
Chapter 3 

Propagation of Uncertainties 

Most physical quantities usually cannot be measured in a single direct measurement 
but are instead found in two distinct steps. First, we measure one or more quantities 
that can be measured directly and from which the quantity of interest can be calcu-
lated. Second, we use the measured values of these quantities to calculate the quan-
tity of interest itself. For example, to find the area of a rectangle, you actually 
measure its length l and height h and then calculate its area A as A = lh. Similarly, 
the most obvious way to find the velocity v of an object is to measure the distance 
traveled, d, and the time taken, t, and then to calculate v as v = d/t. Any reader 
with experience in an introductory laboratory can easily think of more examples. In 
fact, a little thought will show that almost all interesting measurements involve these 
two distinct steps of direct measurement followed by calculation. 

When a measurement involves these two steps, the estimation of uncertainties 
also involves two steps. We must first estimate the uncertainties in the quantities 
measured directly and then determine how these uncertainties "propagate" through 
the calculations to produce an uncertainty in the final answer.1 This propagation of 
errors is the main subject of this chapter. 

In fact, examples of propagation of errors were presented in Chapter 2. In Sec-
tion 2.5, I discussed what happens when two numbers x and y are measured and the 
results are used to calculate the difference q = x - y. We found that the uncertainty 
in q is just the sum oq = & + oy of the uncertainties in x and y. Section 2.9 dis-
cussed the product q = xy, and Problem 2.13 discussed the sum q = x + y. I review 
these cases in Section 3.3; the rest of this chapter is devoted to more general cases 
of propagation of uncertainties and includes several examples. 

Before I address error propagation in Section 3.3, I will briefly discuss the 
estimation of uncertainties in quantities measured directly in Sections 3.1 and 3.2. 
The methods presented in Chapter 1 are reviewed, and further examples are given 
of error estimation in direct measurements. 

Starting in Section 3.3, I will take up the propagation of errors. You will learn 
that almost all problems in error propagation can be solved using three simple rules. 

1 In Chapter 4, I discuss another way in which the final uncertainty can sometimes be estimated. If all 
measurements can be repeated several times, and if all uncertainties are known to be random in character, 
then the uncertainty in the quantity of interest can be estimated by examining the spread in answers. Even 
when this method is possible, it is usually best used as a check on the two-step procedure discussed in this 
chapter. 45 
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A single, more complicated, rule will also be presented that covers all cases and 
from which the three simpler rules can be derived. 

This chapter is long, but its length simply reflects its great importance. Error 
propagation is a technique you will use repeatedly in the laboratory, and you need 
to become familiar with the methods described here. The only exception is that the 
material of Section 3.11 is not used again until Section 5.6; thus, if the ideas of this 
chapter are all new to you, consider skipping Section 3.11 on your first reading. 

3.1 Uncertainties in Direct Measurements 

Almost all direct measurements involve reading a scale ( on a ruler, clock, or voltme-
ter, for example) or a digital display ( on a digital clock or voltmeter, for example). 
Some problems in scale reading were discussed in Section 1.5. Sometimes the main 
sources of uncertainty are the reading of the scale and the need to interpolate be-
tween the scale markings. In such situations, a reasonable estimate of the uncertainty 
is easily made. For example, if you have to measure a clearly defined length l with 
a ruler graduated in millimeters, you might reasonably decide that the length could 
be read to the nearest millimeter but no better. Here, the uncertainty ol would be 
ol = 0.5 mm. If the scale markings are farther apart (as with tenths of an inch), you 
might reasonably decide you could read to one-fifth of a division, for example. In 
any case, the uncertainties associated with the reading of a scale can obviously be 
estimated quite easily and realistically. 

Unfortunately, other sources of uncertainty are frequently much more important 
than difficulties in scale reading. In measuring the distance between two points, your 
main problem may be to decide where those two points really are. For example, in 
an optics experiment, you may wish to measure the distance q from the center of a 
lens to a focused image, as in Figure 3.1. In practice, the lens is usually several 
millimeters thick, so locating its center is hard; if the lens comes in a bulky mount-
ing, as it often does, locating the center is even harder. Furthermore, the image may 
appear to be well-focused throughout a range of many millimeters. Even though the 
apparatus is mounted on an optical bench that is clearly graduated in millimeters, 
the uncertainty in the distance from lens to image could easily be a centimeter or 
so. Since this uncertainty arises because the two points concerned are not clearly 
defined, this kind of problem is called a problem of definition. 

image focused 
on this screen 

/ 

Figure 3.1. An image of the light bulb on the right is focused by the lens onto the screen at 
the left. 
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This example illustrates a serious danger in error estimation. If you look only 
at the scales and forget about other sources of uncertainty, you can badly underesti-
mate the total uncertainty. In fact, the beginning student's most common mistake is 
to overlook some sources of uncertainty and hence underestimate uncertainties, of-
ten by a factor of 10 or more. Of course, you must also avoid overestimating errors. 
Experimenters who decide to play safe and to quote generous uncertainties on all 
measurements may avoid embarrassing inconsistencies, but their measurements may 
not be of much use. Clearly, the ideal is to find all possible causes of uncertainty 
and estimate their effects accurately, which is often not quite as hard as it sounds. 

Superficially, at least, reading a digital meter is much easier than a conventional 
analog meter. Unless a digital meter is defective, it should display only significant 
figures. Thus, it is usually safe to say that the number of significant figures in a 
digital reading is precisely the number of figures displayed. Unfortunately, as dis-
cussed in Section 2.8, the exact meaning of significant figures is not always clear. 
Thus, a digital voltmeter that tells us that V = 81 microvolts could mean that the 
uncertainty is anything from 8V = 0.5 to 8V = 1 or more. Without a manual to tell 
you the uncertainty in a digital meter, a reasonable assumption is that the uncertainty 
in the final digit is ± 1 (so that the voltage just mentioned is V = 81 ± 1). 

The digital meter, even more than the analog scale, can give a misleading im-
pression of accuracy. For example, a student might use a digital timer to time the 
fall of a weight in an Atwood machine or similar device. If the timer displays 8.01 
seconds, the time of fall is apparently 

t = 8.01 ± 0.01 s. (3.1) 

However, the careful student who repeats the experiment under nearly identical 
conditions might find a second measurement of 8.41 s; that is, 

t = 8.41 ± 0.01 s. 

One likely explanation of this large discrepancy is that uncertainties in the starting 
procedure vary the initial conditions and hence the time of fall; that is, the measured 
times really are different. In any case, the accuracy claimed in Equation (3.1) clearly 
is ridiculously too good. Based on the two measurements made, a more realistic 
answer would be 

t = 8.2 ± 0.2 s. 

In particular, the uncertainty is some 20 times larger than suggested in Equation 
(3.1) based on the original single reading. 

This example brings us to another point mentioned in Chapter 1: Whenever a 
measurement can be repeated, it should usually be made several times. The resulting 
spread of values often provides a good indication of the uncertainties, and the aver-
age of the values is almost certainly more trustworthy than any one measurement. 
Chapters 4 and 5 discuss the statistical treatment of multiple measurements. Here, I 
emphasize only that if a measurement is repeatable, it should be repeated, both to 
obtain a more reliable answer (by averaging) and, more important, to get an estimate 
of the uncertainties. Unfortunately, as also mentioned in Chapter 1, repeating a mea-
surement does not always reveal uncertainties. If the measurement is subject to a 
systematic error, which pushes all results in the same direction (such as a clock that 
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runs slow), the spread in results will not reflect this systematic error. Eliminating 
such systematic errors requires careful checks of calibration and procedures. 

3.2 The Square-Root Rule for a Counting Experiment 

Another, different kind of direct measurement has an uncertainty that can be esti-
mated easily. Some experiments require you to count events that occur at random 
but have a definite average rate. For example, the babies born in a hospital arrive 
in a fairly random way, but in the long run births in any one hospital probably occur 
at a definite average rate. Imagine that a demographer who wants to know this rate 
counts 14 births in a certain two-week period at a local hospital. Based on this 
result, he would naturally say that his best estimate for the expected number of 
births in two weeks is 14. Unless he has made a mistake, 14 is exactly the number 
of births in the two-week period he chose to observe. Because of the random way 
births occur, however, 14 obviously may not equal the actual average number of 
births in all two-week periods. Perhaps this number is 13, 15, or even a fractional 
number such as 13.5 or 14.7. 

Evidently, the uncertainty in this kind of experiment is not in the observed 
number counted (14 in our example). Instead, the uncertainty is in how well this 
observed number approximates the true average number. The problem is to estimate 
how large this uncertainty is. Although I discuss the theory of these counting experi-
ments in Chapter 11, the answer is remarkably simple and is easily stated here: The 
uncertainty in any counted number of random events, as an estimate of the true 
average number, is the square root of the counted number. In our example, the 
demographer counted 14 births in a certain two-week period. Therefore, his uncer-
tainty is ffe = 4, and his final conclusion would be 

(average births in a two-week period) = 14 ± 4. 

To make this statement more general, suppose we count the occurrences of any 
event (such as the births of babies in a hospital) that occurs randomly but at a 
definite average rate. Suppose we count for a chosen time interval T (such as two 
weeks), and we denote the number of observed events by the Greek letter v. (Pro-
nounced "nu," this symbol is the Greek form of the letter n and stands for number.) 
Based on this experiment, our best estimate for the average number of events in 
time T is, of course, the observed number v, and the uncertainty in this estimate is 
the square root of the number, that is, ~. Therefore, our answer for the average 
number of events in time T is 

(3.2) 

I refer to this important result as the Square-Root Rule for Counting Experiments. 
Counting experiments of this type occur frequently in the physics laboratory. 

The most prominent example is in the study of radioactivity. In a radioactive mate-
rial, each nucleus decays at a random time, but the decays in a large sample occur 
at a definite average rate. To find this rate, you can simply count the number v of 
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decays in some convenient time interval T; the expected number of decays in time 
T, with its uncertainty, is then given by the square-root rule, (3.2). 

Quick Check 3.1. (a) To check the activity of a radioactive sample, an inspec-
tor places the sample in a liquid scintillation counter to count the number of 
decays in a two-minute interval and obtains 33 counts. What should he report 
as the number of decays produced by the sample in two minutes? (b) Suppose, 
instead, he had monitored the same sample for 50 minutes and obtained 907 
counts. What would be his answer for the number of decays in 50 minutes? (c) 
Find the percent uncertainties in these two measurements, and comment on the 
usefulness of counting for a longer period as in part (b ). 

3.3 Sums and Differences; Products and Quotients 

For the remainder of this chapter, I will suppose that we have measured one or 
more quantities x, y, ... , with corresponding uncertainties ox, oy, ... , and that we 
now wish to use the measured values of x, y, ... , to calculate the quantity of real 
interest, q. The calculation of q is usually straightforward; the problem is how the 
uncertainties, &, oy, ... , propagate through the calculation and lead to an uncer-
tainty oq in the final value of q. 

SUMS AND DIFFERENCES 

Chapter 2 discussed what happens when you measure two quantities x and y 
and calculate their sum, x + y, or their difference, x - y. To estimate the uncertainty 
in the sum or difference, we had only to decide on their highest and lowest probable 
values. The highest and lowest probable values of x are xbest ± ox, and those of y 
are Ybest ± oy. Hence, the highest probable value of X + y is 

Xbest + Ybest + ( ox + oy), 

and the lowest probable value is 

xbest + Ybest - ( OX + oy). 

Thus, the best estimate for q = x + y is 

qbest = Xbest + Ybest , 

and its uncertainty is 

oq=& + oy. (3.3) 

A similar argument (be sure you can reconstruct it) shows that the uncertainty in 
the difference x - y is given by the same formula (3.3). That is, the uncertainty in 
either the sum x + y or the difference x - y is the sum ox + oy of the uncertainties 
in x and y. 
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If we have several numbers x, ... , w to be added or subtracted, then repeated 
application of (3.3) gives the following provisional rule. 

Uncertainty in Sums and Differences 
(Provisional Rule) 

If several quantities x, ... , w are measured with uncertain-
ties 8x, ... , 8w, and the measured values used to compute 

q = x + · · · + z - (u + · · · + w), 

then the uncertainty in the computed value of q is the sum, 

8q = 8x + · · · + 8z + 8u + · · · + 8w, 

of all the original uncertainties. 

(3.4) 

In other words, when you add or subtract any number of quantities, the uncertainties 
in those quantities always add. As before, I use the sign = to emphasize that this 
rule is only provisional. 

Example: Adding and Subtracting Masses 

As a simple example of rule (3.4), suppose an experimenter mixes together the 
liquids in two flasks, having first measured their separate masses when full and 
empty, as follows: 

M1 mass of first flask and contents 

m1 mass of first flask empty 

M2 mass of second flask and contents 

m2 mass of second flask empty 

He now calculates the total mass of liquid as 

M = M 1 - m1 + M 2 - m2 

540 ± 10 grams 
72 ± 1 grams 

940 ± 20 grams 
97 ± 1 grams 

= (540 - 72 + 940 - 97) grams = 1,311 grams. 

According to rule (3.4), the uncertainty in this answer is the sum of all four uncer-
tainties, 

Thus, his final answer (properly rounded) is 

( 10 + 1 + 20 + 1) grams 
32 grams. 

total mass of liquid = 1,310 ± 30 grams. 
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Notice how the much smaller uncertainties in the masses of the empty flasks 
made a negligible contribution to the final uncertainty. This effect is important, and 
we will discuss it later on. With experience, you can learn to identify in advance 
those uncertainties that are negligible and can be ignored from the outset. Often, 
this can greatly simplify the calculation of uncertainties. 

PRODUCTS AND QUOTIENTS 

Section 2.9 discussed the uncertainty in the product q = xy of two measured 
quantities. We saw that, provided the fractional uncertainties concerned are small, 
the fractional uncertainty in q = xy is the sum of the fractional uncertainties in x 
and y. Rather than review the derivation of this result, I discuss here the similar 
case of the quotient q = x/y. As you will see, the uncertainty in a quotient is given 
by the same rule as for a product; that is, the fractional uncertainty in q = x/y is 
equal to the sum of the fractional uncertainties in x and y. 

Because uncertainties in products and quotients are best expressed in terms of 
fractional uncertainties, a shorthand notation for the latter will be helpful. Recall 
that if we measure some quantity x as 

(measured value of x) = xbest ± 8x 

in the usual way, then the fractional uncertainty in x is defined to be 

(f . l .. ) 8x ract10na uncertamty m x = --. 
lxbestl 

(The absolute value in the denominator ensures that the fractional uncertainty is 
always positive, even when xbest is negative.) Because the symbol 8x/lxbest1 is clumsy 
to write and read, from now on I will abbreviate it by omitting the subscript "best" 
and writing 

(f . l .. ) 8x ractlona uncertamty m x = - . 
lxl 

The result of measuring any quantity x can be expressed in terms of its frac-
tional error 8x!lxl as 

(value of x) = xbesi(l ± 8x/lxl). 

Therefore, the value of q = x/y can be written as 

( 1 ) Xbest 1 ± 8x/lxl va ue of q = -- . 
Ybest 1 ± 8y/lYI 

Our problem now is to find the extreme probable values of the second factor on the 
right. This factor is largest, for example, if the numerator has its largest value, 
1 + 8x/lxl, and the denominator has its smallest value, 1 - 8y!lyl. Thus, the largest 
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probable value for q = x/y is 

(largest value of q) Xbest 1 + &/lxl 
Ybest 1 - 8y/lYI 

(3.5) 

The last factor in expression (3.5) has the form (1 + a)!(l - b), where the 
numbers a and bare normally small (that is, much less than 1). It can be simplified 
by two approximations. First, because b is small, the binomial theorem 2 implies 
that 

Therefore, 

1 + a 
1 - b 

1 
(1 - b) 1 + b. 

= (1 + a)(l + b) 1 +a+ b + ab 

= 1 +a+ b, 

(3.6) 

where, in the second line, we have neglected the product ab of two small quantities. 
Returning to (3.5) and using these approximations, we find for the largest probable 
value of q = x/y 

Xbest ( & 8y) (largest value of q) = - 1 + - + - . 
Ybest lxl IYI 

A similar calculation shows that the smallest probable value is given by a similar 
expression with two minus signs. Combining these two, we find that 

Xbest ( [& 8y]) (value of q) = -- 1 ± - + - . 
Ybest lxl IYI 

Comparing this equation with the standard form, 

(value of q) = %est ( 1 ± ~1 ), 
we see that the best value for q is qbest = xbestlYbest, as we would expect, and that 
the fractional uncertainty is 

8q 
= 

lql 
8x 8y -+-. 
lxl IYI 

(3.7) 

We conclude that when we divide or multiply two measured quantities x and y, 
the fractional uncertainty in the answer is the sum of the fractional uncertainties in 
x and y, as in (3.7). If we now multiply or divide a series of numbers, repeated 
application of this result leads to the following provisional rule. 

2 The binomial theorem expresses 1/(1 - b) as the infinite series 1 + b + b2 + · · ·. If b is much less than 
1, then 1/(1-b) = 1 + bas in (3.6). If you are unfamiliar with the binomial theorem, you can find more 
details in Problem 3.8. 
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Uncertainty in Products and Quotients 
(Provisional Rule) 

If several quantities x, ... , w are measured with small un-
certainties 8x, ... , 8w, and the measured values are used 
to compute 

x X · · · X Z q = 
u X ·· · X w' 

then the fractional uncertainty in the computed value of q 
is the sum, 

8q 8x 8z 8u 8w - = -+···+-+-+···+-lql lxl lzl lul lwl ' 
of the fractional uncertainties in x, ... , w. 

(3.8) 

Briefly, when quantities are multiplied or divided the fractional uncertainties add. 

Example: A Problem in Surveying 

In surveying, sometimes a value can be found for an inaccessible length l (such as 
the height of a tall tree) by measuring three other lengths l1, l2, l3 in terms of which 

l = l1 l2 
l3 . 

Suppose we perform such an experiment and obtain the following results (in feet): 

l1 = 200 ± 2, l2 = 5.5 ± 0.1, l3 = 10.0 ± 0.4. 

Our best estimate for l is 

l _ 200 X 5.5 = llO ft. 
best - lO.O 

According to (3.8), the fractional uncertainty in this answer is the sum of the frac-
tional uncertainties in l1, l2 , and l3, which are 1 %, 2%, and 4%, respectively. Thus 

(1 + 2 + 4)% 

7%, 

and our final answer is 

110 ± 8 ft. 
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Quick Check 3.2. Suppose you measure the three quantities x, y, and z as 
follows: 

X = 8.0 ± 0.2, y = 5.0 ± 0.1, z = 4.0 ± 0.1. 

Express the given uncertainties as percentages, and then calculate q = xy/z with 
its uncertainty 8q [as given by the provisional rule (3.8)]. 

3.4 Two Important Special Cases 

Two important special cases of the rule (3.8) deserve mention. One concerns the 
product of two numbers, one of which has no uncertainty; the other involves a 
power (such as x3) of a measured number. 

MEASURED QUANTITY TIMES EXACT NUMBER 

Suppose we measure a quantity x and then use the measured value to calculate 
the product q = Bx, where the number B has no uncertainty. For example, we might 
measure the diameter of a circle and then calculate its circumference, c = 1t X d; 
or we might measure the thickness T of 200 identical sheets of paper and then 
calculate the thickness of a single sheet as t = (1/200) X T. According to the rule 
(3.8), the fractional uncertainty in q = Bx is the sum of the fractional uncertainties 
in B and x. Because 8B = 0, this implies that 

8q & 
/q/ /x/ 

That is, the fractional uncertainty in q = Bx (with B known exactly) is the same as 
that in x. We can express this result differently if we multiply through by /q/ = /Bx/ 
to give 8q = /B/ 8x, and we have the following useful rule: 3 

(3.9) 

3 This rule (3.9) was derived from the rule (3.8), which is provisional and will be replaced by the more 
complete rules (3.18) and (3.19). Fortunately, the same conclusion (3.9) follows from these improved rules. 
Thus (3.9) is already in its final form. 
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This rule is especially useful in measuring something inconveniently small but 
available many times over, such as the thickness of a sheet of paper or the time for 
a revolution of a rapidly spinning wheel. For example, if we measure the thickness 
T of 200 sheets of paper and get the answer 

(thickness of 200 sheets) = T = 1.3 ± 0.1 inches, 

it immediately follows that the thickness t of a single sheet is 

(thickness of one sheet) = t 
1 

200 X T 
0.0065 ± 0.0005 inches. 

Notice how this technique (measuring the thickness of several identical sheets and 
dividing by their number) makes easily possible a measurement that would other-
wise require quite sophisticated equipment and that this technique gives a remark-
ably small uncertainty. Of course, the sheets must be known to be equally thick. 

Quick Check 3.3. Suppose you measure the diameter of a circle as 

d = 5.0 ± 0.1 cm 

and use this value to calculate the circumference c = red. What is your answer, 
with its uncertainty? 

POWERS 

The second special case of the rule (3 .8) concerns the evaluation of a power of 
some measured quantity. For example, we might measure the speed v of some object 
and then, to find its kinetic energy !mu2 , calculate the square v2 • Because u2 is just 
v Xv, it follows from (3.8) that the fractional uncertainty in u2 is twice the fractional 
uncertainty in v. More generally, from (3.8) the general rule for any power is clearly 
as follows. 

Uncertainty in a Power 

If the quantity x is measured with uncertainty 8x and the 
measured value is used to compute the power 

q = x", 

then the fractional uncertainty in q is n times that in x, 

8x n-. 
!xi (3.10) 
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The derivation of this rule required that n be a positive integer. In fact, however, 
the rule generalizes to include any exponent n, as we will see later in Equation 
(3.26). 

Quick Check 3.4. To find the volume of a certain cube, you measure its side 
as 2.00 ± 0.02 cm. Convert this uncertainty to a percent and then find the 
volume with its uncertainty. 

Example: Measurement of g 

Suppose a student measures g, the acceleration of gravity, by measuring the time t 
for a stone to fall from a height h above the ground. After making several timings, 
she concludes that 

= 1.6 ± 0.1 s, 

and she measures the height h as 

h = 46.2 ± 0.3 ft. 

Because h is given by the well-known formula h = lgt2, she now calculates g as 

2h 
g = t2 

2 X 46.2 ft 
(1.6 s)2 

What is the uncertainty in her answer? 

36.1 ft/s2
• 

The uncertainty in her answer can be found by using the rules just developed. 
To this end, we need to know the fractional uncertainties in each of the factors in 
the expression g = 2h/t2 used to calculate g. The factor 2 has no uncertainty. The 
fractional uncertainties in h and t are 

and 

8h 
h 

0.3 
46.2 

0.7% 

8t 0.1 t = 1.6 = 6.3%. 

According to the rule (3.10), the fractional uncertainty of t2 is twice that oft. There-
fore, applying the rule (3.8) for products and quotients to the formula g = 2h/t2 , we 
find the fractional uncertainty 

8g 
g 

8h+28t 
h t 

0.7% + 2 X (6.3%) 13.3%, (3.11) 
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and hence the uncertainty 

2 13.3 2 8g = (36.1 ft/s ) X 
100 

= 4.80 ft/s . 

Thus, our student's final answer (properly rounded) is 

g = 36 ± 5 ft/s2 . 

This example illustrates how simple the estimation of uncertainties can often 
i>e. It also illustrates how error analysis tells you not only the size of uncertainties 
but also how to reduce them. In this example, (3.11) shows that the largest contribu-
tion comes from the measurement of the time. If we want a more precise value of 
g, then the measurement of t must be improved; any attempt to improve the mea-
surement of h will be wasted effort. 

Finally, the accepted value of g is 32 ft/s2, which lies within our student's 
margins of error. Thus, she can conclude that her measurement, although not espe-
cially accurate, is perfectly consistent with the known value of g. 

3.5 Independent Uncertainties in a Sum 

The rules presented thus far can be summarized quickly: When measured quantities 
are added or subtracted, the uncertainties add; when measured quantities are 
multiplied or divided, the fractional uncertainties add. In this and the next section, 
I discuss how, under certain conditions, the uncertainties calculated by using these 
rules may be unnecessarily large. Specifically, you will see that if the original uncer-
tainties are independent and random, a more realistic (and smaller) estimate of the 
final uncertainty is given by similar rules in which the uncertainties ( or fractional 
uncertainties) are added in quadrature (a procedure defined shortly). 

Let us first consider computing the sum, q = x + y, of two numbers x and y 
that have been measured in the standard form 

(measured value of x) = xbest ± &, 

with a similar expression for y. The argument used in the last section was as follows: 
First, the best estimate for q = x + y is obviously qbest = xbest + Ybest· Second, since 
the highest probable values for x and y are xbest + 8x and Ybest + 8y, the highest 
probable value for q is 

Xbest + Ybest + 8x + 8y. (3.12) 

Similarly, the lowest probable value of q is 

Xbest + Ybest - 8x - 8y. 

Therefore, we concluded, the value of q probably lies between these two numbers, 
and the uncertainty in q is 

8q = 8x + 8y. 
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To see why this formula is likely to overestimate 8q, let us consider how the 
actual value of q could equal the highest extreme (3.12). Obviously, this occurs if 
we have underestimated x by the full amount 8x and underestimated y by the full 
8y, obviously, a fairly unlikely event. If x and y are measured independently and our 
errors are random in nature, we have a 50% chance that an underestimate of x is 
accompanied by an overestimate of y, or vice versa. Clearly, then, the probability 
we will underestimate both x and y by the full amounts 8x and 8y is fairly small. 
Therefore, the value 8q = 8x + 8y overstates our probable error. 

What constitutes a better estimate of 8q? The answer depends on precisely what 
we mean by uncertainties (that is, what we mean by the statement that q is "proba-
bly" somewhere between qbest - 8q and qbest + 8q). It also depends on the statistical 
laws governing our errors in measurement. Chapter 5 discusses the normal, or 
Gauss, distribution, which describes measurements subject to random uncertainties. 
It shows that if the measurements of x and y are made independently and are both 
governed by the normal distribution, then the uncertainty in q = x + y is given by 

8q = -V(8x)2 + (8y)2. (3.13) 

When we combine two numbers by squaring them, adding the squares, and 
taking the square root, as in (3.13), the numbers are said to be added in quadrature. 
Thus, the rule embodied in (3.13) can be stated as follows: If the measurements of 
x and y are independent and subject only to random uncertainties, then the uncer-
tainty 8q in the calculated value of q = x + y is the sum in quadrature or quadratic 
sum of the uncertainties 8x and 8y. 

Compare the new expression (3.13) for the uncertainty in q = x + y with our 
old expression, 

8q = 8x + 8y. (3.14) 

First, the new expression (3.13) is always smaller than the old (3.14), as we can see 
from a simple geometrical argument: For any two positive numbers a and b, the 
numbers a, b, and -ya2 + b2 are the three sides of a right-angled triangle (Figure 
3.2). Because the length of any side of a triangle is always less than the sum of the 

b 

a 

Figure 3.2. Because any side of a triangle is less than the sum of the other 
two sides, the inequality ,1a2 + b2 < a + b is always true. 

other two sides, it follows that -ya2 + b2 < a + b and hence that (3.13) is always 
less than (3.14). 

Because expression (3.13) for the uncertainty in q = x + y is always smaller 
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than (3.14), you should always use (3.13) when it is applicable. It is, however, not 
always applicable. Expression (3.13) reflects the possibility that an overestimate of 
x can be offset by an underestimate of y or vice versa, but there are measurements 
for which this cancellation is not possible. 

Suppose, for example, that q = x + y is the sum of two lengths x and y mea-
sured with the same steel tape. Suppose further that the main source of uncertainty 
is our fear that the tape was designed for use at a temperature different from the 
present temperature. If we don't know this temperature (and don't have a reliable 
tape for comparison), we have to recognize that our tape may be longer or shorter 
than its calibrated length and hence may yield readings under or over the correct 
length. This uncertainty can be easily allowed for. 4 The point, however, is that if 
the tape is too long, then we underestimate both x and y; and if the tape is too short, 
we overestimate both x and y. Thus, there is no possibility for the cancellations that 
justified using the sum in quadrature to compute the uncertainty in q = x + y. 

I will prove later (in Chapter 9) that, whether or not our errors are independent 
and random, the uncertainty in q = x + y is certainly no larger than the simple sum 
8x + 8y: 

8q ,s 8x + 8y. (3.15) 

That is, our old expression (3.14) for 8q is actually an upper bound that holds in all 
cases. If we have any reason to suspect the errors in x and y are not independent 
and random (as in the example of the steel tape measure), we are not justified in 
using the quadratic sum (3.13) for 8q. On the other hand, the bound (3.15) guaran-
tees that 8q is certainly no worse than 8x + 8y, and our safest course is to use the 
old rule 

8q = 8x + 8y. 

Often, whether uncertainties are added in quadrature or directly makes little 
difference. For example, suppose that x and y are lengths both measured with uncer-
tainties 8x = 8y = 2 mm. If we are sure these uncertainties are independent and 
random, we would estimate the error in x + y to be the sum in quadrature, 

"./(8x)2 + (8y)2 = mm = 2.8 mm = 3 mm, 

but if we suspect that the uncertainties may not be independent, we would have to 
use the ordinary sum, 

8x + 8y = (2 + 2) mm = 4 mm. 

In many experiments, the estimation of uncertainties is so crude that the difference 
between these two answers (3 mm and 4 mm) is unimportant. On the other hand, 
sometimes the sum in quadrature is significantly smaller than the ordinary sum. 
Also, rather surprisingly, the sum in quadrature is sometimes easier to compute than 
the ordinary sum. Examples of these effects are given in the next section. 

4 Suppose, for example, that the tape has a coefficient of expansion a= 10-5 per degree and that we decide 
that the difference between its calibration temperature and the present temperature is unlikely to be more than 
10 degrees. The tape is then unlikely to be more than 10-4, or 0.01 %, away from its correct length, and our 
uncertainty is therefore 0.01 %. 
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Quick Check 3.5. Suppose you measure the volumes of water in two beakers 
as 

V1 = 130 ± 6 ml and V2 = 65 ± 4 ml 

and then carefully pour the contents of the first into the second. What is your 
prediction for the total volume V = V1 + V2 with its uncertainty, 8V, assuming 
the original uncertainties are independent and random? What would you give 
for 8V if you suspected the original uncertainties were not independent? 

3.6 More About Independent Uncertainties 

In the previous section, I discussed how independent random uncertainties in two 
quantities x and y propagate to cause an uncertainty in the sum x + y. We saw that 
for this type of uncertainty the two errors should be added in quadrature. We can 
naturally consider the corresponding problem for differences, products, and quo-
tients. As we will see in Section 5.6, in all cases our previous rules (3.4) and (3.8) 
are modified only in that the sums of errors ( or fractional errors) are replaced by 
quadratic sums. Further, the old expressions (3.4) and (3.8) will be proven to be 
upper bounds that always hold whether or not the uncertainties are independent and 
random. Thus, the final versions of our two main rules are as follows: 

(3.16) 

(3.17) 

and 
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(3.18) 

(3.19) 

Notice that I have not yet justified the use of addition in quadrature for indepen-
dent random uncertainties. I have argued only that when the various uncertainties 
are independent and random, there is a good chance of partial cancellations of errors 
and that the resulting uncertainty ( or fractional uncertainty) should be smaller than 
the simple sum of the original uncertainties ( or fractional uncertainties); the sum in 
quadrature does have this property. I give a proper justification of its use in Chapter 
5. The bounds (3.17) and (3.19) are proved in Chapter 9. 

Example: Straight Addition vs Addition in Quadrature 

As discussed, sometimes there is no significant difference between uncertainties 
computed by addition in quadrature and those computed by straight addition. Often, 
however, there is a significant difference, and-surprisingly enough-the sum in 
quadrature is often much simpler to compute. To see how this situation can arise, 
consider the following example. 

Suppose we want to find the efficiency of a D.C. electric motor by using it to 
lift a mass m through a height h. The work accomplished is mgh, and the electric 
energy delivered to the motor is Vlt, where V is the applied voltage, I the current, 
and t the time for which the motor runs. The efficiency is then 

ff
. . work done by motor mgh 

e 1c1ency, e = 
energy delivered to motor Vlt 

Let us suppose that m, h, V, and I can all be measured with 1 % accuracy, 

(fractional uncertainty for m, h, V, and /) = 1 %, 
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and that the time t has an uncertainty of 5%, 

(fractional uncertainty for t) = 5%. 

(Of course, g is known with negligible uncertainty.) If we now compute the effi-
ciency e, then according to our old rule ("fractional errors add"), we have an uncer-
tainty 

Be 8m oh 8V 81 8t 
e 

= -+-+-+-+-
m h V I t 
(l + 1 + l + 1 + 5)% = 9%. 

On the other hand, if we are confident that the various uncertainties are independent 
and random, then we can compute Be/e by the quadratic sum to give 

Be 
e 

....j (1 % )2 + (1 % )2 + (l % )2 + ( 1 % )2 + ( 5 % )2 

-J29% = 5%. 

Clearly, the quadratic sum leads to a significantly smaller estimate for Be. Further-
more, to one significant figure, the uncertainties in m, h, V, and I make no contribu-
tion at all to the uncertainty in e computed in this way; that is, to one significant 
figure, we have found (in this example) 

Be 8t 
e 

This striking simplification is easily understood. When numbers are added in quad-
rature, they are squared first and then summed. The process of squaring greatly 
exaggerates the importance of the larger numbers. Thus, if one number is 5 times 
any of the others (as in our example), its square is 25 times that of the others, and 
we can usually neglect the others entirely. 

This example illustrates how combining errors in quadrature is usually better 
and often easier than computing them by straight addition. The example also illus-
trates the type of problem in which the errors are independent and for which addi-
tion in quadrature is justified. (For the moment I take for granted that the errors are 
random and will discuss this more difficult point in Chapter 4.) The five quantities 
measured (m, h, V, I, and t) are physically distinct quantities with different units and 
are measured by entirely different processes. For the sources of error in any quantity 
to be correlated with those in any other is almost inconceivable. Therefore, the 
errors can reasonably be treated as independent and combined in quadrature. 

Quick Check 3.6. Suppose you measure three numbers as follows: 

X = 200 ± 2, y = 50 ± 2, Z = 20 ± l, 

where the three uncertainties are independent and random. What would you 
give for the values of q = x + y - z and r = xylz with their uncertainties? 
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3.7 Arbitrary Functions of One Variable 

You have now seen how uncertainties, both independent and otherwise, propagate 
through sums, differences, products, and quotients. However, many calculations re-
quire more complicated operations, such as computation of a sine, cosine, or square 
root, and you will need to know how uncertainties propagate in these cases. 

As an example, imagine finding the refractive index n of glass by measuring 
the critical angle e. We know from elementary optics that n = 1/sin e. Therefore, if 
we can measure the angle e, we can easily calculate the refractive index n, but we 
must then decide what uncertainty on in n = 1/sin e results from the uncertainty 8e 
in our measurement of e. 

More generally, suppose we have measured a quantity x in the standard form 
xbest ± ox and want to calculate some known function q(x), such as q(x) = 1/sinx 
or q(x) = -{;:. A simple way to think about this calculation is to draw a graph of 
q(x) as in Figure 3.3. The best estimate for q(x) is, of course, %est = q(xbesi), and 
the values xbest and qbest are shown connected by the heavy lines in Figure 3.3. 

To decide on the uncertainty oq, we employ the usual argument. The largest 
probable value of x is xbest + &; using the graph, we can immediately find the 
largest probable value of q, which is shown as qmax· Similarly, we can draw in the 
smallest probable value, qmin, as shown. If the uncertainty ox is small (as we always 
suppose it is), then the section of graph involved in this construction is approxi-
mately straight, and qmax and qmin are easily seen to be equally spaced on either 
side of qbest· The uncertainty oq can then be taken from the graph as either of the 
lengths shown, and we have found the value of q in the standard form %est ± oq. 

Occasionally, uncertainties are calculated from a graph as just described. (See 
Problems 3.26 and 3.30 for examples.) Usually, however, the function q(x) is known 

q q(x) 

qmax l oq 
qbest >----+---------.r 

_ _! oq ---------qmin 

>---------~--~-~--------..x 
xbes,-ox Xbest + OX 

Figure 3.3. Graph of q(x) vs x. If x is measured as xbest ± ox, then the best estimate for q(x) 
is qbest = q(xbes,)· The largest and smallest probable values of q(x) correspond to the values 
Xbest ± OX of X. 
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q 

qmax 

Oq I --r----------- I 
I 

qbest >--~------~----
I 
I 

--------------~-----
1 
I 
I 
I 
I 
I 
I 

'---------~---'-----"-------+-X 
Xbest - OX t 

Xbest 

Figure 3.4. If the slope of q(x) is negative, the maximum probable value of q corresponds to 
the minimum value of x, and vice versa. 

explicitly-q(x) = sinx or q(x) = -{;;, for example-and the uncertainty 8q can be 
calculated analytically. From Figure 3.3, we see that 

8q = q(xbest + &) - q(xbest). (3.20) 

Now, a fundamental approximation of calculus asserts that, for any function q(x) 
and any sufficiently small increment u, 

dq 
q(x + u) - q(x) = d.x u. 

Thus, provided the uncertainty 8x is small (as we always assume it is), we can 
rewrite the difference in (3.20) to give 

dq 
8q = d.x 8x. (3.21) 

Thus, to find the uncertainty 8q, we just calculate the derivative dq/d.x and multiply 
by the uncertainty 8x. 

The rule (3.21) is not quite in its final form. It was derived for a function, like 
that of Figure 3.3, whose slope is positive. Figure 3.4 shows a function with nega-
tive slope. Here, the maximum probable value qmax obviously corresponds to the 
minimum value of x, so that 

dq 
8q = - d.x 8x. (3.22) 

Because dq/d.x is negative, we can write - dq/d.x as Jdq/d.xJ, and we have the follow-
ing general rule. 
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(3.23) 

This rule usually allows us to find 8q quickly and easily. Occasionally, if q(x) 
is very complicated, evaluating its derivative may be a nuisance, and going back to 
(3.20) is sometimes easier, as we discuss in Problem 3.32. Particularly if you have 
programmed your calculator or computer to find q(x), then finding q(xbest + 8x) and 
q(xbest) and their difference may be easier than differentiating q(x) explicitly. 

Example: Uncertainty in a Cosine 

As a simple application of the rule (3.23), suppose we have measured an angle () as 

() = 20 ± 3° 

and that we wish to find cos e. Our best estimate of cos () is, of course, 
cos 20° = 0.94, and according to (3.23), the uncertainty is 

8(cos ()) Id;;() 18() 
I sin() I 8() (in rad). (3.24) 

We have indicated that 8() must be expressed in radians, because the derivative of 
cos() is - sin() only if () is expressed in radians. Therefore, we rewrite 8() = 3° as 
8() = 0.05 rad; then (3.24) gives 

8(cos ()) (sin20°) X 0.05 
0.34 X 0.05 = 0.02. 

Thus, our final answer is 

cos () 0.94 ± 0.02. 

Quick Check 3.7. Suppose you measure x as 3.0 ± 0.1 and then calculate 
q = ex. What is your answer, with its uncertainty? (Remember that the deriva-
tive of ex is ex.) 

As another example of the rule (3.23), we can rederive and generalize a result 
found in Section 3.4. Suppose we measure the quantity x and then calculate the 
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power q(x) = x', where n is any known, fixed number, positive or negative. Ac-
cording to (3.23), the resulting uncertainty in q is 

If we divide both sides of this equation by /q/ = /x'/, we find that 

8q ox 
~=In/~; (3.25) 

that is, the fractional uncertainty in q = x' is /n/ times that in x. This result (3.25) is 
just the rule (3.10) found earlier, except that the result here is more general, because 
n can now be any number. For example, if n = 1/2, then q = '\P:, and 

8q 1 DX 
/qi 2 /x/' 

that is, the fractional uncertainty in '\P: is half that in x itself. Similarly, the fractional 
uncertainty in 1/X = X-l is the same as that in X itself. 

The result (3.25) is just a special case of the rule (3.23). It is sufficiently im-
portant, however, to deserve separate statement as the following general rule. 

(3.26) 

Quick Check 3.8. If you measure x as 100 ± 6, what should you report for 
'\P:, with its uncertainty? 

3.8 Propagation Step by Step 

We now have enough tools to handle almost any problem in the propagation of 
errors. Any calculation can be broken down into a sequence of steps, each involving 
just one of the following types of operation: (1) sums and differences; (2) products 
and quotients; and (3) computation of a function of one variable, such as x', sinx, 
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ex, or ln x. For example, we could calculate 

q = x(y - z sin u) (3.27) 

from the measured quantities x, y, z, and u in the following steps: Compute the 
function sin u, then the product of z and sin u, next the difference of y and z sin u, 
and finally the product of x and (y - z sinu). 

We know how uncertainties propagate through each of these separate opera-
tions. Thus, provided the various quantities involved are independent, we can calcu-
late the uncertainty in the final answer by proceeding in steps from the uncertainties 
in the original measurement. For example, if the quantities x, y, z, and u in (3.27) 
have been measured with corresponding uncertainties ox, . . . , ou, we could calcu-
late the uncertainty in q as follows. First, find the uncertainty in the function sin u; 
knowing this, find the uncertainty in the product z sin u, and then that in the differ-
ence y - z sinu; finally, find the uncertainty in the complete product (3.27). 

Quick Check 3.9. Suppose you measure three numbers as follows: 

X = 200 ± 2, y = 50 ± 2, Z = 40 ± 2, 

where the three uncertainties are independent and random. Use step-by-step 
propagation to find the quantity q = x/(y - z) with its uncertainty. [First find 
the uncertainty in the difference y - z and then the quotient x/(y - z).] 

Before I discuss some examples of this step-by-step calculation of errors, let 
me emphasize three general points. First, because uncertainties in sums or differ-
ences involve absolute uncertainties (such as ox) whereas those in products or quo-
tients involve fractional uncertainties (such as ox!lxl), the calculations will require 
some facility in passing from absolute to fractional uncertainties and vice versa, as 
demonstrated below. 

Second, an important simplifying feature of all these calculations is that ( as 
repeatedly emphasized) uncertainties are seldom needed to more than one significant 
figure. Hence, much of the calculation can be done rapidly in your head, and many 
smaller uncertainties can be completely neglected. In a typical experiment involving 
several trials, you may need to do a careful calculation on paper of all error propa-
gations for the first trial. After that, you will often find that all trials are sufficiently 
similar that no further calculation is needed or, at worst, that for subsequent trials 
the calculations of the first trial can be modified in your head. 

Finally, you need to be aware that you will sometimes encounter functions q(x) 
whose uncertainty cannot be found reliably by the stepwise method advocated here. 
These functions always involve at least one variable that appears more than once. 
Suppose, for example, that in place of the function (3.27), we had to evaluate 

q = y - xsiny. 
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This function is the difference of two terms, y and x sin y, but these two terms are 
definitely not independent because both depend on y. Thus, to estimate the uncer-
tainty, we would have to treat the terms as dependent (that is, add their uncertainties 
directly, not in quadrature). Under some circumstances, this treatment may seriously 
overestimate the true uncertainty. Faced with a function like this, we must recognize 
that a stepwise calculation may give an uncertainty that is unnecessarily big, and 
the only satisfactory procedure is then to use the general formula to be developed 
in Section 3.11. 

3.9 Examples 

In this and the next section, I give three examples of the type of calculation encoun-
tered in introductory laboratories. None of these examples is especially complicated; 
in fact, few real problems are much more complicated than the ones described here. 

Example: Measurement of g with a Simple Pendulum 

As a first example, suppose that we measure g, the acceleration of gravity, usinP-----a 
simple pendulum. The period of such a pendulum is well known to be T = 2rc,Jl/g, 
where l is the length of the pendulum. Thus, if l and T are measured, we can find 
gas 

(3.28) 

This result gives g as the product or quotient of three factors, 4rc 2, l, and T 2 • If 
the various uncertainties are independent and random, the fractional uncertainty in 
our answer is just the quadratic sum of the fractional uncertainties in these factors. 
The factor 4rc2 has no uncertainty, and the fractional uncertainty in T 2 is twice that 
in T: 

Thus, the fractional uncertainty in our answer for g will be 

8g 
g 

(3.29) 

Suppose we measure the period T for one value of the length l and get the 
results 5 

92.95 ± 0.1 cm, 
T l.936 ± 0.004 s. 

5 Although at first sight an uncertainty 8T = 0.004 s may seem unrealistically small, you can easily achieve 
it by timing several oscillations. If you can measure with an accuracy of 0.1 s, as is certainly possible with a 
stopwatch, then by timing 25 oscillations you will find T within 0.004 s. 
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Our best estimate for g is easily found from (3.28) as 

= 41t2 
X (92.95 cm) = 979 cm/sz. 

gbest (1.936 s)2 

To find our uncertainty in g using (3.29), we need the fractional uncertainties in l 
and T. These are easily calculated (in the head) as 

oz l = 0.1% and 
oT 
T 

0.2%. 

Substituting into (3.29), we find 

from which 

og = -V(0.1)2 + (2 X 0.2)2 % 
g 

0.4%; 

og = 0.004 x 979 cm/s2 = 4 cm/s2 . 

Thus, based on these measurements, our final answer is 

g = 979 ± 4 cm/s2. 

Having found the measured value of g and its uncertainty, we would naturally com-
pare these values with the accepted value of g. If the latter has its usual value of 
981 cm/s2, the present value is entirely satisfactory. 

If this experiment is repeated (as most such experiments should be) with differ-
ent values of the parameters, the uncertainty calculations usually do not need to be 
repeated in complete detail. We can often easily convince ourselves that all uncer-
tainties (in the answers for g) are close enough that no further calculations are 
needed; sometimes the uncertainty in a few representative values of g can be calcu-
lated and the remainder estimated by inspection. In any case, the best procedure is 
almost always to record the various values of l, T, and g and the corresponding 
uncertainties in a single table. (See Problem 3.40.) 

Example: Refractive Index Using Snell's Law 

If a ray of light passes from air into glass, the angles of incidence i and refraction 
rare defined as in Figure 3.5 and are related by Snell's law, sini = n sinr, where 
n is the refractive index of the glass. Thus, if you measure the angles i and r, you 

Air 

Glass 

Figure 3.5. The angles of incidence i and refraction r 
when a ray of light passes from air into glass. 
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can calculate the refractive index n as 

sini 
(3.30) n -

sinr 

The uncertainty in this answer is easily calculated. Because n is the quotient of 
sin i and sin r, the fractional uncertainty in n is the quadratic sum of those in sin i 
and sinr: 

8n 
n ( 8 ~i~i)2 + (8~inr)2· 

smz smr 
(3.31) 

To find the fractional uncertainty in the sine of any angle e, we note that 

8sin e = u I dsdin
0 

e I s:,e 

lcos else (in rad). 

Thus, the fractional uncertainty is 

8sin e . -.- = icot el 8e (m rad). 
Ism el 

(3.32) 

Suppose we now measure the angle r for a couple of values of i and get the 
results shown in the first two columns of Table 3.1 (with all measurements judged 
to be uncertain by ± 1°, or 0.02 rad). The calculation of n = sini/sinr is easily 
carried out as shown in the next three columns of Table 3.1. The uncertainty in n 
can then be found as in the last three columns; the fractional uncertainties in sin i 
and sin r are calculated using (3.32), and finally the fractional uncertainty in n is 
found using (3.31). 

Table 3.1. Finding the refractive index. 

i (deg) r (deg) osini osinr on 
all ± 1 all ± 1 sini smr n lsinil lsinrl n 

20 13 0.342 0.225 1.52 5% 8% 9% 
40 23.5 0.643 0.399 1.61 2% 4% 5% 

Before making a series of measurements like the two shown in Table 3.1, you 
should think carefully how best to record the data and calculations. A tidy display 
like that in Table 3.1 makes the recording of data easier and reduces the danger of 
mistakes in calculation. It is also easier for the reader to follow and check. 

If you repeat an experiment like this one several times, the error calculations 
can become tedious if you do them for each repetition. If you have a programmable 
calculator, you may decide to write a program to do the repetitive calculations auto-
matically. You should recognize, however, that you almost never need to do the error 
calculations for all the repetitions; if you find the uncertainties in n corresponding to 
the smallest and largest values of i (and possibly a few intermediate values), then 
these uncertainties suffice for most purposes. 
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3.10 A More Complicated Example 

The two examples just given are typical of many experiments in the introductory 
physics laboratory. A few experiments require more complicated calculations, how-
ever. As an example of such an experiment, I discuss here the measurement of the 
acceleration of a cart rolling down a slope. 6 

Example: Acceleration of a Cart Down a Slope 

photocell 1 
• 

() 

Figure 3.6. A cart rolls down an incline of slope 8. Each photocell is connected to a timer to 
measure the time for the cart to pass it. 

Let us consider a cart rolling down an incline of slope 8 as in Figure 3.6. The 
expected acceleration is gsin 8 and, if we measure 8, we can easily calculate the 
expected acceleration and its uncertainty (Problem 3.42). We can measure the actual 
acceleration a by timing the cart past two photocells as shown, each connected to a 
timer. If the cart has length l and takes time t1 to pass the first photocell, its speed 
there is v 1 = l/t1. In the same way, v2 = l/t2 . (Strictly speaking, these speeds are 
the cart's average speeds while passing the two photocells. However, provided l is 
small, the difference between the average and instantaneous speeds is unimportant.) 
If the distance between the photocells is s, then the well-known formula 
v} = v/ + 2as implies that 

a -
v} - v/ 

2s 

(~)C~2 - t~2). (3.33) 

Using this formula and the measured values of l, s, t 1, and t2, we can easily find the 
observed acceleration and its uncertainty. 

6 If you wish, you could omit this section without loss of continuity or return to study it in connection with 
Problem 3.42. 
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One set of data for this experiment, including uncertainties, was as follows (the 
numbers in parentheses are the corresponding percentage uncertainties, as you can 
easily check): 

5.00 ± 0.05 cm (1 %) 
s - 100.0 ± 0.2 cm (0.2%) (3.34) 

f1 0.054 ± 0.001 s (2%) 
t2 0.031 ± 0.001 s (3%). 

From these values, we can immediately calculate the first factor in (3.33) as 
l2!2s = 0.125 cm. Because the fractional uncertainties in l and s are 1 % and 0.2%, 
that in !2/2s is 

(fractional uncertainty in l2/2s) 

,./(2 X 1 %)2 + (0.2%)2 = 2%. 

(Note how the uncertainty in s makes no appreciable contribution and could have 
been ignored.) Therefore, 

l2!2s = 0.125 cm ± 2%. (3.35) 

To calculate the second factor in (3.33) and its uncertainty, we proceed in steps. 
Because the fractional uncertainty in t1 is 2%, that in lit/ is 4%. Thus, since 
f1 = 0.054 s, 

lit/ = 343 ± 14 s-2. 

In the same way, the fractional uncertainty in lit/ is 6% and 

lit/ = 1041 ± 62 s-2. 

Subtracting these (and combining the errors in quadrature), we find 

1 1 
2 - 2 = 698 ± 64 s-2 (or 9%). 
t2 f1 

(3.36) 

Finally, according to (3.33), the required acceleration is the product of (3.35) 
and (3.36). Multiplying these equations together (and combining the fractional un-
certainties in quadrature), we obtain 

or 

a - (0.125 cm ± 2%) X (698 s-2 ± 9%) 
87 .3 cm/s2 ± 9% 

a = 87 ± 8 cm/s2 . (3.37) 

This answer could now be compared with the expected acceleration g sin (), if the 
latter had been calculated. 

When the calculations leading to (3.37) are studied carefully, several interesting 
features emerge. First, the 2% uncertainty in the factor l2!2s is completely swamped 
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by the 9% uncertainty in (llt2 
2) - (llt1

2). If further calculations are needed for 
subsequent trials, the uncertainties in l and s can therefore be ignored ( so long as a 
quick check shows they are still just as unimportant). 

Another important feature of our calculation is the way in which the 2% and 
3% uncertainties in t 1 and t2 grow when we evaluate lit/, lit}, and the difference 
(lit/) - (lit/), so that the final uncertainty is 9%. This growth results partly from 
taking squares and partly from taking the difference of large numbers. We could 
imagine extending the experiment to check the constancy of a by giving the cart an 
initial push, so that the speeds v1 and v2 are both larger. If we did, the times t1 and 
t2 would get smaller, and the effects just described would get worse (see Problem 
3.42). 

3.1 I General Formula for Error Propagation 7 

So far, we have established three main rules for the propagation of errors: that for 
sums and differences, that for products and quotients, and that for arbitrary functions 
of one variable. In the past three sections, we have seen how the computation of a 
complicated function can often be broken into steps and the uncertainty in the func-
tion computed stepwise using our three simple rules. 

In this final section, I give a single general formula from which all three of 
these rules can be derived and with which any problem in error propagation can be 
solved. Although this formula is often rather cumbersome to use, it is useful theoret-
ically. Furthermore, there are some problems in which, instead of calculating the 
uncertainty in steps as in the past three sections, you will do better to calculate it in 
one step by means of the general formula. 

To illustrate the kind of problem for which the one-step calculation is prefera-
ble, suppose that we measure three quantities x, y, and z and have to compute a 
function such as 

x+y q = --
x+z 

(3.38) 

in which a variable appears more than once (x in this case). If we were to calculate 
the uncertainty oq in steps, then we would first compute the uncertainties in the two 
sums x + y and x + z, and then that in their quotient. Proceeding in this way, we 
would completely miss the possibility that errors in the numerator due to errors in 
x may, to some extent, cancel errors in the denominator due to errors in x. To 
understand how this cancellation can happen, suppose that x, y, and z are all positive 
numbers, and consider what happens if our measurement of x is subject to error. If 
we overestimate x, we overestimate both x + y and x + z, and (to a large extent) 
these overestimates cancel one another when we calculate (x + y)!(x + z). Simi-
larly, an underestimate of x leads to underestimates of both x + y and x + z, which 
again cancel when we form the quotient. In either case, an error in x is substantially 

7 You can postpone reading this section without a serious loss of continuity. The material covered here is 
not used again until Section 5.6. 
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canceled out of the quotient (x + y)l(x + z), and our stepwise calculation com-
pletely misses these cancellations. 

Whenever a function involves the same quantity more than once, as in (3.38), 
some errors may cancel themselves (an effect, sometimes called compensating er-
rors). If this cancellation is possible, then a stepwise calculation of the uncertainty 
may overestimate the final uncertainty. The only way to avoid this overestimation is 
to calculate the uncertainty in one step by using the method I will now develop. 8 

Let us suppose at first that we measure two quantities x and y and then calculate 
some function q = q(x, y ). This function could be as simple as q = x + y or some-
thing more complicated such as q = (x3 + y) sin(xy). For a function q(x) of a single 
variable, we argued that if the best estimate for x is the number xbest, then the best 
estimate for q(x) is q(xbest). Next, we argued that the extreme (that is, largest and 
smallest) probable values of x are xbest ± 8.x and that the corresponding extreme 
values of q are therefore 

q(xbest ± &). (3.39) 

Finally, we used the approximation 

q(x + u) = q(x) + : u (3.40) 

(for any small increment u) to rewrite the extreme probable values (3.39) as 

(3.41) 

where the absolute value is to allow for the possibility that dq/dx may be negative. 
The result (3.41) means that 8q = ldq!dxl&. 

When q is a function of two variables, q(x, y ), the argument is similar. If xbest 
and Ybest are the best estimates for x and y, we expect the best estimate for q to be 

in the usual way. To estimate the uncertainty in this result, we need to generalize 
the approximation (3.40) for a function of two variables. The required generalization 
is 

q(x + u, y + v) = q(x, y) + aq u + aq v, 
ax ay 

(3.42) 

where u and v are any small increments in x and y, and aqJax and aqJay are the so-
called partial derivatives of q with respect to x and y. That is, aqJax is the result of 
differentiating q with respect to x while treating y as fixed, and vice versa for aqJay. 
[For further discussion of partial derivatives and the approximation (3.42), see Prob-
lems 3.43 and 3.44.) 

The extreme probable values for x and y are xbest ± 8.x and Ybest ± 8y. If we 
insert these values into (3.42) and recall that oq/ax and aqJay may be positive or 

8 Sometimes a function that involves a variable more than once can be rewritten in a different form that 
does not. For example, q = xy - xz can be rewritten as q = x(y - z). In the second form, the uncertainty 
8q can be calculated in steps without any danger of overestimation. 
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negative, we find, for the extreme values of q, 

q(xbest, Ybest) ± ( I !; j sx + I :; I 8y). 

This means that the uncertainty in q(x, y) is 

Sq = I !; j sx + I !! j sy. (3.43) 

Before I discuss various generalizations of this new rule, let us apply it to rederive 
some familiar cases. Suppose, for instance, that 

q(x, y) = X + y; 

that is, q is just the sum of x and y. The partial derivatives are both one, 

and so, according to (3.43), 

aq 
ax 

aq = 1 
ay , 

8q = 8x + 8y. 

(3.44) 

(3.45) 

(3.46) 

This is just our original provisional rule that the uncertainty in x + y is the sum of 
the uncertainties in x and y. 

In much the same way, if q is the product q = xy, you can check that (3.43) 
implies the familiar rule that the fractional uncertainty in q is the sum of the frac-
tional uncertainties in x and y (see Problem 3.45). 

The rule (3.43) can be generalized in various ways. You will not be surprised 
to learn that when the uncertainties 8x and 8y are independent and random, the sum 
(3.43) can be replaced by a sum in quadrature. If the function q depends on more 
than two variables, then we simply add an extra term for each extra variable. In this 
way, we arrive at the following general rule (whose full justification will appear in 
Chapters 5 and 9). 

(3.47) 

(3.48) 
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Although the formulas (3.47) and (3.48) look fairly complicated, they are easy 
to understand if you think about them one term at a time. For example, suppose for 
a moment that among all the measured quantities, x, y, ... , z, only x is subject to 
any uncertainty. (That is, oy = ... = oz= 0.) Then (3.47) contains only one term 
and we would find 

oq = I !; I ox (if oy = . . . = oz = o). (3.49) 

In other words, the term /aqJax/ox by itself is the uncertainty, or partial uncertainty, 
in q caused by the uncertainty in x alone. In the same way, /aq/ay/oy is the partial 
uncertainty in q due to oy alone, and so on. Referring back to (3.4 7), we see that 
the total uncertainty in q is the quadratic sum of the partial uncertainties due to each 
of the separate uncertainties ox, oy, ... , oz (provided the latter are independent). 
This is a good way to think about the result (3.47), and it suggests the simplest way 
to use (3 .4 7) to calculate the total uncertainty in q: First, calculate the partial uncer-
tainties in q due to ox, oy, ... , oz separately, using (3.49) and its analogs for y, ... , 
z; then simply combine these separate uncertainties in quadrature to give the total 
uncertainty as in (3.47). 

In the same way, whether or not the uncertainties ox, oy, ... , oz are indepen-
dent, the rule (3.48) says that the total uncertainty in q never exceeds the simple 
sum of the partial uncertainties due to each of ox, oy, ... , oz separately. 

Example: Using the General Formula (3.47) 

To determine the quantity 

q = x2y - xy2, 

a scientist measures x and y as follows: 

X = 3.0 ± 0.1 and y = 2.0 ± 0.1. 

What is his answer for q and its uncertainty, as given by (3.47)? 
His best estimate for q is easily seen to be %est = 6.0. To find oq, we follow 

the steps just outlined. The uncertainty in q due to & alone, which we denote by 
oqx, is given by (3.49) as 

oqx ( error in q due to ox alone) 

I!! I ox (3.50) 

/2xy - y2/ox = /12 - 4/ X 0.1 0.8. 

Similarly, the uncertainty in q due to oy is 

( error in q due to oy alone) 

I!! I oy (3.51) 

/x2 - 2xy/oy /9 - 12/ X 0.1 0.3. 
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Finally, according to (3.47), the total uncertainty in q is the quadratic sum of these 
two partial uncertainties: 

Thus, the final answer for q is 

,./(oqy + (oqy)2 

,./(0.8)2 + (0.3)2 

q 6.0 ± 0.9. 

(3.52) 

0.9. 

The use of (3.47) or (3.48) to calculate uncertainties is reasonably straightfor-
ward if you follow the procedure used in this example; that is, first calculate each 
separate contribution to oq and only then combine them to give the total uncertainty. 
This procedure breaks the problem into calculations small enough that you have a 
good chance of getting them right. It has the further advantage that it lets you see 
which of the measurements x, y, ... , z are the main contributors to the final uncer-
tainty. (For instance, in the example above, the contribution oqy = 0.3 was so small 
compared with oqx = 0.8 that the former could almost be ignored.) 

Generally speaking, when the stepwise propagation described in Sections 3.8 to 
3.10 is possible, it is usually simpler than the general rules (3.47) or (3.48) discussed 
here. Nevertheless, you must recognize that if the function q(x, ... , z) involves any 
variable more than once, there may be compensating errors; if so, a stepwise calcu-
lation may overestimate the final uncertainty, and calculating oq in one step using 
(3.47) or (3.48) is better. 

Principal Definitions and Equations of Chapter 3 

THE SQUARE-ROOT RULE FOR A COUNTING 
EXPERIMENT 

If we observe the occurrences of an event that happens at random but with a 
definite average rate and we count v occurrences in a time T, our estimate for the 
true average number is 

(average number of events in time T) = v ± ~. [See (3.2)] 

RULES FOR ERROR PROPAGATION 

The rules of error propagation refer to a situation in which we have found 
various quantities, x, ... , w with uncertainties ox, ... , ow and then use these values 
to calculate a quantity q. The uncertainties in x, ... , w "propagate" through the 
calculation to cause an uncertainty in q as follows: 
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Sums and Differences: If 

then 

and 

q = x + · · · + z - (u + · · · + w), 

8q -y(8x)2 + · · · + (&)2 + (8u)2 + · · · + (8w)2 

(provided all errors are independent and random) 

8q ,;;; 8x + · · · + 8z + 8u + · · · + 8w 
(always). [See (3.16) & (3.17)] 

Products and Quotients: If 

then 

and 

q x X · · · X z 
u X ·· · X w' 

( ~r + · · · + ( ~r + ( ~r + · · · + ( ~r 
8q ,;;; 
/q/ 

(provided all errors are independent and random) 

ax 8z 8u 8w -+···+-+-+···+-
/x/ /z/ /u/ /w/ 

(always). [See (3.18) & (3.19)] 

Measured Quantity Times Exact Number: If Bis known exactly and 

q = Bx, 

then 

8q = IBI ax or, equivalently, ~I 
Uncertainty in a Power: If n is an exact number and 

q = x", 

then 

8x 
lxl· [See (3.9)] 

[See (3.26)] 

Uncertainty in a Function of One Variable: If q 
then 

q(x) is any function of x, 

8q = I: I ax. [See (3.23)] 

Sometimes, if q(x) is complicated and if you have written a program to calculate 
q(x) then, instead of differentiating q(x), you may find it easier to use the equivalent 
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fonnula, 

oq = lq(xbest + ox) - q(xbesi)I. [See Problem 3.32) 

General Formula for Error Propagation: If q = q(x, ... , z) is any function of 
x, ... , z, then 

oq (!; ox)2 + · · · + (!; 02)2 
(provided all errors are independent and random) 

and 

oq I !! I ox + . . . + I !! I oz 

(always). [See (3.47) & (3.48)) 

Problems for Chapter 3 

For Section 3.2: The Square-Root Rule for a Counting Experiment 

3.1. * To measure the activity of a radioactive sample, two students count the 
alpha particles it emits. Student A watches for 3 minutes and counts 28 particles; 
Student B watches for 30 minutes and counts 310 particles. (a) What should Student 
A report for the average number emitted in 3 minutes, with his uncertainty? (b) 
What should Student B report for the average number emitted in 30 minutes, with 
her uncertainty? (c) What are the fractional uncertainties in the two measurements? 
Comment. 

3.2. * A nuclear physicist studies the particles ejected by a beam of radioactive 
nuclei. According to a proposed theory, the average rates at which particles are 
ejected in the forward and backward directions should be equal. To test this theory, 
he counts the total number ejected forward and backward in a certain 10-hour inter-
val and finds 998 forward and 1,037 backward. (a) What are the uncertainties asso-
ciated with these numbers? (b) Do these results cast any doubt on the theory that 
the average rates should be equal? 

3.3. * Most of the ideas of error analysis have important applications in many 
different fields. This applicability is especially true for the square-root rule (3.2) 
for counting experiments, as the following example illustrates. The normal average 
incidence of a certain kind of cancer has been established as 2 cases per 10,000 
people per year. The suspicion has been aired that a certain town (population 
20,000) suffers a high incidence of this cancer because of a nearby chemical dump. 
To test this claim, a reporter investigates the town's records for the past 4 years and 
finds 20 cases of the cancer. He calculates that the expected number is 16 (check 
this) and concludes that the observed rate is 25% more than expected. Is he justified 
in claiming that this result proves that the town has a higher than normal rate for 
this cancer? 
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3.4. ** As a sample of radioactive atoms decays, the number of atoms steadily 
diminishes and the sample's radioactivity decreases in proportion. To study this 
effect, a nuclear physicist monitors the particles ejected by a radioactive sample for 
2 hours. She counts the number of particles emitted in a I-minute period and repeats 
the measurement at half-hour intervals, with the following results: 

Time elapsed, t (hours): 0.0 0.5 1.0 1.5 2.0 
Number counted, v, in 1 min: 214 134 101 61 54 

(a) Plot the number counted against elapsed time, including error bars to show the 
uncertainty in the numbers. (Neglect any uncertainty in the elapsed time.) 
(b) Theory predicts that the number of emitted particles should diminish exponen-
tially as v = v0 exp( - rt), where (in this case) v0 = 200 and r = 0.693 h 1. On the 
same graph, plot this expected curve and comment on how well the data seem to fit 
the theoretical prediction. 

For Section 3.3: Sums and Differences; Products and Quotients 

3.5. * Using the provisional rules (3.4) and (3.8), compute the following: 
(a) (5 ± 1) + (8 ± 2) - (10 ± 4) 
(b) (5 ± 1) X (8 ± 2) 
(c) (10 ± 1)/(20 ± 2) 
(d) (30 ± 1) X (50 ± 1)/(5.0 ± 0.1) 

3.6. * Using the provisional rules (3.4) and (3.8), compute the following: 
(a) (3.5 ± 0.1) + (8.0 ± 0.2) - (5.0 ± 0.4) 
(b) (3.5 ± 0.1) X (8.0 ± 0.2) 
(c) (8.0 ± 0.2)/(5.0 ± 0.4) 
(d) (3.5 ± 0.1) X (8.0 ± 0.2)/(5.0 ± 0.4) 

3. 7. * A student makes the following measurements: 

a = 5 ± 1 cm, b = 18 ± 2 cm, c = 12 ± 1 cm, 
t = 3.0 ± 0.5 s, m = 18 ± 1 gram 

Using the provisional rules (3.4) and (3.8), compute the following quantities with 
their uncertainties and percentage uncertainties: (a) a + b + c, (b) a + b - c, (c) 
ct, and (d) mb/t. 

3.8. ** The binomial theorem states that for any number n and any x with 
lxl < 1, 

(1 + xt = 1 + nx + n(n - 1) x2 + n(n - l)(n - 2) x3 + ... 
1·2 1·2·3 

(a) Show that if n is a positive integer, this infinite series terminates (that is, has 
only a finite number of nonzero terms). Write the series down explicitly for the 
cases n = 2 and n = 3. (b) Write down the binomial series for the case n = -1. 
This case gives an infinite series for 1/(1 + x), but when xis small, you get a good 
approximation if you keep just the first two terms: 

1 -- = l -x 
1 + X ' 


