor

pids{1] process descriptor process descipror

nr=4351]

pids[1]

pids{1]
[nr=4351)
| pid_chain

>

prodess descriptos

pids[1]
=246
B pid_duin

F
e

Hash chain list

3.2.4. How Processes Are

Organized

The runqueue lists group all processes in a TASK_RUNNING state.

When it comes to grouping processes in other states, the various states call for
different types of treatment, with Linux opting for one of the choices shown in the
following list.

= Processes in a TASK_STOPPED, EXIT _ZOMBIE, or EXIT_DEAD state are not
linked in specific lists.

= There is no need to group processes in any of these three states, because
stopped, zombie, and dead processes are accessed only via PID or via
linked lists of the child processes for a particular parent.

= Processes in a TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state
are subdivided into many classes, each of which corresponds to a specific
event.

= |n this case, the process state does not provide enough information to
retrieve the process quickly, so it is necessary to introduce additional lists of
processes. These are called wait queues and are discussed next.

3.2.4.1. Wait queues

= Wait queues implement conditional waits on events: a process wishing to wait for a
specific event places itself in the proper wait queue and relinquishes control.

= Therefore, a wait queue represents a set of sleeping processes, which are woken up
by the kernel when some condition becomes true.

= Wait queues are implemented as doubly linked lists whose elements include pointers
to process descriptors.

struct _ wait_queue head{
spinlock_t lock;
struct list_head task_list;
;
typedef struct _ wait_queue head wait_queue head t;

= Because wait queues are modified by interrupt handlers as well as by major kernel
functions, the doubly linked lists must be protected from concurrent accesses.

Wait queues

Elements of a wait queue list are of type wait_queue _t:

struct __ wait_queue {
unsigned int flags;
struct task_struct * task;
wait_queue_func_t func;
struct list_head task_list;
b

typedef struct _ wait_queue wait_queue t;

= Each element in the wait queue list represents a sleeping process, which is
waiting for some event to occur; its descriptor address is stored in the task field.

= However, it is not always convenient to wake up all sleeping processes in a wait
queue:

- "thundering herd" with which multiple processes are wakened only to race for a
resource that can be accessed by one of them, with the result that remaining processes
must once more be put back to sleep.

Excluswe and nonexclusive

Orocesses

= Thus, there are two kinds of sleeping processes:

= exclusive processes (denoted by the value 1 in the flags field of the
corresponding wait queue element) are selectively woken up by the kernel,

= while nonexclusive processes (denoted by the value 0 in the flags field) are
always woken up by the kernel when the event occurs.

= A process waiting for a resource that can be granted to just one process at a time
is a typical exclusive process. Processes waiting for an event that may concern any
of them are nonexclusive.

Symple sleep: wait_event()

= The wait_event and wait_event_interruptible macros put the calling process to
sleep on a wait queue until a given condition is verified.

= For instance, the wait_event(wq,condition) macro essentially yields the following
fragment:

DEFINE_WAIT(__ wait);
for (;;) {
prepare _to wait(&wq, & wait, TASK_UNINTERRUPTIBLE);
if (condition)
break;
schedule();

}
finish_wait(&wq, & wait);

The kernel awakens processes in the wait queues, putting them in the TASK _RUNNING
state, by means of one of the wake up family macros
For instance, the wake up macro is essentially equivalent to the following code
fragment:

void wake up(wait_queue head t *q)
{
struct list_head *tmp;
wait_queue_t *curr;

list for each(tmp, &g->task list) {
curr = list_entry(tmp, wait_queue t, task_list);
if (curr->func(curr, TASK_INTERRUPTIBLE|TASK _UNINTERRUPTIBLE,
0, NULL) && curr->flags)
break;

3.2.5. Process Resource Limits

= Each process has an associated set of resource limits , which specify the amount
of system resources it can use.

= These limits keep a user from overwhelming the system (its CPU, disk space, and
SO on).

= The resource limits for the current process are stored in the current->signal->rlim
field, that is, in a field of the process's signal descriptor. The field is an array of
elements of type struct rlimit, one for each resource limit:

struct rlimit {
unsigned long rlim_cur;

unsigned long rlim_makx;

Table 3-7. Resource limits

RLIMIT_AS The maximum size of process address space, in bytes. The
kernel checks this value when the process uses malloc() or a related function to
enlarge its address space.

RLIMIT_CORE The maximum core dump file size, in bytes. The kernel checks
this value when a process is aborted, before creating a core file in the current
directory of the process (see the section "Actions Performed upon Delivering a
Signal" in Chapter 11). If the limit is 0, the kernel won't create the file.

RLIMIT_CPU The maximum CPU time for the process, in seconds. If the
process exceeds the limit, the kernel sends it a SIGXCPU signal, and then, if the
process doesn't terminate, a SIGKILL signal (see Chapter 11).

RLIMIT_DATA The maximum heap size, in bytes. The kernel checks this
value before expanding the heap of the process (see the section "Managing the
Heap" in Chapter 9).

RLIMIT_FSIZE The maximum file size allowed, in bytes. If the process tries to
enlarge a file to a size greater than this value, the kernel sends it a SIGXFSZ signal.

RLIMIT_LOCKS Maximum number of file locks (currently, not enforced).

Table 3-7. Resource limits

RLIMIT_MEMLOCK The maximum size of nonswappable memory, in bytes. The
kernel checks this value when the process tries to lock a page frame in memory using
the mlock() or mlockall() system calls (see the section "Allocating a Linear Address
Interval” in Chapter 9).

RLIMIT_MSGQUEUE Maximum number of bytes in POSIX message queues (see
the section "POSIX Message Queues" in Chapter 19).

RLIMIT_NOFILE The maximum number of open file descriptors . The kernel
checks this value when opening a new file or duplicating a file descriptor (see
Chapter 12).

RLIMIT_NPROC The maximum number of processes that the user can own
(see the section "The clone(), fork(), and vfork() System Calls" later in this chapter).

RLIMIT_RSS The maximum number of page frames owned by the process
(currently, not enforced).

RLIMIT_SIGPENDING The maximum number of pending signals for the process
(see Chapter 11).

RLIMIT_STACK The maximum stack size, in bytes. The kernel checks this
value before expanding the User Mode stack of the process (see the section "Page
Fault Exception Handler" in Chapter 9).

3.3. Process Switch

To control the execution of processes, the kernel must be able to suspend the
execution of the process running on the CPU and resume the execution of some
other process previously suspended.

This activity goes variously by the names process switch, task switch, or context
switch.

The next sections describe the elements of process switching in Linux.

3.3.1. Hardware Context

While each process can have its own address space, all processes have to share the
CPU registers.

So before resuming the execution of a process, the kernel must ensure that each such
register is loaded with the value it had when the process was suspended.

The set of data that must be loaded into the