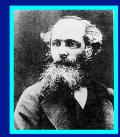

Chapter 32: Electromagnetic Waves

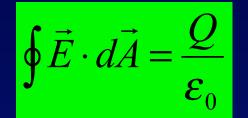
- Maxwell's equations
- Electromagnetic waves in free space
- The electromagnetic spectrum
- Energy in electromagnetic waves
 - The Poynting vector
 - Radiation pressure
 - Radio and Television

Maxwell's Equations

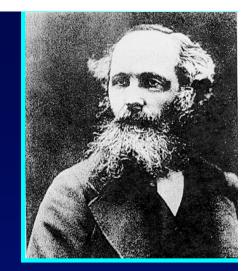

Maxwell's Insight

Faraday: A changing **B** field creates a **E** field It doesn't just induce a current, it produces an E field!

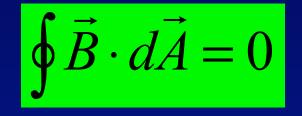
So let's summarize what we know so far...


E Field produced by	B Field produced by
electric charge	<i>moving</i> electric charge
<i>changing</i> B field	<i>changing</i> = field

Maxwell looked at this table and, appealing to symmetry, postulated...



Maxwell: A changing E field creates a B field


Maxwell's Equations

Gauss's law for electric field: electric charges produce electric fields.

J. C. Maxwell (1831 - 1879)

Gauss's law for magnetic field: but there're no magnetic charges.

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

Faraday's law: changing B produces E.

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

Ampere's law as modified by Maxwell: electric current or changing E produces B.

All of electromagnetism is contained in this set of four equations.

Perfect Symmetry ?

What would Maxwell's Equations look like if there were isolated magnetic charges?

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_e}{\varepsilon_0}$$

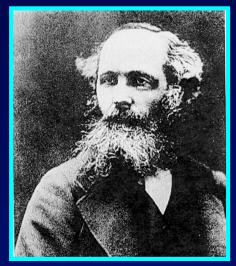
$$\oint \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{B} \cdot d\vec{A} = \mu_0 Q_m$$

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

$$\oint \vec{E} \cdot d\vec{l} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$


$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \frac{dQ_e}{dt} + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

E Field produced by	B Field produced by
electric charge	magnetic charge
moving magnetic charge	<i>moving</i> electric charge
<i>changing</i> B field	<i>changing</i> E field

Chap. 32, Pg 5

Maxwell's Predictions

There exist electromagnetic waves (EM waves) that can travel in empty space
EM waves travel at the speed of light
Light is an EM wave

J. C. Maxwell (1831 - 1879)

The rest was history.

telegraph, radio, television, cellphone, other wireless communications,...

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_e}{\varepsilon_0}$$

$$\oint \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

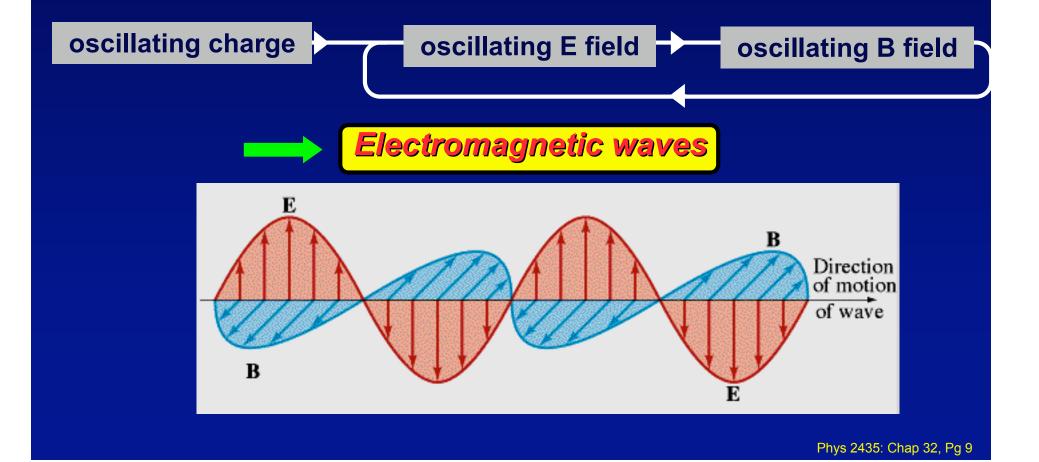
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

ConcepTest 32.1

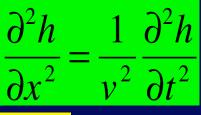
The Maxwell modification

 of Ampere's law describing
 the creation of a magnetic
 field is the analog of

Maxwell's Equations


- 1) Gauss's law on electric fields and charges
- 2) Gauss's law on magnetic fields and poles
- 3) the Lorentz equation
- 4) Faraday's Law

Electromagnetic Waves in Free Space


The production and propagation of electromagnetic waves

Let's put them both together: we obtain changing electric and magnetic fields that continuously produce each other!

Brief Review of Wave Properties

The one-dimensional wave equation:
 has a general solution of the form:

$$\mathbf{h}(\mathbf{x},\mathbf{t}) = \mathbf{h}_1(\mathbf{x} - \mathbf{v}\mathbf{t}) + \mathbf{h}_2(\mathbf{x} + \mathbf{v}\mathbf{t})$$

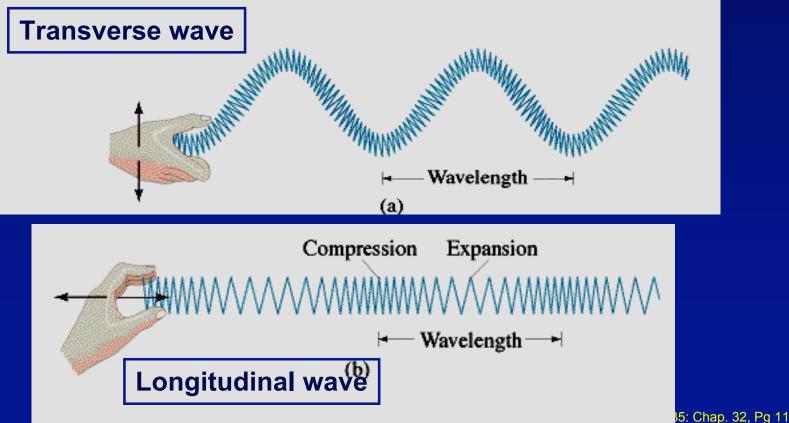
where h_1 represents a wave traveling in the +x direction and h_2 represents a wave traveling in the -x direction. The wave velocity is given by v.

• A specific solution for harmonic waves traveling in the +x direction is:

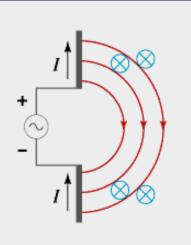
$$h(x,t) = A \sin(kx - \omega_t)$$

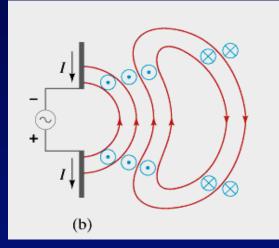
$$k = \frac{2\pi}{\lambda} \qquad \omega = 2\pi f = \frac{2\pi}{T}$$

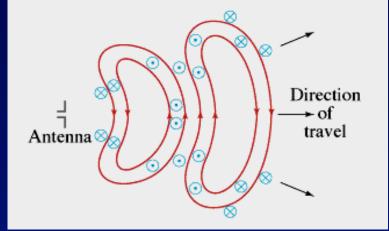
$$v = \lambda f = \frac{\omega}{k}$$


A = amplitude λ = wavelength f = frequency

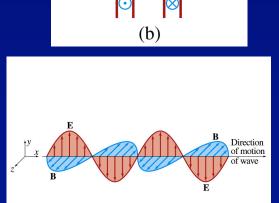
- v = speed
- k = wave number 2435: Chap. 32, Pg 10


X


Waves


- are traveling disturbances that transport energy, not matter.
- are produced by oscillations.
- have a speed of the wave depends on the properties of the medium and not on the wavelength or frequency
- come in two basic flavors:

How does an electromagnetic wave propagate?



 \odot

Properties of EM Waves:

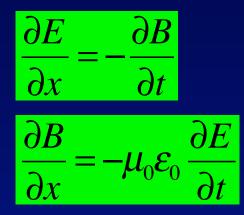
- The E and B fields at any point are perpendicular to each other, and to the direction of wave propagation
- The E and B fields are in phase.
- Far away from the source, the EM waves are approximately plane waves

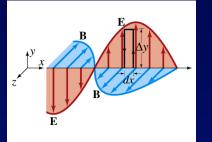
Maxwell's Equations in Differential Form

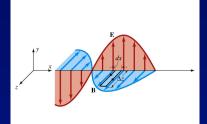
Integral forms

 $\oint \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$ $\oint \vec{B} \cdot d\vec{A} = 0$ $\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$ $\oint \vec{B} \cdot d\vec{l} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$

Differential forms


$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$


Q is charge and I is current


 ρ is charge density and J is current density

Electromagnetic Waves in Free Space (Q=0, I=0)

Differential forms

$$\nabla \cdot \vec{E} = 0$$
$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \times \vec{B} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

Take partial derivatives

$$\frac{\partial^2 E}{\partial x^2} = -\frac{\partial^2 B}{\partial x \partial t} \qquad \frac{\partial^2 B}{\partial t \partial x} = -\mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2} \qquad \text{so } \frac{\partial^2 E}{\partial x^2} = \mu_0 \varepsilon_0$$

Read off wave speed from the wave equation:

$$v = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3.00 \times 10^8 \text{ m/s} = c$$

Phys 2435: Chap 32, Pg 14

 $\partial^2 E$

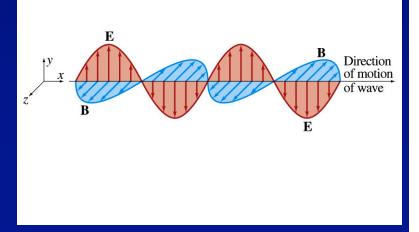
 ∂t^2

Electromagnetic Waves in Free Space

Wave equations

$$\frac{\partial^2 E}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} \qquad \frac{\partial^2 B}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}$$

Plane-wave solution


$$E = E_y = E_0 \sin(kx - \omega t)$$
$$B = B_z = B_0 \sin(kx - \omega t)$$

where

$$k = \frac{2\pi}{\lambda}, \omega = 2\pi f, c = \frac{\omega}{k} = \lambda f$$

•E and B are in phase.

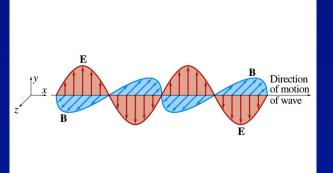
•The directions of E and B and wave travel form a right-hand-rule.

Relation between magnitudes of E and B

Faraday's law in differential form

$$\frac{\partial E}{\partial x} = -\frac{\partial B}{\partial t}$$

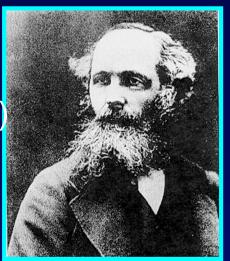
Apply to plane-wave solution


$$E = E_y = E_0 \sin(kx - \omega t)$$
$$B = B_z = B_0 \sin(kx - \omega t)$$

$$E_0 k \cos(kx - \omega t) = B_0 \omega \cos(kx - \omega t)$$

or
$$E_0 k = B_0 \omega$$

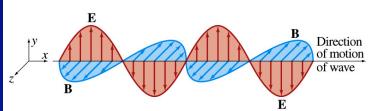
But $\omega/k=c$ and E and B in phase, so


$$\frac{E}{B} = c$$

Maxwell's Predictions

- There exist electromagnetic waves (EM waves) that can travel in vacuum
- EM waves travel at the speed of light

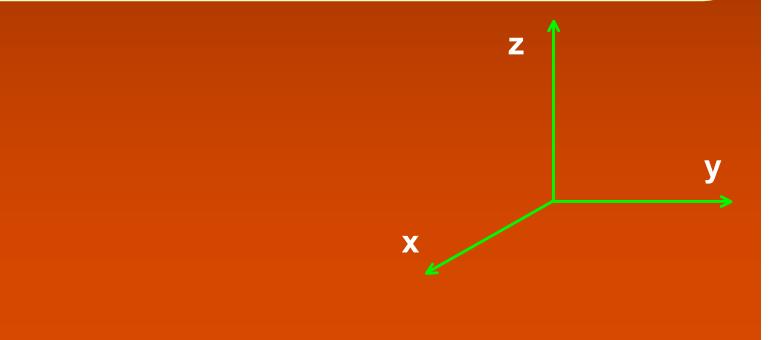
$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3.00 \times 10^8 \text{ m/s}$$


J. C. Maxwell (1831 - 1879)

E and B are in phase (E / B = c)

 $\vec{E} \times \vec{B}$ = direction of wave travel (right - hand - rule)

Light is an EM wave

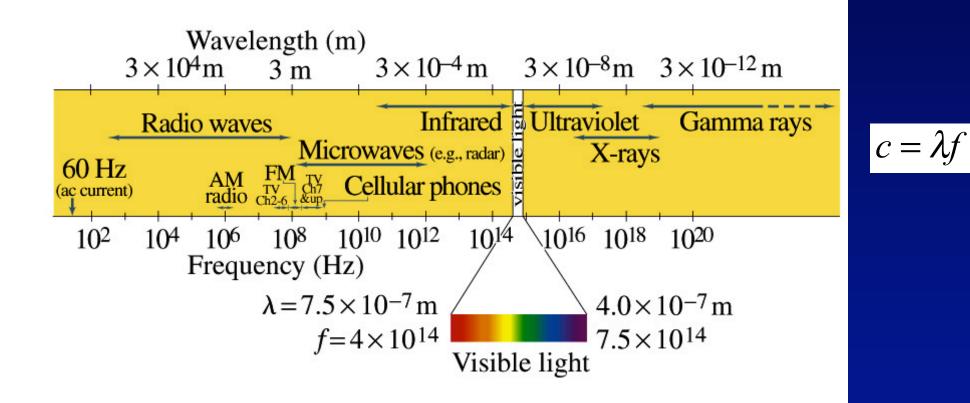

Physics that changed the world: telegraph, radio, television, cellphone, satellite, electric power,

ConcepTest 32.2

An electromagnetic wave with its electric field in the positive y direction propagates in the negative z direction. What is the direction of the magnetic field? **EM Wave**

1) +x
 2) -y
 3) -x
 4) +z
 5) -z

Electromagnetic Spectrum



A bit of history

- Long before J.C. Maxwell (1831-1879) predicted EM waves that can travel in vacuum, light was known to behave like a wave, but what kind of wave was it?
 - What's oscillating in a light wave?
 - It's E and B fields according to Maxwell.
- Eight years after Maxwell's death, H. Hertz (1857-1894) first generated and detected EM waves in his laboratory.
 - Spark-gap for generation, wire loop for detection
 - 10⁹ Hz EM waves, but not visible to the eye.
 - Strong confirmation of Maxwell's theory.
- The wavelengths of visible light were measured long before anyone imagined that light was an EM wave.
 - \Rightarrow 400 nm to 750 nm, or by c = λ f
 - ♦ 4.0x10¹⁴ Hz to 7.5x10¹⁴ Hz
 - But visible light is not the only EM waves

EM waves exist at all frequencies: the electromagnetic spectrum

The electromagnetic spectrum

ConcepTest 32.3

Since Superman is from the planet Krypton his eyes are sensitive to the entire electromagnetic spectrum. Does that mean he can use x-ray vision to see that Lois Lane is being kidnapped in the other room?

EM waves

- (1) Yes, no problem
- (2) Nope, he can't
- (3) Need more information

Energy in EM Waves

Energy in EM Waves

EM waves carry energy from one region of space to another. The energy density

$$u = \frac{1}{2}\varepsilon_{0}E^{2} + \frac{B^{2}}{2\mu_{0}} = \varepsilon_{0}E^{2} = \frac{B^{2}}{\mu_{0}} = \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}EB$$

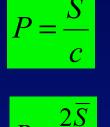
is shared equally between E and B fields.

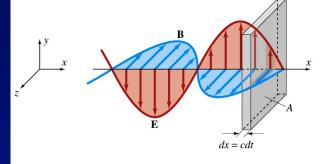
W

Introduce the **Poynting vector**: the energy transported by the EM wave per unit time per unit area (W/m²).

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$
hich also defines the direction of the wave.

$$\vec{S} = \frac{1}{2} \varepsilon_0 c E_0^2 = \frac{c B_0^2}{2\mu_0} = \frac{E_0 B_0}{2\mu_0} = \frac{E_{rms} B_{rms}}{\mu_0}$$
Recall intensity:


$$\vec{S} = \frac{Power}{4\pi r^2}$$
Etys 2435: Chap 32, Eq. 24


Radiation Pressure

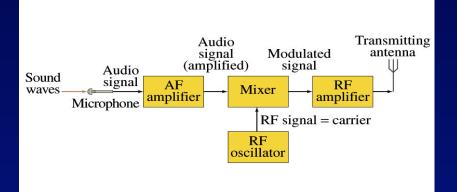
When an EM wave encounters the surface of a material, it exerts pressure on the surface.

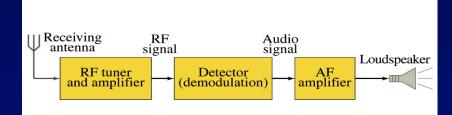
Absorbed

Reflected

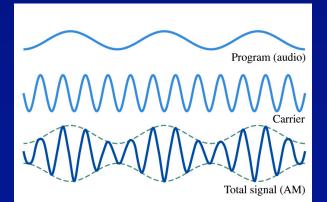
For example: Radiation from the sun that reaches the Earth's surface transports energy at a rate of about 1000 W/m². So the pressure $P \approx \frac{\overline{S}}{\overline{S}} = \frac{1000}{\overline{S}} = 3.3 \times 10^{-6} \text{ N}$

$$P \approx \frac{S}{c} = \frac{1000}{3 \times 10^8} = 3.3 \times 10^{-6} \text{ N/m}^2$$

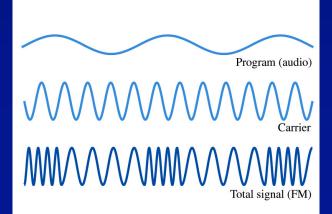

which is a force on your hand of

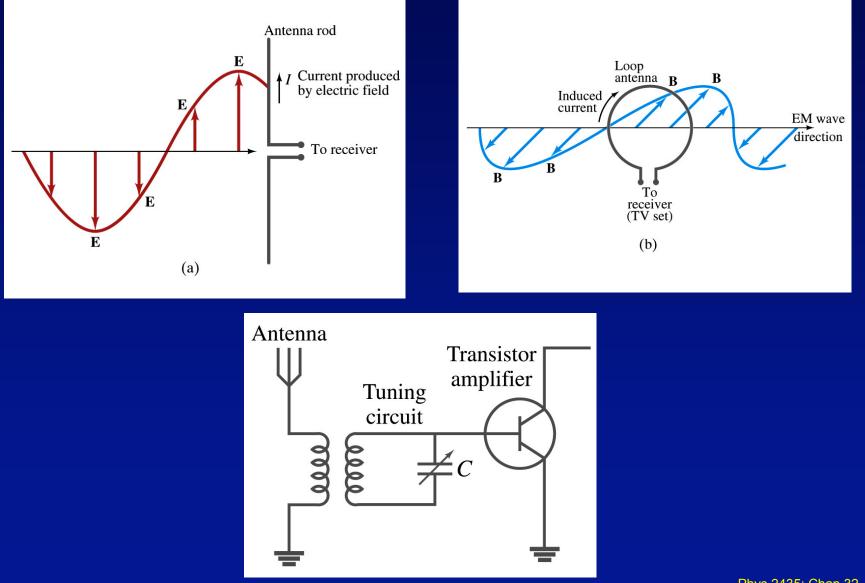

$$F = PA = 3.3 \times 10^{-6} \times 0.02 = 6.6 \times 10^{-8}$$
 N

How do Radio and Television Work?


transmitter

receiver




AM (amplitude modulation) 530 kHz to 1600 kHz

FM (frequency modulation) 88 MHz to 108 Mhz

Antennas

ConcepTest 32.4

EM Wave

Which gives the largest average intensity at the distance specified and thus, at least qualitatively, the best illumination?

a 50-W source at a distance R
 a 100-W source at a distance 2R
 a 200-W source at a distance 4R