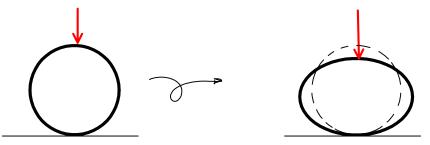
# **Chapter 3: Rigid Bodies; Equivalent Systems of forces**

#### 3.1 -3.3 Introduction, Internal & External Forces

- Rigid Bodies: Bodies in which the <u>relative</u> position of <u>any</u> two points does not change. Note:
  - In real life no body is perfectly rigid. We can approximate the behavior of most structures with rigid bodies because the deformations are usually small and negligible.
  - Even in cases when the deformations are <u>not</u> negligible, we can still apply the principles of equilibrium and statics to the <u>deformed</u> or the <u>current</u> configuration of the body to find out what forces the body is carrying.

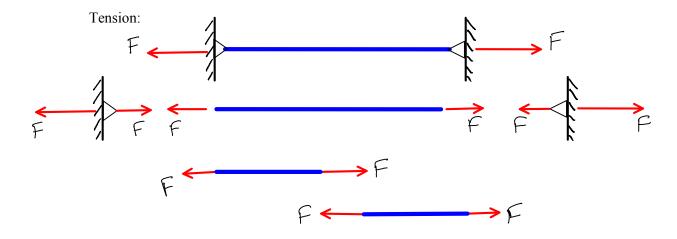


- External and Internal forces:
  - External forces on a rigid body are due to causes that are external to the body. They can cause the body to move or remain at rest as a whole.

For example: force of gravity, applied external force on an object.

 Internal forces develop in any body (not just rigid bodies) that keep all the particles of a body together.

For example: Internal TENSION or COMPRESSION in a bar, bending moment in a beam.

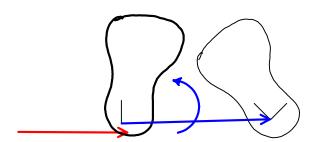


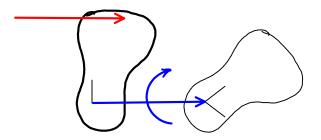
Similarly compression.



### 3.4 - 3.8 Moment of a force; Vector CROSS Product

- Any force that is applied to a rigid body causes the body to translate or ROTATE or both.
- The tendency to ROTATE is caused by MOMENTS generated by the force.



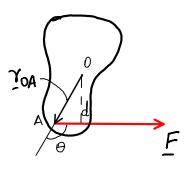


• In general, a force F generates a moment about any point O which is offset by some distance from the line of action of F. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

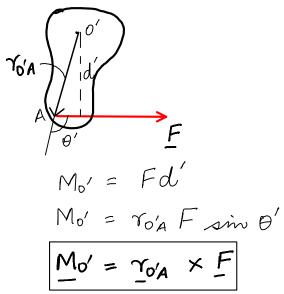
Note:

- Moment of F about O.
- Moment is a VECTOR.



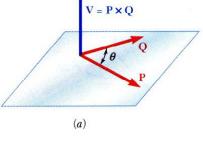


$$M_o = Fd$$
 $M_o = Y_{OA} F sin \theta$ 
 $M_o = Y_{OA} \times F$ 



### **Vector Cross Product:**

- Vector product of two vectors P and Q is defined as the vector V which satisfies the following conditions:
  - 1. Line of action of V is perpendicular to plane containing P and Q.
  - 2. Magnitude of V is  $V = PQ \sin \theta$
  - 3. Direction of *V* is obtained from the right-hand rule.

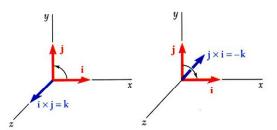


- Vector products:
  - are not commutative,  $\mathbf{Q} \times \mathbf{P} = -(\mathbf{P} \times \mathbf{Q})$
  - are distributive,  $P \times (Q_1 + Q_2) = P \times Q_1 + P \times Q_2$
  - are not associative,  $(P \times Q) \times S \neq P \times (Q \times S)$



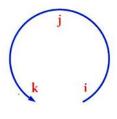
• Vector products of Cartesian unit vectors,

$$\vec{i} \times \vec{i} = 0 \qquad \vec{j} \times \vec{i} = -\vec{k} \qquad \vec{k} \times \vec{i} = \vec{j}$$
  
$$\vec{i} \times \vec{j} = \vec{k} \qquad \vec{j} \times \vec{j} = 0 \qquad \vec{k} \times \vec{j} = -\vec{i}$$
  
$$\vec{i} \times \vec{k} = -\vec{j} \qquad \vec{j} \times \vec{k} = \vec{i} \qquad \vec{k} \times \vec{k} = 0$$



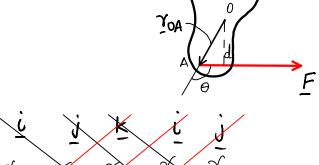
• Vector products in terms of rectangular coordinates

$$\vec{V} = (P_x \vec{i} + P_y \vec{j} + P_z \vec{k}) \times (Q_x \vec{i} + Q_y \vec{j} + Q_z \vec{k})$$
$$= (P_y Q_z - P_z Q_y) \vec{i} + (P_z Q_x - P_x Q_z) \vec{j} + (P_x Q_y - P_y Q_x) \vec{k}$$



Thus Moment of F about O can be obtained as:

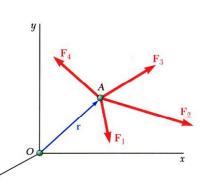
$$= \begin{vmatrix} \underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\ \mathbf{f}_{x} & \gamma_{y} & \gamma_{z} \\ \mathbf{f}_{x} & \mathbf{f}_{y} & \mathbf{f}_{z} \end{vmatrix}$$



### Varignon's Theorem

$$\vec{r} \times (\vec{F}_1 + \vec{F}_2 + \cdots) = \vec{r} \times \vec{F}_1 + \vec{r} \times \vec{F}_2 + \cdots$$

- Follows from the Distributive property of the vector cross product
- Varigon's Theorem makes it possible to replace the direct determination of the moment of a force *F* by the moments of two or more component forces of *F*.



### **Equivalent forces**

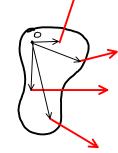
Two forces are said to be <u>equivalent</u> if they have the same magnitude and direction (i.e. they are <u>equal</u>) and produce the <u>same moment</u> about any point O (i.e. <u>same line of action</u>).

#### Note:

- Principle of transmissibility follows from this. Two forces that have the same line of action produce the same <u>external effect</u> (i.e.translation or rotation) on the body because they have the same net force and moment about any point.
- Later in Chapter 4 we will see that the equations for equilibrium for a rigid body are given by:

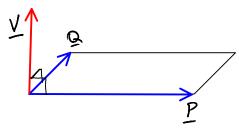
$$\leq F = 0$$

$$\leq M_0 = \leq (\tilde{\chi}_0 \times F) = 0$$



### Applications of Cross product:

- Finding the direction <u>perpendicular</u> to two vectors.
- Calculation of Area of a Parallelogram.
- Finding the distance of a point from a line.



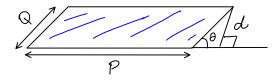
Examples:

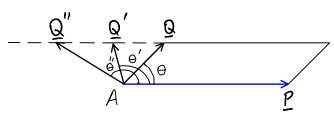
$$\underline{V} = \underline{P} \times \underline{Q}$$

$$d = Q \sin \theta$$

$$= Q' \sin \theta'$$

$$= Q'' \sin \theta''$$



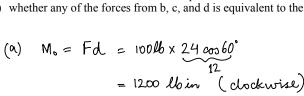


### Example 3.1

A 100-lb vertical force is applied to the end of a lever which is attached to a shaft at O.

Determine:

- a) moment about O,
- b) horizontal force at A which creates the same moment,
- c) smallest force at A which produces the same moment,
- d) location for a 240-lb vertical force to produce the same moment,
- whether any of the forces from b, c, and d is equivalent to the original force.



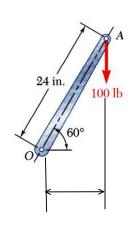
Alternatively.

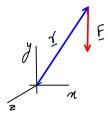
$$M_0 = \Upsilon \times F$$
 $\Upsilon = 12 \underline{i} + 12\sqrt{3} \underline{j}$ 
 $f = -100 \underline{j} \text{ lb}$ 
 $\Rightarrow M_0 = -1200 \underline{k} \text{ lb in}$ 

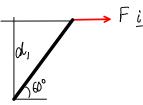
(b) 
$$d_1 = 24 \text{ sin } 60^{\circ}$$
  
=  $12\sqrt{3} = 20.8 \text{ in}$   
 $Fd_1 = M_0$   
 $\Rightarrow F = \frac{M_0}{d_1} = 57.7 \text{ lb}$ 

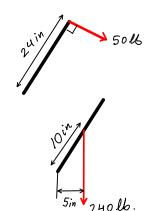
(c) 
$$d_2 = 24 \text{ in}$$
  
 $F = \frac{1200}{24} = 50 \text{ lb}$ 

(d) 
$$1200 = (240) \times d_3$$
  
=>  $d_3 = 5 \text{ in}$   
=>  $l = \frac{5}{9560} = 10 \text{ in}$ 









#### Exercise 3.25 & 3.31

Given tension in each cable is 810N.

- Determine the moment at A due to the force at D.
- Find the distance of point A from the "line" DE.

Recall Moment of F about A can be obtained as:

$$M_{A} = \Upsilon_{AD} \times F$$

$$\Upsilon_{AD} = -0.6 i - 1 j + 3 k m$$

$$F = \frac{\overrightarrow{DE}}{|\overrightarrow{DE}|} 810 N$$

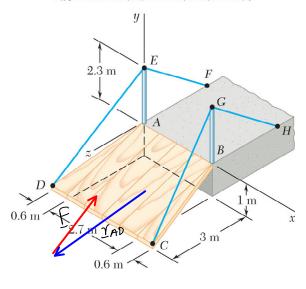
$$\overrightarrow{DE} = 0.6 i + 3.3 j - 3 k m$$

$$\Rightarrow |\overrightarrow{DE}| = \sqrt{0.6^{2} + 3.3^{2} + 3^{2}} = 4.5 m$$

$$\Rightarrow \mathbf{M}_{\mathbf{A}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -0.6 & -1 & 3 \end{vmatrix} = \frac{\mathbf{i} \left( 540 - 3 \times 594 \right)}{108 594 - 540} + \frac{\mathbf{j} \left( 3 \times 108 - 0.6 \times 540 \right)}{108 594 + 108}$$

$$\vec{M}_A = -1242 \ \underline{i} + 0 \underline{j} - 248.4 \ \underline{k} \ N.m$$

Distance of A from line DE:
Note  $\overrightarrow{M}_{A} = \overrightarrow{V}_{AD} \times \overrightarrow{F}$   $|\overrightarrow{M}_{A}| = |\overrightarrow{V}_{AD}| |F| \sin \theta = 1266.6 \text{ Nm}$ i.e.  $M_{A} = F$   $d = M_{A} = 1266.6 = 1.56 \text{ m}$ 



#### 3.9 Scalar Product of two Vectors

• The *scalar product* or *dot product* between two vectors *P* and *Q* is defined as

$$\vec{P} \cdot \vec{Q} = PQ\cos\theta$$
 (scalar result)

• Scalar products:

$$\vec{P} \bullet \vec{Q} = \vec{Q} \bullet \vec{P}$$

- are commutative,
- 1 40-041
- are distributive,

$$\vec{P} \bullet (\vec{Q}_1 + \vec{Q}_2) = \vec{P} \bullet \vec{Q}_1 + \vec{P} \bullet \vec{Q}_2$$

• are not associative,

$$(\vec{P} \bullet \vec{Q}) \bullet \vec{S} =$$
undefined

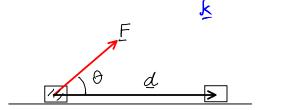
• Scalar products with Cartesian unit components,

$$\vec{P} \bullet \vec{Q} = (P_x \vec{i} + P_y \vec{j} + P_z \vec{k}) \bullet (Q_x \vec{i} + Q_y \vec{j} + Q_z \vec{k})$$

$$\vec{i} \cdot \vec{i} = 1$$
  $\vec{j} \cdot \vec{j} = 1$   $\vec{k} \cdot \vec{k} = 1$   $\vec{i} \cdot \vec{j} = 0$   $\vec{j} \cdot \vec{k} = 0$   $\vec{k} \cdot \vec{i} = 0$ 

$$\vec{P} \bullet \vec{Q} = P_x Q_x + P_y Q_y + P_z Q_z$$

$$\vec{P} \bullet \vec{P} = P_{r}^{2} + P_{r}^{2} + P_{z}^{2} = P^{2}$$



#### **Applications of Dot Product**

• Work done by a force

$$W = F \cdot d = F d \cos\theta$$

• Angle between two vectors:

$$\vec{P} \bullet \vec{Q} = PQ\cos\theta = P_xQ_x + P_yQ_y + P_zQ_z$$

$$\cos\theta = \frac{P_xQ_x + P_yQ_y + P_zQ_z}{PO}$$

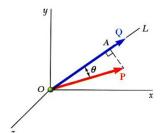


• Projection of a vector on a given axis:

$$P_{OL} = P \cos \theta = \text{projection of } P \text{ along } OL$$

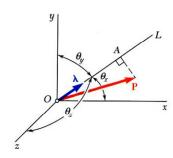
$$\vec{P} \bullet \vec{Q} = PQ \cos \theta$$

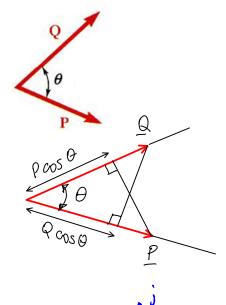
$$\frac{\vec{P} \bullet \vec{Q}}{O} = P \cos \theta = P_{OL}$$



• Component in a given direction (unit vector):

$$P_{OL} = \vec{P} \bullet \vec{\lambda}$$
  
=  $P_x \cos \theta_x + P_y \cos \theta_y + P_z \cos \theta_z$ 





#### 3.10 Mixed TRIPLE Product of 3 Vectors

• Mixed triple product of three vectors,

$$\vec{S} \bullet (\vec{P} \times \vec{Q}) = \text{scalar result}$$

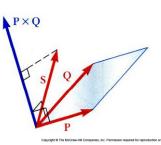
• The six mixed triple products formed from *S*, *P*, and *Q* have equal magnitudes but not the same sign,

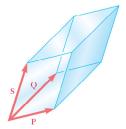
$$\vec{S} \bullet (\vec{P} \times \vec{Q}) = \vec{P} \bullet (\vec{Q} \times \vec{S}) = \vec{Q} \bullet (\vec{S} \times \vec{P})$$
$$= -\vec{S} \bullet (\vec{Q} \times P) = -\vec{P} \bullet (\vec{S} \times \vec{Q}) = -\vec{Q} \bullet (\vec{P} \times \vec{S})$$

• Evaluating the mixed triple product,

$$\vec{S} \bullet (\vec{P} \times \vec{Q}) = S_x (P_y Q_z - P_z Q_y) + S_y (P_z Q_x - P_x Q_z) + S_z (P_x Q_y - P_y Q_x)$$

$$= \begin{vmatrix} S_x & S_y & S_z \\ P_x & P_y & P_z \\ Q_x & Q_y & Q_z \end{vmatrix}$$

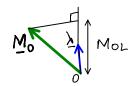




#### 3.11 Moment of a force about an Axis

$$M_{oL} = \underline{\lambda} \cdot \underline{M}_{o} = \underline{\lambda} \cdot (\underline{\gamma}_{oP} \times \underline{F})$$

Note:  $M_{OL}$  is the projection of  $M_O$  along OL.

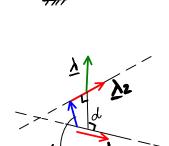


#### Application:

Finding the perpendicular distance between two non-intersecting lines in 3D space.

$$\underline{\lambda} = \underline{\lambda}_1 \times \underline{\lambda}_2$$

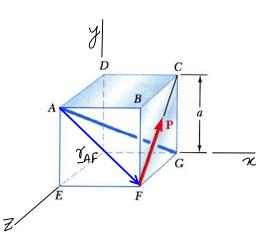
$$\underline{\lambda} = \underline{\gamma} \cdot \underline{\lambda} = \underline{\gamma} \cdot (\underline{\lambda}_1 \times \underline{\lambda}_2)$$



Read Example 3.5 in the book.

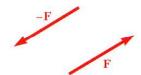
A cube is acted on by a force P as shown. Determine the moment of P

- a) about A
- b) about the edge AB and
- c) about the diagonal AG of the cube.
- d) Determine the perpendicular distance between AG and FC.

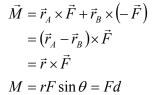


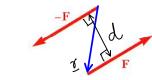
#### 3.12-3.13 Force Couples

• Two forces *F* and -*F* having the same magnitude, parallel lines of action, and opposite sense are said to form a **couple**.



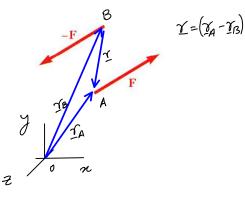
• Moment of the couple,



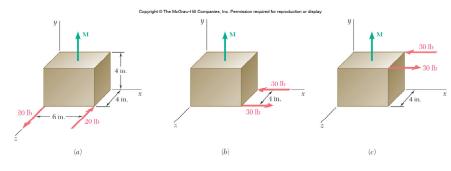


Note: Moment of a "couple" is always the same about any point.





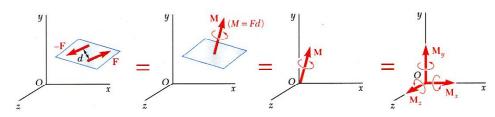
### **Equivalent Couples**



Two or more couples are equivalent iff they produce the same moment.

- $F_1d_1 = F_2d_2$
- the two couples lie in parallel planes, and
- the two couples have the same sense or the tendency to cause rotation in the same direction.

#### 3.14-3.15 Couples (and Moments) are Vectors



### Addition of Couples

Moment due to the resultant of the forces:

$$\vec{M} = \vec{r} \times \vec{R} = \vec{r} \times (\vec{F}_1 + \vec{F}_2)$$

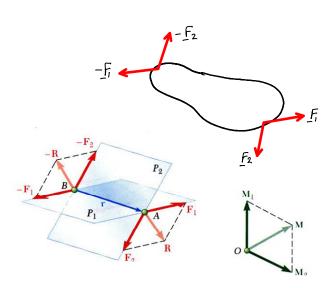
Moment due to the individual couples:

$$\vec{M}_1 = \vec{r} \times \vec{F}_1$$
 in plane  $P_1$ 

$$\vec{M}_2 = \vec{r} \times \vec{F}_2$$
 in plane  $P_2$ 

VECTOR sum of the two moments:

$$\vec{M} = \vec{r} \times \vec{F}_1 + \vec{r} \times \vec{F}_2$$
$$= \vec{M}_1 + \vec{M}_2$$



#### Example 3.6

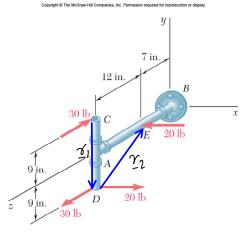
$$M = (30 \times 18)(-i) + (20 \times 12)(i) + (20 \times 9)(k)$$

$$M = -540 i + 240 j + 180 k \text{ lb in}$$
Alternatively.
$$M = \gamma_1 \times (30 k) + \gamma_2 \times (-20 i)$$

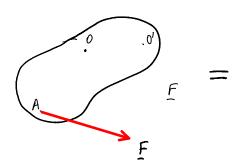
$$M = \frac{1}{1} \times (30 \, \text{K}) + \frac{1}{12} \times (-20 \, \text{i})$$

$$= (-16 \, \text{j}) \times (30 \, \text{K}) + (9 \, \text{j} - 12 \, \text{K}) \times (-20 \, \text{K})$$

$$= -540 \, \text{i} + 240 \, \text{j} + 180 \, \text{K} \quad \text{lbin}$$



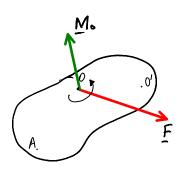
#### 3.16 Equivalent Force and Moment

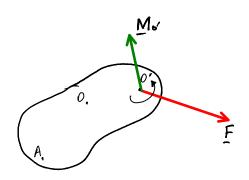


$$M_0 = \Upsilon_{0A} \times F$$

$$\underline{M}_{0'} = \underline{M}_{0} + \underline{\Upsilon}_{0'0} \times \underline{F}$$

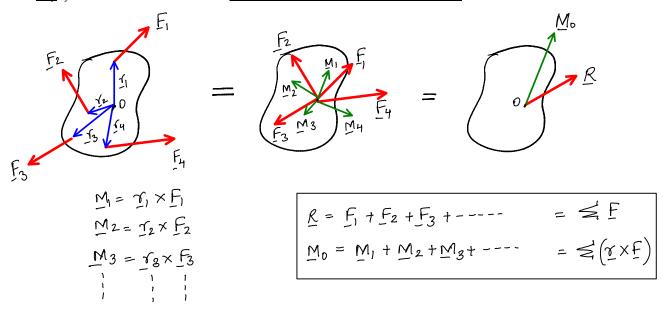
$$\underline{M}_{\sigma} = (\underline{\gamma}_{oA} + \underline{\gamma}_{o'o}) \times \underline{F}$$



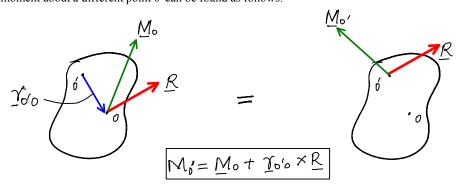


#### 3.17-3.18 Equivalent Systems of Forces & Moments

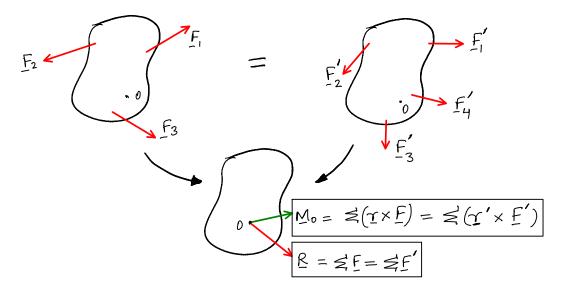
• Any system of forces can be reduced to ONE resultant force and ONE resultant moment.



• Once a resultant force & moment has been found about O, a new resultant force & moment about a different point 0' can be found as follows:



• Two or more systems of forces & Moments are said to be equivalent iff they have the same <u>resultant force</u> and the <u>resultant moment about any (and all) points O.</u>

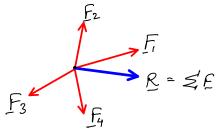


#### 3.20 Special Case: Reduction to a SINGLE force

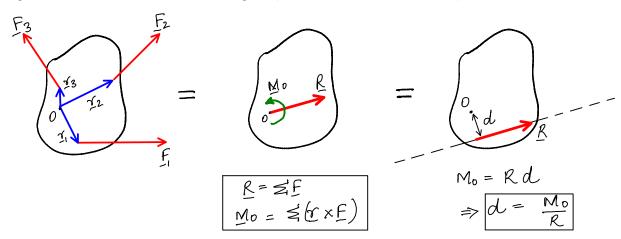
In general, a system of forces and moments cannot be reduced to just a <u>single</u> force. However, <u>if the resultant moment is **perpendicular to** the resultant force</u>, one can reduce the system to just <u>ONE</u> force and <u>NO</u> moment.

#### Particular cases:

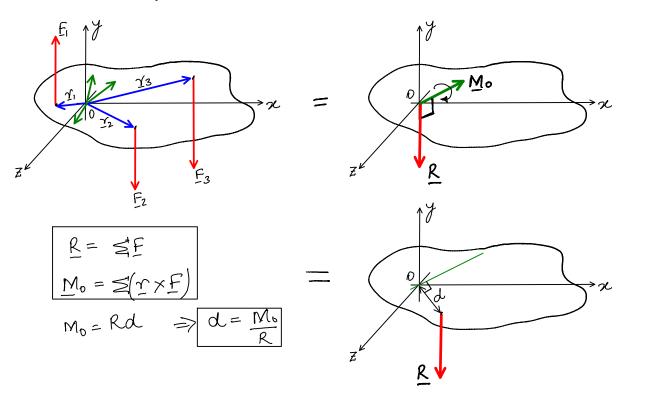
• Concurrent forces: Forces acting at the same point.



• Coplanar forces: Forces contained in the same plane (with non-concurrent lines of action)



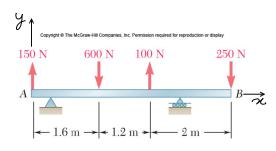
• Parallel forces in 3D space.



#### Example 3.8

Reduce the forces to an equivalent force & moment

Reduce them to SINGLE force and find where it acts.



## (a) at A:

$$\frac{R}{R} = \frac{1}{8} = (150 - 600 + 100 - 250) j N$$

$$= -600 j N$$

$$M_A = (150 \times 0 - 600 \times 1.6 + 100 \times 2.8 - 250 \times 4.8) \underline{K} Nm$$

$$M_{A} = (150 \times 0 - 600 \times 1.6 + 100 \times 2.8 - 250 \times 4.8) \times N_{m}$$

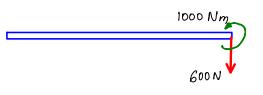
$$= -1880 \times N_{m}$$

$$= 1880 \times N_{m}$$

(b) at B:

$$\frac{R}{M} = \frac{-600 \text{ j N}}{-1880 \text{ k} + 600 \times 4.8 \text{ k Nm}}$$

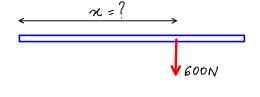
$$= 1000 \text{ k Nm}$$



$$M = 0 = -600 \times (4.8 - \pi) + 1000$$

$$M = 0 = 600 \times W - 1880$$

#### Exercise 3.88



The shearing forces exerted on the cross section of a steel channel can be represented as 900N vertical and two 250 N horizontal forces.

- Replace these forces with a SINGLE force at C. (C is called the shear center)
- Determine x.

$$R = \frac{1}{2} = 250i - 250i - 900j' N$$
  
= - 900j N

Note:

The resultant force is not

an actual applied force.

Therefore it is 0k that it

acts at a point which is

not even in the body.

Analogy:

Resultant

Center of Mass

W = Mg