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INTRODUCTION

In Chapter 2, we said a bug becomes a security issue as soon as someone figures
out how to take advantage of it. That’s what we’ll focus on in this chapter: how
to develop a successful exploit. Demonstrating that a vulnerability exists (e.g., via
proof-of-concept code) is only a first step in kernel exploitation. The exploit has
to work. A piece of code that gives you full privileges and then immediately
panics the machine is clearly of no use.

To develop a good exploit, you must understand the vulnerability you are
targeting, the kernel subsystems involved, and the techniques you are using.
A properly written exploit has to be:

* Reliable You should narrow down, as much as possible, the list of
preconditions which must be met for the exploit to work, and design the code to
always generate those preconditions. The fewer variables you depend on, the
more likely you will be able to generate the desired situation. Ideally, if some
condition is not under your control (or might change from execution to
execution), you should know why.

* Safe You must identify what part of the exploit might crash the machine,
and try to detect that at runtime. The exploit code should be as conservative as
possible and defend itself in those scenarios. Also, once executed, it should
leave the machine in a stable state.

* Effective You should always aim to achieve the most you can from the
vulnerability. If the vulnerability can lead to code execution (or any other
privilege gain) crashing the machine is not enough. The exploit also should be
portable, which means it should work on as many targets as possible. This is
usually a direct consequence of how small you managed to make the set of
variables on which you depend.
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Since we already focused on understanding vulnerabilities in Chapter 2, we’re
ready now to dive deep into the realm of exploit development. To summarize what
we discussed in Chapter 1, exploit development comprises three main steps: the
preparatory step, the trigger step, and the execution step. Each step creates the con-
ditions necessary for the following step to succeed. For this reason, we will work
our way backward through the steps, starting our analysis from the execution phase,
to clarify what a step tries to achieve and how proper implementation of the first
two steps can increase your chances of success when it comes time to execute the
exploit. But before we start, let’s discuss another protagonist that influences both
the kernel and our attempts at attacking it: the architecture level.

By architecture, we refer mainly to how the CPU behaves: what instructions it
can execute, which instructions are privileged, how it addresses memory, and so
on. For our purposes, we will focus mostly on the 64-bit variant of x86 family, the
x86-64 architecture (we’ll discuss our reason for focusing on this architecture in the
following section). In this chapter (as well as throughout Part I of the book), our
goal is to be as operating-system-independent as possible, focusing on the ideas and
the theoretical background behind the various approaches used during exploit
development, and leaving the dirty implementation details (and issues) to the subse-
quent, practical, chapters (Chapters 4 through 8). In an environment as complex
and dynamic as any modern kernel is, techniques come and go, but building a good
methodology (an approach toward exploitation) and understanding the ideas behind
specific techniques will allow you to adapt the practical techniques described in the
subsequent chapters to different scenarios or future kernel versions.

A LOOK AT THE ARCHITECTURE LEVEL

No serious exploit development analysis can begin without considering the underly-
ing architecture to the kernel you’re targeting. This is especially true for kernel-land
exploitation, where the target, the kernel, is the piece of software that is closest to
the machine. As we noted earlier, architecture refers to the operations of the CPU
and the hardware memory management unit (MMU). Since this book is about writ-
ing exploits more than designing CPUs, we’ll focus only on the details that are rele-
vant to our discussion. For more information on computer architecture principles
and practical implementation, please see the “Related Reading” section at the end
of this chapter.

Generic Concepts

Before getting into the details of our architecture of choice, let’s recap the generic
concepts that apply to all architectures so that our analysis will be clearer.

CPU and Registers
The CPU’s role is extremely simple: execute instructions. All the instructions
that a CPU can execute comprise the architecture’s instruction set. At the very
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least, a typical instruction set provides instructions for arithmetic and logic
operations (add, sub, or, and, etc.), control flow (jump/branch, call, int, etc.),
and memory manipulation (load, store, push, pop, etc.). Since accessing mem-
ory is usually a slow operation (compared to the speed at which the CPU can
crank instructions), the CPU has a set of local, fast registers. These registers
can be used to store temporary values (general-purpose registers) or keep rele-
vant control of information and data structures (special-purpose registers). CPU
instructions usually operate on registers.

Computer architectures are divided into two major families: RISC (Reduced
Instruction Set Computer), which focuses on having simple, fixed-size instruc-
tions that can execute in a clock cycle; and CISC (Complex Instruction Set
Computer), which has instructions of different sizes that perform multiple
operations and that can execute for more than a single clock cycle. We can
further differentiate the two based on how they access memory: RISC architec-
tures require memory access to be performed through either a load (copy from
memory) or a store instruction, whereas CISC architectures may have a single
instruction to access memory and, for example, perform some arithmetic opera-
tion on its contents. For this reason, RISC architectures are also usually
referred to as load-store architectures. On RISC architectures, apart from load,
store, and some control flow instructions, all the instructions operate solely on
registers.

NOTE

Today the distinction between RISC and CISC is blurry, and many of the issues of the past
have less impact (e.g., binary size). As an example, all recent x86 processors decode
complex instructions into micro-operations (micro-ops), which are then executed by what is
pretty much an internal RISC core.

The CPU fetches the instructions to execute from memory, reading a stream of
bytes and decoding it accordingly to its instruction set.* A special-purpose register,
usually called the instruction pointer (IP) or program counter (PC), keeps track of
what instruction is being executed.

As we discussed in Chapter 2, a system can be equipped with a single CPU, in
which case it is referred to as a uniprocessor (UP) system, or with multiple CPUs,
in which case it is called a symmetric multiprocessing (SMP) system.” SMP
systems are intrinsically more complex for an operating system to handle, since

AWe try to keep the discussion simple here, but it’s worth mentioning that the process of fetching,
decoding, and executing is divided into independent units and is highly parallelized through the use
of pipelines to achieve better performance.

BA characteristic of multiprocessor systems is that all of the processors can access all of the
memory, either at the same speed (Uniform Memory Access [UMA]) or at different speeds (Non-
Uniform Memory Access [NUMA]) depending on the location. Other configurations with multiple
CPUs also exist; for example, cluster processors, where each CPU has its own private memory.
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now true simultaneous execution is in place. From the attacker’s point of view,
though, SMP systems open more possibilities, especially when it comes to win-
ning race conditions, as we will discuss later in this chapter.

Interrupts and Exceptions

The CPU blindly keeps executing whatever is indicated at the IP/PC, each
time incrementing its value by the size of the instruction it has decoded.
Sometimes, though, the CPU stops or is interrupted. This occurs if it encoun-
ters an error (e.g., an attempt to divide by zero), or if some other component
in the system (e.g., a hard drive) needs attention. This interruption can thus be
either software-generated or hardware-generated. All modern architectures
provide an instruction to explicitly raise an interrupt. Interrupts generated by
an error condition (as in the divide-by-zero case) are called exceptions, and
interrupts generated by software are generally known as traps. Software-
generated interrupts are synchronous: given a specific path, they will always
occur at a specific time, as a consequence of executing a specific instruction.
Hardware-generated interrupts are asynchronous: they can happen unpredicta-
bly, at any time.

Interrupts and exceptions are identified by an integer value. The CPU usually
provides a special-purpose register to keep track of the memory address of a
table, the interrupt vector table, which associates a specific routine (an interrupt
or exception handler) to each interrupt. By registering a routine, the operating sys-
tem can be notified each time an interrupt occurs and have the flow of execution
redirected to the address stored in the table. Thanks to this approach, the system
can react to (and handle) specific interrupts.

Modern CPUs have at least two modes of operation: privileged and unprivileged.
In privileged mode, the whole instruction set is available, whereas in unprivileged
mode only a subset of it can be used. Kernel code runs in privileged mode. Unprivi-
leged code can request a service to some privileged code by executing a specific
interrupt or an instruction provided by the architecture.

Memory Management

Just as the CPU fetches the stream of instructions from memory, it also fetches
load/store operations on a RISC machine and many different instructions on a
CISC machine. Let’s discuss this in more depth and see, from an architecture
point of view, how this memory is managed.

Simply put, memory is a sequence of bytes, each of which is assigned a
positive numeric incremental number, starting with zero. This number represents
the address of the specific byte. Instructions accessing memory use the address
to read or write at a specific location. For example, the IP/PC register mentioned
earlier stores the address of the next location in memory from which the CPU
will fetch the next instruction. Such numeric addressing is usually referred to as
physical addressing and ranges from O to the amount of physical memory
installed.
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The CPU can specify a physical address in two main ways:

* Linearly The entire physical range is presented as a single consecutive
sequence of bytes. This approach can be as simple as a direct 1:1 mapping
between the physical and the linear address ranges, or it can require techniques
to generate a virtual address space and translate from one to the other (paging is
the classic example here, as we will discuss shortly). This is the approach used
nearly everywhere today.

* Segmentation based The entire physical range is presented as a collection of
different segments. To reference a specific physical address the CPU needs to
use at least two registers: one holding the segment base address (usually stored
in a table so that it can be retrieved by its segment number) and an offset
inside that segment. Thanks to this approach, at parity of register size,
segmentation allows a lot more memory to be addressed than the linear
address model approach does. In the days of 16-bit computing, this was a
huge plus. Today, with 32-bit and 64-bit models, this is no longer the case,
and in fact, segmentation has almost not been used at all in modern operating
systems. The 64-bit version of the x86 architecture has greatly limited
segmentation support.

Central to paging are the page, a unit of memory, and the use of page tables,
which describe the mapping between physical addresses and linear addresses.
Each linear address is divided into one or more parts, each corresponding to a
level in the page tables, as you can see in Figure 3.1. Two or three levels are
common on 32-bit architectures, whereas four levels are usually used on 64-bit

architectures.
32-bit linear address
31 22 21 12 11 0
| Directory | Table | Offset |
| | |
I I I
| i i 4-KByte page
| | |
I I I
I I I
1 1 1
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| | Physical
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]
FIGURE 3.1

Two-level paging with 32-bit virtual addresses.
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The last part of the virtual address (in Figure 3.1, the last 12 bits) specifies an
offset inside the page, and the previous parts of the virtual address (the first 20 bits in
Figure 3.1) specify one index (or more, depending on the number of levels) inside
the page tables. When a linear address is used inside an instruction, the CPU sends
the linear address to the MMU, whose job is to walk the page tables and return the
physical address associated with the specific entry. To do that, the MMU needs to
identify the set of page tables in use, through the physical address stored inside one
of the special-purpose registers. Operating systems exploit this feature to give the illu-
sion of a separate linear address space to each process. The system allocates space for
each process’s page tables and, at each context switch, copies the physical address of
the current process’s page tables in the special-purpose register.

Virtual-to-physical address translation is mandatory for a CPU to work correctly;
however, it is an expensive operation. To improve the performance of this recurrent
operation, architectures offer a cache of the most recent virtual-to-physical associa-
tions, called the translation lookaside buffer (TLB). The idea behind a TLB is pretty
simple: keep the result of a page lookup for a specific virtual address so that a
future reference will not have to go through the MMU walking mechanism (and
will not have to access the physical memory addresses where page tables are
stored). As with any cache, TLBs exploit the principle of locality, both temporal
and spatial: it is likely that a program will access data around the same address in
the near future. As a classic example of this, think of a loop accessing the various
members of an array. By caching the physical address of the array there is no need
to perform an MMU translation at each member access.

Operating systems create the illusion of a private virtual address space for each
process. As a result, the same virtual address will almost always have different
translations in different processes. Actually, such virtual addresses may not even
exist in some. If the TLB associations were kept between each context switch, the
CPU could end up accessing the wrong physical addresses. For that reason, all
architectures provide a means to flush either the TLB cache or a specific TLB
entry. Architectures also provide a way to save a TLB entry across flushes (for
virtual-to-physical mappings that do not change across context switches) to enable
global entries.

As you can imagine, flushing the TLB creates a performance impact. Return-
ing to the array loop example, imagine two processes going through two long
arrays and becoming interleaved. Each time a context switch occurs between the
two, the next attempt to access a member of the array requires an MMU walk of
the page tables.

From the point of view of the MMU, the operating system accesses memory
through its own page tables, just like any user-land process. Since going back and
forth from user land to kernel land is an extremely common task, this translates to
flushing the TLB cache not only at each process context switch, but also at each
entry/exit from kernel land. Moreover, the kernel usually needs user-land access—
for example, to bring in the arguments of a call or return the results of a call. On
architectures such as the x86/x86-64 that do not provide any hardware support to
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access the context of another process, this situation translates into TLB flushes at
each kernel entry/exit and the need to manually walk the page tables each time a
reference to another context is needed, with all the associated performance
impacts.

To improve performance on such architectures (which is always a key point in
operating system design), operating systems implement the combined user/kernel
address space mentioned in Chapter 1 and replicate kernel page tables on top of
each process. These page translations (from kernel virtual addresses to physical
ones) are then marked as global in the TLB and never change. They are simply
protected by marking them as accessible from privileged code only. Each time a
process traps to kernel land there is no need to change the page tables (and thus
flush the TLB cache); if for some reason the kernel directly dereferences a virtual
address in the process context and this address is mapped, it will just access the
process memory.

Some architectures (e.g., SPARC V9) instead provide support for accessing a
context from inside another context and to associate TLB entries to specific con-
texts. As a result, it is possible to separate user land and kernel land without
incurring a performance impact. We will discuss the implications of these designs
in the section “The Execution Step.”

WARNING

Although a combined user/kernel-land design is the common choice on x86, this choice is
driven primarily for performance reasons: implementing proper separation between kernel
land and user land is entirely possible. The 4G/4G split project for the Linux Kernel, the PaX
project, and, even more interestingly, the Mac OS X operating system are examples of
implementations of separate user-land and kernel address space on the x86 architecture.
The x86-64 architecture has changed the landscape a bit. With a lot of virtual address
space available, there is plenty of space for both kernel land and user land, and the limited
support for segmentation has made it impossible to use segmentation-based tricks to
achieve good performance in a separate environment (as PaX does on x86).

The Stack

The stack is a memory structure that is at the base of nearly any Application Binary
Interface (ABI), the set of rules that mandate how executables are built (data type
and size, stack alignment, language-specific constructs, etc.) and behave (calling
convention, system call number and invocation mechanisms, etc.). Since the kernel
is an executable itself, we will cover the parts of the ABI that affect our exploitation
approaches the most, focusing in particular on the calling convention.

The calling convention specifies how the glue mechanism that is necessary to
support nested procedures is put together; for example, how parameters and return
values are passed down or how control is transferred back to the caller correctly
when a procedure exits. All the architectures vary slightly regarding how they
support implementing nested procedures, but a common component is the stack.
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The stack is based on two operations:

* PUSH Places a value at the top of the stack
* POP Removes the value at the top of the stack and returns it to the caller

Due to this design, the stack behaves as a LIFO (last in, first out) data struc-
ture. The last object we PUSH on the stack is the one that we get back at the
next POP operation. Traditionally, the stack grows from higher addresses toward
lower addresses, as you saw in Chapter 2. In such a case, the PUSH operation
subtracts the object size from the TOS (top of the stack) and then copies the object
at the pointed address, while the POP operation reads the value pointed to by the
TOS and then increments its value with the object size.

Architectures have a register dedicated to holding the TOS value and provide
POP and PUSH instructions that implicitly manipulate the 7OS register. Figure 3.2
shows how these architectural features can be used to support nested procedures.

Top of the stack

Stack pointer —» ~
Locals of
func3
Stack frame
\ for
Return address func3
Frame pointer —» subroutine
Parameters for
func3
p /
Locals of
func2
Stack frame
for
func? < Return address
subroutine
Parameters for
func2 ~
N
Locals of
funcl Stack frame
- for
Return address funcl
subroutine
Parameters for L]
funcl
1/
1

FIGURE 3.2
Nested procedures implemented through a stack.
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The idea is to confine each procedure into a stack frame, a portion of the stack
that is private to the procedure. This private area can be used to store local vari-
ables by simply reserving enough space to hold them within the stack frame.
Right before calling a procedure, the caller places the IP of the next instruction
after the call on the stack. Once the callee (the called function) terminates, it
cleans the stack that it has been locally using and pops the next value stored on
top of the stack. This value is the address of the next instruction in the caller that
the caller itself pushed previously. The callee sets the IP to this value and the
execution continues correctly.

Although passing parameters to functions is commonly done via registers,
especially on RISC architectures that have many registers, on some architectures,
such as the x86 32-bit architecture, the stack can also be used to do that. The
caller simply pushes the parameters on the stack and then the callee pops them
back. This use of the stack is the one presented in Figure 3.2. In this case, the
callee cleans the stack by removing the parameters. Since the stack is simply a
memory structure, the callee can also access the parameters via an offset from the
top of the stack without popping them out. In this case, it is up to the caller to
clean the stack once the callee returns. The former approach is typical on x86
Windows systems, whereas the latter approach is more common on x86 UNIX
systems.

x86 and x86-64

Now that we’ve recapped generic architecture concepts, it is time to see how our
architectures of choice implement them. This discussion will lead the way to the
first step we will cover in exploit development, the execution step.

The 32-hit x86 Architecture

The most famous CISC architecture is also the one you probably are most familiar
with: x86. The first example of this architecture dates back to 1978, when the
Intel 8086 16-bit processor was released.” This link still lingers today in modern
x86 CPUs. When you switch on your computer, the CPU boots in Real Mode, a
16-bit environment that is pretty much the same as the 8086 one. Backward com-
patibility has always been mandatory in x86 design and it is the reason for both
its success and its awkwardness. Customers are very happy to be able to keep
running their old legacy applications, and they couldn’t care less about the current
state of the instruction set.

On x86, one of the first things your system does after it starts executing is to
switch to Protected Mode, the 32-bit environment your operating system is run-
ning in. From an operating system point of view, Protected Mode is a godsend,
providing such features as a paging MMU, privilege levels, and a 32-bit addres-
sable virtual address space. In 32-bit Protected Mode, the x86 offers eight 32-bit

Chttp://d()wnl()ad.intel.c()m/ museum/archives/brochures/pdfs/35yrs_web.pdf
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general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP), six
16-bit segment registers (CS, DS, ES, FS, GS, and SS), and a variety of special-
purpose registers. The registers you will likely have to deal with are:

* ESP/EBP These hold the stack pointer (ESP) and the frame pointer (EBP).
The first one points to the top of the current stack, while the second one
points to the “entry point” of the current function. The EBP is then used to
reference the parameters passed to the function and the local variables. It is
worth mentioning that using the EBP as a frame pointer is not mandatory; in
fact, kernels generally get compiled without using the frame pointer, to have
an extra temporary register.

e EIP This holds the instruction pointer.

* EFLAGS This keeps bit flags mostly relative to the current execution state.

* CRO-CR7 These are control registers, which hold configuration bits for the
running system. CR3 holds the physical address of the current page tables.
 IDTR This is the interrupt descriptor table register, which holds the physical
address of the interrupt descriptor table (IDT), the table that associates a
service routine to each interrupt. The lidt (unprivileged) and sidt (privileged)

instructions allow writing and reading from the IDTR.

* GDTR This is the global descriptor table register, which holds the physical
address of the global descriptor table (GDT), which is a table of segment
descriptors. Because of how x86 is designed, the GDT is mandatory (and thus
will always be present in any operating system). sgdt and Igdt behave with the
GDT just like sidt and lidt do with the IDT.

The x86 architecture has four privilege levels, called rings. Ring 0 is the most
privileged level and it is the one the kernel runs in. User-land programs run at
Ring 3, the least privileged of the levels. Rings 1 and 2 are rarely used by modern
operating systems.

The x86 architecture supports both paging and segmentation. Actually, seg-
mentation cannot be disabled in Protected Mode, so addresses on x86 are always
of the form seg:offset, where seg is one of the six segment registers. Anytime a
segment register is not specified, an implicit segment register is used: CS is the
implicit segment register for instruction fetching, DS is the one for data access, SS
is the one for stack manipulation, and ES is the one for string instructions. To
have a single linear address space, operating systems have all the segments
defined with base address 0 and segment limit OxXFFFFFFFF, thereby creating a
single large segment that spans the entire 4GB virtual address space. Paging is
then used to efficiently implement virtual memory on top of it.

The x86 architecture implements two-level page tables (three if Physical
Address Extension (PAE) is enabled, although we won’t go into the details here).
The CR3 register holds the physical address of the page directory table (PDT) in
use. The first 10 most significant bits of a linear address are used as an index
inside the PDT, to pick one of the 1,024 (2'%) entries. Each entry holds the physi-
cal address of a page table (PT). The next 10 most significant bits of a linear
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address space select an entry in the PT. This entry is usually called the page table
entry (PTE) and contains the physical address of the searched page. The remain-
ing 12 bits act as an offset inside the physical page, to address each of the 4,096
bytes that compose the page. The MMU performs this operation automatically
each time it gets a linear address from the CPU.

Associated with each PTE are a bunch of flags that describe the page. The
most interesting of these flags are the ones specifying page protections. On the
x86 architecture, a page can be READABLE and/or WRITABLE; there is no sup-
port to mark whether a page is EXECUTABLE (all accessible pages are implicitly
EXECUTABLE). As you will see in this chapter, this is an interesting property.

Also interesting to note is that the x86 architecture provides a general flag,
known as WP (Write Protect), inside CRO that, when set, prevents privileged code
from modifying any read-only page, regardless of whether it is in a privileged or
an unprivileged segment. This flag is turned on by default on all modern kernels.

Xx86-64

As applications began to demand larger address spaces and RAM prices began to
drop, Intel and AMD started to pursue 64-bit architectures. Intel developed the
brand-new [A64 RISC architecture; AMD took the x86 32-bit architecture, put it
on 64-bit steroids (64-bit registers and integer operations, a 64-bit address space,
etc.), and called it AMD64. AMD64 is completely backward-compatible, allowing
users to run 32-bit applications and operating systems unmodified, and has two
main modes of operation:

* Legacy Mode The CPU behaves like a 32-bit CPU and all the 64-bit
enhancements are turned off.

* Long Mode This is the native 64-bit mode of operation. In this mode, 32-bit
applications can still run unmodified (discussed shortly), in a mode referred to
as Compatibility Mode. In Compatibility Mode, it is easy (and fast enough) to
switch to the full 64-bit mode and back. The Mac OS X kernel (up to Snow
Leopard) has used this feature to run 64-bit applications and (mainly) a 32-bit
kernel.

Not entirely surprisingly, AMD64 was so much more successful than IA64 that
Intel had to develop its own compatible version of it, known as EM64T/IA-32e. The
differences between the two were minimal, and we will not cover them here. Today,
the 64-bit version of the 32-bit architecture is generally referred to as x86-64.

Now let’s discuss those aforementioned 64-bit steroids:

* The 32-bit general-purpose registers (EAX, EBX, etc.) have been extended to
64-bit and are called RAX, RBX, and so on.

* Eight new 64-bit registers have been added, named RS8 to R15.

* A nonexecute (NX) bit is present by default to mark pages as nonexecutable.
The NX bit was already available on some x86 32-bit processors when PAE
was enabled.

57
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It is now possible to use the RIP (64-bits version of the EIP register) to
reference memory relative to the instruction pointer. This is an interesting
feature for position-independent code (code that does not make any absolute
address reference and can thus be placed anywhere in the address space and
be executed correctly).

The virtual address space is obviously larger. Since a 64-bit address space
might put a bit too much pressure on the memory structures used to represent
it (e.g., page tables), a subset of it is used; namely, “only” 2*® addresses are
used. This is achieved by having the remaining 16 bits set as a copy of the
47th bit, thereby generating a virtual memory hole between Ox7FFFFFFFFFFF
and OxFFFF800000000000. Operating systems commonly use this to separate
user land and kernel land, giving the lower portion to the user and the upper
portion to the kernel.

Page table entries are now 64 bits wide (as happens on x86 when PAE is
enabled), so each level of indirection holds 512 entries. Pages can be 4,096KB,
2MB, or 1GB in size. A new level of indirection is necessary, called PMLA4.

In 64-bit Long Mode, segmentation has been largely crippled. As an example,
the GDT remains, but a lot of the information stored in it (e.g., segment limit
and access type) is simply ignored. The GS and FS segment selector registers
also remain, but they are generally used only to save/store an offset to
important data structures. In particular, GS is generally used both in user land
and kernel land because the architecture offers an easy way to switch its value
upon entering/exiting the kernel: SWAPGS. We will discuss the use of
SWAPGS in more detail in Part II of the book.

The calling convention procedure has changed. Whereas on the x86
architecture parameters are generally passed on the stack (unless the compiler
decides differently for some functions, generally leaf functions, as a
consequence of some specified optimization), the x86-64 ABI dictates that the
majority of parameters get passed on registers. We will come back to this
topic when we talk about stack exploitation later in this chapter.

It is also important to remember that, apart from the differences we mentioned

earlier, nearly everything we have discussed regarding the x86 architecture holds
true on x86-64 as well.

THE EXECUTION STEP

Now that we’ve discussed the architecture, it’s time to discuss the execution step.
As noted earlier, in many exploits this step can be further divided into two
substeps:

Gaining privileges This means raising the privileges (or obtaining more
privileges) once they are executed. As we will discuss later in this section, the
most common operation in kernel land is to locate the structures that keep
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track of the process credentials and raise them to super-user credentials. Since
the code is executing at kernel land with full privileges, all the user-land (and
nearly all the kernel-land) protections can be circumvented or disabled.

* Fixating the system This means leaving the system in a stable state so that
the attacker can enjoy his or her freshly gained privileges. As we will discuss
shortly, execution of privilege-gaining code is generally a consequence of a
redirection of execution flow. In other words, you may end up leaving a
kernel path before it has completed. If this is the case, whatever resource the
kernel path grabbed (especially locks) may need to be properly restored. The
more an exploit disrupts the kernel state, the more emulation/fixating code
needs to be written to keep the system up and running correctly. Moreover,
with memory corruption bugs, it may take some “time” from when you
perform the overflow to when your hijacking of the control flow takes place.
If any of the memory that you overwrote is accessed in between and checked
against some value, you must make those checks pass.

As we stated in Chapter 1, shellcode is just a handful of assembly instructions
to which you want to redirect execution flow. Obviously, though, you need to
place these instructions in memory and know their address so that you can safely
redirect the flow there. If you make a mistake in picking up the destination
address, you will lose the target machine.

Placing the Shellcode

Since losing target machines is not our main objective, let’s look at our range of
options for safely and reliably placing the shellcode. Depending on both the
vulnerability type (the class it belongs to, how much control it leaves) and the
memory model in use (either separated or combined user/kernel address space),
you may place your shellcode in either the kernel address space or the user
address space, or a mix of the two.

As usual, kernel land imposes some constraints that you have to carefully respect:

* The hijacked kernel path must be able to see the memory location of the
shellcode. In other words, the shellcode must be in the range of virtual address
spaces that the kernel can directly access using the current set of page tables.
This basically translates to placing the shellcode into the sole kernel context
on systems implementing the user/kernel split address space model, and into
the kernel context plus (in most cases) the backing process context on systems
implementing the combined user/kernel address space model.

* The memory area holding the shellcode must be marked as executable. In other
words, the pages that hold the shellcode need to have the executable bit turned
on. If you can place the shellcode in user land (which basically means you are
targeting a local vulnerability in a combined address space environment), this
is less of a problem, since you can easily set the mapping protections yourself.
If your shellcode resides in kernel land, this may become more complicated.
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* In some situations, the memory area holding the shellcode must be in memory.
In other words, the kernel might implicitly consider the memory it is about to
execute as paged in, so you cannot afford to make it take the shellcode page
from disk. Luckily, your page will generally be paged in (in the end, you sort
of recently accessed it to place the shellcode), regardless of whether you took
care to explicitly handle it.

Let’s now examine the different approaches to shellcode placement and how
to overcome these constraints.

Shellcode in User Land
Anytime you can, try to place your shellcode in user land. Doing so affords a
number of benefits.

First, it makes it easy to meet the requirements we listed in the preceding sec-
tion, thereby allowing you to write robust exploits (exploits that will automatically
detect if something has gone wrong and avoid crashing the machine), including
exploits targeting local or remote vulnerabilities.

In a local vulnerability, you are the one triggering the vulnerability, and thus
you have control over the user-land process that calls into the kernel. Mapping a
portion of the address space with the privilege rights that you want is just as easy
as correctly using the memory mapping primitives offered by the operating sys-
tem. Even on systems that prevent a mapping to simultaneously be writable and
executable (and prevent a previously writable segment from becoming executable
during the lifetime of the process) you still can:

* Include the shellcode in the executable itself at compile/linking time. This
implies that you can write the shellcode in C, a pretty nice advantage.

* Place your shellcode in a file and map that file, specifying executable
permissions (and no writable ones).

You also get another advantage: you are not hampered by space constraints
for the shellcode. In other words, you can make the shellcode as big as you want,
and therefore you can add a large NOP landing zone on top of it. NOP landing
zones greatly increase your chances of a successful exploitation, especially when
you do not have full control over the address to which you will redirect the
hijacked control flow.

For example, let’s say you can control only the first part of the virtual address
the kernel path will jump to, that is, the first 16 bits of a 32-bit address. That
leaves 16 bits that can have any value. By mapping a memory area of 2'® bytes,
filling it with NOPs, and placing your shellcode right after that, you ensure that
no matter what value these 16 bits may assume, you will always execute what
you want correctly, as Figure 3.3 shows.

As we stated previously, the ability to write shellcode in C is an interesting advan-
tage. In fact, especially if you have a lot of recovery to perform, it is easier to write
the logic correctly in C and let the compiler do the hard work for you, rather than to
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FIGURE 3.3
NOP landing zone on top of our shellcode.

churn out long assembly sequences. However, note that the user-land code must be
compiled with the same conventions the kernel is using. In particular, the calling con-
vention (which, as we said previously, might be affected by the compiler options) has
to be respected, or you will just end up returning incorrectly from the function and
panicking the machine. Also, you need to keep your code as self-contained as possi-
ble and avoid using functions in external libraries linked at runtime (or eventually,
but not advised, compile the code statically). As an example, the x86-64 segment
selectors are used differently in user land and kernel land, which means you would
end up using a segment selector that is meaningful in user land from inside a kernel
path with, again, the obvious panic outcome waiting around the corner.

Overriding the third of the previously stated constraints usually does not
require any extra effort. If the shellcode is part of the exploit executable, it likely
will be in the same pages used to run the executable and likely will not be evicted
from memory before it is reached. In any case, you can also read a byte from
inside the virtual addresses holding the shellcode to drive the kernel into bringing
the specific pages in memory.

When ensuring that the shellcode is in the same context as the kernel path you
depend on both the kernel memory model and the vulnerability. You cannot use
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the user-land approach on a system where a user-land and kernel-land split is in
place. In such a scenario, a user-land virtual address has a completely different
meaning in kernel land.

To successfully reach the shellcode, you also need to be in the same execution
context of the hijacked kernel path, to be sure that your process page tables are
indeed the ones actively used in kernel land. Implicitly, that also means the user-
land instructions right before the trap and those in the vulnerable kernel path have
to execute on the same CPU. While in the context of a system call or of a synchro-
nous interrupt “generated” by your code, this is always the case. However, if the
vulnerable kernel path is inside an asynchronous interrupt handler or in a deferred
procedure (i.e., helper routines that are scheduled to be executed at a later time and
maybe on another CPU, in an SMP environment), all bets are off. In such cases
(and in the case of a user/kernel address space split), you need to consider either a
pure kernel space shellcode or, at least, a mixed/multistage approach.

Shellcodes in Kernel Land

If you cannot store the shellcode in user land, you need to store it in kernel land.
However, life in kernel land is not as easy as it is in user land, and you need to
overcome a couple of obstacles/issues:

®* You have no control over the kernel page protections. You need to find a
place that has already been mapped as executable and writable. This might not
always be possible.

® You have a very limited view of the virtual addresses in kernel land. In other
words, in the absence of an infoleak, you rely on the information that the
kernel exports and that you can gather from user land, as we will discuss in
the section “The Information-Gathering Step” later in this chapter.

® You usually do not have a way to directly write into kernel-land buffers, so
you might need to find clever/original ways to make your shellcode appear in
kernel land.

® Assuming that you found a memory area and that the area is under your
control, you might be limited in the amount of space you can use. In other
words, you need to be pretty careful about the size of the shellcode. Also, the
shellcode most certainly needs to be written (and optimized) in assembly.

On the other hand, kernel page tables are obviously always visible from any
executing kernel path (they are in the same context), and generally they are paged
in (e.g., kernel code is locked in memory and operating systems explicitly indicate
areas of the kernel as not pageable). We will discuss kernel-only shellcodes in
more detail in Chapters 4 and 5.

Mixed/Multistage Shellcodes

Due to the usually limited size of kernel buffers and the advantages that user land
offers, kernel-space-only shellcodes are not extremely common. A far more typical
approach is to have a small stub in kernel land that sets up some sort of
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communication channel with user land, or simply prepares to jump into a user-space
shellcode. We call this kind of approach mixed or multiple-stage shellcode, to cap-
ture the fact that the execution flow jumps through various stages from kernel land
to user land.

Mixed/multistage shellcodes are common when exploiting vulnerabilities
triggered in an interrupt context, especially remote kernel vulnerabilities, where
they are likely to trigger the bug inside the handler of the interrupts raised by the
network card (we will discuss this in more detail in Chapters 7 and 8). The key
idea here is that interrupt context is many things, but definitely not a friendly envir-
onment for execution. It should come with no surprise that kernel-level interrupt
handlers are, usually, as small as possible.

NOTE

Although jumping to user land is the classic ending for such shellcodes, it is also possible
to have a multistage shellcode that resides entirely at the kernel level. In such cases, we
still prefer talking of multistage shellcodes (albeit not mixed) than of kernel-level-only
shellcodes.

Let’s now take a more detailed look at an example of a multistage shellcode.
For simplicity, we’ll consider a two-stage shellcode (but remember that more
stages may have to/can be used):

1. The first thing the first stage needs to do is to find a place to store the
second-level shellcode in the kernel. It can do this by allocating a new
buffer or replacing static data at a known address. It is interesting to note
that you were already able to start executing, and therefore you have a huge
weapon in your arsenal: you can use the kernel subsystems and internal
structures to find the memory areas you are interested in. For example, an
advanced shellcode can go through the list of active processes and look for
one listening on a socket, or read through the kernel list of symbols and
resolve the address of important system structures such as the system call
table.

2. After the second stage has been placed somewhere in the kernel, the first stage
needs to transfer control to it. With this operation you can escape from
interrupt context, if you need to. As an example, after finding the system call
table in the preceding step, you can replace the address of a frequently used
system call and just wait for a process to trigger it. At that point, your code
will execute in the much more comfortable process context.

Mixed shellcodes meet the constraints we introduced at the beginning of this
section in the same way as their user or kernel space counterparts do, depending
on where the stage that is about to execute resides. As you will see in Part III of
this book, when we discuss remote kernel exploitation, a three-stage approach is
generally the way to go. The first stage sets up the transition to process context,
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and the second stage modifies some user-land program address space and then
jumps into executing the third-stage shellcode in user land (socket primitives are a
lot easier to code in user land).

Return to Kernel Text

We will end our analysis with a particular kind of kernel space shellcode that you
can use to bypass advanced kernel protections that prevent you from finding a
suitable writable and executable area for your shellcode. The technique we’re
presenting here overcomes this issue by creating a shellcode that does not contain
any instruction, but instead contains addresses and values. Such a shellcode does
not need to be stored inside any executable area. If you are familiar with user-land
exploitation, this approach is a close relative of both the return into lib and code
borrowing techniques for bypassing nonexecutable memory protections.

The first catch regarding these techniques is that at least one place must be
mapped as executable: the memory mappings that compose the executable itself!
In user land, that means the binary and all the dynamic libraries it uses. In kernel
land, it refers to the kernel and all the code segments of the loaded modules
(if a modular kernel is used). The second catch is that you could find chunks
of instructions inside the executable mappings that, if chained together/used
correctly, may lead to an increase in privileges.

This kind of approach is tightly linked to (and dependent on) the underlying
architecture, the ABI, and even the compiler. In particular, we are interested in
the calling convention in use (i.e., where is the return address saved, and how are
parameters passed?).

TIP

On the x86/x86-64 architecture, instructions are variable in size, and you are allowed to
start executing from any address—even in the middle of a particular instruction—and have
the stream of bytes interpreted starting from there. This is usually exploited to find short
sequences. For example:

a) bb5bc3 ff ff mov $0xffffc3bb,%ebx
b) 5b pop %ebx
c3 ret

By jumping one byte after the start of the mov opcode, we actually get to a pop %ebx;
ret sequence, even if those two instructions are not used one after the other in the kernel.
Note that we do not bother to have valid instructions after the ret; the control flow will be
transferred before reaching valid instructions after the ret. On RISC architectures,
instructions are fixed in size, and jumping to addresses not aligned to the instruction size
results in an error. Basically, you cannot jump in the middle of an instruction to have it
interpreted differently.

Return addresses among the various procedures are commonly saved on the
stack; thus, in most situations, stack control is mandatory for the success of this
technique. The classic scenario is a stack overflow that allows you to overwrite the
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return address and, if the ABI dictates that parameters are passed on the stack (as is
the case on x86 32-bit systems), lets you forge a controlled set of parameters for
the target function. At that point, you have a variety of options, depending on the
following:

*  What the vulnerability allows you to do. In other words, how much stack
space can you overwrite and how much control do you have on the values
you write?

* What the architecture allows you to do. Here is where the ABI and,
eventually, the compiler get into the game. If the parameters to the function
get passed on the stack, you need more stack space, but you have a greater
deal of control over what the function will use. If they are passed on registers,
you need to get the registers filled with proper values somehow, but you may
end up using less space on the stack.

Assuming full and arbitrary control on the stack and stack-based parameter
passing, you create a shellcode made of a mix of function addresses, parameters,
and placeholder space (to accommodate the architectural use of the stack) that
would do the following:

* Use a kernel function that allocates some space marked as executable.

* Chain a kernel function to copy a set of bytes from user land (or from some
known kernel area) into the previously returned address.

* Leave the last return address so that the code will jump into the chosen
memory address.

The copied-in code starts executing, and from that moment on you are in a
traditional kernel shellcode scenario.

As you can imagine, this approach gets increasingly complicated as you stack
in more functions. For those of you who are familiar with user-land exploitation,
this approach can be seen as a kernel-level return into lib.

Fortunately, a different approach is available, since you are not obligated to
return to the entry point of a function. Since we assumed full knowledge of the
kernel code address space (which is not an unlikely scenario, as you will see in
more detail in the section “The Information-Gathering Step”), you can look for a
chunk of instructions that will do something useful. As an example of this, think
about the privilege system in use on your OS: Most likely, there is a kernel func-
tion (even a kernel system call) that allows a privileged process to reduce or
elevate its privileges. This function will probably receive the new process privi-
lege value as a parameter, do a bunch of checks on the process making the call
(obviously, an unprivileged process cannot raise its own privileges), and then get
to some code that will just copy the new value over the process’s stored creden-
tials. Regardless of the architecture and compiler options, the new credentials will
end up in a register, since it is accessed multiple times (to check it against the
current process, to check if it is a privileged request, and, at the end, to eventually
set the value in the process credential structure).
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At this point, you can do one of the following:

* Drive the setting inside the register of the highest privilege level value. Since
you control the stack, this is less complicated than it may sound. All you have
to do is find some code that pops the content of the stack into the register and
then issues a return call (which, again, generally just pops a value from the
stack and uses it as the return value). Even if the specific sequence is never used
in the kernel, on a non-RISC architecture you may still find it somewhere in
memory, as we mentioned in the previous Tip box.

TIP

Zero is a typical value for indicating high privileges (when represented by an integer) and
OxFFFFFFFF is a typical value when the privilege set is represented by a bit mask. Both of
these values are pretty common inside a function (e.g., -1 is a classic way to indicate an
error and O is a classic way to represent success). The odds of not having to set the register
(and therefore bypass the first step we just described) are not always that bad...

* Place the return address on the stack and make it point inside the privilege
setting function, right after the checks.

* Prepare a fake stack frame to correctly return to user land. In fact, since you
are not using any specific kernel-level shellcode (as you were doing in the
previous example), you need to provide a clean way to get out from the
kernel. This depends on the way you entered the kernel in the first place and,
again, is highly ABI-dependent.

This second approach we just described is similar to the code borrowing tech-
nique. If you are interested in these user-land techniques (e.g., if you are looking
for a detailed explanation or more ideas for bringing them into kernel land), inter-
esting resources are listed in the “Related Reading” section at the end of this
chapter.

Forging the Shellcode

Now that we have extensively covered placing the shellcode, it is time to discuss
what operations it should perform. As we said at the beginning of this section, a
good shellcode needs to do at least two things: gain elevated privileges and
recover the kernel state. There are many different ways to perform the privilege
escalation task, and some of them can be pretty exotic, including creating gate-
ways inside the main kernel structures to open backdoors that can be used later to
modify the kernel page tables to allow direct access from user land, or changing
the path of some user-land helper program. We will focus here on the most com-
mon method: modifying the process credentials stored in the process control
block.
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TIP

When you are targeting a hardened environment, since the shellcode executes with full
privileges, it is usually a good idea to disable eventual security restrictions (e.g., escape
from a confined environment such as a FreeBSD jail or a Solaris zone) or disable security
protections (e.g., shut down SELinux on a Linux kernel).

Raising Credentials

Raising credentials is the most common task that almost all local privilege escala-
tion exploits perform. Credentials are kept in one or more structures contained in
the process control block and they describe what a process is allowed to do. Stor-
ing credentials can be as simple as an integer value identifying the user, as in the
traditional UNIX root/generic user model, or representing a whole set of privi-
leges or security tokens, as is usually the case when a role-based access control
system and the least privilege model are in place (tokens are the typical privilege
model on Windows). Different operating systems use different authentication
and authorization models, but most of the time the sequence that leads to a
certain user being authorized or denied a set of operations can be summarized in
the following steps:

1. The user authenticates itself on the system (e.g., through the classic login/
password mechanism).

2. The system gives the user a set of security credentials.

3. The authorization subsystem uses these credentials to validate any further
operation that the user performs.

After the user has correctly logged in (the authentication phase), the kernel
dynamically builds the series of structures that holds information related to the
security credentials assigned to the user. Every new process spawned by the user
will inherit the aforementioned credentials, unless the user specifies differently
(the operating system always provides a way to restrict the set of privileges at
process creation time). Whenever a process wants to perform an operation, the
kernel matches the specific request with the stored set of credentials and either
executes the operation on top of the process or returns an error.

The goal of the shellcode is to modify those credentials so that an extended set
of privileges is granted to your user/process. Since the credential structures are
stored inside the process control block, it is usually quite easy to reach them from
inside your shellcode. There are two main ways to identify the correct values to
change:

* You can use fixed/hardcoded offsets and perform very simple safety checks
before using them. For example, if you need to dereference a pointer to reach
a structure, you would just check that the address you are about to dereference
is within the kernel-land address space.
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* You can use a heuristic approach. Credential structures have a precise layout
in memory, and you know what credentials you were granted. Based on that,
you perform a pattern match in memory to find the correct values to change.
Relative offsets inside a structure may change, and using this heuristic
approach you can figure out the correct place at runtime.

In general, a hybrid approach can be used against nearly all kernels, identify-
ing the offsets that have been constant over the years and using more or less
sophisticated heuristics to derive the other ones. A typical and effective heuristic
is to look for specific signatures of structure members that you can predict. For
example, a process-based reference counter would have an upper bound value
with the number of processes (easy to check), or in a combined environment a
kernel address will always have a value higher (or lower, depending on where the
kernel is placed) than the split address.

Recovering the Kernel State

Gaining full privileges on a machine is exciting; losing them after a second due to
a kernel panic is a lot less fun. The recovery phase aims to extend the fun and
keep the machine up and running while you enjoy your freshly gained privileges.
During the recovery phase you need to take into account the following two issues:

* The exploit may have disrupted sensible kernel structures and, in general,
trashed kernel memory that other kernel paths may need to access.

* The hijacked kernel control path may have acquired locks that need to be
released.

The first issue primarily concerns memory corruption bugs. Unfortunately,
when you exploit memory bugs, you cannot be very selective. Everything between
the buffer that you overflow and your target will be overwritten, and in many
cases, you do not have enough control of the overflowing size to stop exactly
after your target. In this case, you have two different types of structures to
recover: stack frames and heap control structures.

NOTE

In most architectures/ABIs, stack frames are deeply involved in procedure chaining and
software traps. Although we have tried to keep the following discussion as generic as
possible, in order to appreciate the details of stack recovery we actually need to focus on a
specific architecture implementation. Since our architecture of choice is x86-64, each
practical part that follows in this subsection is based on the x86-64 implementation.

During a stack-based memory overflow you may or may not be able to get
back to a sane state. For instance, you might be able to tweak the shellcode to
return to one of the nested callers of the vulnerable path and continue the execu-
tion from there.
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However, if you have trashed far too much stack, you’ll need to terminate the
function chain and jump back to user land. As you already know, user-land
processes reach kernel land through a software trap/interrupt. Once the kernel has
finished performing the requested service, it has to return control to the process
and restore its state so that it can continue from the next instruction after the soft-
ware trap. The common way to get back from an interrupt is to use the IRETQ
instruction (IRET on x86). This instruction is used to return from a variety of
situations, but we are interested here in what the Intel Manuals call inter-privilege
return, since we are going from kernel land (the highest privilege level) to user
land (the lowest privilege level).

The first operation that the JRETQ instruction performs, shown here in the pseu-
docode syntax used in the Intel Manuals, is to pop a set of values from the stack:

tempRIP « Pop();
tempCS « Pop();
tempEFLAGS « Pop();
tempRSP « Pop();
tempSS « Pop();

As you can see, RIP (the 64-bit instruction pointer), CS (the code segment
selector), EFLAGS (the register holding various state information), RSP (the 64-bit
stack pointer), and SS (the stack segment selector) are copied in temporary values
from the stack. The privilege level contained in the CS segment selector is
checked against the current privilege level to decide what checks need to be per-
formed on the various temporary values and how EFLAGS should be restored.
Understanding the checks is important to understanding what values the architec-
ture expects to find on the stack. In our case, the CS holds a lower privilege level
(returning to user land), so the registers on the stack need to contain the following:

* CS, SS Respectively, the code and the stack segment used in user land. Each
kernel defines these statically.

* RIP A pointer to a valid executable area in kernel land. Our best choice here
is to set it to a function inside our user-land exploit.

* EFLAGS Can be any valid user-land value. We can simply use the value
that the register has when we start executing our exploit.

* RSP A pointer to a valid stack, which can be any amount of memory big
enough to allow the routine pointed to by RIP to safely execute up to the
execution of a local shell with high privileges.

If we prepare the values of these registers correctly, copy them in memory in
the order that IRETQ expects, and make the kernel stack pointer point to the
aforementioned memory area, we can simply execute the JRETQ instruction and
we will get safely out of kernel land. Since the stack contents are discarded at
each entry to kernel land (basically, the stack pointer is reset to a fixed value
offset from the start of the page allocated for the stack, and all the contents are
considered dead), that is enough to safely keep the system in a stable state. If the
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kernel and user land take advantage of the GS selector (as is done nowadays), the
SWAPGS instruction needs to be executed before JRETQ. This instruction simply
swaps the contents of the GS register with a value contained in one of the
machine-specific registers (MSRs). The kernel did that on entry, and we need to
do that on the way out. As a quick recap, the stack recovery phase of our shell-
code should look like this:

push $SS_USER_VALUE

push $USERLAND_STACK

push $USERLAND_EFLAGS

push $CS_USER_VALUE

push $USERLAND_FUNCTION_ADDRESS
swapgs

iretq

Because heap structure recovery depends on the operating system implementation
and not on the underlying architecture, we will discuss it in detail in Chapters 4,
5, and 6. For now, though, it’s important to know that unless some sort of heap
debugging is in place, overwriting allocated heap objects does not require a lot of
recovery (usually just enough emulation of valid kernel values to let the kernel
path using them reach the point where they free the object). Overwriting free
objects instead might require some more handling, since some kernel heap alloca-
tors store management data inside them (e.g., the “next” free object). At that point,
having been able to drive the heap into a predictable state is of great help, and we
will discuss the theory behind achieving such a result in the following section,
“The Triggering Step.”

So far we have focused on recovering from problems created after the vulner-
ability has been triggered. We have paid almost no attention to what the kernel
path has done before reaching the vulnerability and what it would have done if the
execution flow hadn’t been hijacked. In particular, we need to be especially careful
to release eventual resource locks that might have been acquired. For vulnerabil-
ities that add execution blocks, this is not an issue. Once done with our shellcode,
we will return exactly after the hijacking point and the kernel path will simply fin-
ish its execution, clearing and releasing any resource it might have locked.

On the other hand, disruptive hijacks such as stack overflows using the
IRETQ technique described earlier never return to the original kernel path, so we
need to take care of locks inside the shellcode during the recovery phase. Oper-
ating systems implement a variety of locking mechanisms: spinlocks, sema-
phores, conditional variables, and mutexes in various flavors of multiple/single
readers/writers, to name a few. This variety should not come as a surprise:
locks are a critical performance point, especially when a resource is contended
by many processes/subsystems. We can divide locking primitives into two main
parts: busy-waiting locks and blocking locks. With busy-waiting locks the kernel
path keeps spinning around the lock, cranking CPU cycles and executing a tight
loop until the lock is released. With blocking locks, if the lock is already held,
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the kernel path goes to sleep, forcing a reschedule of the CPU and never
competing for it until the kernel notices that the resource is available again and
wakes the task back up.

The first thing you need to do when you write an exploit that will disrupt execu-
tion flow is to identify how many critical locks the kernel path acquires and prop-
erly release each of them. A critical lock is either one on which the system depends
(there are just a handful of those in each operating system, and they are generally
spinlocks), or one that drives to a deadlock in a resource that you need after the
exploit. Some kernel paths also perform sanity checks on some locks; you must be
careful to not trap/panic on one of those, too. All critical locks need to be restored
immediately.

On the other hand, noncritical locks can be either fixed indirectly at a later
stage (e.g., loading an external module) or just forgotten if the unique effect is
to kill the user-land process (it is as easy to raise the parent process credentials
as it is to raise the current process ones), or to leave some noncritical resource
unusable forever.

THE TRIGGERING STEP

Now that we have a working shellcode placed somewhere in the kernel it is time to
start creating the conditions to reliably reach it. This is the job of the triggering step.

Our main goal here is to create the conditions for a successful hijacking of
the kernel execution flow. Leaving aside those logical bugs that do not involve
arbitrary code execution, we’ll divide the analysis of this phase into two main
categories: memory corruption issues and race conditions.

Memory Corruption

As you saw in Chapter 2, there are different types of memory corruption, but
our final goal is always to overwrite some pointer in memory that will be
used later as an instruction pointer (i.e., it will end up in the PC/IP of the
CPU). This can be done either directly, by overwriting the return address of a
function placed in the kernel mode stack, or indirectly, by emulating one or
more kernel space structures until we are able to reach a kernel path using
our controlled function pointer. Following the distinction we made during our
taxonomy, we’ll now evaluate the three common cases of memory corruption:
arbitrary memory overwrite, heap memory corruption, and stack memory
corruption.

Arbitrary Memory Overwrite

Arbitrary memory overwrite is a fairly common scenario in kernel land. In this
situation, you can overwrite arbitrary memory with either (partially) controlled or
uncontrolled data. On nearly all current operating systems/architectures, read-only
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sections are protected from privileged direct writing. On the x86 and x86-64
architectures, this is the job of the WP flag, which we can take for granted as
being set. Our goal is thus to find some writable place that, once modified, will
lead to the execution of our code.

Overwriting Global Structures’ Function Pointers

Earlier in this chapter, we mentioned the possibility of overwriting function poin-
ters stored in kernel structures. The usual problem with this approach is that most
of these structures are dynamically allocated and we do not know where to find
them in memory. Luckily, nearly all the kernels need to keep some global
structures.

WARNING

If global structures get declared as constant (with const being the typical C keyword for
that), the compiler/linker will place them in the read-only data section, and if this section’s
mapping flags are honored, they are no longer modifiable. On the other hand, if they need to
change at runtime, they have to be placed in a writable segment. This is exactly the kind of
entry point we are looking for.

A typical C declaration of a struct holding function pointers looks like this:

struct file_operations {
struct module *owner;
loff_t (*11seek) (struct file >, Toff_t, int);
ssize_t (*read) (struct file*, char __user *, size_t, Toff_t *);
ssize_t (*write) (struct file *, const char __user *,
size_t, Toff_t *);
ssize_t (*aio_read) (struct kiocb *, const struct iovec *,
unsigned long, Toff_t);
ssize_t (*aio_write) (struct kiocb *, const struct iovec *,
unsigned long, Toff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioct1) (struct inode *, struct file *,
unsigned int, unsigned long);
[...]

The preceding example is taken from the Linux kernel and is used to create an
abstraction layer between the filesystem-specific code and the rest of the kernel.
Such an approach is pretty common in modern operating systems and it generally
provides a very good entry point for hijacking the execution flow. As you will
see in the section “The Information-Gathering Step,” it may be extremely easy
(and reliable) to locate these structures in memory. If you are looking for this
kind of structure for your exploit, just hunt for type identifiers containing the ops
or operations name in your operating system of choice.
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Exploiting the Architecture
We started this chapter with an analysis of the architecture level. Apart from being
the base from which to properly understand the low-level details of the execution
phase (and the low-level details of the operating system), the architecture can turn
into an ally and offer new exploitation vectors. Earlier, we mentioned interruptions
and exceptions and the fact that the operating system registers a table of pointers
to their handlers. Obviously, if you can modify such pointers, you can hijack the
control flow and divert it toward your shellcode.

As an example, let’s consider the IDT from the x86-64 architecture. Figure 3.4
depicts an entry in this table.

As you can see in Figure 3.4, the entry is 16 bytes long and is composed of a
number of fields:

* A 16-bit code segment selector This indicates the segment selector for the
kernel interrupt handler. Usually, it holds the kernel code segment selector in
which the routine resides. Basically, this field specifies the selector to use once
the handler function gets called.

* A 64-bit offset for the instruction pointer (RIP) This specifies the address
to which the execution will be transferred. Since 64 bits are used, that allows
an interrupt service routine to be located anywhere in the linear address space.

* A 3-bit interrupt stack table (IST) The stack switching mechanism uses this
between privilege levels. This field was introduced in the x86-64 architecture to

Interrupt/Trap gate

31 0
Reserved 12
31 0
Offset 63...32 8
31 161514131211 87 54 2 0
D
Offset 31...16 Pl P (O Type 00O0|0|O|IST| 4
L
31 16 15 0
Segment selector Offset 15...0 0
DPL Descriptor privilege level
Offset Offset to procedure entry point I:l Reserved
P Segment preset flag
Segment selector Segment selector for destination f ;
IST Interrupt stack table |:| Region to overwrite
FIGURE 3.4

An x86-64 interrupt/trap gate entry.
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provide a means for particular interrupts to use a known good stack when
executed. This is usually not the case for the kind of interrupt we are aiming to
modify, so we can ignore/disable it. You can find more about the IST and the
stack switching mechanisms in the manuals referenced in the “Related Reading”
section at the end of this chapter.

* A 4-bit type that describes the descriptor type There are mainly three types
of IDT descriptors: task gates, interrupt gates, and trap sates. We care only
about interrupt and trap gates, since corruption of a task gate does not directly
lead to arbitrary execution. Interrupt gates are used to serve external hardware
interrupt requests, while trap gates are usually used to service exceptions and
software-generated interrupts (e.g., the one created by the INT instruction).

* A 2-bit DPL (descriptor privilege level) field This field is compared against
the caller CPL (current privilege level) to decide if the caller is permitted to
call this gate.

* A 1-bit P (present) flag This indicates if the segment is present or not.

To insert a new kernel gate under our control, we can simply replace an entry
of choice. Actually, in case the vulnerability does not allow us to or to simplify
the operation, we can achieve the same result by selectively overwriting only part
of the IDT entry, the DPL and the RIP OFFSET values. We need to set the DPL
value to the binary value 1/ (three), to specify that unprivileged user-land code
(running with CPL = 3) is allowed to call the gate handler. Also, we need to
modify the RIP OFFSET value to point to our user-land routine. The easiest way
to do this on a combined user/address space model is to simply pick a user space
routine and write its address in the various OFFSET fields. Since we control the
user-land address space, though, we can also modify a few of the most significant
bytes of the address and make it point somewhere below the kernel/user space
split address. Note that in such a case we do not have full control over the address
value, and to successfully transfer control to our routine we may have to use, for
example, a NOP-based technique such as the one we described earlier in the
“Placing the Shellcode” subsection.

Heap Memory Corruption

The majority of kernel temporary buffers and data structures get allocated in the
kernel heap. As usual, performance is a key factor in their design, as the allocation
and relinquishment of heap objects has to be as efficient as possible. For this
reason, as you saw in Chapter 2, extra security checks (e.g., to detect an overflow
of the heap object) are usually turned off on production systems. We also already
discussed the ideas on which the heap allocator is based. What we are interested
in now is if and how we can influence its behavior and what we can do when we
generate an overflow.

Controlling the Heap Allocator’s Behavior
A user mode process cannot directly interact with the kernel heap allocator, but
it can nonetheless drive the allocation of different types of heap-based objects,
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just invoking different system calls. A typical kernel offers hundreds of system
calls with a variety of options. Let’s return to the earlier filesystem example:
A user process opening a file forces the allocation of a kernel structure to keep
track of the file being opened. This structure (and, potentially, other structures
connected to this one) needs to be allocated from the heap. By opening thou-
sands of files and then releasing them, a user-land process can grow and shrink
the kernel heap in a more or less controlled fashion. But why is that
important?

The heap allocator usually allocates and frees objects in a (somehow) predict-
able way. Usually the process works in one of the following ways:

* A free list for each generic size/type of object is maintained. Each time an
object is freed it is attached to the list (either on top or at the bottom). Each
time an object is requested the first object on the list is returned. The typical
free-list implementation uses a LIFO approach, which means the last freed
object will be the one returned in the next allocation.

* Each free object maintains a pointer to the next free object within itself, and
the metadata handling the cache holds a pointer to the next free object. To
avoid confusion, we call the first pointer the object-pointer and the second
pointer the cache-pointer. At each point in time, there are as many object-
pointers as there are free objects (each object holding the address of the next
free object and the last one holding some termination value), and a single
cache-pointer, holding the address of the next free object that will be returned.
Whenever an object is requested, the cache-pointer is evaluated; the object it
specifies is marked as being in use and is then returned. The selected object-
pointer value is stored in the cache-pointer. Each time an object is freed, its
object-pointer is updated with the address stored in the cache-pointer and its
address becomes the new value of the cache-pointer.

At some point during its lifetime, the allocator will run out of free objects. In
that case, a new page is allocated from the physical allocator and is divided into
objects that will then either populate the free list (if the first type of allocator is in
place) or initialize each one with the address of the next one and mark it as free
(if the second type of allocator is in place).

As you can imagine, though, objects are not freed in the same order they are
allocated, which means the free objects are not contiguous in memory. Since the
list of free objects affects the address of the objects that get allocated, after
some time subsequently allocated objects will not be contiguous in memory.
The typical heap layout of a running system is thus fragmented, as shown in
Figure 3.5. Although Figure 3.5 depicts the state of one cache, the same princi-
ple applies to all the various caches in the system.

As we noted earlier, you can drive the allocation of a large number of
equally sized objects. This means you can fill the cache and force it to allocate
a new page. When a new page is allocated, the position of the next allo-
cated object relative to a specific object is generally quite predictable. This is
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FIGURE 3.5

A fragmented heap layout.

exactly what we aim for to carry out our attack. Unfortunately, life is not quite
that easy:

To optimize performance, allocators may have many more variables that affect
them. As a classic example, on an SMP system, for performance reasons the
address of an object may also depend on the processor that runs when the
allocation is requested, and we may not have control of that. This property is
usually defined as its locality.

Doing a specific system call also affects other parts of the system, which in
turn might affect the behavior of the heap allocator. For example, opening
thousands of files might require spawning more than a single thread, which in
turn would force the allocation of other, different objects. We have to study
this carefully to precisely understand the various interactions.

We need to find a kernel path that opens an object and keeps it open until we
decide to close it. Many paths allocate objects for the lifetime of the syscall
and free them upon returning. Those paths are mainly useless for our
purposes. On the other hand, some paths might depend on a user-passed
option for the size to allocate. Those paths are pretty useful for filling different
caches easily.

Heap Overflow Exploiting Techniques

We know we can somehow control the heap layout and force the allocation of an
object in a specific place. Although we do not know the virtual address of this
place, we can be more or less sure (depending on the degree of control we have
over the allocator) about its position relative to other objects in memory, cache
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metadata information, and other pages in the physical address range. Exploiting
the heap involves using the best out of these three scenarios, which we will now
describe in more detail.

Overwriting the Adjacent Object

This is the most used and reliable technique, and it works (with adjustments) on
nearly any heap allocator. It basically involves overwriting the object adjacent to
the overflowing object. If you recall the example we provided in the “Controlling
Heap Allocator’s Behavior” subsection, it basically means to overflow into C by
writing past A. For this technique to be successful, C needs to have some sensi-
tive information inside it. The obvious (and ideal) option is for C to hold either
a function pointer so that we end in the case we described in the “Overwriting
Global Structures’ Function Pointers” subsection, or a data pointer that later
will be used in a write operation so that we end in the case we described in the
“Arbitrary Memory Overwrite” section.

TIP

Although looking for a function pointer is the classic approach, it is by no means the only
option. You could look for a variable used as a size in a following allocation, a reference
counter, or a lock to manipulate, among many other options. You are limited only by your
imagination.

The steps to trigger such a scenario (in the common LIFO free objects situa-
tion) are as follows:

Force the allocation of a new page for the cache.

Allocate a placeholder object.

Allocate the target object.

Free the placeholder object.

Allocate the victim object.

Trigger the vulnerability (e.g., a buffer overflow) over the victim object, to
overwrite the target object.

Force the execution out of the target object.

(Eventually) perform the necessary recovery as a consequence of the previous
overwriting.

cohrLN=

o~

If the cache is not implemented with a LIFO approach for free lists, you
need to substitute steps 2—-5 with whatever algorithm is necessary to have
two adjacent objects so that your victim object gets allocated once the target
object has already been allocated. If allocating an object and triggering the
overflow over it are two decoupled operations (i.e., if you can hold a reference
and decide at what point in time to generate the overflow), the placeholder
object becomes unnecessary. Figure 3.6 shows an example of this kind of
approach.
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FIGURE 3.6
Overwriting the adjacent object technique.

Overwriting Controlling Structures

A few heap allocator implementations make use of in-cache and even in-object
controlling structures. In such a case, we have a new attack vector that is based
on overwriting sensible members of those controlling structures. Let’s take a
closer look at them, starting with the in-cache structure.

The in-cache structure may reside at the end or at the beginning of each page
allocated to hold objects. If the structure is at the beginning of the page, there is
really little you can do, unless you are lucky enough to hit a buffer underflow
(write before the content of the buffer, for example, as a consequence of a nega-
tive offset) of the object. We will discuss another option for this situation in the
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section “Overwriting the Adjacent Page.” For now, let’s focus on an in-cache
controlling structure that is at the end of the allocated page.

Such a structure holds a variety of members describing the cache. The type
and position of those members vary among operating systems, but a couple of
them are nearly always present:

* The name of the cache or some similar identifier

* A pointer to the next free object

* The number of objects in the cache

* (Eventually) constructor and destructor functions to be invoked at object
creation/release (to see how this can be useful, consider that a destructor
function adds a lot of overhead, so you might want to use it on a cache basis)

This is by no means an exhaustive list of the potential members, but it does show
a couple of interesting entry points:

* Overwriting the next free object pointer might allow you to drive the allocator
into using/modifying memory under your control.

* Overwriting the constructor/destructor pointers (if present) might directly lead
to code execution (in a fashion similar to what we explained in the
“Overwriting Global Structures’ Function Pointers” subsection).

* Changing the number of objects in the cache might result in some funny
allocator behavior (e.g., trying to gather statistics from memory areas that are
not part of the cache, and turning into a sort of infoleak).

We are considering more than one vector of exploitation, instead of picking
one and just living happily with it, because in some situations we might end up
with an overflow of only a few bytes and be unable to reach all the way down to
our member of choice.

Now that you have a fairly clear idea of what to overwrite, here are the steps
to do it:

1. Exhaust the cache so that a new page is allocated.

2. Calculate the number n of objects that compose the cache.
3. Allocate n— I objects.

4. Allocate the victim object.

5. Overflow into the in-cache controlling structure.

The approach can be visualized in Figure 3.7.

An example of in-cache controlling structure implementation is the FreeBSD
Unified Memory Allocator, and a detailed article on its exploitation, “Exploiting
UMA, FreeBSD kernel heap exploits,” was released in PHRACK 66 by argp
and karl.

The second type of controlling structure we will evaluate resides in the free
objects and is generally used to speed up the lookup operation to find a free object.
Such an implementation is used in the Linux SLUB allocator, and we will discuss
it in detail in Chapter 4. The exploit that we will show there is also a good
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FIGURE 3.7
Overflowing into the cache controlling structure.

example of an overflow of a small number of bytes (actually, a single byte over-
flow, generally known as off-by-one... yes, there is a bit of magic in that exploit).

This type of controlling structure varies a lot, depending on the allocator
implementation, and so it is hard to present a general technique. The idea we
want to highlight here is that even a single byte, if correctly tweaked, can lead to
a full compromise.

Overwriting the Adjacent Page

Let’s say you have a heap overflow, but no object in the specific cache holds
any sensible or interesting data. Moreover, the controlling structure is kept off-
slab or is at the start of the cache, and thus is unreachable. You still have a shot
at turning the heap overflow into a successful compromise: the physical page
allocator.

The technique we are about to present is valid in any operating system, but is
definitely less reliable than the two previous ones, because it involves an extra
subsystem beyond the heap allocator. In particular, it involves the subsystem the
heap allocator depends on: the physical page allocator. When we first described
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a generic heap allocator, we said that it is a consumer of the physical page
allocator from which it receives physical pages that it then divides into objects
and manages internally. Virtually any other area of the kernel that needs mem-
ory ends up using the physical page allocator; from the filesystem page cache
to the loading of modules, at the very bottom it is all a matter of populating
pages of memory. And memory, as you know, is contiguous. If you take a
picture of a computer’s physical memory at a given time, you see a list of poten-
tially independent pages sitting next to each other. Scattered among those pages
are the heap allocator pages, and it is exactly that condition that gives you a
new attack vector.

The idea is pretty simple: you place the victim object at the very end of the
cache, and from there you overflow into the next adjacent page. The main pro-
blem is predicting with some degree of precision what will be after your page,
and also managing to place a sensible structure there. Controlling the physical
page allocator from user land is challenging. Although operating systems usually
export some degree of information about the heap allocator, they provide a lot
less information about the physical allocator. Moreover, each operation you per-
form to drive the allocation of a new page likely will have side effects on the
page allocator, disturbing the precision of your algorithm; the same thing happens
with any other unrelated process running on the system (a few extra unexpected
page faults might invalidate your layout construction just enough to miss your
target). Note that here you are trying to have two pages next to each other
in memory.

One way to improve your chances is to rely on a sort of probabilistic
approach:

1. Exhaust the victim object cache up to the point where all the available objects
are allocated, but a new empty page is not. That might involve taking care of
specific thresholds that the allocator might impose to proactively ask for pages
to the physical allocator.

2. Drive the allocation of tons of pages, exhausting the number of free pages, by
requesting a specific resource (e.g., opening a file). The aim is to get to a
situation such as the one depicted in Figure 3.8a.The fewer side effects the
allocation has (as a rule of thumb, the less deep a kernel path goes to satisfy
the request), the better your chances of success. A link between this resource
and the victim object is not necessary. It is only important that this specific
resource puts some controlling structure/interesting pointer at the beginning of
the page (the closer it is to the beginning, the smaller the number of variables
trashed during the overflow that you need to emulate/restore).

3. Free some of the resources you allocated midway through the process so that
the amount of freed memory adds up to a page. Since the kernel is under
memory pressure (you generated it in the previous step), the page will be
returned to the allocator immediately and will not be cached or “kept” by
whatever subsystem you used during the exhaust phase. The catch here is to
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FIGURE 3.8a
Driving the allocation of multiple pages and freeing one of them.

free some of the early allocated resources so that the freed page lies physically
between some of the pages holding the resource you are targeting (as shown
in Figure 3.8a).

4. Drive the allocation of a new page for the victim object cache by allocating a
few more objects. The freed page will be returned to the heap allocator.

5. Perform the overflow from the victim object over the next adjacent page.

6. Start freeing, one after the other, all the resources you allocated during the
physical page allocator exhaust phase, hoping that one of them has been
overwritten by the overflow of the previous step.

The last steps of this approach are shown graphically in Figure 3.8b.

As you can imagine, there is the risk of overwriting a wrong page, and thus
touching some sensible kernel data. In that case, the machine will panic and your
target will be lost. This is another reason why limiting the number of overflowed
bytes as much as possible is important.

On a machine with a low load, this technique can be implemented rather
efficiently. We will discuss this in more detail in Chapter 4.



The Triggering Step

1] [2 e 3
Free Free Free Free
object object object object
T The previously freed page gets returned by the physical page allocator
Free list-LRU
pointer '
1] [2 e 3
Placeholder| |Placeholder| |Placeholder Victim
object object object object

Fill the just allocated cache (cache page) with placeholder objects so that
the victim one is placed at the end

) E==——r | 3

Placeholder| |Placeholder| |Placeholder Victim
object object object object

Trigger the overflow inside the victim object and write over the next adjacent page

FIGURE 3.8b

Overflowing into the adjacent page.

Kernel Stack Corruption

As we mentioned in Chapter 2, each user-mode application has at least two
stacks: a user-mode stack and a kernel-mode stack. In this section, we’ll focus on
techniques you can use when an overflow occurs while the application is execu-
ting in kernel land, and thus is using its kernel stack.

As you probably recall, the kernel mode stack is simply a small kernel mem-
ory block allocated from the physical page allocator just like any other memory-
based resource. Compared to the user stack, it is generally quite small, it cannot
grow on demand, and its state is discarded each time the kernel hands control
back to the user-land process. This does not mean the kernel stack is reallocated
each time, however. It simply means the stack pointer is moved back to the start
each time the kernel is entered on behalf of the process.

By far, the most common example of stack corruption is the stack overflow, as
shown in Figure 3.9.

There are three main approaches to exploiting a kernel stack corruption: overwrite
the return address, overwrite some local variable, and overwrite the adjacent page.
On some combination of operating systems and architectures (e.g., Linux on x86),
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Stack overflow.

the same pages used to hold the stack are used to keep, at the end of the allocated
pages, a controlling structure for the running process. This makes it easy to identify
the current running process via a simple AND operation with the stack pointer value.
Since such a structure is positioned at the bottom of the pages used for the stack, an
overflow such as the one in Figure 3.9 cannot reach it (a write happens on increasing,
not decreasing, addresses). Theoretically speaking, though, another problem might
arise: a sufficiently long, nested sequence of calls could reach the bottom of the stack.
Although such a vulnerability has never been found in any kernel (kernel developers
are pretty careful about how they use the stack, and interrupts nowadays usually have
an architecture-supported or software-provided alternate stack), we mention it here for
completeness.

Overwriting the Return Address

Stack overflow exploitation based on overwriting the saved return address to
hijack the control flow has been used successfully for more than two decades and
is still fashionable. As an example, the advanced return into kernel text technique
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that we discussed in the section “The Execution Step” is based on overwriting the
saved instruction pointer.

Usually, to reach the saved return address you overflow a bunch of other
local variables. If any of these variables is used before the function returns, you
need to emulate its value, that is, set it to a value that will let the function get
out correctly. As an example, if the function before exiting attempts to read
from a pointer saved on the stack, you must be sure that you overwrite its value
with an address of a readable memory area in the kernel. After the (eventual)
local variable recovery, it is just a matter of applying the techniques we already
described.

In an attempt to prevent canonical stack buffer overflows, a protection known
as a stack canary has been designed and implemented inside compilers. The idea
is pretty simple: A pseudorandom value, the canary, is pushed right after the
return address and is checked when the called procedure returns. If the resultant
value differs from the original value, that’s a sign of a stack overflow. Activat-
ing stack canary protection is usually just a matter of turning on a compiler
option and adding some handling code to be triggered whenever an overflow is
detected. The easiest thing such handling code can do is to simply print some
error message and panic the machine (a panic is safer than a compromise).
Usually, to reduce the impact on performance, the compiler selects functions
that are considered “potentially dangerous” and “patches” only those. An exam-
ple of such a function could be one with at least some amount of space used on
the stack.

A stack canary is a good protection scheme, but it suffers from a few
problems:

* A particularly controlled overflow (e.g., an index-based overflow on an array
saved on the stack) can write past the canary without touching it.

* The canary needs to be saved somewhere in memory, and thus can be revealed
by a memory leak. In today’s implementations, it is common to have a per-
process stack canary, which basically gets computed at process creation and
used (eventually with some permutation based on the state of some register)
for the lifetime of the process. That means that once the canary is leaked one
time in a function call inside a kernel path, subsequent calls by the same
process going through the same path will have the same canary value at the
specific function call.

* The canary cannot protect against the overflow of local variables placed before
the canary itself.

* On an SMP system, you might be able to overflow to an adjacent page and get
its code executed before the stack canary check is done. If enough recovery is
performed by the shellcode, the canary could be restored before the check.

Note that despite becoming increasingly popular at the time of this writing
stack canary protections are still not common (or turned on by default) on many
operating systems.
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Overwriting a Local Variable
Among the options we listed to bypass stack canary protection, we mentioned the
possibility of overwriting a local variable. In fact, on various occasions, that may
turn out to be easier than a classic overwriting of the saved return address. You
trash only stack space that is local to the function, and you do not need to per-
form any general recovery of the stack state to safely return from the function.
The idea behind this technique is to find some sensible variable on the stack
and turn the stack overflow into another type of vulnerability. Common situations
include (but are not limited to):

* Overwriting a stored function pointer (e.g., inside a local static allocated
structure)

* Overwriting a pointer later used in a copy operation, therefore turning the
vulnerability into an arbitrary read or an arbitrary write (depending on how the
pointer is used)

* Overwriting a stored (maybe precomputed) integer value, generating an integer
issue

Race Conditions

Shared resources in kernel land are literally everywhere. Each kernel control path
needs to correctly acquire and release whatever type of lock protects the shared
resources it needs.

NOTE

We already briefly discussed locks during the analysis of the recovery step in the section
“The Execution Step,” so we won't discuss them again here.

A failure in correctly releasing a lock may make the associated resource
unusable forever or, worse, trip on some kernel check and panic the machine or
drive the kernel into a deadlock state (a situation where all the processes are
stuck because each one depends on the resources that another one acquired).
A failure in correctly acquiring a lock can lead to various corruptions and vulner-
abilities, because the kernel task currently holding the lock expects and relies on
the resources it locked down to not change. A similar situation occurs when a
locking mechanism is not designed correctly. A classic example is leaving an
opened window between when a process is picked up from the process list and
when its privileges are changed. For a small window of time, an attacker could
be able to manipulate (e.g., attach for debugging) a process that is about to
become privileged (and thus unattachable for debugging by the attacker). It is
worth mentioning that misuse of the locking mechanism is not the only source of
race condition; a classic example is given by some TOCTOU (time of check, time
of use) vulnerabilities involving the validation and subsequent access of user-land
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data. In such issues, a kernel path loads and validates some value from user land,
and then slightly afterward loads it again and uses it without revalidating. We
will provide examples of successful exploits against this kind of vulnerability in
Chapters 4 and 6.

Race conditions can be generated either by multiple kernel control paths run-
ning concurrently on different CPUs (as is the case on an SMP system) or by dif-
ferent paths running interleaved on a single CPU. Race conditions are always
exploitable on SMP systems; however, sometimes the window might be very
small and the race may be hard to win, resulting in only a subset of race condi-
tions being exploitable on UP systems. The key point in each race is to increase
your odds of winning. This is the topic of this section.

Kernel Preemption and the Scheduler

In Chapter 1, we introduced the scheduler and described it as the entity that
moves the various tasks competing for execution into and out of the CPU. Since
the goal of race conditions is basically to execute before the window closes, it is
of utmost importance to understand the interaction between user/kernel tasks and
the scheduler. A given path gets scheduled off the CPU in two circumstances:

* It voluntarily relinquishes the CPU, directly calling the scheduler. This is the
case, for example, with some blocking locks. The process tries to acquire it
but the lock is not available, so instead of spinning, it puts itself to sleep and
invokes the scheduler to pick up another process. A similar situation occurs
when waiting for a specific resource to be available; for example, for some
I/O to complete and bring in a desired page of memory from disk.

* It is evicted from the CPU by the scheduler; for example, when the task-
associated time frame or CPU quantum has expired. This is routine behavior
for the scheduler, and it’s how the operating system achieves multitasking and
good responsiveness in the eyes of the user. If a kernel path can be interrupted
during its execution to give the CPU to some other process, we define the
kernel as preemptable.

At this point, a new task/process gets picked up and a new CPU quantum is
given to it. Understanding what process will be picked next is as important, from
a race exploitation point of view, as managing to make the scheduler execute and
select a new process to run.

The scheduler uses different metrics to select the process to execute next, and
some of them can be influenced directly from user land. Operating systems
usually assign a priority to each process when it is created. The scheduler may
take this priority into consideration when it selects the next CPU consumer.
A process usually needs higher privileges to be able to raise its own priority, but
it is always allowed to lower it. On a low load environment (an environment
where not many CPU-intensive processes are active at the same time), lowering
the priority at the right time might be enough to influence some scheduler deci-
sion and allow you to exploit the race window. This is especially important if you
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are trying to exploit the race on a UP system, since relying on the scheduler to
properly interleave your processes is the only way to generate the issue in the first
place.

On SMP systems, you have one more shot (which theoretically makes any race
condition exploitable). It is based on binding different processes to different CPUs
(an operation always allowed on unprivileged tasks) and synchronizing their
execution through the use of high-precision timers. Binding a process to a CPU
means the process will compete to execute only on the specific CPU, and will
remove it from competition on any other CPU. This is useful to prevent processes
from interfering with each other on scheduling decisions.

There are multiple ways to ask the kernel for timing information, but since we
need high precision, we cannot afford to incur any added kernel overhead. So,
once again we exploit the architecture. Keeping with the convention of this book,
we’ll show an example of how to use the x86-64 architecture.

The x86-64 architecture provides access to an internal timer, the 7SC (time
stamp counter), which is a 64-bit machine-specific register that is set to zero at
each reset of the machine and is updated at each clock cycle. Unprivileged user-
land processes can query the value of this register by means of the RDTSC (Read
TSC) instruction, which copies the 32 most significant bits of the TSC register
into the EDX register and the 32 lowest significant bits into the EAX register. This
approach is an excellent way to gather high-resolution timing information without
incurring much overhead in execution time.

NOTE

The operating system can inhibit the RDTSC instruction by setting the TSD flag (Time Stamp
Disable) in CR4 (Control Register #4). Since the TSC is exploited by user-land applications,
at the time of this writing this is not done by any operating system.

Exploitation Techniques

There are three main subsets of kernel race exploitation techniques, depending on
the characteristics of the critical section you are targeting. We’ll present the sce-
narios in order of complexity, which means that a technique that works success-
fully in the first one will definitely also work in the second one (and so on).
Usually, though, the following techniques are based on a few more valid assump-
tions relative to the specific scenario, and are thus more effective and reliable.

The Critical Section Cannot Reschedule

In such a situation, the scheduler will not be called during execution of the critical
section. This is usually the case when the race condition issue afflicts a deferred
function or an interrupt/exception handler. In such situations, the kernel control
path may not be able to reschedule for different reasons: it has already acquired a
lock, it is running in interrupt context (and thus there is no backing process to put
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to sleep to relinquish the CPU), or preemption has been temporarily disabled,
for instance. This kind of race is the hardest to exploit, and since there is no
scheduler involved, it is exploitable only on SMP systems with the help of high-
resolution timers. The parameters you carefully need to take into account when
you decide on which timer delay values to synchronize the user-land processes
are the CPU frequency and the average time needed to reach the two racy critical
sections. If the exploit is designed properly, it could keep on trying until the
window is exploited. This is usually easier with race conditions because until the
perfect conditions are met the kernel state is not affected.

The Critical Section Can Reschedule but Does Not Access User Land
This is probably the most common scenario with respect to kernel race conditions
generated during a system call kernel path. Such issues are generally exploitable
on UP systems, too, but an SMP system puts the odds more in our favor. A key
point regarding these vulnerabilities concerns how the scheduler is involved. If
you can drive the path into voluntarily relinquishing the CPU you have a much
better shot at exploiting the vulnerability. This case usually leads to some block-
ing function that you can influence. For example, a memory allocation routine
may block if no memory is currently available. By requesting and actively using a
lot of memory with a user-land application you can generate such a situation.

If you instead need to rely on the scheduler to evict the current running pro-
cess, this vulnerability becomes exploitable on UP only on a preemptable kernel.
Preemptable kernels are the trend today, and schedulers are getting increasingly
fair toward user-land processes. The catch here is to manage to get to the critical
section with the kernel path that has basically finished its CPU time quantum, and
have a CPU-intensive user-land application ready to demand the CPU to generate
the race. Again, high-precision timers have a determinant role in correctly syn-
chronizing the various threads/processes. On an SMP system, the exploitation of
these issues is a lot easier, and is just a matter of having an acceptable measure-
ment to synchronize the execution of the two (or more) threads.

The Critical Section Accesses the User Space

This is by far the easiest type of race to exploit. Since the kernel path accesses user
land, you can play a trick to force it to sleep and thereby increase the size of the
exploit window. Whenever you are accessing a user-land buffer, even a kernel
implementing a combined user/address space model cannot simply dereference it.
First, it needs to check that the address is below the split limit address. Second, it
needs to ensure that the user-land mapping is valid so that the machine does not
panic while attempting to reach it. Moreover, the kernel needs to be ready to react
if the address is effectively part of the user address space, but the pages that back it
are still on or have been swapped to disk. For example, a process may ask the
kernel to map a file into memory. In such a situation, the kernel will create a valid
mapping as large as the file is, but it will not allocate physical memory pages with
the contents of the file. If, and only if, the process attempts to read one of them
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will the kernel react to the fault and bring in the desired page from disk. This
process is at the heart of the demand paging approach we mentioned in Chapter 1.

This specific operating system property gives us a pretty good weapon to
exploit this type of race condition. In fact we can:

1. Map a file into memory or map a large portion of anonymous memory.

2. Place our kernel buffer on the boundary between two pages—one page that we
ensure is mapped in and one that we are forced to page out.

3. Make the kernel path access the buffer on the boundary and go to sleep while
the page fault handler code brings in the second page.

4. Get our thread scheduled and generate the race.

We mentioned forcing the second page out of memory. You can do this by
digging into the operating system page cache implementation. Usually, this means
you must predict how many pages will be paged in after an access (the operating
system tries to exploit the principle of locality and brings in more pages, trying to
avoid future slow calls to the page fault handler), or force the pages to be
swapped to disk (e.g., generating a lot of the activity to fill the page cache), or a
combination of the two.

We will provide some practical examples of this kind of attack in Chapters 4,
5, and 6.

THE INFORMATION-GATHERING STEP

The information-gathering step refers to all those pre-exploitation operations that
our code will perform to collect information about and from the environment.
During this phase, it is important to heed the following:

* Do not panic the target This is the kernel exploitation dogma. The
information-gathering step allows you to decide at runtime if you should
continue with the exploitation step. As an example, imagine that your exploit
trashes a kernel structure and then forces a dereference of the corrupted function
pointer. On an untested kernel version, the relative position of this pointer may
have changed. In such a case, your exploit should detect the situation and give
you a chance to stop so that you have time to check the specific version and
come back later with a working version. As a general rule, it is better to fail
than to panic a target. A panicked target is a lost target (the machine is down
and far too much noise has been generated on the target box).

* Simplify the exploitation process In other words, use any information the
system provides to obtain a better and safer entry point for your shellcode.
Say that you have an arbitrary write at the kernel level. You could attempt to
write to some address that seemed to be reliable on your tests. But how much
better would it be if the system could tell you where to write? And if the
system does not cooperate (say, in the presence of some kernel protection),
how cool would it be if the underlying architecture could tell you?
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These two advantages are obviously tightly linked. The second one allows
you to write one-shot exploits that work on a large variety of targets, and
thus reduce the odds of panicking a machine. It is important, though, to
always attempt to validate the information you gather as much as possible.
For example, say you have an arbitrary write issue and you are able to infer
a destination address. In a combined user/kernel address space environment,
you should at least check this value against the user/kernel-land split address.
Moreover, if you are expecting this address to be in a particular area of
the kernel, you may want to check it against known layout information
(in Chapters 4, 5, and 6, we will provide detailed descriptions of typical ker-
nel layout/addresses).

So far, we mentioned information that is provided from the environment. It
does not depend on a vulnerability on the kernel, but simply on the clever use of
the architecture and its interfaces. However, there is one more potential source of
information, which is the consequence of infoleaking bugs. The classic infoleak
bug is an arbitrary read at the kernel level. You can read portions of kernel mem-
ory from user land. In general, an infoleak simply pushes out to user land infor-
mation that should not be exposed. As another example, think of a structure
allocated on the stack, initialized on some of its members, and then copied back
to user land. In such a case, the dead stack under the noninitialized member is
leaked back to user land. Such issues are usually quite underrated, since in many
cases they cannot lead to a direct exploitation. Unfortunately, this is a pretty bad
habit: especially on systems with advanced kernel-level protections, a simple info-
leak might give an attacker the missing piece of a one-shot reliable exploitation
puzzle.

NOTE

Since local kernel exploits are far more common than remote ones, the remainder of this
chapter focuses mainly on local information gathering. We will cover remote information
gathering together with remote exploitation techniques in Chapter 7.

What the Environment Tells Us

Let’s start our analysis of information-gathering approaches with what the envir-
onment we sit in tells us. Even operating systems with some level of hardening
expose a good deal of information back to user land. Some of this is mandatory
for correct execution of legitimate user-land applications (know where the kernel
split address is or what version of the operating system is running); some of it is
useful to give the user a chance to debug a problem (list if the specific module is
loaded, show the resource usage of the machine); some of it is exposed by the
architecture (as we mentioned in the TSC/RDTSC example we provided earlier
when discussing race conditions); and a lot of it is simply underrated, and thus
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weakly protected (the number of heap objects allocated in the kernel, the list of
kernel symbols).

It is really interesting to see how just a few pieces of seemingly unconnected
or useless information can be leveraged to sensibly raise the odds of a successful
and reliable exploitation.

What the Operating System Is Telling You

The first piece of information we can easily grab from the system is the exact ver-
sion of the running kernel. The kernel is a continuously evolving piece of soft-
ware, and during an exploit we are likely to target a variety of its structures and
interfaces. Some of them could be internal, and thus change from version to ver-
sion, and some might have been introduced or dropped after a given release. This
may require slightly different shellcodes or approaches between even minor
releases of the same kernel. For example, the presence of a specific Windows
Service Pack may drop an API tied with a vulnerable kernel path, or two different
Linux kernel releases with just a minor version number mismatch may use a
totally different internal credentialing structure. All operating systems offer an
interface to user land to query the specific kernel version. We will discuss each
one of them in Part II of this book.

Another interesting piece of information, especially on modular kernels, is
what set of modules have been loaded and what (usually larger) set is available.
Again, nearly all operating systems offer a way to query the kernel about its
loaded modules, and usually return valuable pieces of information, such as the vir-
tual address at which they have been loaded and their size. This information might
come in handy if you are looking for specific offsets for an exploit. If this infor-
mation is filtered (which is the case when extra security protections are in place)
and your goal is only to detect if a specific module is available, you may be able
to list (or even read) the available modules from the directory where they are
kept. Moreover, nearly all modern operating systems implement a sort of auto-
matic module loader to load a specific module only if the system really needs it.
Thanks to this property, we can force the load of a vulnerable or useful module
from user land by simply generating the right request.

Continuing our quest for information, on nearly all flavors of UNIX there is a
program to print the kernel log buffer to the console: dmesg. Again, this buffer
may contain valuable information, such as valid virtual address ranges or module
debugging messages. For these reasons, Mac OS X “breaks” this UNIX tradition
and prevents an unprivileged user from dumping the kernel control buffer and
doing some security protection patches such as, for example, GRSecurity on
Linux.

One of the most interesting types of information that we might be able to infer
regards the layout of the kernel in memory and, especially, the addresses at which
its critical structures or its fext (the executable binary image) are mapped. One
straightforward (and surprisingly effective) way to achieve this information is to
look for the binary image of the kernel on disk. On many systems, administrators
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forget to strip away unprivileged users’ read permissions from that file (generally
the default setting). Sometimes this is not even considered as having security
implications! If you think back to our advanced return into kernel text technique,
you can see how vital such information can be. Not only do we have access to all
the symbol (function, variable, and section identifier) values/addresses, but also
we can actually see the disassembly of each of them. In other words, we can
deduce where a specific function or opcode sequence is in memory.

If the kernel binary image is not available (e.g., because it is on a boot parti-
tion that gets unmounted after boot time or the sysadmin has correctly changed its
permissions), we can turn to the kernel-exported information. It is common, in
fact, to have the kernel export to user land a list of its symbols through a pseudo-
device or a file (as Linux does, for example, via /proc/kallsyms). Again, by simply
parsing this file we can discover the address of any structure or function at the
kernel level. Let’s see an example of how this file looks to better visualize the
concept:

c084e7ad r __kstrtab_hrtimer_forward

c084e7bd r __kstrtab_ktime_get_ts
c084e7ca r __kstrtab_ktime_get_real
c084e7d9 r __kstrtab_ktime_get
c084e7e3 r __kstrtab_downgrade_write
c084e7f3 r __kstrtab_up_write
c084e7fc r __kstrtab_up_read
c084e804 r __kstrtab_down_write_trylock
c084e817 r __kstrtab_down_write
c084e822 r __kstrtab_down_read_trylock
c084e834 r __kstrtab_down_read
c084e83e r __kstrtab_srcu_batches_completed
c084e855 r __kstrtab_synchronize_srcu
c084e866 r __kstrtab_srcu_read_unlock
c084e877 r __kstrtab_srcu_read_lock

r

c084e886 r __kstrtab_cleanup_srcu_struct

As you can see, on the left of each symbol is its address. If this source is
missing, we still have a way to try to figure out the kernel symbol layout, which
is based on replicating the target environment somewhere else. This approach
works pretty well with closed source operating systems such as Windows (by
knowing the exact kernel version and the patches applied, it is possible to
re-create an identical image) or with installations that are not supposed to
manually update their kernels through recompilation. This second case is far more
common than you may think for a lot of users. Recompiling either the Mac OS X
or the Red Hat (Linux distribution) or the OpenSolaris kernel is just an extra
burden (and would make the process of automatically patching and updating the
system more complicated). Also, spotting what we can call a default kernel is
extremely easy, thanks to the system version information we mentioned at the
beginning of this chapter.
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Kernel symbols, although dramatically useful, are not the only information we
should hunt for, nor, unfortunately, the only information that will make an exploit
reliable. In fact, they provide very good hints regarding the last stage of the trig-
gering step (once we can divert execution to some address or we have an arbitrary
write), but they help a lot less in the earlier stages, that is, when we are trying to
generate the vulnerability.

We divided memory corruption vulnerabilities into two main families: heap
and stack based. Also, we mentioned a common (last resort) technique for both of
them, which is based on overwriting the adjacent page. In all those cases, to be
successful we need to gather some information about how the various memory
allocators work. Depending on the operating system, we may be able to get more
or less detailed information. We will discuss the practical ways of doing this in
Part II.

Once again, it is interesting to understand how we can leverage these see-
mingly harmless details in our exploit. Typical information that we might be able
to gather about the heap allocator is the number of allocated and free objects for
each cache. In the section “The Triggering Step,” we said that our first objective
when attacking the heap (or the physical page allocator) is to get to a state where
allocator behavior is predictable. To do that, as we explained, we need to fill all
the pages used for the cache (i.e., drive the allocation of all the free objects) so
that the allocator will ask for new pages and start using them exactly as it was
during its very first allocation. The kernel-exported information is of great impor-
tance, since it allows us to see how our indirect management of the allocator is
going, and if any side effects are cropping up. By constantly monitoring the
exported information, we can thus tune our exploit and, in most cases, turn it into
a one-shot reliable exploit.

TOOLS & TRAPS...

Familiarize Yourself with Diagnostic Tools

The examples we have provided do not represent a complete list of all the information a
system may expose; we just picked the ones that are most likely to be used in an exploit. It is
usually worth it to spend some time becoming familiar with the unprivileged diagnostic tools
that an operating system offers. Information such as the number and type of attached
physical devices (e.g., PCI devices), the type and model of the CPU, or any kernel-exported
statistic might come in handy in a future exploit. Operating systems tend to keep this
information together—for example, providing a common interface to gather them up. We
mentioned /proc/kallsyms on the Linux kernel. On such a system, a tour of the /proc (and /sys)
virtual filesystem will quickly give you an idea of the information you should be familiar with.
We will go into more details about exploit-relevant exported information in Part II.

What the Architecture Tells Us
The architecture can be quite an ally, too. In general, two sources of information
are particularly interesting in this regard: counters and architecture-assisted
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software tables. The use of the high-precision time stamp counter (RDTSC/TSC)
that we mentioned earlier is a good example of the former. In such a case, we
obtain an incredibly accurate way to synchronize our attacking threads.

Architecture-assisted software tables are, to some extent, even more interesting.
The idea behind such structures is pretty simple. There are some heavily used
tables (e.g., the table that associates each interrupt to a specific handler) that are
too expensive to implement purely in hardware. On the other hand, pure software
support would greatly affect operating system performance. The solution to this
issue is to have the software and hardware cooperate. The interrupt table is a
good example of this. The architecture offers a register to keep track of the table’s
address and uses this information to internally and automatically perform the tran-
sition from a given interrupt number to the call of the specified handler. If each
entry also contains other information (e.g., the privilege level required to call the
specific routine), the architecture may or may not have support in place to deal
with it in the hardware as well (e.g., the x86-64 architecture checks the DPL
against the CPL and raises a fatal exception if the caller does not have enough
privileges).

Obviously, the architecture needs to provide instructions to write and retrieve
the address stored in the register holding the pointer to the software table. While
the former is always a privileged operation, the latter is usually not.

In the section “The Execution Step” you saw how a crafted IDT entry can be
the ideal way to reliably trigger your shellcode. Continuing the convention of
focusing on the x86-64 architecture, take a look at the following code:

/* make IDT struct packed */
#fpragma pack(push)
#fpragma pack(1)
struct IDT
{
USHORT Timit;
ULONG64 base;
b
#fpragma pack(pop)

typedef struct IDT TYPE_IDT;

ULONG getIdt()
{
TYPE_IDT idt;
__asm {
sidt idt
}
return idt.base;
}

When it is compiled in Microsoft Visual Studio C++ the preceding code will
return the address of the IDT to an unprivileged process. The key point here is
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the __asm() statement, which uses the SIDT (store interrupt descriptor table)
instruction. This instruction copies the contents of the IDTR into the memory
address specified by the destination operand. We just showed an example for the
Windows platform, but what really matters here is to be able to execute an assem-
bly instruction. Any compiler on any operating system gives us this possibility.

Once we know the address of the IDT we can calculate the correct offset from
the start of the table to the interrupt handler that we want to hijack, and then
apply the techniques described in the section “The Execution Step.”

A similar approach applies to the GDT and the SGDT instruction. We will not
go into the details here.

What the Environment Would Not Want to Tell Us: Infoleaks

As we mentioned earlier, there is a category of bugs that is usually a little under-
rated, and it is the one that leaks memory contents from the kernel. Unless the
leak is pretty wide (you can retrieve a lot of kernel memory from user land) and/
or very controllable (you can decide what area of the kernel to leak; note that in
such a case you are usually able to leak as much memory as you want by repeat-
ing the attack), this kind of vulnerability does not lead to a compromise of the
machine. These vulnerabilities are referred to as information leaks or infoleaks.

TIP

A large leak of kernel memory allows you to expose the contents of the physical pages
currently in use by the system. Inside these pages you might find stored SSH keys,
passwords, or mapped files that could lead to a direct compromise of the system.

This bug class is extremely useful in raising the efficiency of our exploit, espe-
cially if we are targeting a system configured with a lot of security protections
(we will say a little more about that in the “Defend Yourself” sidebar at the end
of this section), since it can cast a light on the addresses used in kernel land, and
thus allow us to calculate the correct return address for our shellcode.

Leaks can occur on virtually any memory allocation, and thus can return infor-
mation about:

* Stack addresses/values This is by far the most useful type of leak (after a
full kernel memory leak, obviously), because you may not have any other way
to deduce where your kernel stack is in memory. Also, a sufficiently
controlled infoleak may reveal the presence of a canary protection and expose
its value (allowing you to easily bypass that protection). Stack infoleaks
become even more interesting when you consider that the kernel stack is
generally not randomized. Since the kernel stack is allocated once and forever
for a process, calling the same kernel path multiple times will lead to the same
stack layout each time. An infoleak in such a situation could give you a
precise offset to overwrite a pointer stored somewhere there.
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* Heap addresses/values The generic case here is the ability to leak memory
around an object, either before or after, or both before and after. Such a leak
could expose information about the state of the previous/next object (if it is
allocated or not), the type (say you have a general-purpose cache from which
different types of objects are allocated), and its contents (for a free object, the
value of the in-object control structures, if used, and for an allocated object,
the values of its members, in case you need to replicate them during the
overflow). Moreover, if the heap is protected with some form of randomized
red zoning, the used check-value could be exposed and give you a way to
bypass that protection, exactly as what happens with stack canaries.

* Kernel data segment The kernel data segment is the area created at
compilation time that stores (global) kernel variables. An infoleak over this
data could expose the value of some kernel configuration (is the specific
protection active or not?) or, if you are not able to retrieve kernel symbols
otherwise, give you a precise offset to use inside your exploit.

Today it is pretty common (and it is the ongoing trend) to have memory areas
mapped as nonexecutable. If you are targeting a system that does not have this
protection (e.g., a 32-bit x86 environment), a leak inside a memory area could
also show interesting sequences of bytes that could be used as part of your shell-
code (you should recall such an approach from the return into kernel text techni-
que). Obviously, this is also the advantage that a kernel text infoleak could give,
along with the possibility of checking if the specific vulnerability is there or not.
This is useful if you need to stay under the radar on the target machine. Instead
of executing an attack against a patched kernel (which may leave traces of the
attempt on the target), you can check if the vulnerability is there and decide to
proceed or not with the attack accordingly.

DEFEND YOURSELF

Make the Attacker’s Life Difficult

After reading this section, it should be clearer how much use an attacker can make of
seemingly harmless information or information leaking vulnerabilities. Projects such as
GRSecurity for the Linux kernel aim to limit as much as possible both the exploitation vectors
and the amount of information that an attacker can retrieve. Examples of this are the filtering
of potentially interesting kernel-exported information (do not expose the symbol table or the
heap state information to users) and the countermeasures to restrict some types of attacks
(since there is no way to prevent a user from doing an S/DT instruction, just place the IDT
inside a nonwritable mapping). Always check what options your operating system gives to
restrict permissions to diagnostic tools and exported information. Note that removing the tools
is not a viable option, since they are based on kernel-exported interfaces that the attacker can
easily consume with his or her own tools. Also, do not leave a readable kernel image (the
attacker can easily extract symbols out of it) or readable modules (the attacker might be able to
trigger their loading) lying around. Note that a readable (potentially compressed) kernel image is
available on most default system installations. The general idea here should be to strip away any
information that the user does not need, no matter how irrelevant it could appear to be.
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SUMMARY

This chapter was pretty meaty, as we discussed the major building blocks of a
kernel exploit. Actually, we started a little before the exploit itself, focusing on
the architecture level: the physical layer on top of which operating systems (and
exploits targeting them) run. Following the theoretical-then-practical approach
that characterizes not only this chapter but also the entire book, we discussed
the common ideas behind architecture design and how the x86 and x86-64 archi-
tectures implement them.

Understanding the architecture helps you at various stages during exploit
development. The first obvious application is during development of a shellcode:
a sequence of instructions to which you try to divert execution. Moreover, archi-
tectural constraints and features influence the way the kernel behaves (e.g., with
respect to memory management), and thus determine what you can and cannot do
inside your attacking code. The architecture can also be an ally at various levels,
providing both good entry points for your shellcode and vital information to
improve the reliability of your exploit.

Going one step up from the architecture level, we focused on the execution
phase of an exploit, the operations that you try to perform once you have success-
fully managed to hijack the execution path. There are two key points here: raise
your privileges (eventually breaking out from any jailing environment) and restore
the kernel to a stable state (releasing any resource that the targeted path might
have acquired).

To successfully start the execution phase, you need to generate the vulnerabil-
ity, hijack the execution flow, and redirect it to your payload. This is the job of
the triggering phase. Generating the vulnerability is, obviously, vulnerability-
dependent. You saw techniques for both heap and stack memory corruption
vulnerabilities and race conditions. Hijacking the execution flow may happen
immediately, as a result of using a modified return address from the stack, or it
may be triggered later on, as a result of modifying some kernel structure and then
calling a path using it.

The success (and reliability) of the triggering phase is highly influenced by how
much information you have been able to gather about your target. We referred to
this preparatory phase as the information-gathering phase. First, operating systems
export a variety of seemingly harmless information. Your goal is to combine the
various pieces and use them to increase the reliability of your exploit. Information
such as the kernel symbols, the number of available CPUs, the kernel addresses,
and the loaded modules can all play a significant role in transforming proof-of-
concept code into a one-shot exploit, especially when targeting hardened environ-
ments. On such systems, though, a lot of this information might be filtered. In such
a case, you need to look for/rely on information-leaking vulnerabilities, or bugs that
allow you to peek at a more or less vast amount of kernel memory.
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Hennessy, John, and Patterson, David. 2003. Computer Architecture—A Quantitative
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Exploiting Techniques

Advanced return-into-lib(c) exploits; www.phrack.orghttp://www.phrack.com/issues.html?
issue=58&id=4/issues.html?issue=58&id=4.
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