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Prime Numbers

 A prime number is an integer that can only be 
divided without remainder by positive and negative 
values of itself and 1. 

 Prime numbers play a critical role both in number 
theory and in cryptography.
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Relatively Prime Numbers & GCD

 two numbers a, b are relatively prime if they have no 
common divisors apart from 1 

 Example: 8 & 15 are relatively prime since factors of 
8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only 
common factor 

 Conversely can determine the Greatest Common 
Divisor by comparing their prime factorizations and 
using least powers

 Example: 300=22x31x52

18=21x32

hence GCD(18,300)=21x31x50=6
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Fermat's Theorem

 Fermat’s theorem states the following: If p is prime 
and is a positive integer not divisible by p, then

ap-1 = 1 (mod p)

 also known as Fermat’s Little Theorem

 also have: ap = a (mod p)

 useful in public key and primality testing
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Public Key Encryption

 Asymmetric encryption is a form of cryptosystem in 
which encryption and decryption are performed 
using the different keys

• a public key

• a private key. 

 It is also known as public-key encryption
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Public Key Encryption

 Asymmetric encryption transforms plaintext into 
ciphertext using a one of two keys and an encryption 
algorithm. 

 Using the paired key and a decryption algorithm, the 
plaintext is recovered from the ciphertext

 Asymmetric encryption can be used for 
confidentiality, authentication, or both.

 The most widely used public-key cryptosystem is 
RSA. 

 The difficulty of attacking RSA is based on the 
difficulty of finding the prime factors of a composite

 number.
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Why Public Key Cryptography?

 Developed to address two key issues:

• key distribution – how to have secure communications in 
general without having to trust a KDC with your key

• digital signatures – how to verify a message comes intact 
from the claimed sender

 Public invention due to Whitfield Diffie & Martin 
Hellman at Stanford University in 1976

• known earlier in classified community
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Public Key Cryptography

 public-key/two-key/asymmetric cryptography 
involves the use of two keys: 
• a public-key, which may be known by anybody, and can be 

used to encrypt messages, and verify signatures

• a related private-key, known only to the recipient, used to 
decrypt messages, and sign (create) signatures

 Infeasible to determine private key from public

 is asymmetric because
• those who encrypt messages or verify signatures cannot

decrypt messages or create signatures
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Public Key Cryptography
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Symmetric vs. Public Key
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Public Key Cryptosystems



13

Public Key Applications

 can classify uses into 3 categories:

• encryption/decryption (provide secrecy)

• digital signatures (provide authentication)

• key exchange (of session keys)

 some algorithms are suitable for all uses, others are 
specific to one
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Public Key Requirements

 Public-Key algorithms rely on two keys where:

• it is computationally infeasible to find decryption key 
knowing only algorithm & encryption key

• it is computationally easy to en/decrypt messages when 
the relevant (en/decrypt) key is known

• either of the two related keys can be used for encryption, 
with the other used for decryption (for some algorithms)
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Public Key Requirements

 need a trap-door one-way function

 one-way function has

• Y = f(X) easy  

• X = f–1(Y) infeasible

 a trap-door one-way function has

• Y = fk(X) easy, if k and X are known

• X = fk
–1(Y) easy, if k and Y are known

• X = fk
–1(Y) infeasible, if Y known but k not known

 a practical public-key scheme depends on a suitable 
trap-door one-way function
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Security of Public Key Schemes

 Like symmetric encryption, a public-key encryption 
scheme is vulnerable to a brute-force attack

 The difference is, keys used are too large (>512bits) 

 Requires the use of very large numbers

 Slow compared to private key schemes 
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RSA

 by Rivest, Shamir & Adleman of MIT in 1977 

 best known & widely used public-key scheme 

 based on exponentiation in a finite (Galois) field over 
integers modulo a prime 

• Note: exponentiation takes O((log n)3) operations (easy!) 

 uses large integers (eg. 1024 bits)

 security due to cost of factoring large numbers 

• Note: factorization takes O(e log n log log n) operations (hard!) 
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RSA En/decryption

 to encrypt a message M the sender:

• obtains public key of recipient PU={e,n} 

• computes: C = Me mod n, where 0≤M<n

 to decrypt the ciphertext C the owner:

• uses their private key PR={d,n} 

• computes: M = Cd mod n 

 note that the message M must be smaller than the 
modulus n (block if needed)
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RSA Key Setup

Each user generates a public/private key pair by: 

1. selecting two large primes at random: p, q 

2. computing their system modulus n = p.q
• note ø(n)=(p-1)(q-1) 

3. selecting at random the encryption key e
• where 1<e<ø(n), GCD(e,ø(n))=1 

4. solve following equation to find decryption key d 
• e.d = 1 mod ø(n) and 0≤d≤n 

5. publish their public encryption key: PU={e,n} 

6. keep secret private decryption key: PR={d,n} 
For more details, see references: 

[1] pages 278-280 

[2] Chapter 8: Security in Computer Networks
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Why RSA works

 because of Euler's Theorem:
• aø(n)mod n = 1 where gcd(a,n) = 1

 in RSA have:
• n = p.q
• ø(n) = (p-1)(q-1) 
• carefully chose e & d to be inverses mod ø(n) 
• hence e.d =  1 + k.ø(n) for some k

 hence :
Cd = Me.d = M1+k.ø(n) = M1.(Mø(n))k

= M1.(1)k = M1 = M mod n 
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RSA Example - Key Setup

1. Select primes: p = 17 & q = 11

2. Calculate n = pq = 17 x 11 = 187

3. Calculate ø(n)=(p–1)(q-1)=16x10=160

4. Select e: gcd(e,160) = 1; choose e = 7

5. Determine d: de = 1 mod 160 and d < 160 

Value is d = 23 since 23x7 = 161 = 10x160 + 1

1. Publish public key PU = {7,187}

2. Keep secret private key PR = {23,187}
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Efficient Operation using Public Key

 To speed up the operation of the RSA algorithm using the 
public key, a specific choice of e is usually made.

• The most common choice is 65537 (216 + 1); 

• Two other popular choices are 3 and 17. 

 Each of these choices has only two 1 bits, so the number of 
multiplications required to perform exponentiation is 
minimized.

 However, with a very small public key, such as e = 3, RSA 
becomes vulnerable to a simple attack. 

 Suppose we have three different RSA users who all use the 
value e = 3 but have unique values of n, namely (n1, n2, n3)

 If user A sends the same encrypted message M to all three 
users, then the three ciphertexts are C1 =M3 mod n1,

 C2 = M3 mod n2, and C3 = M3 mod n3. It is likely that n1, n2, and 
n3 are pairwise relatively prime
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Efficient Operation using Public Key

 Suppose we have three different RSA users who all use the 
value e = 3 but have unique values of n, namely (n1, n2, n3)

 If user A sends the same encrypted message M to all three 
users, then the three ciphertexts are 

• C1 =M3 mod n1,

• C2 = M3 mod n2, and 

• C3 = M3 mod n3. 

 It is likely that n1, n2, and n3 are pairwise relatively prime

 Therefore, one can use the Chinese remainder theorem (CRT) 
to compute M3 mod (n1n2n3)
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RSA Security

 Four possible approaches to attacking the RSA 
algorithm are
1. Brute force: This involves trying all possible private keys.

2. Mathematical attacks: There are several approaches, all 
equivalent in effort tofactoring the product of two 
primes.

3. Timing attacks: These depend on the running time of the 
decryption algorithm.

4. Chosen ciphertext attacks: This type of attack exploits 
properties of the RSA algorithm.



25

Summary

 Definition of prime number

 Relatively prime numbers

 Public key cryptography

• Public key

• Private key

 RSA algorithm

• Key setup

• Security



26

References

1. Cryptography and Network Security, Principles 

and Practice, William Stallings, Prentice Hall, 

Sixth Edition, 2013

2. Computer Networking: A Top-Down Approach 6th

Edition, Jim Kurose, Keith Ross, Pearson, 2013


