
Chapter 3: The basic concepts of probability 

Experiment: a measurement process that produces quantifiable results 
 (e.g. throwing two dice, dealing cards, at poker, 
  measuring heights of people, recording proton-proton collisions) 

Outcome: a single result from a measurement 
 (e.g. the  numbers shown on the two dice) 

Sample space: the set of all possible outcomes from an experiment 
 (e.g. the set of all possible five-card hands) 

The number of all possible outcomes may be 
(a) finite           (e.g. all possible outcomes from throwing a single die;  
  all possible 5-card poker hands) 
(b) countably infinite    (e.g. number of proton-proton events to be made before 
                  a Higgs boson event is observed) 
or (c) constitute a continuum   (e.g. heights of people) 
 
In case (a), the sample space is said to be finite 
in cases (a) and (b), the sample space is said to be discrete 
in case (c), the sample space is said to be continuous 



In this chapter we consider discrete, mainly finite, sample spaces 

An event is any subset of a sample set (including the empty set, and the whole set) 
 

Two events that have no outcome in common are called mutually exclusive events. 

 

In discussing discrete sample spaces, it is useful to use Venn diagrams and basic set-

theory. Therefore we will refer to the union (A U B), intersection, (A ∩ B) and 

complement  (Ᾱ) of events A and B. We will also use set-theory relations such as   

 A U B  =  A  ∩ B    (Such relations are often proved using Venn diagrams) 

This is also called De Morgan’s law, another half of De Mogan’s law is: 

𝐴⋂𝐵=𝐴 ⋃𝐵  



A dice has six sides, each side has a distinct  
number (1-6) dots 



Some terminology used in card game 

Flush: A flush is a hand of playing cards where all cards are of the same suit. 
 
 
 
 
 
 
Straight: 
 
 
 
 
 
Three of a kind:  
 
 



e.g.: outcome = 5-card 
poker hand 

sample space S: 2,598,960  possible 5-card hands (2,598,960 outcomes)  

··· 

A: at least 1 
number repeats 

𝐴 : no numbers repeat 

B: straights 

C: straight 
flushes 

D: a number  
repeats 2x  

E: a number  
repeats 3x  D∩E:  

full house  

Event C (straight flush) has 
40 outcomes  

The sample space is drawn as a Venn diagram 

An experiment 
might consist of 
dealing 10,000 5-
card hands 







De Morgan’s Law (1): 𝐴 ∩ 𝐵=𝐴 ∪ 𝐵  ̅ 



De Morgan’s Law (2): 𝐴 ∪ 𝐵=𝐴 ∩ 𝐵  



Example: U=(3,4,2,8,9,10,27,23,14) 
 
 A=(2,4,8)   B=(3,4,8,27) 
 
𝐴 =(3,9,10,27,23,14) 
𝐵 =(2,9,10,23,14) 
𝐴 ∪ 𝐵=(2,3,4,8,27) 
𝐴 ∩ 𝐵=(4,8) 
𝐴 − 𝐵=(2) 
𝐴 ∪ 𝐵=(9,10,23,14) 
𝐴 ∩ 𝐵=(3,9,10,27,23,14,2) 
 





The classical definition of probability (classical probability concept) states: 

If there are  m  outcomes  in a sample space (universal set), and all are equally likely of 

being the result of an experimental measurement, then the probability of observing an 

event (a subset) that contains s outcomes is given by  
𝑠

𝑚
 

From the classical definition, we see that the ability to count the number of outcomes in 

an event, and the number of outcomes in the entire sample space (universal set) is of 

critical importance. 



Counting principles: 

The addition principle: If there are   n1 outcomes in event A1, 
     n2 outcomes in event A2, 
     … 
     nk outcomes in event Ak 

and the events A1, A2, … Ak are mutually distinct (share no outcomes in common), 

then the total number of outcomes in A1 U A2 U … U Ak is n1 + n2  + … + nk 

A single outcome may consist of several distinct parts (e.g. an arrangement of 7 

objects; throwing a red and a green die). Such outcomes are said to be composite 

𝐴1 
𝐴2 

𝐴4 
𝐴3 𝐴𝑛 

··· 



The multiplication principle: If a composite outcome can be described by a procedure 
that can be broken into k successive (ordered) stages such that there are 
 n1 outcomes in stage 1, 
 n2 outcomes in event 2, 
  … 
 nk outcomes in event k 

and if the number of outcomes in each stage is independent of the choices in previous 

stages and if the composite outcomes are all distinct 

then the number of possible composite outcomes is  n1 · n2  · … · nk 

e.g. suppose the composite outcomes of the trio (M.P,C) of class values for cars, where 
 M denotes the mileage class (M1, M2, or M3)  
 P denotes the price class (P1, or P2) 
 C denotes the operating cost class  (C1, C2, or C3)  

The outcome is clearly written as a 3-stage value 
There are 3 outcomes in class M, 2 in class P and 3 in class C 
The number of outcomes in class P does not depend on the choice made for M, etc 
Then there will be  3  · 2  · 3 = 18 distinct composite outcomes for car classification. 



When the number of composite outcomes is relatively small, the counting can also be 
done via a tree diagram as illustrated in Fig. 3.5 (page 50) of the text. Such a method is 
tedious and is much less efficient than using the multiplication principle. 

𝑀1 

𝑀2 

𝑃1 

𝑃2 

𝑃1 

𝐶1 

𝐶2 

𝐶3 

𝐶1 

𝐶2 

𝐶3 

𝐶1 

𝐶2 

𝐶3 

outcomes 
𝑀1𝑃1𝐶1 

 
𝑀1𝑃1𝐶2 

 
𝑀1𝑃1𝐶3 

 
 
𝑀1𝑃2𝐶1 

 
𝑀1𝑃2𝐶2 

 
𝑀1𝑃2𝐶3 

 
𝑀2𝑃1𝐶1 

 
𝑀2𝑃1𝐶2 

 
𝑀2𝑃1𝐶3 

… 



e.g. an outcome  of an experiment consists of an operator using a machine to test a 
type of sample. 
If there are 4 different operators, 3 different machines, and 8 different types of 
samples, how many experimental outcomes are possible? 



Note: the conditions of the multiplication principle must be strictly adhered to for it to 
work. 
 
e.g. the number of distinct outcomes obtained from throwing two identical six-sided dice 
cannot be obtained by considering this as a two stage process (the result from the first 
die and then the result from the second – since the outcomes from the two stages are 
not distinct.  There are not 36 possible outcomes from throwing two identical six-sided 
dice; there are only 21 distinct outcomes. 
 

e.g. the number of distinct outcomes obtained from throwing a red six-sided dice and a 
green six-sided dice can be determined by the multiplication principle. There are 36 
possible outcomes in this case. 

 

e.g. the number of 5-card poker hands comprised of a full house can  be computed using 
the multiplication principle. A full house can be considered a two-stage hand, the first 
stage being the pair, the second stage being the three-of-a-kind. Thus the number of 
possible full house hands = (the number of pairs) x (the number of threes-of-a-kind) 

 

e.g. the number of 5-card poker hands comprised of a full house that do not contain the 
10’s as the three-of-a-kind cannot  be computed using the multiplication principle since 
the number of choices for the three-of-a-kind depends on whether-or-not the pair 
consists of 10’s 



Two common  counting problems are 
a) r – permutations of n distinct objects, 
b) r – combinations of n distinct objects 



r – permutations 
Given n distinct objects, how many ways are there to arrange exactly r of the objects? 

An arrangement is a sequence (ordered stages) of successive objects. An arrangement 
can be thought of as putting objects in slots. There is a distinct first slot, second slot, 
….,  k’th slot, and so on. Putting object A in the first slot and  B in the second is a 
distinct outcome from putting B in the first and A in the second. The number of 
possible choices for slot k+1 does not depend on what choice is used for slot k. 
Therefore the multiplication principle can be used. 

Thus the number of ways to arrange r of the n distinct objects is 

𝑛𝑃𝑟 = 𝑛 𝑛 − 1 𝑛 − 2 … . 𝑛 − 𝑟 + 1  

Multiplying and dividing by (n−r)!, this can be written 

   𝑛𝑃𝑟 =
𝑛 𝑛−1 𝑛−2 …. 𝑛−𝑟+1 𝑛−𝑟 !

𝑛−𝑟 !
=  

𝑛!

𝑛−𝑟 !
 

Theorem 3.2  The number of r – permutations of n distinct objects (that is the 
number of ways to arrange exactly r objects out of a set of n distinct objects) is 

  𝑛𝑃𝑟 = 
𝑛!

𝑛−𝑟 !
 

Note: 

The number of ways to arrange all n objects is 𝑛𝑃𝑛 = 𝑛!        (as 0! ≡1) 

The number of ways  to arrange zero of the n objects is 𝑛𝑃0 =  
𝑛!

𝑛!
= 1 



Yang Hui in 1305 
 
Pascal in 1655 
 
Tartaglia in 1600’s 



e.g.  chose 3 people out of 180 to act as fire wardens. 
180
3

 = 
180!

3!177!
 

 
e.g select 5 new faculty consisting of 2 chemists (from a pool of 21 applicants) and 

3 physicists (from a different pool of 47 applicants)
21
2

x
47
3

 

 
e.g. choose 5 people from a class of 143 and seat them in a row of 5 chairs at the 

front of the class 143𝑃5 = 
143!

138!
 

1 
1 1 

1   2   1 
1 3    3    1 

1     4    6     4    1 
………….. 

Pascal triangle: the n-th row and the r-th element: 
𝑛
𝑟

 with n and r start 

from 0 (not 1). Pascal triangle is symmetric because 
𝑛
𝑟

=
𝑛
𝑛 − 𝑟

. Another 

property is that the summation of the n-th row is 2𝑛 
 



The classical definition of probability 

If there are  m  outcomes  in a sample space, and all are equally likely of being the 

result of an experimental measurement, then the probability of observing an event 

that contains s outcomes is given by  
𝑠

𝑚
 

e.g. Probability of drawing an ace from a deck of 52 cards. 
sample space consists of 52 outcomes. 
desired event (ace) is a set of 4 outcomes (number of desired outcomes is 4) 
therefore the probability of getting an ace is  4/52 = 1/13 ≈ 0.0769 (7.69%) 

e.g. There are 10 motors, two of which do not work and eight which do. 
a) what is the probability of picking 2 working motors 

(8!/2!/6!)/(10!/2!/8!)=(8!2!8!)/(10!2!6!)=(8!8!)/(10!6!) 
b) what is the probability of picking 1 working and 1 non-working motors 
c) S=2*8, m=10!/2!/8!  P=16*2!*8!/10! 



Mathematically, in defining probabilities of events we are deriving a set function on a 
sample space. A set function assigns to each subset in the sample space a real number. 
 
Example: Consider the set function that assigns to each subset (event) A the number 
N(A) of outcomes in the set. This set function is additive, that is, if two events A and B 
have no outcomes in common (are mutually exclusive), then N(A U B) = N(A) + N(B). 
 
Counter-example: Fig. 3.7 

Fig. 3.7.  Measurements on 500 
machine parts 
I = incompletely assembled,  D 
= defective,  S = satisfactory 
 
𝑁(𝐼∪𝐷)≠𝑁(𝐼)+𝑁(𝐷) as N and D 
are not mutually exclusive 



The axioms of probability 
Let S be a finite sample space, A an event in S. We define P(A), the probability of A, to 
be the value of an additive set function P( ) that satisfies the following three conditions 

Axiom 1   0 ≤ 𝑃 𝐴 ≤ 1  for each event A in S 

  (probabilities are real numbers on the interval [0,1]) 

Axiom 2   𝑃 𝑆 = 1 

  (the probability of some event occurring from S is unity) 

Axiom 3   If A and B are mutually exclusive events in S, then 
𝑃 𝐴 U 𝐵 = 𝑃 𝐴 + 𝑃(𝐵) 

  (the probability function is an additive set function) 

The classical definition of probability defines the probability function as 

 𝑃 𝐴 =  
𝑁(𝐴)

𝑁(𝑆)
   for any event A in the sample space S 

Note that this definition satisfies all three axioms 

Note: these axioms do not tell us what the set function P(A) is, only what properties 
it must satisfy 



Elementary properties of probability functions 

Theorem 3.4. If 𝐴1, 𝐴2, … , 𝐴𝑛 are mutually exclusive events in a sample space S, then by 
induction on Axiom 3, 

𝑃 𝐴1 U 𝐴2 U …U 𝐴𝑛 = 𝑃 𝐴1 + 𝑃 𝐴2 + …+ 𝑃(𝐴𝑛)  



Theorem 3.7. If A is an event in S, then 
𝑃  𝐴  = 1 − 𝑃(𝐴) 

Proof: 𝑃 𝐴 + 𝑃  𝐴  = 𝑃 𝐴 ∪ 𝐴 = 𝑃 𝑆 = 1 

Example: drawing 5 card with at least one spade 
 
N(𝐴) is very difficult to count, but N(𝐴 ) is easier,  
 

𝑃 𝐴 = 1 − 𝑃 𝐴 = 1 − 

39
5
52
5

 



Elementary properties of probability functions 

Theorem 3.6. If A and B are any (not necessarily mutually exclusive) events in S, then 
𝑃 𝐴 ∪  𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃(𝐴 ∩ 𝐵) 

Example: Find the probability of drawing 5 card with one spade or one club. 
 
A: drawing 5 cards with one spade; B: drawing 5 card with one club. 

N(A) = 
13
1
39
4

, N(B) = 
13
1
39
4

, N(A∪B) = 
13
1

 
13
1
26
3

 

 

P(A∪B) = 
13
1
39
4
+
13
1
39
4
−
13
1
13
1
26
3

52
5

 



I D 

S 

I  ∩ D 

20 
10 

5 

465 

Fig. 3.7.  Measurements on 500 machine parts 
I = incompletely assembled,  D = defective,  S = satisfactory 
 

Probability of picking up a unsatisfactory part: 

 

I union D, P(I union D)=P(I) + P(D) – P(I intersect D) 

=30/500 + 15/500 -10/500 =25/500 

 



Conditional Probability. 
The probability of an event is only meaningful if we know the sample space S under 
consideration. 

The probability that you are the tallest person changes if we are discussing being 
the tallest person in your family, or the tallest person in this class. 

This is clarified using the notation P(A|S), the conditional probability of event A 
relative to the sample space S.  

(When S is understood we simply use P(A)) 

e.g. (using classical probability) 
From Fig. 3.7, 

𝑃 𝐷 = 𝑃 𝐷 𝑆 =
𝑁(𝐷)

𝑁(𝑆)
=
𝑁(𝐷 ∩ 𝑆)

𝑁(𝑆)
=
10 + 5

500
=  
3

100
= 0.03 

 

𝑃(𝐷|𝐼)  =
𝑁(𝐷 ∩ 𝐼)

𝑁(𝐼)
=
10

30
=  
1

3
= 0.333  

Note: 

𝑃 𝐷 𝐼 =  

𝑁(𝐷 ∩ 𝐼)
𝑁(𝑆)
𝑁(𝐼)
𝑁(𝑆)

=  
𝑃(𝐷 ∩ 𝐼)

𝑃(𝐼)
 

 



Conditional Probability. 
If A and B are any events in S and P(B) ≠ 0, the conditional probability of A relative to 
B (i.e. A often stated ‘of A given B’) is 
 

𝑃 𝐴 𝐵 =  
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
                                    (CP) 

From the definition of conditional probability (CP) we see that 

𝑃 𝐵 𝐴 =  
𝑃(𝐵 ∩ 𝐴)

𝑃(𝐴)
                                          (∗) 

Since 𝑃 𝐵 ∩ 𝐴 = P A ∩ 𝐵 , we have from (CP) and (*) 

Theorem 3.8. If A and B are events in S, then 

𝑃 𝐴 ∩ 𝐵 =  
𝑃(𝐴) ∙ 𝑃 𝐵 𝐴   if P A ≠ 0    (from ∗ )

   𝑃(𝐵) ∙ 𝑃 𝐴 𝐵   if P B ≠ 0    (from CP )
 

Theorem 3.8 is the general multiplication rule of probability 



Theorem 3.8 is a rather shocking statement.  The definition (CP) of conditional 
probability implies that we compute P(A|B) by knowing P(A∩B) and P(B). 
However, Theorem 3.8 implies we can compute P(A∩B) by knowing P(A|B) and P(B). 

This implies that we often have another means at hand for computing P(A|B) rather 
than the definition (CP) !! (See next example) 

The Venn Diagram on 
Conditional probability 



e.g. Use of the general multiplication rule 
20 workers,  12 are For,  8 are Against.   What is the probability of randomly picking 2 
workers that are Against? (Assume classical probability). 

There are 4 classes out outcomes for the 2-picks:  FF, FA, AF, AA 
A diagram of the sample space of all 2 picks is 

A B 

S 

A  ∩ B 

AF AA FA 

FF 

Set A: all outcomes where first worker is A 

Set B: all outcomes where second worker is A 

Desire 𝑃 𝐴 ∩ 𝐵 = 𝑃(𝐴) ∙ 𝑃(𝐵|𝐴) 

P(A) = the probability that the first is ‘against’ 
         = probability of picking one ‘against’ 
            from the 20 workers 
         = N(against)/N(workers) = 8/20 

P(B|A) = the probability that the second is                  
                against given that the first pick is 
                against 
         = probability of picking one ‘against’ 
            from 19 workers (1 ‘against’ removed) 
         = N(against)/N(workers) = 7/19 

Therefore 𝑃 𝐴 ∩ 𝐵 =  
8

20
∙
7

19
= 
14

95
  



Check by classical calculation of probability 

A B 

N(S) = 20·19 

A  ∩ B 

N(AF) = 

8·12 
N(AA) 

= 8·7 

N(FA) = 12·8 

N(FF) = 12·11 

𝑃 𝐴 ∩ 𝐵 =
𝑁(𝐴 ∩ 𝐵)

𝑁(𝑆)
=  
8 ∙ 7

20 ∙ 19
 

𝑃 𝐴 =
8 ∙ 19

20 ∙ 19
=
8

20
 

𝑃 𝐵|𝐴 =
8 ∙ 7

8 ∙ 19
=
7

19
 



Theorem 3.9.  
 Two events A and B are independent events iff 𝑃 𝐴 ∩ 𝐵 = 𝑃(𝐴) ∙ 𝑃(𝐵) 
Proof: 

 → If A and B are independent, that is 𝑃 𝐵 𝐴 = 𝑃 𝐵  
      Then, by Theorem 3.8, 
  𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ∙ 𝑃 𝐵 𝐴 = 𝑃(𝐴) ∙ 𝑃(𝐵) 

 ← If 𝑃 𝐴 ∩ 𝐵 = 𝑃(𝐴) ∙ 𝑃(𝐵) 
      Then, by definition of conditional probability, 

  𝑃 𝐴 𝐵 =  
𝑃(𝐴∩𝐵)

𝑃(𝐵)
=
𝑃(𝐴)∙𝑃(𝐵)

𝑃(𝐵)
= 𝑃(𝐴) 

Theorem 3.9 is the special product rule of probability and states that the probability 

that two independent events will both occur is the product of the probabilities that 

each alone will occur. 

If we find that 𝑷 𝑨 𝑩 = 𝑷(𝑨), then we state that event A is independent of event B 

We will see that event A is independent of event B iff event B is independent of event A. 

It is therefore customary to state that A and B are independent events. 



Example: probability of getting two heads in two flips of a balanced coin 
 (Assumption is that balance implies that the two flips are independent) 
 Therefore 𝑃 𝐴 ∩ 𝐵 = 𝑃(𝐴) ∙ 𝑃(𝐵) 

Example: probability of selecting two aces at random from a deck of cards if first card 
replaced before second card drawn 
 (Assumption is that replacing first card returns deck to original conditions  
 making the two draws independent of each other ) 
 Therefore 𝑃 𝐴 ∩ 𝐵 = 𝑃(𝐴) ∙ 𝑃(𝐵) 

S 

A 

 First flip 

is heads 

B 

Second flip 

is heads 

S 

A 

 First draw 

is Ace 

B 

Second 

draw is 

Ace 



Example: probability of selecting two aces at random from a deck of cards if first card 
not replaced before second card drawn 

 (Picking the second card is now dependent on the first card choice) 

 Therefore 𝑃 𝐴 ∩ 𝐵 = 𝑃(𝐴) ∙ 𝑃(𝐵|𝐴) 

S 

A 

 First draw 

is Ace 

B 

Second 

draw is 

Ace 



Example: (false positives)  1% probability of getting a false reading on a test 
Assuming that each test is independent of the others: 

(a) probability of two tests receiving an accurate reading 
 (0.99)2 

(b) probability of 1 test per week for 2 years all receiving accurate readings 
 (0.99)104 ≈ 0.35 (!)  (65% chance that 1 or more of the 104 tests fail) 



Example: redundancy in message transmission to reduce transmission errors 
 probability p that a 0 → 1 or 1 → 0 error occurs in transmission 
sent reception  probability read Probability 
 possibility of reception   as of reading 
111     111  (1 − 𝑝)3  111 
     110   𝑝(1 − 𝑝)2 111 
     101   𝑝(1 − 𝑝)2 111 
     011   𝑝(1 − 𝑝)2 111 
     001   𝑝2(1 − 𝑝) 000 
     010  𝑝2(1 − 𝑝) 000 
     100  𝑝2(1 − 𝑝) 000 
     000  𝑝3  000 

1 − 𝑝 2(1 + 2𝑝) 

𝑝2(3 − 2𝑝) 

p 0.01 0.02 0.05 

Prob of reading correct 
triple mode 0.9997 0.9988 0.05 

single mode 0.99 0.98 0.95 



Theorem 3.8 shows that P(A|B) and P(B|A) are related, specifically: 

𝑃 𝐵 𝐴 =  
𝑃 𝐵 ∙ 𝑃(𝐴|𝐵)

𝑃(𝐴)
                               (B) 

A B 

S 

A  ∩ B 

← 𝑃(𝐵|𝐴) 

𝑃(𝐴|𝐵) → 

Remember,  
P(A|B) is the ratio of the probability of 
event A∩B to the probability of event A 
and 
P(B|A) is the ratio of the probability of 
event A∩B to the probability of event B 

Therefore to go from P(A|B) to P(B|A) one 
has to apply a correction, by multiplying 
and dividing respectively, by the probability 
of B and the probability of A.  

In the above Figure probabilities are represented by area. P(B|A) is larger than P(A|B) by the 
area fraction P(B)/P(A) 



Example: each year about 1/1000 people will develop lung cancer. Suppose a 
diagnostic method is 99.9 percent accurate (if you have cancer, it will be 99.9 
Percent being diagnosed as positive, if you don’t have cancer, it will be 0.1 percent 
Being diagnosed as positive). If you are diagnosed as positive for lunge 
Cancer, what is the probability that you really have cancer? 
 
Solution: Your being not have lung cancer is A, your being diagnosed positive is 
B. If you are diagnosed positive, what is the probability of being healthy? That is 
 

P(A/B) = 
𝑃(𝐴)

𝑃(𝐵)
 P(B/A) 

 
P(A) = 0.999, P(B/A) = 0.001, P(B) = ? 
 
P(B) = P(B/A)P(A) + P(B/A’)P(A’) = 0.001*0.999 + 0.999*0.001 = 0.001998 
 
Substituting into the calculation: 
 
P(A/B) = 0.999*0.001/0.0019 = 0.5 



A 
B 

𝐴 ∩ 𝐵 False positive: 𝑃(𝐴 𝐵) =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
=
𝑁(𝐴∩𝐵)

𝑁(𝐵)
  





The evolution of thinking 



The relation 

𝑃 𝐵 𝐴 =  
𝑃 𝐵 ∙ 𝑃(𝐴|𝐵)

𝑃(𝐴)
 

is a specific example of Bayes’ Theorem. On the right hand side we have the 
(conditional) probability of getting outcome A considered as part of event B (having 
occurred). On the left hand side, we have the probability of getting outcome B 
considered as part of event A (having occurred). 

This can be diagrammed as follows: 

𝐴 ∩ 𝐵 
𝐴 𝑃(𝐴) 𝑃(𝐵|𝐴) 𝑃(𝐴|𝐵) 𝐵 𝑃(𝐵) 𝑆 𝑆 

or more completely …. 



Partition all outcomes into those with 
and without property A and then 
subpartition into those with and without 
property B 

Partition all outcomes into those with 
and without property B and then 
subpartition into those with and without 
property A 

𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴)  

𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴 )  



𝐀 

𝐀  

𝐀 

𝐁 

𝐁 

𝐁  

𝐁|𝐀 𝐁|𝐀  𝐁 |𝐀 

𝐁 |𝐀  

A|𝐁 A|𝐁  𝐀 |𝐁 

𝐀 |𝐁  



Bayes’ result can be generalized. 
Consider three mutually exclusive events, 𝐵1, 𝐵2, and 𝐵3, one of which must occur. 

e.g. 𝐵𝑖  are supply companies of voltage regulators to a single manufacturer. 

Let A be the event that a voltage regulator works satisfactorily. This might be 
diagrammed as follows for a hypothetical manufacturer 

𝐵1 

𝐵2 

𝐵3 

all voltage 
regulators 

S 
𝑃 𝐵2 = 0.3 𝑃 𝐴|𝐵2 = 0.80 

𝑃 𝐴|𝐵1 = 0.95 

𝑃 𝐴|𝐵3 = 0.65 

𝐴 ∩ 𝐵1 

𝐴 ∩ 𝐵2 

𝐴 ∩ 𝐵3 

𝑃 𝐵1 = 0.6 is the probability of getting a regulator from company 𝐵1 

𝑃 𝐴|𝐵1 = 0.95 is the probability of getting a working regulator from company 
𝐵1 

Choosing at random from all regulators, what is the probability of getting a 
working regulator? (i.e. what is 𝑃(𝐴)?) 

𝐴 



A 
working voltage 

regulators 

supplier 
𝐵1 

supplier 𝐵3 

supplier 
𝐵2 

S all voltage regulators 



𝐴 = 𝐴 ∩ 𝐵1 ∪ 𝐵2 ∪ 𝐵3 = 𝐴 ∩ 𝐵1 ∪ 𝐴 ∩ 𝐵2 ∪ 𝐴 ∩ 𝐵3  

As 𝐵1, 𝐵2, and 𝐵3 are mutually exclusive 

so are 𝐴 ∩ 𝐵1, 𝐴 ∩ 𝐵2, and 𝐴 ∩ 𝐵3  (see diagram) 

By Theorem 3.4 

𝑃 𝐴 = 𝑃 𝐴 ∩ 𝐵1 + 𝑃 𝐴 ∩ 𝐵2 + 𝑃 𝐴 ∩ 𝐵3  

From the diagram we see 

By Theorem 3.8  

𝑃 𝐴 = 𝑃(𝐵1) ∙ 𝑃 𝐴|𝐵1 + 𝑃(𝐵2) ∙ 𝑃 𝐴|𝐵2 + 𝑃(𝐵3) ∙ 𝑃 𝐴|𝐵3  

Theorem 3.10  If 𝐵1, 𝐵2, … , 𝐵𝑛 are mutually exclusive events of which one must 
occur, then for event A 

 𝑃 𝐴 =  𝑃(𝐵𝑖) ∙ 𝑃 𝐴|𝐵𝑖
𝑛
𝑖=1  



Example: each year about 1/1000 people will develop lung cancer. Suppose a 
diagnostic method is 99.9 percent accurate (if you have cancer, it will be 99.9 
Percent being diagnosed as positive, if you don’t have cancer, it will be 0.1 percent 
Being diagnosed as positive). If you are diagnosed as positive for lunge 
Cancer, what is the probability that you really have cancer? 
 
Now let’s change the question: what is the probability that a person is tested 
positive? 
 
Solution: If a person is sick, there is a probability of 0.999 to be tested positive; 
If a person is healthy, there is a probability of 0.001 to be testes positive. 
 
𝐴: a person is healthy; 𝐴 : a person has lung cancer. 
𝐵: a person is tested positive. 
 
𝑃 𝐴 = 0.999;   𝑃 𝐴 = 0.001;   𝑃 𝐵 𝐴 = 0.001;   𝑃 𝐵 𝐴  = 0.999. 
 
𝑃 𝐵 = 𝑃 𝐴 𝑃 𝐵 𝐴 + 𝑃 𝐴 𝑃 𝐵 𝐴  = 0.999 × 0.001 + 0.001 × 0.999

= 0.001998 
 
 



Theorem 3.10 expresses the probability of event A in terms of the probabilities that 
each of the constituent events 𝐵𝑖  provided event A 

(i.e. in our example, P(A) is expressed in terms of the probabilities that constituent 
𝐵𝑖  provided a working regulator) 
 
Suppose, we want to know the probability that a working regulator came from a 
particular  event 𝐵𝑖? 

e.g. suppose we wanted to know 𝑃 𝐵3 𝐴  

By definition of conditional probability 

𝑃 𝐵3 𝐴 =  
𝑃(𝐵3 ∩ 𝐴)

𝑃(𝐴)
 

               =  
𝑃(𝐴 ∩ 𝐵3)

𝑃(𝐴)
 

                         =  
𝑃(𝐵3) ∙ 𝑃(𝐴|𝐵3)

𝑃(𝐴)
 

                                  =  
𝑃(𝐵3) ∙ 𝑃(𝐴|𝐵3)

 𝑃(𝐵𝑖) ∙ 𝑃 𝐴|𝐵𝑖
3
𝑖=1 )

 

Theorem 3.8 

Theorem 3.10 

From the tree diagram 𝑃 𝐵3 𝐴 =  
0.1 ∙0.65

0.6∙0.95+0.3∙0.80+0.1∙0.65
= 0.074 

The probability that a regulator comes from 𝐵3 is 0.1 
The probability that a working regulator comes from 𝐵3 is 𝑃 𝐵3 𝐴 = 0.074 



The generalization of this three set example is Bayes’ theorem 
 
Theorem 3.11  If 𝐵1, 𝐵2, … , 𝐵𝑛 are mutually exclusive events of which one must occur, 
then 

 𝑃 𝐵𝑟 𝐴 = 
𝑃(𝐵𝑟)∙𝑃(𝐴|𝐵𝑟)

 𝑃(𝐵𝑖)∙𝑃 𝐴|𝐵𝑖
𝑛
𝑖=1 )

 

for r = 1, 2, …, n 

The numerator in Bayes’ theorem is the probability of achieving event A through the r’th 
branch of the tree. 
The denominator is the sum of all probabilities of achieving event A. 



e.g.  Janet (𝐵1) handles 20% of the breakdowns in a computer system 
        Tom (𝐵2) handles 60% 
        Georgia (𝐵3) handles 15% 
        Peter (𝐵4) handles 5% 
Janet makes an incomplete repair 1 time in 20  (i.e. 5% of the time) 
Tom: 1 time in 10 (10%) 
Georgia: 1 time in 10 (10%) 
Peter: 1 time in 20 (5%) 
If a system breakdown is incompletely repaired, what is the probability that Janet made 
the repair? (i.e. desire P(B1|A)) 

𝐵1 

𝐵2 

𝐵3 

all 
breakdowns S 

𝑃 𝐴|𝐵2 = 0.10 

𝑃 𝐴|𝐵1 = 0.05 

𝑃 𝐴|𝐵3 = 0.10 

𝐴 ∩ 𝐵1 

𝐴 ∩ 𝐵2 

𝐴 ∩ 𝐵3 

𝐴 ∩ 𝐵4 
𝑃 𝐴|𝐵4 = 0.05 A all incomplete repairs 



The probability that the incomplete repair was made by Janet is 
 

𝑃 𝐵1 𝐴 = 
0.2 ∙0.05

(0.2)(0.05)+(0.6)(0.1)+(0.15)(0.1)+(0.05)(0.05)
 = 0.114 

 
Therefore, although Janet makes an incomplete repair only 5% of the time, because she 
handles 20% of all breakdowns, she is the cause of 11.4% of all incomplete repairs 



Summary of the chapter 

1. Sample space, event, set operation, and Venn diagram 

2. Counting principles, addition and multiplication 

3. Permutation and combination 

4. Classical probability, axioms 

5. Independent events 

6. Conditional probability 

7. Bayes theorem 

 



Formulas to remember 
1. De Morgan’s law 

𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵  
𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵  

2. 𝑛𝑃𝑟 =
𝑛!

𝑛−𝑟 !
          

𝑛
𝑟
=

𝑛!

𝑛−𝑟 !𝑟!
 

3. 𝑃 𝐴 =
𝑁(𝐴)

𝑁(𝑆)
 

4. 𝑁 𝐴 ∪ 𝐵 = 𝑁 𝐴 + 𝑁 𝐵 − 𝑁 𝐴 ∩ 𝐵  
5. 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵  
6. 𝑃 𝐴 = 1 − 𝑃(𝐴 ) 
7. For independent events 𝐴 and 𝐵:  𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃(𝐵) 

8. Conditional probability: 𝑃 𝐴 𝐵 =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
 

9. If 𝐴 and 𝐵 are independent, 𝑃 𝐴 𝐵 = 𝑃(𝐴), 𝑃 𝐵 𝐴 = 𝑃(𝐵) 
10. Theorem 3.8 (bridge theorem)  

𝑃 𝐴 𝑃 𝐵 𝐴 = 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐵 𝑃(𝐴 𝐵 ) 
11. Total probability 

𝑃 𝐴 = 𝑃 𝐵𝑖 𝑃(𝐴 𝐵𝑖 )

𝑛

𝑖=1

 

𝐵𝑖’s are mutually exclusive partition of the sample space. 



12. Bayes theorem: 

𝑃 𝐵 𝐴 =
𝑃 𝐵 𝑃(𝐴 𝐵 )

𝑃(𝐴)
=

𝑃 𝐵 𝑃(𝐴 𝐵 )

𝑃 𝐵 𝑃 𝐴 𝐵 + 𝑃 𝐵 𝑃(𝐴 𝐵  )
 

 
13. This can be generalized to give: 
 

𝑃 𝐵𝑟 𝐴 =
𝑃 𝐵𝑟 𝑃(𝐴 𝐵𝑟 )

𝑃(𝐴)
=
𝑃 𝐵𝑟 𝑃(𝐴 𝐵𝑟 )

 𝑃 𝐵𝑖 𝑃(𝐴 𝐵𝑖 )
𝑛
𝑖=1

     𝑟 = 1,2,⋯ , 𝑛 

 
14. Independent events are NOT exclusive events. 
 


