
 
 
 
 

Chapter 3 
 

Short Column Design 
 
 

By Noel. J. Everard1 and Mohsen A. Issa2 
 
 
3.1 Introduction 
 
The majority of reinforced concrete columns are subjected to primary stresses caused by flexure, axial 
force, and shear. Secondary stresses associated with deformations are usually very small in most 
columns used in practice. These columns are referred to as "short columns." Short columns are 
designed using the interaction diagrams presented in this chapter. The capacity of a short column is the 
same as the capacity of its section under primary stresses, irrespective of its length. 
Long columns, columns with small cross-sectional dimensions, and columns with little end restraints 
may develop secondary stresses associated with column deformations, especially if they are not braced 
laterally. These columns are referred to as "slender columns". Fig. 3-1 illustrates secondary moments 
generated in a slender column by P-δ effect. Consequently, slender columns resist lower axial loads 
than short columns having the same cross-section. This is illustrated in Fig. 3-1. Failure of a slender 
column is initiated either by the material failure of a section, or instability of the column as a member, 
depending on the level of slenderness. The latter is known as column buckling. Design of slender 
columns is discussed in Chapter 4. 
 
The classification of a column as a “short column” or a “slender column” is made on the basis of its 
“Slenderness Ratio,” defined below.  
 
Slenderness Ratio: rk u /l   
 
where, l u is unsupported column length; k is effective length factor reflecting end restraint and lateral 
bracing conditions of a column; and r is the radius of gyration reflecting the size and shape of a column 
cross-section. A detailed discussion of the parameters involved in establishing the slenderness ratio is 
presented in Chapter 4. Columns with slenderness ratios less than those specified in Secs. 10.12.2 and 
10.13.2 for non-sway and sway frames, respectively, are designed as short columns using this chapter. 
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Non-sway frames are frames that are braced against sidesway by shear walls or other stiffening 
members. They are also referred to as “braced frames.” Sway frames are frames that are free to 
translate laterally so that secondary bending moments are induced due to P-δ effects. They are also 
referred to as “unbraced frames.” The following are the limiting slenderness ratios for short column 
behavior: 

Non-sway frames:  )/M12(M34
r

k
21

u −≤
l       (3.1) 

Sway frames:  22
r

k u ≤
l         (3.2) 

 
Where the term [ )/M12(M34 21− ] ≤ 40 and the ratio 21/MM  is positive if the member is bent in single 
curvature and negative if bent in double curvature.  

 
Fig. 3-1 Failure Modes in Short and Slender Columns 

  
3.2 Column Sectional Capacity  
 
In short columns the column capacity is directly obtained from column sectional capacity. The theory 
that has been presented in Section 1.2 of Chapter 1 for flexural sections, also applies to reinforced 
concrete column sections. However, column sections are subjected to flexure in combination with axial 
forces (axial compression and tension). Therefore, the equilibrium of internal forces changes, resulting 
in significantly different flexural capacities and behavioral modes depending on the level of 
accompanying axial load. Fig. 3-2 illustrates a typical column section subjected to combined bending 
and axial compression. As can be seen, different combinations of moment and accompanying axial 
force result in different column capacities and corresponding strain profiles, while also affecting the 
failure modes, i.e., tension or compression controlled behavior. The combination of bending moment 
and axial force that result in a column capacity is best presented by “column interaction diagrams.” 
Interaction diagrams are constructed by computing moment and axial force capacities, as shown 
below, for different strain profiles.  

    ssscn TCCCP −++= 21       (3-3) 
 

    3112 xTxCxCM sscn ++=       (3-4) 
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Fig. 3-2 Analysis of a column section 

 
3.2.1 Column Interaction Diagrams 
 
The column axial load - bending moment interaction diagrams included herein (Columns 3.1.1 
through Columns 3.24.4) conform fully to the provisions of ACI 318-05. The equations that were used 
to generate data for plotting the interaction diagrams were originally developed for ACI Special 
Publication SP-73. In addition, complete derivations of the equations for square and circular columns 
having the steel arranged in a circle have been published in ACI Concrete International4. The original 
interaction diagrams that were contained in SP-7 were subsequently published in Special Publication 
SP-17A5. 
                        
The related equations were derived considering the reinforcing steel to be represented as follows: 

(a) For rectangular and square columns having steel bars placed on the end faces only, the 
reinforcement was assumed to consist of two equal thin strips parallel to the compression face 
of the section. 

(b) For rectangular and square columns having steel bars equally distributed along all four faces of 
the section, the reinforcement was considered to consist of a thin rectangular or square tube. 

(c) For square and circular sections having steel bars arranged in a circle, the reinforcement was 
considered to consist of a thin circular tube. 

 
The interaction diagrams were developed using the rectangular stress block, specified in ACI 318-05 
(Sec. 10.2.7). In all cases, for reinforcement that exists within the compressed portion of the depth 
perpendicular to the compression face of the concrete (a = βc), the compression stress in the steel was 
reduced by 0.85 /

cf to account for the concrete area that is displaced by the reinforcing bars within the 
compression stress block. 
 
The interaction diagrams were plotted in non-dimensional form. The vertical coordinate 
[ )/( /

gcnn AfPK = ] represents the non-dimensional form of the nominal axial load capacity of the 
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section. The horizontal coordinate [ )/( / hAfMR gcnn = ] represents the non-dimensional nominal 
bending moment capacity of the section. The non-dimensional forms were used so that the interaction 
diagrams could be used equally well with any system of units (i.e. SI or inch-pound units). The 
strength reduction factor (φ) was considered to be 1.0 so that the nominal values contained in the 
interaction diagrams could be used with any set of φ factors, since ACI 318-05 contains different φ 
factors in Chapter 9, Chapter 20 and Appendix “C”. 
 
It is important to point out that the φ factors that are provided in Chapter 9 of ACI 318-05 are based on 
the strain values in the tension reinforcement farthest from the compression face of a member, or at the 
centroid of the tension reinforcement. Code Section 9.3.2 references Sections 10.3.3 and 10.3.4 where 
the strain values for tension control and compression control are defined. 
 
It should be note that the eccentricity ratios ( PMhe // = ), sometimes included as diagonal lines on 
interaction diagrams, are not included in the interaction diagrams. Using that variable as a coordinate 
with either nK  or nR  could lead to inaccuracies because at the lower ends of the diagrams the e/h lines 
converge rapidly. However, straight lines for the tension steel stress ratios ys ff /  have been plotted for 
assistance in designing splices in the reinforcement. Further, the ratio 0.1/ =ys ff  represents steel 
strain syy Ef /=ε , which is the boundary point for the φ factor for compression control, and the 
beginning of the transition zone for linear increase of the φ factor to that for tension control. 
 
In order to provide a means of interpolation for the φ factor, other strain lines were plotted. The strain 
line for 005.0=tε , the beginning of the zone for tension control has been plotted on all diagrams.  For 
steel yield strength 60.0 ksi, the intermediate strain line for 035.0=tε  has been plotted. For Steel yield 
strength 75.0 ksi, the intermediate strain line for 038.0=tε  has been plotted. It should be noted that all 
strains refer to those in the reinforcing bar or bars farthest from the compression face of the section. 
Discussions and tables related to the strength reduction factors are contained in two publications in 
Concrete International6,7.  
 
In order to point to designs that are prohibited by ACI 318-05, Section 10.3.5, strain lines for 

004.0=tε  have also been plotted. Designs that fall within the confines of the lines for 004.0=tε  and 

nK  less than 0.10 are not permitted by ACI 318-05. This includes tension axial loads, with nK   
negative. Tension axial loads are not included in the interaction diagrams. However, the interaction 
diagram lines for tension axial loads are very nearly linear from 0.0=nK  to 0.0=nR  with 
[ )/( /

gcystn AffAK = ]. This is discussed in the next section.   
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Straight lines for maxK  are also provided on each interaction diagram. Here, maxK  refers to the 
maximum permissible nominal axial load on a column that is laterally reinforced with ties conforming 
to ACI 318-05 Section 7.10.5. Defining 0K  as the theoretical axial compression capacity of a member 
with 0.0=nR , 0max 80.0 KK = , or, considering ACI 318-05 Eq. (10-2), without the φ factor, 
 
                                      80max .Pn, = [ stystg

/
c Af)A(Af. +−850 ]     (3-5) 

Then, 
                                                                  g

/
c A/fPK maxmax =                                 (3-6) 

 
For columns with spirals conforming with ACI 318-05 Section 7.10.4, values of maxK  from the 
interaction diagrams are to be multiplied by 0.85/0.80 ratio. 
 
The number of longitudinal reinforcing bars that may be contained is not limited to the number shown 
in the illustrations on the interaction diagrams. They only illustrate the type of reinforcement patterns. 
However, for circular and square columns with steel arranged in a circle, and for rectangular or square 
columns with steel equally distributed along all four faces, it is a good practice to use at least 8 bars 
(and preferably at least 12 bars). Although side steel was assumed to be 50 percent of the total steel for 
columns having longitudinal steel equally distributed along all four faces, reasonably accurate and 
conservative designs result when the side steel consists of only 30 percent of the total steel. The 
maximum number of bars that may be used in any column cross section is limited by the maximum 
allowable steel ratio of 0.08, and the conditions of cover and spacing between bars.  
 
3.2.2  Flexure with Tension Axial Load 
 
Many studies concerning flexure with tension axial load show that the interaction diagram for tension 
axial load and flexure is very nearly linear between Ro and the tension axial load value ntK , as is shown 
in Fig. 3-3. Here, 0R  is the value of nR  for 0.0=nK , and )/( /

gcystnt AffAK =   

 
Fig. 3.3 Flexure with axial tension 

 



Design values for flexure with tension axial load can be obtained using the equations: 
 
                                                                [ ]001 /RR.KK nntn −=                                        (3-7) 
  
                                                                [ ]ntnon /KK.RR −= 01                                        (3-8) 
 
Also, the tension side interaction diagram can be plotted as a straight line using 0R and ntK , as is shown 
in Fig. 3.3. 
 
3.3 Columns Subjected to Biaxial Bending 
 
Most columns are subjected to significant bending in one direction, while subjected to relatively small 
bending moments in the orthogonal direction. These columns are designed by using the interaction 
diagrams discussed in the preceding section for uniaxial bending and if required checked for the 
adequacy of capacity in the orthogonal direction. However, some columns, as in the case of corner 
columns, are subjected to equally significant bending moments in two orthogonal directions. These 
columns may have to be designed for biaxial bending.  
 
A circular column subjected to moments about two axes may be designed as a uniaxial column acted 
upon by the resultant moment; 
 

   2
ny

2
nxn

2
uy

2
uxu MMφMMMM +=≥+=    (3-9) 

 
For the design of rectangular columns subjected to moments about two axes, this handbook provides 
design aids for two methods: 1) The Reciprocal Load (1/Pi) Method suggested by Bresler8, and 2) The 
Load Contour Method developed by Parme, Nieves, and Gouwens9. The Reciprocal Load Method is 
more convenient for making an analysis of a trial section. The Load Contour Method is more suitable 
for selecting a column cross section. Both of these methods use the concept of a failure surface to 
reflect the interaction of three variables, the nominal axial load Pn and the nominal biaxial bending 
moments Mnx and Mny, which in combination will cause failure strain at the extreme compression 
fiber.  In other words, the failure surface reflects the strength of short compression members subject to 
biaxial bending and compression.  The bending axes, eccentricities and biaxial moments are illustrated 
in Fig. 3.4.  
 

                                                 
8 Bresler, Boris. “Design Criteria for Reinforced Columns under Axial Load and Biaxial Bending,” ACI Journal 
Proceedings, V. 57, No.11, Nov. 1960, pp. 481-490.  
9 Parme, A.L. Nieves, J. M. and Gouwens, A. “Capacity of Reinforced Rectangular Columns Subjected to Biaxial 
Bending.” ACI Journal Proceedings, V. 63, No. 9, Sept. 1966, pp.911-923. 
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Fig. 3.4 Notations used for column sections subjected to biaxial bending 
 
A failure surface S1 may be represented by variables Pn, ex, and ey, as in Fig. 3.5, or it may be 
represented by surface S2 represented by variables Pn, Mnx, and Mny as shown in Fig. 3.6. Note that S1 
is a single curvature surface having no discontinuity at the balance point, whereas S2 has such a 
discontinuity. (When biaxial bending exists together with a nominal axial force smaller than the lesser 
of Pb or 0.1 f′c Ag, it is sufficiently accurate and conservative to ignore the axial force and design the 
section for bending only.) 

   
Fig. 3.5 Failure surface S1       Fig. 3.6 Failure surface S2    

 
3.3.1 Reciprocal Load Method 
 
In the reciprocal load method, the surface S1 is inverted by plotting 1/Pn as the vertical axis, giving the 
surface S3, shown in Fig. 3.7.  As Fig. 3.8 shows, a true point (1/Pn1, exA, eyB) on this reciprocal failure 
surface may be approximated by a point (1/Pni, exA, eyB) on a plane S’3 passing through Points A, B, 
and C. Each point on the true surface is approximated by a different plane; that is, the entire failure 
surface is defined by an infinite number of planes. 
 



Point A represents the nominal axial load strength Pny when the load has an eccentricity of exA with ey 
= 0.  Point B represents the nominal axial load strength Pnx when the load has an eccentricity of eyB 
with ex = 0.  Point C is based on the axial capacity Po with zero eccentricity. The equation of the plane 
passing through the three points is; 
 

 
onynxni P

1
P
1

P
1

P
1

−+=      (3-10) 

  
Where: 
Pni:  approximation of nominal axial load strength at eccentricities ex and ey 
Pnx:  nominal axial load strength for eccentricity ey along the y-axis only (x-axis is axis of 
 bending) 
Pny:  nominal axial load strength for eccentricity ex along the x-axis only (y-axis is axis of 
 bending) 
Po:  nominal axial load strength for zero eccentricity 
 
 

   
Fig. 3.7 Failure surface S3,, which is reciprocal  Fig. 3.8 Graphical representation of Reciprocal  
  of surface S1      Load Method 
 
For design purposes, when φ is constant, the 1/Pni equation given in Eq. 3.9 may be used. The variable 
Kn = Pn / (f ‘c Ag) can be used directly in the reciprocal equation, as follows: 
 

onynxni K
1

K
1

K
1

K
1

−+=       (3-11) 

 
Where, the values of K refer to the corresponding values of Pn as defined above. Once a preliminary 
cross section with an estimated steel ratio ρg has been selected, the actual values of Rnx and Rny are 
calculated using the actual bending moments about the cross section X and Y axes, respectively. The 
corresponding values of Knx and Kny are obtained from the interaction diagrams presented in this 
Chapter as the intersection of appropriate Rn value and the assumed steel ratio curve for ρg. Then, the 



value of the theoretical compression axial load capacity Ko is obtained at the intersection of the steel 
ratio curve and the vertical axis for zero Rn.  
 
3.3.2 Load Contour Method 
 
The load contour method uses the failure surface S2 (Fig. 3.6) and works with a load contour defined 
by a plane at a constant value of Pn, as illustrated in Fig. 3.9. The load contour defining the relationship 
between Mnx and Mny for a constant Pn may be expressed nondimensionally as follows: 
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For design, if each term is multiplied by φ, the equation will be unchanged. Thus Mux, Muy, Mox, and 
Moy, which should correspond to φMnx, φMny, φMnox , and φMnoy, respectively, may be used instead of 
the original expressions. This is done in the remainder of this section. To simplify the equation (for 
application), a point on the nondimensional diagram Fig. 3.10 is defined such that the biaxial moment 
capacities Mnx and Mny at this point are in the same ratio as the uniaxial moment capacities Mox and 
Moy; thus  
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or;  oynyoxnx βMMandβMM ==      (3-13) 

 

 
Fig. 3.10 Load contour for constant Pn on failure surface 

 



In physical sense, the ratio β is the constant portion of the uniaxial moment capacities which may be 
permitted to act simultaneously on the column section. The actual value of β depends on the ration 
Pn/Pog as well as properties of the material and cross section. However, the usual range is between 0.55 
and 0.70.  An average value of  = 0.65 is suggested for design. The actual values of β are available 
from Columns 3.25. 
 
The load contour equation given above (Eq. 3-10) may be written in terms of β, as shown below: 
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A plot of the Eq. 3-12 appears as Columns 3.26.  This design aid is used for analysis. Entering with 
Mnx/Mox and the value of β from Columns 3.25, one can find permissible Mny/Moy. The relationship 
using β may be better visualized by examining Fig. 3.10. The true relationship between Points A, B, 
and C is a curve; however, it may be approximated by straight lines for design purposes. The load 
contour equations as straight line approximation are: 
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For rectangular sections with reinforcement equally distributed on all four faces, the above equations 
can be approximated by; 
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where b and h are dimensions of the rectangular column section parallel to x and y axes, respectively. 
Using the straight line approximation equations, the design problem can be attacked by converting the 
nominal moments into equivalent uniaxial moment capacities Mox or Moy.  This is accomplished by; 

(a) assuming a value for b/h 
(b) estimating the value of β as 0.65 
(c) calculating the approximate equivalent uniaxial bending moment using the appropriate one of 

the above two equations 
(d) choosing the trial section and reinforcement using the methods for uniaxial bending and axial 

load. 
 
The section chosen should then be verified using either the load contour or the reciprocal load method. 



3.4 Columns Examples 
 
COLUMNS EXAMPLE 1 - Required area of steel for a rectangular tied column with bars on four 

faces (slenderness ratio found to be below critical value) 
 
For a rectangular tied column with bars equally distributed along four faces, find area of steel. 
 
Given: Loading 
   Pu= 560 kip and Mu= 3920 kip-in. 
   Assume φ = 0.70 or,  
                Nominal axial load Pn = 560/0.70 = 800 kip 
   Nominal moment Mn = 3920/0.70 = 5600 kip-in. 
 
 Materials 
             Compressive strength of concrete /

cf = 4 ksi 
             Yield strength of reinforcement fy = 60 ksi 
 Nominal maximum size of aggregate is 1 in. 
 
 Design conditions 
   Short column braced against sidesway. 
  

Procedure Calculation 
ACI 

318-05 
Section 

Design 
Aid 

Determine column section size. Given: h = 20 in.   b = 16 in.   

Determine reinforcement ration ρg 
using known values of variables on 
appropriate interaction diagram(s) 
and compute required cross section 
area Ast of longitudinal reinforcement. 

  Pn= 800 kip 
Mn = 5600 kip-in. 
   h = 20 in. 
   b = 16 in. 
 Ag = b x h = 20 x 16 = 320 in.2 

  

A) Compute 
gc

n

Af
P

nK '=  ( )( ) 625.0
3204

800
==nK    

B) Compute 
hAf

M

gc

n
nR '=  

( )( )( ) 22.0
203204

5600
==nR    

C) Estimate 
h

5 - h
≈γ  0.75 = 

20
5 - 20  ≈γ    

D) Determine the appropriate 
interaction diagram(s) 

For a rectangular tied column with bars 
along four faces, /

cf = 4 ksi, fy = 60 ksi, and 
an estimated γ of 0.75, use R4-60.7 and R4-
60.8.  For kn= 0.625 and Rn= 0.22 

10.2 
10.3 

 

E) Read ρg for kn and Rn  values from 
appropriate interaction diagrams 

Read ρg = 0.041 for γ = 0.7 and  
ρg = 0.039 for  γ  = 0.8  
Interpolating;  ρg = 0.040 for γ = 0.75 

 

F) Compute required Ast from Ast=ρg 
Ag 

Required Ast = 0.040× 320 in.2   
                     = 12.8 in2 

 

Columns 
3.2.2 
(R4-60.7) 
and 3.2.3  
(R4-60.8) 



COLUMNS EXAMPLE 2 - For a specified reinforcement ratio, selection of a column section size for a 
rectangular tied column with bars on end faces only 

 
For minimum longitudinal reinforcement (ρg= 0.01) and column section dimension h = 16 in., select the column 
dimension b for a rectangular tied column with bars on end faces only. 
 
Given: Loading 
 Pu= 660 kips and Mu= 2790 kip-in. 
 Assume φ = 0.70 or, 
             Nominal axial load Pn = 660/0.70= 943 kips 
 Nominal moment Mn = 4200/0.70= 3986 kip-in. 
  
 Materials 
             Compressive strength of concrete /

cf = 4 ksi 
             Yield strength of reinforcement fy = 60 ksi 
 Nominal maximum size of aggregate is 1 in. 
  
 Design conditions 
 Slenderness effects may be neglected because 
 kl u/h is known to be below critical value 
 

 

Procedure Calculation 
ACI 

318-05 
Section 

Design 
Aid 

Determine trial column dimension b 
corresponding to known values of 
variables on appropriate interaction 
diagram(s). 

  Pn= 943 kips, Mn = 3986 kip-in. 
   h = 16 in. 
  /

cf = 4 ksi, fy= 60 ksi 
  ρg = 0.01 

  

A) Assume a series of trial column sizes b, 
in inches; and compute Ag=b×h , in.2 

24 
384 

26 
416 

28 
448 

  

B) Compute 
gc

n

Af
P

nK '=  ( )( )
61.0
3844

943

=

 ( )( )
57.0
4164

943

=

 ( )( )
53.0
4484

943

=

   

C) Compute 
hAf

M

gc

n
nR '=  ( )( )( )

16.0
163844

3986

=
 

( )( )( )
14.0

164164
3986

=
 

( )( )( )
14.0

164484
3986

=
 

  

   D) Estimate 
h

5 - h
≈γ  0.7 0.7 0.7   

D) Determine the appropriate interaction 
diagram(s) 

For a rectangular tied column with bars 
along four faces, /

cf = 4 ksi, fy = 60 ksi, 
and an estimated γ of 0.70, use 
Interaction Diagram L4-60.7  

 

0.018 0.014 0.011 E) Read   ρg  for kn and Rn  values For γ = 
0.7, select dimension corresponding to ρg 
nearest desired value of ρg = 0.01 Therefore, try  a 16 x 28-in. column 

10.2 
10.3 
 

Columns 
3.8.2 
(L4-60.7) 



COLUMNS EXAMPLE 3 - Selection of reinforcement for a square spiral column (slenderness ratio is 
below critical value) 

 
For the square spiral column section shown, select reinforcement. 
. 
Given: Loading 
 Pu= 660 kips and Mu= 2640 kip-in. 
 Assume φ = 0.70 or,  
             Nominal axial load Pn = 660/0.70= 943 kips 
 Nominal moment Mn = 2640/0.70= 3771 kip-in. 
  
 Materials 
             Compressive strength of concrete /

cf = 4 ksi 
             Yield strength of reinforcement fy = 60 ksi 
 Nominal maximum size of aggregate is 1 in. 
  
 Design conditions 
 Column section size h = b = 18 in 
 Slenderness effects may be neglected because 
 kl u/h is known to be below critical value  

Procedure Calculation 
ACI 

318-05 
Section 

Design 
Aid 

Determine reinforcement ration ρg 
using known values of variables on 
appropriate interaction diagram(s) 
and compute required cross section 
area Ast of longitudinal 
reinforcement. 

  Pn= 943 kips 
Mn = 3771 kip-in. 
   h = 18 in. 
   b = 18 in. 
  Ag=b×h= 18×18=324 in.2 

  

A) Compute 
gc

n

Af
P

nK '=  ( )( ) 73.0
3244

943
==nK    

B) Compute 
hAf

M

gc

n
nR '=  

( )( )( ) 16.0
183204

3771
==nR    

   C) Estimate 
h

5 - h
≈γ  2

18
18 0.7 = 5 -   ≈γ    

D) Determine the appropriate 
interaction diagram(s) 

For a square spiral column, /
cf = 4 ksi, 

fy = 60 ksi, and an estimated γ of 0.72, use 
Interaction Diagram S4-60.7 and  S4-60.8  

 

For kn= 0.73 and Rn= 0.16 and, 
γ = 0.70: ρg = 0.035 
γ = 0.80: ρg = 0.031 

for  γ = 0.72: ρg = 0.034 

E) Read ρg for kn and Rn values. 

Ast = 0.034× 320 in.2  = 12.8 in2 

10.2 
10.3 
 

Columns 
3.20.2 
(S4-60.7) 
and 3.20.3  
(S4-60.8) 

 
 



COLUMNS EXAMPLE 4 - Design of square column section subject to biaxial bending using resultant 
moment 

 
Select column section size and reinforcement for a square column with ρg≤0.04 and bars equally distributed along 
four faces, subject to biaxial bending. 
 
Given: Loading 
 Pu= 193 kip, Mux= 1917 kip-in., and Muy= 769 kip-in. 
 Assume φ = 0.65 or,  
             Nominal axial load Pn = 193/0.65= 297 kips 
 Nominal moment about x-axis Mnx = 1917/0.65= 2949 kip-in. 
             Nominal moment about y-axis Mny = 769/0.65= 1183 kip-in. 
  
 Materials 
             Compressive strength of concrete /

cf  = 5 ksi 
 Yield strength of reinforcement fy = 60 ksi 
 Nominal maximum size of aggregate is 1 in. 
  

 

Procedure Calculation 
ACI 

318-05 
Section 

Design 
Aid 

Assume load contour curve at 
constant Pn is an ellipse, and 
determine resultant moment Mnx from 
 M + M = M ny

2
nx

2
nr  

For a square column: h=b 

( ) ( ) 317711832949 22 = +  = M nr  kip-in.   

A) Assume a series of trial column 
sizes h, in inches. 14 16 18   

B) Compute Ag=h2, in.2 196 256 324   

C) Compute 
gc

n

Af
P

nK '=  ( )( )
30.0

1965
297

=

 ( )( )
23.0
2565

297

=

 ( )( )
18.0
3245

297

=

 
  

D) Compute 
hAf

M

gc

n
nR '=  ( )( )( )

23.0
141965

3177

=

 ( )( )( )
16.0

162565
3177

=

 ( )( )( )
11.0

183245
3177

=

   

E) Estimate 
h

5 - h
≈γ  0.64 0.69 0.72   

F) Determine the appropriate 
interaction diagram(s) 

For a rectangular tied column with /
cf = 5 

ksi, fy = 60 ksi. Use Interaction Diagrams 
R5-60.6, R5-60.7, and R5-60.8.  

0.064 0.030 0.012 
0.048 0.026 0.011 

   
0.058 0.026 0.012 

E) Read ρg for Rn and kn  values ,  
For γ = 0.60, For γ = 0.70, and For γ = 
0.80 
Interpolating for γ  in step E 

Therefore, try h = 15 in. 

 

Columns 
3.3.1       
(R5-60.6), 
3.3.2       
(R5-60.7), 
and 3.3.3 
(R5-60.8) 



Determine reinforcement ration ρg 
using known values of variables on 
appropriate interaction diagram(s) and 
compute required cross section area Ast 
of longitudinal reinforcement. 

  Ag= h2 = (15)2 = 225 in.2 
   Pn= 297 kip 
Mnr=3177 kip-in.  

  

A) Compute 
gc

n

Af
P

nK '=  ( )( ) 264.0
2255

297
==nK    

B) Compute 
hAf

M

gc

n
nR '=  

( )( )( ) 188.0
152255

3177
==nR    

C) Estimate 
h

5 - h
≈γ  67

15
15 0. = 5 -   ≈γ    

D) Determine the appropriate 
interaction diagram(s) 

For a rectangular tied column with /
cf  = 5 

ksi, fy = 60 ksi, and γ = 0.67.  Use 
Interaction R5-60.6 and R5-60.7. 

10.2 
10.3 

  

For kn= 0.264, Rn= 0.188, and  
γ = 0.60: ρg = 0.043 
γ = 0.70: ρg = 0.034 

E) Read ρg for kn and Rn  values from 
appropriate interaction diagrams 

for  γ = 0.67: ρg = 0.037 

 

F) Compute required Ast from Ast=ρg 
Ag and add about 15 percent for skew 
bending 

Required Ast = 0.037× 225 in.2   
                     = 8.26 in2 

       Use  Ast ≈9.50 in.2   

 

Columns 
3.3.1 
(R5-60.6) 
and 3.3.2  
(R5-60.7) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



COLUMNS EXAMPLE 5 - Design of circular spiral column section subject to very small design 
moment 

 
For a circular spiral column, select column section diameter h and choose reinforcement. Use relatively high 
proportion of longitudinal steel (i.e., ρg = 0.04). Note that k l u/h is known to be below critical value. 
. 
 
Given: Loading 
 Pu= 940 kips and Mu= 480 kip-in. 
 Assume φ = 0.70 or, 
             Nominal axial load Pn = 940/0.70= 1343 kips 
 Nominal moment Mn = 480/0.70=686 kip-in. 
.  
 Materials 
             Compressive strength of concrete /

cf = 5 ksi 
 Yield strength of reinforcement fy = 60 ksi 
 Nominal maximum size of aggregate is 1 in. 
  
 Design condition 
 Slenderness effects may be neglected because 
 kl Ρu/h is known to be below critical value 

 

Procedure Calculation 
ACI 

318-05 
Section 

Design 
Aid 

Determine trial column dimension b 
corresponding to known values of 
variables on appropriate interaction 
diagram(s). 

  Pn= 1343 kips, Mn = 686 kip-in. 
  /

cf = 5 ksi 
   fy = 60 ksi 
  ρg = 0.04 

  

A) Assume a series of trial column 
sizes b, in inches;  
and compute Ag=π(h/2)2, in.2 

12 
113 

16 
201 

20 
314 

  

B) Compute 
hAf

M

gc

n
nR '=  ( )( )( )

101.0
121135

686

=

 ( )( )( )
043.0

162015
686

=

 ( )( )( )
021.0

203145
686

=

   

C) Estimate 
h

5 - h
≈γ  0.64 0.69 0.72   

D) Determine the appropriate 
interaction diagram(s) 

For a circular column with /
cf = 5 ksi,           

fy = 60 ksi. Use Interaction Diagrams        
C5-60.6, C5-60.7, C5-60.7 and C5-60.8.  

0.90 1.14 1.23 
1.25 

E) Read Rn and ρg  values , after 
interpolation 

0.90 1.14 1.24 

 

F) Compute  
nc

n
g kf

P = A /
, in.2  298 236 217  

19.5 17.3 16.6 G) Compute  
π

gA
 = h 2 , in. 

Therefore, try 17 in. diameter column  

Columns 
3.15.1  
(C5-60.6), 
3.15.2  
(C5-60.7), 
and 3.15.3 
(C5-60.8) 



Determine reinforcement ration ρg 
using known values of variables on 
appropriate interaction diagram(s) 
and compute required cross section 
area Ast of longitudinal 
reinforcement. 

.
2in 227 = 

2

17
2

 = Ag ⎟
⎠
⎞

⎜
⎝
⎛

π  
  

A) Compute 
gc

n

Af
P

nK '=  ( )( ) 18.1
2275

1343
==nK    

B) Compute 
hAf

M

gc

n
nR '=  

( )( )( ) 0356.0
172275

686
==nR    

C) Estimate 
h

5 - h
≈γ  71

17
17 0. = 5 -   ≈γ    

D) Determine the appropriate 
interaction diagram(s) 

For a circular column with /
cf = 5 ksi and    

fy = 60 ksi.  Use Interaction C5-60.7. Columns 
For kn= 1.18, Rn= 0.0356, and  E) Read ρg for kn and Rn  values from 

appropriate interaction diagrams γ = 0.71: ρg = 0.040 
 

F) Compute required Ast from Ast=ρg 
Ag 

Required Ast = 0.040× 227 in.2   
                     = 9.08 in2 

 

Columns 
3.15.2 
(C5-60.7)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




