Chapter 4 Congruent Triangles

Prerequisite Skills for the chapter "Congruent Triangles"

1. $\angle A$ is an obtuse angle because $m \angle A>90^{\circ}$.
2. $\angle B$ is a right angle because $m \angle B=90^{\circ}$.
3. $\angle C$ is an acute angle because $m \angle C<90^{\circ}$.
4. $\angle D$ is an obtuse angle because $m \angle D>90^{\circ}$.
5. $70+2 y=180$
$2 y=110$

$$
y=55
$$

6. $2 x=5 x-54$
$-3 x=-54$
$x=18$
7. $40+x+65=180$
$x+105=180$
$x=75$
8. $M\left(\frac{2+(-1)}{2}, \frac{-5+(-2)}{2}\right)=M\left(\frac{1}{2},-\frac{7}{2}\right)$

The midpoint of $\overline{P Q}$ is $\left(\frac{1}{2},-\frac{7}{2}\right)$.
9. $M\left(\frac{-4+1}{2}, \frac{7+(-5)}{2}\right)=M\left(-\frac{3}{2}, 1\right)$

The midpoint of $\overline{P Q}$ is $\left(-\frac{3}{2}, 1\right)$.
10. $M\left(\frac{h+h}{2}, \frac{k+0}{2}\right)=M\left(\frac{2 h}{2}, \frac{k}{2}\right)=M\left(h, \frac{k}{2}\right)$

The midpoint of $\overline{P Q}$ is $\left(h, \frac{k}{2}\right)$.
11. $\angle 2 \cong \angle 3$ by the Vertical Angles Congruence Theorem.
12. $\angle 1 \cong \angle 4$ by the Corresponding Angles Postulate.
13. $\angle 2 \cong \angle 6$ by the Alternate Interior Angles Theorem.
14. The angles are not congruent, unless they are right angles.

Lesson 4.1 Apply Triangle Sum Properties
 Investigating Geometry Activity for the lesson "Apply Triangle Sum Properties"

1. The measure of the third angle of a triangle can be found by subtracting the sum of the other two angles from 180°.
2. Sample answer:

The two acute angles of each triangle sum to 90°, so the angles are complementary.

Guided Practice for the lesson "Apply Triangle Sum Properties"

1. Sample answer:

2. $A B=\sqrt{(3-0)^{2}+(3-0)^{2}}=\sqrt{18} \approx 4.24$
$A C=\sqrt{(-3-0)^{2}+(3-0)^{2}}=\sqrt{18} \approx 4.24$
$B C=\sqrt{(-3-3)^{2}+(3-3)^{2}}=\sqrt{36}=6$
Because $A B=A C, \triangle A B C$ is an isosceles triangle.
Slope $\overline{A B}=\frac{3-0}{3-0}=1$
Slope $\overline{A C}=\frac{3-0}{-3-0}=-1$
The product of the slopes is $1(-1)=-1$, so $\overline{A B} \perp \overline{A C}$ and $\angle B A C$ is a right angle. Therefore, $\triangle A B C$ is a right isosceles triangle.
3. $40^{\circ}+3 x^{\circ}=(5 x-10)^{\circ}$

$$
50=2 x
$$

$25=x$
$m \angle 1+40^{\circ}+3(25)^{\circ}=180^{\circ}$

$$
m \angle 1=65^{\circ}
$$

4. $m \angle A+m \angle B+m \angle C=180^{\circ}$

$$
\begin{aligned}
x^{\circ}+2 x^{\circ}+3 x^{\circ} & =180^{\circ} \\
6 x & =180 \\
x & =30
\end{aligned}
$$

$m \angle A=x=30^{\circ}$
$m \angle B=2 x=60^{\circ}$
$m \angle C=3 x=90^{\circ}$
5. $2 x^{\circ}+(x-6)^{\circ}=90^{\circ}$

$$
\begin{aligned}
3 x & =96 \\
x & =32
\end{aligned}
$$

Therefore, the measures of the two acute angles are $2(32)^{\circ}=64^{\circ}$ and $(32-6)^{\circ}=26^{\circ}$.
6. $90^{\circ}+60^{\circ}=150^{\circ}$

By the Exterior Angle Theorem, the angle between the staircase and the extended segment is 150°.

Exercises for the lesson "Apply Triangle Sum Properties"

Skill Practice

1. C ; The triangle is right because it contains a 90° angle.
2. E ; The triangle is equilateral because all sides are the same length.
3. F ; The triangle is equiangular because all angles have the same measure.
4. A; The triangle is isosceles because two sides are the same length.
5. B; The triangle is scalene because each side has a different length.
6. D; The triangle is obtuse because it contains an angle with measure greater than 90°.
7. Sample answer: A right triangle cannot also be obtuse because the sum of the other two angles cannot be greater than 90°.
8.

 $\triangle X Y Z$ is a right isosceles triangle.
9.

$\triangle L M N$ is an equiangular equilateral triangle.
10.

$\triangle J K H$ is an obtuse scalene triangle.
11.

$A B=\sqrt{(6-2)^{2}+(3-3)^{2}}=\sqrt{16}=4$
$A C=\sqrt{(2-2)^{2}+(7-3)^{2}}=\sqrt{16}=4$
$B C=\sqrt{(2-6)^{2}+(7-3)^{2}}=\sqrt{32} \approx 5.66$
So, $A B=A C$.
$\overline{C A}$ is vertical and $\overline{B A}$ is horizontal. So, $\overline{C A} \perp \overline{B A}$ and $\angle C A B$ is a right angle. Therefore, $\triangle A B C$ is a right isosceles triangle.
12.

$A B=\sqrt{(6-3)^{2}+(9-3)^{2}}=\sqrt{45} \approx 6.71$
$A C=\sqrt{(6-3)^{2}+(-3-3)^{2}}=\sqrt{45} \approx 6.71$
$B C=\sqrt{(6-6)^{2}+(-3-9)^{2}}=\sqrt{144} \approx 12$
So $A B=A C$.
Slope $\overline{B A}=\frac{9-3}{6-3}=2$
Slope $\overline{C A}=\frac{-3-3}{6-3}=-2$

Slope $\overline{B C}=\frac{-3-9}{6-6}$ is undefined.
So, there are no right angles. Therefore, $\triangle A B C$ is an isosceles triangle.
13.

$A B=\sqrt{(4-1)^{2}+(8-9)^{2}}=\sqrt{10} \approx 3.16$
$A C=\sqrt{(2-1)^{2}+(5-9)^{2}}=\sqrt{17} \approx 4.12$
$B C=\sqrt{(4-2)^{2}+(8-5)^{2}}=\sqrt{13} \approx 3.61$
So, there are no equal sides.
Slope $\overline{A B}=\frac{8-9}{4-1}=-\frac{1}{3}$
Slope $\overline{A C}=\frac{5-9}{2-1}=-4$
Slope $\overline{B C}=\frac{5-8}{2-4}=\frac{3}{2}$
So, there are no right angles. Therefore, $\triangle A B C$ is a scalene triangle.
14. $60^{\circ}+60^{\circ}+x^{\circ}=180^{\circ}$

$$
x=60
$$

Because each angle measures 60°, the triangle is equiangular.
15. $x^{\circ}+3 x^{\circ}+60^{\circ}=180^{\circ}$

$$
\begin{aligned}
4 x & =120 \\
x & =30
\end{aligned}
$$

The measures of the angles are $30^{\circ}, 60^{\circ}$, and $3(30)=90^{\circ}$. So, the triangle is a right triangle.
16. $x^{\circ}=64^{\circ}+70^{\circ}$
$x=134$
The angles in the triangle measure $64^{\circ}, 70^{\circ}$, and $180-134=46^{\circ}$, so the triangle is acute.
17. $x^{\circ}+45^{\circ}=(2 x-2)^{\circ}$

$$
\begin{aligned}
-x & =-47 \\
x & =47
\end{aligned}
$$

$2(47)-2=92^{\circ}$
18. $24^{\circ}+(2 x+18)^{\circ}=(3 x+6)^{\circ}$

$$
36=x
$$

$3(36)+6=114^{\circ}$
19. $90^{\circ}+x^{\circ}+(3 x+2)^{\circ}=180^{\circ}$

$$
\begin{aligned}
4 x & =88 \\
x & =22
\end{aligned}
$$

Geometry

20. Sample answer: By the Corollary to the Triangle Sum Theorem, the acute angles must sum to 90°. So you would solve $3 x+2 x=90$ for x, then use substitution to find each angle measure.
21. $m \angle 1+40^{\circ}=90^{\circ}$

$$
m \angle 1=50^{\circ}
$$

22. $m \angle 2=90^{\circ}+40^{\circ}$
$m \angle 2=130^{\circ}$
23. $m \angle 3=m \angle 1$
$m \angle 3=50^{\circ}$
24. $m \angle 4=m \angle 2$
$m \angle 4=130^{\circ}$
25. $m \angle 5+m \angle 3=90^{\circ}$

$$
m \angle 5+50^{\circ}=90^{\circ}
$$

$$
m \angle 5=40^{\circ}
$$

26. $m \angle 6+m \angle 4+20^{\circ}=180^{\circ}$

$$
\begin{aligned}
m \angle 6+130^{\circ}+20^{\circ} & =180^{\circ} \\
m \angle 6 & =30^{\circ}
\end{aligned}
$$

27. Let $m \angle P=m \angle R=x^{\circ}$. Then $m \angle Q=2 x^{\circ}$.
$x^{\circ}+x^{\circ}+2 x^{\circ}=180^{\circ}$
$4 x=180$
$x=45$
So, $m \angle P=45^{\circ}, m \angle R=45^{\circ}$, and $m \angle Q=2(45)^{\circ}=90^{\circ}$.
28. Let $m \angle G=x^{\circ}$. Then $m \angle F=3 x^{\circ}$ and
$m \angle E=(3 x-30)^{\circ}$.
$x^{\circ}+3 x^{\circ}+(3 x-30)^{\circ}=180^{\circ}$

$$
\begin{aligned}
7 x & =210 \\
x & =30
\end{aligned}
$$

So, $m \angle G=30^{\circ}, m \angle F=3(30)^{\circ}=90^{\circ}$, and $m \angle E=(3(30)-30)^{\circ}=60^{\circ}$.
Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.
29. The second statement in incorrect. Being isosceles does not guarantee three congruent sides, only two. So, if $\triangle A B C$ is equilateral, then it is isosceles as well.
30. By the Exterior Angle Theorem, the measure of the exterior angle is equal to the sum of the measures of the two nonadjacent interior angles.
So, $m \angle 1=80^{\circ}+50^{\circ}=130^{\circ}$.
31. B; If a triangle has two acute exterior angles, then it has two obtuse interior angles. This is not possible because the sum of the angles in the triangle must be 180°.
32. $x^{\circ}=43^{\circ}$, so $x=43$.
$y^{\circ}=180^{\circ}-43^{\circ}-105^{\circ}$, so $y=32$.
33. $x^{\circ}=118^{\circ}$, so $x=118$. $y^{\circ}=180^{\circ}-62^{\circ}-22^{\circ}$, so $y=96$.
34. $x^{\circ}=180^{\circ}-70^{\circ}-25^{\circ}$, so $x=85$. $y^{\circ}=180^{\circ}-95^{\circ}-20^{\circ}$, so $y=65$.
35. $x^{\circ}=180^{\circ}-90^{\circ}-64^{\circ}$, so $x=26$.
$y^{\circ}=180^{\circ}-90^{\circ}-26^{\circ}$, so $y=64$.
36. $x^{\circ}=47^{\circ}+15^{\circ}$, so $x=62$.
$y^{\circ}=180^{\circ}-90^{\circ}-62^{\circ}$, so $y=28$.
37. $y^{\circ}=180^{\circ}-90^{\circ}-\left(35^{\circ}+18^{\circ}\right)$, so $y=37$. $x^{\circ}=180^{\circ}-90^{\circ}-18^{\circ}-37^{\circ}$, so $x=35$.
38. No. Sample answer: If an angle in a triangle is really close to zero, then the sum of the remaining two angles would be almost 180°. If these two angles were congruent, then the measure of each would be less than 90°, and the triangle would not be obtuse.
39. a. Sample answer: The three lines will always form a triangle as long as they do not all intersect at the same point and no two lines are parallel.
b. Sample answer: The three lines are $y=a x+b$, $y=x+2$, and $y=4 x-7$. If $a=0$ and $b=5$, then all three lines will intersect at only one point, $(3,5)$, so no triangle is formed.
c. $y=\frac{4}{3} x+\frac{1}{3}, y=-\frac{4}{3} x+\frac{41}{3}, y=-1$

$A B=\sqrt{(-1-5)^{2}+(-1-7)^{2}}=\sqrt{100}=10$
$A C=\sqrt{(11-5)^{2}+(-1-7)^{2}}=\sqrt{100}=10$
$B C=\sqrt{(11-(-1))^{2}+(-1-(-1))^{2}}=\sqrt{144}=12$
So, $A B=A C$, and the triangle is isosceles.

Problem Solving

40.

Because each side is a different length, the triangle is scalene. Also, because each angle measures less than 90°, the triangle is acute.
41. The side lengths are 2 inches because all sides must be equal in an equilateral triangle and $\frac{6}{3}=2$. The angle measures will always be 60° in any equiangular triangle.
42. You could bend the strip again at 6 inches, so the sides would be 6,6 , and 8 inches. Or, you could bend the strip again at 7 inches, so the sides would be 6,7 , and 7 inches.
43. C; An angle cannot measure 0° or 180°, but it must measure between 0° and 180°.
44. $m \angle 6+m \angle 3=180^{\circ}$
45. $m \angle 5=m \angle 2+m \angle 3$
$m \angle 6+65^{\circ}=180^{\circ}$
$m \angle 5=50^{\circ}+65^{\circ}=115^{\circ}$
$m \angle 6=115^{\circ}$
46. $m \angle 1+m \angle 2=180^{\circ}$

$$
m \angle 1+50^{\circ}=180^{\circ}
$$

$$
m \angle 1=130^{\circ}
$$

47. $m \angle 2+m \angle 3+m \angle 4=180^{\circ}$

$$
50^{\circ}+65^{\circ}+m \angle 4=180^{\circ}
$$

$$
m \angle 4=65^{\circ}
$$

48. Given: $\triangle A B C$ is a right triangle.

Prove: $\angle A$ and $\angle B$ are complementary.

Statements	Reasons
1. $\triangle A B C$ is a right triangle.	1. Given

2. $m \angle C=90^{\circ}$
3. $m \angle A+m \angle B+m \angle C$ $=180^{\circ}$
4. $m \angle A+m \angle B+90^{\circ}$ $=180^{\circ}$
5. $m \angle A+m \angle B=90^{\circ}$
6. $\angle A$ and $\angle B$ are complementary.
7. Sample answer: Mary and Tom both reasoned correctly, but the initial plan is not correct. The measure of the exterior angle should be $100^{\circ}+50^{\circ}=150^{\circ}$, not 145°.
8. a. If $A B=A C=x$ and $B C=2 x-4$:

$$
\begin{aligned}
x+x+2 x-4 & =32 \\
4 x & =36 \\
x & =9
\end{aligned}
$$

If $A B=x$ and $B C=A C=2 x-4$:
$x+(2 x-4)+(2 x-4)=32$

$$
5 x=40
$$

$$
x=8
$$

The two possible values for x are 8 and 9 .
b. If $A B=A C=x$ and $B C=2 x-4$:

$$
\begin{aligned}
x+x+2 x-4 & =12 \\
4 x & =16 \\
x & =4
\end{aligned}
$$

If $A B=x$ and $B C=A C=2 x-4$:

$$
\begin{aligned}
x+(2 x-4)+(2 x-4) & =12 \\
5 x & =20 \\
x & =4
\end{aligned}
$$

There is only one possible value for x, which is 4 .
53. Given: $\triangle A B C$, points D and E

Prove: $m \angle 1+m \angle 2+m \angle 3=180^{\circ}$

Statements	Reasons		
1. $\triangle A B C, \overline{A B} \\| \overline{C D}$	1. Given		
2. $m \angle A C E=180^{\circ}$	2. Definition of straight angle		
3. $m \angle 3+m \angle 4+m \angle 5$ $=m \angle A C E$	3. Angle Addition Postulate 4. $m \angle 3+m \angle 4+m \angle 5$ $=180^{\circ}$		
5. $\angle 1 \cong \angle 5$	4. Substitution Property of Equality		
6. $\angle 2 \cong \angle 4$	5. Corresponding Angles Postulate		
7. $m \angle 1=m \angle 5$,	6. Alternate Interior Angles Theorem		
$m \angle 2=m \angle 4$		\quad	7. Definition of congruent
:---			
angles			

Lesson 4.2 Apply Congruence and Triangles

Guided Practice for the lesson "Apply Congruence and Triangles"

1. Corresponding angles: $\angle A \cong \angle C, \angle B \cong \angle D$,
$\angle H \cong \angle F, \angle G \cong \angle E$
Corresponding sides: $\overline{A B} \cong \overline{C D}, \overline{B G} \cong \overline{D E}, \overline{G H} \cong \overline{E F}$, $\overline{H A} \cong \overline{F C}$
2. $\angle H \cong \angle F$
$m \angle H=m \angle F$
$(4 x+5)^{\circ}=105^{\circ}$
$4 x+5=105$
$4 x=100$
$x=25$
$m \angle H=4(25)+5=105^{\circ}$
3. The sides of $\triangle P T S$ are congruent to the corresponding sides of $\triangle R T Q$ by the indicated markings.
$\angle P T S \cong \angle R T Q$ by the Vertical Angles Theorem. Also, $\angle P \cong \angle R$ and $\angle S \cong \angle Q$ by the Alternate Interior Angles Theorem. Because all corresponding sides and angles are congruent, $\triangle P T S \cong \triangle R T Q$.
4. $m \angle D C N=75^{\circ}$ by the Third Angles Theorem.
5. To show that $\triangle N D C \cong \triangle N S R$, you need to know that $\overline{D C} \cong \overline{S R}$ and $\overline{D N} \cong \overline{S N}$.

Exercises for the lesson "Apply Congruence and Triangles"

Skill Practice

1.

$\overline{J K} \cong \overline{R S}, \overline{K L} \cong \overline{S T}, \overline{J L} \cong \overline{R T}$,
$\angle J \cong \angle R, \angle K \cong \angle S, \angle L \cong \angle T$
2. Sample answer: To prove that two triangles are congruent, you need to show that all corresponding sides and angles are congruent.
3. $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}, \overline{A C} \cong \overline{D F}$, $\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F$

Sample answer: $\triangle C B A \cong \triangle F E D$
4. $\overline{G H} \cong \overline{Q R}, \overline{H J} \cong \overline{R S}, \overline{J K} \cong \overline{S T}, \overline{K G} \cong \overline{T Q}$,
$\angle G \cong \angle Q, \angle H \cong \angle R, \angle J \cong \angle S, \angle K \cong \angle T$
Sample answer: $K J H G \cong T S R Q$
5. $m \angle Y=m \angle N=124^{\circ}$
6. $m \angle M=m \angle X=33^{\circ}$
7. $Y X=N M=8$
8. $\overline{Y Z} \cong \overline{N L}$
9. $\triangle L N M \cong \triangle Z Y X$
10. $\triangle Y X Z \cong \triangle N M L$
11. $\triangle X Y Z \cong \triangle Z W X$ because all corresponding sides and angles are congruent.
12. The triangles cannot be proven congruent because $\overline{B C} \not \equiv \overline{D F}$ and only one pair of corresponding angles are shown congruent.
13. $\triangle B A G \cong \triangle C D F$ because all corresponding sides and angles are congruent.
14. $V W X Y Z \cong K L M N J$ because all corresponding sides and angles are congruent.
15. $m \angle M=180^{\circ}-70^{\circ}-90^{\circ}=20^{\circ}$
$m \angle M=m \angle X$, so $x=20$.
16. $m \angle C=180^{\circ}-80^{\circ}-45^{\circ}=55^{\circ}$
$m \angle C=m \angle R$, so $55^{\circ}=5 x^{\circ}$, or $x=11$.
17. The student has only shown that the corresponding angles are congruent. The student still needs to show that all corresponding sides are congruent, which they are not.
18. Sample answer:

$\triangle L M N \cong \triangle A B C$
19. $12 x+4 y=40$

$$
\begin{aligned}
12 x+4 y & =40 \\
68 x-4 y & =200 \\
\hline 80 x \quad & =240 \\
x & =3
\end{aligned}
$$

12(3) $+4 y=40 \rightarrow y=1$
So, $x=3$ and $y=1$.
20. $4 x+y=22$
$6 x-y=28$
$10 x=50$

$$
x=5
$$

$4(5)+y=22 \rightarrow y=2$
So, $x=5$ and $y=2$.
21. $\mathrm{B} ; m \angle G=90^{\circ}$ because $\triangle A B C \cong \triangle G I H$.
$m \angle I=20^{\circ}$ because $\triangle E F D \cong \triangle G I H$.
Therefore, for $\triangle G I H, m \angle H=180^{\circ}-90^{\circ}-20^{\circ}=70^{\circ}$.
22. Sample answer: The hexagon is regular because all angles are equal and all sides are congruent because they are corresponding parts of congruent triangles.
Problem Solving
23. The Transitive Property of Congruent Triangles guarantees that all triangles are congruent because each triangle in the rug is made from the same triangular shape.
24. Sample answer:

25. The length, width, and depth of the new stereo must be congruent to the length, width, and depth of the old stereo in order to fit into the existing space.
26. Given: $\overline{A B} \cong \overline{E D}, \overline{B C} \cong \overline{D C}, \overline{C A} \cong \overline{C E}$, $\angle B A C \cong \angle D E C$ Prove: $\triangle A B C \cong \triangle E D C$

Statements	Reasons
1. $\overline{A B} \cong \overline{E D}, \overline{B C} \cong \overline{D C}$, 1. Given $\overline{C A} \cong \overline{C E}$,	2. Vertical Angles
$\angle B A C \cong \angle D E C$	Congruence Theorem
2. $\angle B C A \cong \angle D C E$	3. Third Angles Theorem
3. $\angle A B C \cong \angle E D C$	4. Definition of congruent triangles
4. $\triangle A B C \cong \triangle E D C$	

27. Sample answer:

Yes, $\overline{A C} \| \overline{B D}$. Because $\triangle A B C \cong \triangle D C B$, the alternate interior angles are congruent.
28. Given: $\angle A \cong \angle D, \angle B \cong \angle E$

Prove: $\angle C \cong \angle F$

Statements	Reasons
1. $\angle A \cong \angle D, \angle B \cong \angle E$	1. Given
$\begin{aligned} & \text { 2. } m \angle A+m \angle B+m \angle C \\ & =180^{\circ}, m \angle D+m \angle E+ \\ & m \angle F=180^{\circ} \end{aligned}$	2. Triangle Sum Theorem
$\begin{aligned} & \text { 3. } m \angle A+m \angle B+m \angle C= \\ & m \angle D+m \angle E+m \angle F \end{aligned}$	3. Transitive Property of Equality
$\text { 4. } \begin{aligned} m \angle A & =m \angle D, \\ m \angle B & =m \angle E \end{aligned}$	4. Definition of congruent angles
$\begin{aligned} & \text { 5. } m \angle D+m \angle E+m \angle C= \\ & m \angle D+m \angle E+m \angle F \end{aligned}$	5. Substitution Property of Equality
6. $m \angle C=m \angle F$	6. Subtraction Property of Equality
7. $\angle C \cong \angle F$	7. Definition of congruent figures

29. Sample answer:

No; $\triangle A F C \cong \triangle D F E$, but F is not the midpoint of $\overline{A D}$ and $\overline{E C}$.
30. Sample answer: You can measure two angles of the triangle and use the Triangle Sum Theorem to find the third angle. The angles in the quadrilateral can be found using the angle measures of the triangle.
31. a. $A B E F \cong C D E F$, so $\overline{B E} \cong \overline{D E}$ and $\angle A B E \cong \angle C D E$ because corresponding parts of congruent figures are congruent.
b. $\angle G B E$ and $\angle G D E$ are both supplementary to congruent angles $\angle A B E$ and $\angle C D E$ respectively, so $\angle G B E \cong \angle G D E$.
c. $\angle G E B \cong \angle G E D$ because $\angle G E D$ is a right angle and $\angle G E B$ and $\angle G E D$ are supplementary.
d. Yes; You found that $\angle G B E \cong \angle G D E$ and $\angle G E B \cong \angle G E D$. By the Third Angles Theorem, $\angle B G E \cong \angle D G E$. From the diagram, $\overline{B G} \cong \overline{D G}$, and $\overline{B E} \cong \overline{D E}$ because $A B E F \cong G D E F$. By the Reflexive Property, $\overline{G E} \cong \overline{G E}$. So, $\triangle B E G \cong \triangle D E G$.
32. Given: $\overline{W X} \perp \overrightarrow{V Z}$ at Y, Y is the midpoint of $\overline{W X}$, $\overline{V W} \cong \overline{V X}$, and $\overrightarrow{V Z}$ bisects $\angle W V X$.
Prove: $\triangle V W Y \cong \triangle V X Y$

Statements	Reasons
1. $\overline{W X} \perp \overrightarrow{V Z}$ at Y, Y is the midpoint of $\overline{W X}$,	1. Given
$\overline{V W} \cong \overline{V X}$, and $\overrightarrow{V Z}$	
bisects $\angle W V X$.	2. Definition of
2. $\angle W Y V$ and $\angle X Y V$ are right angles.	perpendicular lines
3. $\angle W Y V \cong \angle X Y V$	3. Right Angle Congruence Theorem

4. $\overline{W Y} \cong \overline{X Y}$
5. $\angle W V Y \cong \angle X V Y$
6. $\angle V W Y \cong \angle V X Y$
7. $\overline{V Y} \cong \overline{V Y}$
8. $\triangle V W Y \cong \triangle V X Y$

Geometry

Problem Solving Workshop for the lesson

 "Apply Congruence and Triangles"1. a.

$\angle L \cong \angle J$ by the Third Angles Theorem.
b.

$\angle H \cong \angle G$ by the Third Angles Theorem. $\overline{H M} \cong \overline{G M}$ because $\overline{H J} \cong \overline{G L}$ and $\overline{J M} \cong \overline{L M}$.

2.

To find $m \angle P T S$:

By the Third Angle Theorem, $\angle Q S T \cong \angle P T S$. Because $m \angle Q S T$ is given as 35°, then $m \angle P T S=35^{\circ}$.

Lesson 4.3 Relate Transformations and Congruence

Investigating Geometry for the lesson "Relate Transformations and Congruence"

Explore 1

Step 4. a. Sample answer: The transformation is a flip, or reflection, in the y-axis. The image is congruent to the preimage.
b. Sample answer: The transformation is an enlargement, or dilation. The image is not congruent to the preimage.
c. Sample answer: The transformation is a 90° turn, or rotation, counterclockwise about the origin. The image is congruent to the preimage.
d. Sample answer: The transformation is a stretch, or shear, in a vertical direction. The image is not congruent to the preimage.

Explore 2

Step 4. a. yes
b. yes
c. no

Draw Conclusions

1. $(x, y) \rightarrow(x,-y)$; yes
2. $(x, y) \rightarrow(y,-x)$; yes
3. $(x, y) \rightarrow(-x,-y)$; yes
4. $(x, y) \rightarrow(-2 x, 3 y)$
$(-1,2) \rightarrow(-2 \cdot(-1), 3 \cdot 2)=(2,6)$,
$(1,3) \rightarrow(-2 \cdot 1,3 \cdot 3)=(-2,9)$,
$(2,0) \rightarrow(-2 \cdot 2,3 \cdot 0)=(-4,0) ;$
No; neither lengths nor angles are preserved, so it is not a rigid motion.
5. translation, reflection, rotation
6. translation, reflection, rotation, dilation
7. translation, reflection, rotation
8. No; a transformation such as $(x, y) \rightarrow(2 x, 0.5 y)$ preserves area but does not preserve length or angle measure, so it is not a rigid motion.

Guided Practice for the lesson"Relate Transformations and Congruence"

1. translation and then rotation
2. translation and then reflection
3. not congruent
4. congruent; reflection

Exercises for the lesson "Relate Transformations and Congruence"

Skill Practice

1. Examples of transformations that are rigid motions are translations, reflections, and rotations.
2. A transformation that maps one figure onto a congruent figure preserves lengths and angle measures, so it is a rigid motion.
3. rotation
4. translation
5. reflection

6-8. Check students' drawings.
9. In choice C , the lengths are not preserved. The correct answer is C .
10. No; a reflection maps one side to a congruent side, but other sides are not congruent.
11. yes; reflection in the line $y=x$
12. yes; translation 3 units right and 2 units down
13. yes; rotation 90° counterclockwise about the origin
14. yes; translation 3 units right and 5 units up
15. No; a rotation does not map one figure onto the other, because corresponding side lengths are not congruent.
16. Sample answer: The function rule describes a translation 3 units to the right and 1 unit down. A translation is a rigid motion.
17. Sample answer: The function rule moves points 1 unit to the left and then stretches points vertically away from the x-axis. The transformation is not a rigid motion, because lengths and angles are not preserved. The triangle with vertices $(0,0),(1,0)$, and $(1,1)$ is transformed to a taller triangle with vertices $(-1,0),(0,0)$, and $(0,2)$.
18. No; check students' drawings.
19. Yes; check students' drawings; a translation followed by a reflection, or a rotation followed by a reflection.

Problem Solving

20. 90° rotation (either way), followed by translation across and down
21. 180° rotation around the midpoint of $\overline{B C}$, reflection across $\overline{B C}$ followed by reflection across the perpendicular bisector of $\overline{B C}$
22. 180° rotation
23. 90° rotation counterclockwise
24. 120° rotation clockwise, followed by translation
25. Check students' designs.
26. a. Check students' rotations.
b. Sample answer: Yellow tiles that share an edge can be rotated either 72° around the vertex of the smaller angle or 108° around the vertex of the larger angle. Red tiles that share an edge can be rotated 36° around the vertex of the smaller angle or 144° around the vertex of the larger angle.
c. Sample answer: You can calculate the angles of the tiles by observing how many of each tile type meet at various vertices in the design.
27. Cutting both pieces together will make all corresponding sides and angles of the pattern congruent.
28. a. The rigid motion of reflection across a vertical line maps $\triangle R T X$ onto $\triangle V T X$ so $\triangle R T X \cong \triangle V T X$.
b. The same rigid motion that maps $\triangle R T X$ onto $\triangle V T X$ also maps $\triangle S T W$ onto $\triangle U T W$, so $\triangle S T W \cong$ $\triangle U T W$. Because the triangles are congruent, the corresponding sides are congruent, so $S W=U W$.
c. $\frac{T S}{S W}=\frac{T R}{R X}$

$$
\frac{16}{S W}=\frac{16+14}{15}
$$

$$
30 S W=240
$$

$$
S W=8
$$

$$
(S W)^{2}+(T W)^{2}=(T S)^{2}
$$

$$
8^{2}+(T W)^{2}=16^{2}
$$

$$
64+(T W)^{2}=256
$$

$$
(T W)^{2}=192
$$

$$
T W=\sqrt{192}
$$

$$
\approx 13.9
$$

Therefore, $S W=8 \mathrm{ft}$ and $T W=13.9 \mathrm{ft}$.
29. a.

b.

c.

Lesson 4.4 Prove Triangles Congruent by SSS

Investigating Geometry Activity for the lesson "Prove Triangles Congruent by SSS"

1. No. Sample answer: In the activity, once the triangle lengths were established it was impossible to create two different triangles.
2. Yes. Sample answer: The straw activity indicates that two triangles with three pairs of congruent sides are congruent.
3. Yes. Sample answer: In the activity, it was possible to change the angles in the quadrilateral, thus changing the shape.
4. No. Sample answer: The activity established that the angles could change, thus two quadrilaterals with pairs of congruent sides are not necessarily congruent.

Guided Practice for the lesson "Prove Triangles Congruent by SSS"

1. Yes; $\triangle D F G \cong \triangle H J K$ by SSS.
2. No; $\triangle A C B \not \equiv \triangle C A D$ because $\overline{A B} \not \equiv \overline{C D}$.
3. Yes; $\triangle Q P T \cong \triangle R S T$ by SSS.
4.

By counting, $K J=S R=3$ and $J L=R T=6$.
$L K=\sqrt{(-3-0)^{2}+(-8-(-2))^{2}}=\sqrt{45}=3 \sqrt{5}$
$T S=\sqrt{(10-4)^{2}+(-3-0)^{2}}=\sqrt{45}=3 \sqrt{5}$
So $L K=T S$.
Because the three sides of $\triangle J K L$ are congruent to the three sides of $\triangle R S T, \triangle J K L \cong \triangle R S T$ by SSS.
5. The square is not stable because it has no diagonal support so the shape could change.
6. The figure is stable because it has diagonal support and fixed sides.
7. The figure is not stable because the bottom half does not have diagonal support and could change shape.

Geometry

Exercises for the lesson "Prove Triangles Congruent by SSS"

Skill Practice

1. corresponding angles
2. neither
3. corresponding sides
4. neither
5. not true; $\overline{R S} \not \equiv \overline{T Q}$
6. true; $\overline{A B} \cong \overline{C D}, \overline{A D} \cong \overline{C B}$, and $\overline{B D} \cong \overline{D B}$, so $\triangle A B D \cong \triangle C D B$ by SSS.
7. true; $\overline{D E} \cong \overline{D G}, \overline{D F} \cong \overline{D F}$, and $\overline{E F} \cong \overline{G F}$, so $\triangle D E F \cong \triangle D G F$ by SSS.
8. The triangle vertices do not correspond.

Sample answer: $\overline{W X} \cong \overline{Y Z}, \overline{W Z} \cong \overline{Y X}$, and $\overline{X Z} \cong \overline{Z X}$, so $\triangle W X Z \cong \triangle Y Z X$ by SSS.
9. $\triangle A B C$:
$A B=\sqrt{(4-(-2))^{2}+(-2-(-2))^{2}}=\sqrt{36}=6$
$B C=\sqrt{(4-4)^{2}+(6-(-2))^{2}}=\sqrt{64}=8$
$A C=\sqrt{(4-(-2))^{2}+(6-(-2))^{2}}=\sqrt{100}=10$
$\triangle D E F$:
$D E=\sqrt{(5-5)^{2}+(1-7)^{2}}=\sqrt{36}=6$
$E F=\sqrt{(13-5)^{2}+(1-1)^{2}}=\sqrt{64}=8$
$D F=\sqrt{(13-5)^{2}+(1-7)^{2}}=\sqrt{100}=10$
$A B=D E, B C=E F$, and $A C=D F$, so $\triangle A B C \cong \triangle D E F$ by SSS.
10. $\triangle A B C$:
$A B=\sqrt{(3-(-2))^{2}+(-3-1)^{2}}=\sqrt{41}$
$B C=\sqrt{(7-3)^{2}+(5-(-3))^{2}}=\sqrt{80}=4 \sqrt{5}$
$A C=\sqrt{(7-(-2))^{2}+(5-1)^{2}}=\sqrt{97}$
$\triangle D E F$:
$D E=\sqrt{(8-3)^{2}+(2-6)^{2}}=\sqrt{41}$
$E F=\sqrt{(10-8)^{2}+(11-2)^{2}}=\sqrt{85}$
$D F=\sqrt{(10-3)^{2}+(11-6)^{2}}=\sqrt{74}$
The sides of $\triangle A B C$ are not congruent to the sides of
$\triangle D E F$, so the triangles are not congruent.
11. $\triangle A B C$:
$A B=\sqrt{(6-0)^{2}+(5-0)^{2}}=\sqrt{61}$
$B C=\sqrt{(9-6)^{2}+(0-5)^{2}}=\sqrt{34}$
$A C=\sqrt{(9-0)^{2}+(0-0)^{2}}=\sqrt{81}=9$
$\triangle D E F$:
$D E=\sqrt{(6-0)^{2}+(-6-(-1))^{2}}=\sqrt{61}$
$E F=\sqrt{(9-6)^{2}+(-1-(-6))^{2}}=\sqrt{34}$
$D F=\sqrt{(9-0)^{2}+(-1-(-1))^{2}}=\sqrt{81}=9$
$A B=D E, B C=E F$, and $A C=D F$, so $\triangle A B C \cong \triangle D E F$ by SSS.
12. $\triangle A B C$:
$A B=\sqrt{(-5-(-5))^{2}+(2-7)^{2}}=\sqrt{25}=5$
$B C=\sqrt{(0-(-5))^{2}+(2-2)^{2}}=\sqrt{25}=5$
$A C=\sqrt{(0-(-5))^{2}+(2-7)^{2}}=\sqrt{50}=5 \sqrt{2}$
$\triangle D E F$:
$D E=\sqrt{(0-0)^{2}+(1-6)^{2}}=\sqrt{25}=5$
$E F=\sqrt{(4-0)^{2}+(1-1)^{2}}=\sqrt{16}=4$
$D F=\sqrt{(4-0)^{2}+(1-6)^{2}}=\sqrt{41}$
The sides of $\triangle A B C$ are not congruent to the sides of $\triangle D E F$, so the triangles are not congruent.
13. Stable; The figure has diagonal supports that form triangles with fixed side lengths, so it is stable.
14. Not stable; The figure does not have diagonal support, so it is not stable.
15. Stable; The figure has diagonal supports that form triangles with fixed side lengths, so it is stable.
16. $\mathrm{B} ; \overline{F J} \not \equiv \overline{F H}$ because $2(F J)=F H$.
17. $\mathrm{B} ; \overline{A B} \not \equiv \overline{A D}$ because two adjacent sides of a rectangle are not necessarily congruent.
18. $\triangle A B C \not \equiv \triangle D E F$ because $A C=F C+2$ and $D F=F C+3$, so $A C \neq D F$.
19. $\triangle A B C \not \equiv \triangle D E F$ because the vertices do not correspond
20. $\overline{J P} \cong \overline{J P}$ by the Reflexive Property of Congruence. So, $\triangle J P K \cong \triangle J P L$ by SSS.
21. If $\overline{A B} \cong \overline{C D}$ and $\overline{A C} \cong \overline{B D}$:
$5 x=3 x+10 \quad$ and $\quad 5 x-2=4 x+3$
$2 x=10$
$x=5 \checkmark$
$x=5$,
If $\overline{A B} \cong \overline{B D}$ and $\overline{A C} \cong \overline{C D}$:
$5 x=4 x+3$

$$
x=3
$$

$$
\begin{aligned}
5 x-2 & =3 x+10 \\
2 x & =12 \\
x & =6
\end{aligned}
$$

5 is the only value for x that will make the triangles congruent.

Problem Solving

22. Yes; Use the string to measure each side of one triangle and then measure the sides of the second triangle to see if they are congruent to the corresponding sides of the first triangle.
23. Gate 1; Sample answer: Gate 1 has a diagonal support that forms two triangles with fixed side lengths, so these triangles cannot change shape. Gate 2 is not stable because the gate is a quadrilateral that can be many shapes.
24. Given: $\overline{G H} \cong \overline{J K}, \overline{H J} \cong \overline{K G}$

Prove: $\triangle G H J \cong \triangle J K G$

Statements	Reasons			
1. $\overline{G H} \cong \overline{J K}$ and	1. Given			
$\overline{H J} \cong \overline{K G}$		\quad	2. Reflexive Property of	
:---	:---			
2. $\overline{G J} \cong \overline{J G}$	Congruence			
3. $\triangle G H J \cong \triangle J K G$	3. SSS Congruence Postulate			

25. Given: $\overline{W X} \cong \overline{V Z}, \overline{W Y} \cong \overline{V Y}, \overline{Y Z} \cong \overline{Y X}$

Prove: $\triangle V W X \cong \triangle W V Z$

Statements	Reasons
1. $\begin{aligned} & \overline{W X} \cong \overline{V Z}, \\ & \overline{W Y} \cong \overline{V Y}, \\ & \overline{Y Z} \cong \overline{Y X} \end{aligned}$	1. Given
2. $\overline{W V} \cong \overline{V W}$	2. Reflexive Property of Congruence
3. $\begin{aligned} & W Y=V Y, \\ & Y Z=Y X \end{aligned}$	3. Definition of congruent segments
$\begin{aligned} & \text { 4. } W Y+Y Z= \\ & V Y+Y Z \end{aligned}$	4. Addition Property of Equality
$\begin{aligned} & \text { 5. } W Y+Y Z= \\ & V Y+Y X \end{aligned}$	5. Substitution Property of Equality
6. $W Z=V X$	6. Segment Addition Postulate
7. $\overline{W Z} \cong \overline{V X}$	7. Definition of congruent segments
8. $\triangle V W X \cong \triangle W V Z$	8. SSS Congruence Postulate

26. Given: $\overline{A E} \cong \overline{C E}, \overline{A B} \cong \overline{C D}, E$ is the midpoint of $\overline{B D}$.

Prove: $\triangle E A B \cong \triangle E C D$

Statements	Reasons
1. $\overline{A E} \cong \overline{C E}$ and 1. Given $\overline{A B} \cong \overline{C D}$	2. Given
2. E is the midpoint of $\overline{B D}$.	3. Definition of midpoint
3. $\overline{E B} \cong \overline{E D}$	4. SSS Congruence Postulate
4. $\triangle E A B \cong \triangle E C D$	

27. Given: $\overline{F M} \cong \overline{F N}, \overline{D M} \cong \overline{H N}, \overline{E F} \cong \overline{G F}, \overline{D E} \cong \overline{H G}$

Prove: $\triangle D E N \cong \triangle H G M$

Statements	Reasons
1. $\begin{aligned} & \overline{F M} \cong \overline{F N}, \\ & \overline{D M} \cong \overline{H N}, \\ & \overline{E F} \cong \overline{G F}, \\ & \overline{D E} \cong \overline{H G} \end{aligned}$	1. Given
2. $\overline{M N} \cong \overline{N M}$	2. Reflexive Property of Congruence
$\text { 3. } F M=F N, \begin{gathered} D M=H N, \\ E F=F G, \\ M N=N M \end{gathered}$	3. Definition of congruent segments
$\begin{aligned} & \text { 4. } E F+F N=G F+ \\ & F N, D M+M N= \\ & H N+M N \end{aligned}$	4. Addition Property of Equality
$\begin{aligned} & \text { 5. } E F+F N=G F+ \\ & F M, D M+M N= \\ & H N+N M \end{aligned}$	5. Substitution Property of Equality
$\text { 6. } \begin{aligned} E N & =G M, \\ D N & =H M \end{aligned}$	6. Segment Addition Postulate
$\text { 7. } \begin{aligned} & \overline{E N} \cong \overline{G M}, \\ & \overline{D N} \cong \overline{H M} \end{aligned}$	7. Definition of congruent segments
8. $\triangle D E N \cong \triangle H G M$	8. SSS Congruence Postulate

28. a. Door 1 has diagonal support and fixed side lengths, so now it is stable.
b. No, this would not be a good choice because it would be hard for rescuers to pass through the door.
c. Yes, rescuers would be able to pass easily through the door.
d. Door 2 is more stable because it contains a diagonal support.
29. You can find third base because only one triangle can be formed from three fixed sides.
30. Given: $\triangle A B C$ is isosceles; D is the midpoint of $\overline{B C}$.

Prove: $\triangle A B D \cong \triangle A C D$

Statements	Reasons
1. $\triangle A B C$ is isosceles; D is the midpoint of $\overline{B C}$.	1. Given
2. $\overline{A B} \cong \overline{A C}$	2. Definition of isosceles triangle
3. $\overline{B D} \cong \overline{C D}$	3. Definition of midpoint
4. $\overline{A D} \cong \overline{A D}$	4. Reflexive Property of Congruence
5. $\triangle A B D \cong \triangle A C D$	5. SSS Congruence Postulate

Geometry

Quiz for the lessons "Apply Triangle Sum Properties", "Apply Congruence and Triangles", "Relate Transformations and Congruence" and "Prove Triangles Congruent by SSS"
1.

$A B=\sqrt{(-3-0)^{2}+(0-4)^{2}}=\sqrt{25}=5$
$A C=\sqrt{(-3-3)^{2}+(0-0)^{2}}=\sqrt{36}=6$
$B C=\sqrt{(3-0)^{2}+(0-4)^{2}}=\sqrt{25}=5$
So $A B=B C$.
slope $\overline{A B}=\frac{4-0}{0-(-3)}=\frac{4}{3}$
slope $\overline{A C}=\frac{0-0}{3-(-3)}=0$
slope $\overline{B C}=\frac{0-4}{3-0}=-\frac{4}{3}$
So there are no right angles. Therefore, $\triangle A B C$ is an isosceles triangle.
2.

$A B=\sqrt{(2-5)^{2}+(-4-(-1))^{2}}=\sqrt{18}$
$A C=\sqrt{(2-2)^{2}+(-4-(-1))^{2}}=\sqrt{9}=3$
$B C=\sqrt{(5-2)^{2}+(-1-(-1))^{2}}=\sqrt{9}=3$
So $A C=B C$.
slope $\overline{A B}=\frac{-1-(-4)}{5-2}=\frac{3}{3}=1$
slope $\overline{A C}=\frac{-4-(-1)}{2-2}$ is undefined.
slope $\overline{B C}=\frac{-1-(-1)}{5-2}=0$
So $A C \perp B C$. Therefore, $\triangle A B C$ is a right isosceles triangle.
3.

$A B=\sqrt{(-7-1)^{2}+(0-6)^{2}}=\sqrt{100}=10$
$B C=\sqrt{(1-(-3))^{2}+(6-4)^{2}}=\sqrt{20}=2 \sqrt{5}$
$A C=\sqrt{(-7-(-3))^{2}+(0-4)^{2}}=\sqrt{32}=4 \sqrt{2}$
So there are no equal sides.
slope $\overline{A B}=\frac{6-0}{1-(-7)}=\frac{6}{8}=\frac{3}{4}$
slope $\overline{B C}=\frac{6-4}{1-(-3)}=\frac{2}{4}=\frac{1}{2}$
slope $\overline{A C}=\frac{4-0}{-3-(-7)}=\frac{4}{4}=1$
So there are no right angles. Therefore, $\triangle A B C$ is a scalene triangle.
4. $5 x-11=3 x+7$
5. $(5 y+36)^{\circ}=61^{\circ}$
$2 x=18$
$5 y=25$
$x=9$

$$
y=5
$$

6. The function rule describes a translation 3 units to the left and 4 units down. A translation is a rigid motion.
7. The function rule moves points 1 unit to the right and then stretches points vertically away from the x-axis. The transformation is not a rigid motion, because lengths and angles are not preserved.
8. Given: $\overline{A B} \cong \overline{A C}, \overline{A D}$ bisects $\overline{B C}$.

Prove: $\triangle A B D \cong \triangle A C D$

Statements	Reasons
1. $\overline{A B} \cong \overline{A C}$	1. Given
2. $\overline{A D}$ bisects $\overline{B C}$.	2. Given
3. $\overline{B D} \cong \overline{C D}$	3. Definition of bisector
4. $\overline{A D} \cong \overline{A D}$	4. Reflexive Property of Congruence
5. $\triangle A B D \cong \triangle A C D$	5. SSS Congruence Postulate

Lesson 4.5 Prove Triangles Congruent by SAS and HL

Guided Practice for the lesson "Prove Triangles Congruent by SAS and HL"

1. Given: $\overline{S V} \cong \overline{V U}, \overline{R T} \perp \overline{S U}$

Prove: $\triangle S V R \cong \triangle U V R$

Statements	Reasons
1. $\overline{S V} \cong \overline{V U}$	1. Given
2. $\overline{R T} \perp \overline{S U}$	2. Given
3. $\angle S V R$ and $\angle U V R$	
are right angles.	3. Definition of perpendicular lines
4. $\angle S V R \cong \angle U V R$	4. Right Angle Congruence Theorem
5. $\overline{V R} \cong \overline{V R}$	5. Reflexive Property for Congruence
6. $\triangle S V R \cong \triangle U V R$	6. SAS Congruence Postulate

2. Given: $A B C D$ is a square; R, S, T, and U are midpoints of $A B C D ; \angle B$ and $\angle D$ are right angles.
Prove: $\triangle B S R \cong \triangle D U T$

Statements	Reasons
1. $A B C D$ is a square; R, S, T, and U are midpoints of $A B C D ; \angle B$ and $\angle D$ are right angles.	1. Given
2. $\overline{B C} \cong \overline{D A}, \overline{B A} \cong \overline{D C}$	2. Definition of a square
3. $B C=D A, B A=D C$	3. Definition of congruent segments
$\text { 4. } \begin{aligned} B S & =S C, D U \end{aligned}=U A,$	4. Definition of midpoint
$\begin{aligned} & \text { 5. } B S+S C=B C, \\ & D U+U A=D A, \\ & B R+R A=B A, \\ & D T+T C=D C \end{aligned}$	5. Segment Addition Postulate
$\text { 6. } \begin{aligned} 2 B S & =B C, 2 D U \end{aligned}=D A, ~=B A, 2 D T=D C \text {, }$	6. Substitution Property of Equality
$\text { 7. } \begin{aligned} 2 B S & =2 D U, \\ 2 B R & =2 D T \end{aligned}$	7. Substitution Property of Equality
8. $B S=D U, B R=D T$	8. Division Property of Equality
9. $\overline{B S} \cong \overline{D U}, \overline{B R} \cong \overline{D T}$	9. Definition of congruent segments
10. $\angle B \cong \angle D$	10. Right Angle Congruence Theorem
11. $\triangle B S R \cong \triangle D U T$	11. SAS Congruence Postulate

3.

4. Given: $\angle A B C$ and $\angle D C B$ are right angles; $\overline{A C} \cong \overline{D B}$

Prove: $\triangle A C B \cong \triangle D B C$

Statements	Reasons
1. $\angle A B C$ and $\angle D C B$ are right angles.	1. Given
2. $\overline{A C} \cong \overline{D B}$	2. Given
3. $\triangle A C B$ and $\triangle D B C$ are right triangles.	3. Definition of a right triangle
4. $\overline{C B} \cong \overline{B C}$	4. Reflexive Property of Congruence
5. $\triangle A C B \cong \triangle D B C$	5. HL Congruence Theorem

Exercises for the lesson "Prove Triangles Congruent by SAS and HL"

Skill Practice

1. The angle between two sides of a triangle is called the included angle.
2. Sample answer: SAS requires two sides and the included angle of one triangle to be congruent to the corresponding two sides and included angle of a second triangle. SSS requires that the three sides of one triangle be congruent to the corresponding sides of a second triangle.
3. $\angle X Y W$ is between $\overline{X Y}$ and $\overline{Y W}$.
4. $\angle W Z Y$ is between $\overline{W Z}$ and $\overline{Z Y}$.
5. $\angle Z W Y$ is between $\overline{Z W}$ and $\overline{Y W}$.
6. $\angle W X Y$ is between $\overline{W X}$ and $\overline{Y X}$.
7. $\angle X Y Z$ is between $\overline{X Y}$ and $\overline{Y Z}$.
8. $\angle X W Z$ is between $\overline{W X}$ and $\overline{W Z}$.
9. not enough information; The congruent angles are not between the congruent sides.
10. enough information; sides: $\overline{L M} \cong \overline{N Q}, \overline{M N} \cong \overline{Q P}$ included angle: $\angle L M N \cong \angle N Q P$
11. not enough information; There are no congruent pairs of sides.
12. not enough information; The congruent angles are not between the congruent sides.
13. enough information;
sides: $\overline{E F} \cong \overline{G H}, \overline{F H} \cong \overline{H F}$
included angle: $\angle E F H \cong \angle G H F$
14. not enough information; the congruent angles are not between the congruent sides.
15. $\mathrm{B} ; \triangle A B C \not \equiv \triangle D E F$ because the corresponding congruent angle is not between the corresponding congruent sides.
16. $\triangle B A D \cong \triangle B C D$ by SAS because $\overline{B A} \cong \overline{B C}, \overline{A D} \cong \overline{C D}$ and $\angle B A D \cong \angle B C D$ because $A B C D$ is a square.
17. $\triangle S T U \cong \triangle U V R$ by SAS because $\overline{S T} \cong \overline{U V}$, $\overline{T U} \cong \overline{V R}$, and $\angle S T U \cong \angle U V R$ because $R S T U V$ is a regular pentagon.
18. $\triangle K M N \cong \triangle K L N$ by SAS because $\overline{K M}, \overline{M N}, \overline{K L}$, and $\overline{L N}$ are all congruent radii, and $\angle K M N \cong \angle K L N$ by definition of \perp lines.
19. A

Because $\overline{B D} \cong \overline{D E} \cong \overline{A H} \cong \overline{H F}$, then $B D+D E=$ $A H+H F$, so $\overline{F A} \cong \overline{B E}$. By the same reasoning, $\overline{A C} \cong \overline{E G}$. Because $\triangle A C F$ and $\triangle E G B$ are right triangles, then $\triangle A C F \cong \triangle E G B$ by the HL Congruence Theorem.

Geometry

20. not enough information; The corresponding congruent angle is not between the corresponding congruent sides.
21. enough information; SAS;
sides: $\overline{X Z} \cong \overline{Q Z}, \overline{Y Z} \cong \overline{P Z}$
included angle: $\angle X Z Y \cong \angle Q Z P$
22. enough information; HL Congruence Theorem;
hypotenuse: $\overline{N L} \cong \overline{L S}$
leg: $\overline{M N} \cong \overline{R L}$
right angle: $\angle L M N \cong \angle S R L$
23. Yes; Because the right angles are between the pairs of corresponding congruent legs, the triangles are congruent by the SAS Congruence Postulate.
24. Because $\triangle X Z Y \cong \triangle W Z Y$ by SAS, $\overline{Y X}$ and $\overline{Y W}$ have the same length.

$$
\begin{aligned}
5 x-1 & =4 x+6 \\
x & =7
\end{aligned}
$$

25. $\overline{A B} \cong \overline{D E}, \overline{C B} \cong \overline{F E}, \overline{A C} \cong \overline{D F}$
26. $\angle A \cong \angle D, \overline{C A} \cong \overline{F D}, \overline{B A} \cong \overline{E D}$
27. $\angle B \cong \angle E, \overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$
28. Yes; Because $\overline{L N}$ bisects $\angle K L M, \angle K L N \cong \angle M L N$. Also, because the triangles are isosceles,
$\overline{L N} \cong \overline{L K} \cong \overline{L M}$. Therefore, $\triangle K L N \cong \triangle M L N$ by the SAS Congruence Postulate.
29. Because M is the midpoint of $\overline{P Q}, \overline{P M} \cong \overline{Q M}$. Also, because $\overline{R M} \perp \overline{P Q}, \angle P M R$ and $\angle Q M R$ are both right angles, so $\angle P M R \cong \angle Q M R$. Finally, by the Reflexive Property of Congruence, $\overline{R M} \cong \overline{R M}$. Therefore, $\triangle R M P \cong \triangle R M Q$ by the SAS Congruence Postulate.
30. First, $\angle D A C=\angle D A B+\angle B A C$ and $\angle F A B=$ $\angle F A C+\angle B A C$. Because $\angle D A B$ and $\angle F A C$ are both right angles, they are also congruent. By substitution, $\angle D A C \cong \angle F A B$. Therefore, $\triangle A C D \cong \triangle A B F$ by the SAS Congruence Postulate.

Problem Solving

31. You would use the SAS Congruence Postulate.
32. You would use the SAS Congruence Postulate.
33. SAS: The two sides and the included angle of one sail need to be congruent to two sides and the included angle of the second sail.
HL: The two sails need to be right triangles with congruent hypotenuses and one pair of congruent legs.
34. Given: Point M is the midpoint of $\overline{L N}$.
$\triangle P M Q$ is an isosceles triangle with $\overline{M P} \cong \overline{M Q}$
$\angle L$ and $\angle N$ are right angles.
Prove: $\triangle L M P \cong \triangle N M Q$

Statements

1. $\angle L$ and $\angle N$ are right angles.
2. $\triangle L M P$ and $\triangle N M Q$ are right triangles.
3. Point M is the midpoint of $\overline{L N}$.
4. $\overline{L M} \cong \overline{N M}$
5. $\overline{M P} \cong \overline{M Q}$
6. $\triangle L M P \cong \triangle N M Q$

Reasons

1. Given
2. Definition of a right triangle
3. Given
4. Definition of midpoint
5. Given
6. HL Congruence Theorem
7. Given: $\overline{P Q}$ bisects $\angle S P T ; \overline{S P} \cong \overline{T P}$

Prove: $\triangle S P Q \cong \triangle T P Q$

Statements	Reasons
1. $\overline{P Q}$ bisects $\angle S P T$.	1. Given
2. $\angle S P Q \cong \angle T P Q$	2. Definition of angle bisector
3. $\overline{S P} \cong \overline{T P}$	3. Given
4. $\overline{P Q} \cong \overline{P Q}$	4. Reflexive Property of
Congruence	
5. $\triangle S P Q \cong \triangle T P Q$	5. SAS Congruence Postulate

36. Given: $\overline{V X} \cong \overline{X Y}, \overline{X W} \cong \overline{Y Z}, \overline{X W} \| \overline{Y Z}$

Prove: $\triangle V X W \cong \triangle X Y Z$

Statements	Reasons	
1. $\overline{V X} \cong \overline{X Y}$,		
$\overline{X W} \cong \overline{Y Z}$	1. Given	
2. $\overline{X W} \\| \overline{Y Z}$	2. Given	
3. $\angle V X W \cong \angle X Y Z$	3. Corresponding Angles Postulate	
4. $\triangle V X W \cong \triangle X Y Z$	4. SAS Congruence Postulate	

37. Given: $\overline{J M} \cong \overline{L M}$

Prove: $\triangle J K M \cong \triangle L K M$

Statements	Reasons
1. $\angle J$ and $\angle L$ are right angles.	1. Given in diagram
2. $\triangle J K M$ and $\triangle L K M$ are right triangles.	2. Definition of a right triangle
3. $\overline{J M} \cong \overline{L M}$	3. Given
4. $\overline{K M} \cong \overline{K M}$	Reflexive Property of Congruence
5. $\triangle J K M \cong \triangle X Y Z$	5. HL Congruence Theorem

38. Given: D is the midpoint of $\overline{A C}$.

Prove: $\triangle A B D \cong \triangle C B D$

Statements	Reasons
1. D is the midpoint of $\overline{A C}$.	1. Given
2. $\overline{A D} \cong \overline{C D}$	2. Definition of midpoint
3. $\overline{B D} \cong \overline{B D}$	3. Reflexive Property of Congruence
4. $\overline{B D} \perp \overline{A C}$	4. Given in diagram
5. $\angle B D A$ and $\angle B D C$	
are right angles.	5. Definition of perpendicular lines
6. $\angle B D A \cong \angle B D C$	6. Right Angle Congruence Theorem
7. $\triangle A B D \cong \triangle C B D$	7. SAS Congruence Postulate

39. D; Because $m \angle A D C+m \angle A D B+m \angle B D E=180$, $m \angle A D B=180^{\circ}-70^{\circ}-40^{\circ}=70^{\circ}$.
So $\angle A D B \cong \angle A C E$. Therefore, $\triangle A E C \cong \triangle A B D$ by the SAS Congruence Postulate. Because $\angle F E D$ and $\angle A B F$ are corresponding angles of congruent triangles, $\angle F E D \cong \angle A B F$.
40. Given: $\overline{C R} \cong \overline{C S}, \overline{Q C} \perp \overline{C R}, \overline{Q C} \perp \overline{C S}$

Prove: $\triangle Q C R \cong \triangle Q C S$

Statements	Reasons
1. $\overline{Q C} \perp \overline{C R}$ and	1. Given
$\overline{Q C} \perp \overline{C S}$	2. Definition of
2. $\angle Q C R$ and $\angle Q C S$	
are right angles.	perpendicular lines
3. $\angle Q C R \cong \angle Q C S$ 3. Right Angle Congruence Theorem	
4. $\overline{C R} \cong \overline{C S}$	4. Given
5. $\overline{Q C} \cong \overline{Q C}$	5. Reflexive Property of Congruence
6. $\triangle Q C R \cong \triangle Q C S$	6. SAS Congruence Postulate

41. To use the SSS Congruence Postulate, you need to find the length of each side of the two triangles and show that pairs of corresponding sides have the same length and therefore are congruent.
To use the SAS Congruence Postulate:
slope $\overline{O N}=\frac{8-0}{8-0}=1$
slope $\overline{M P}=\frac{0-4}{8-4}=\frac{-4}{4}=-1$
Because $1(-1)=-1, \overline{M P} \perp \overline{O N}$. So $\angle P M O$ and $\angle P M N$ are right angles and $\angle P M O \cong \angle P M N$.
$M O=\sqrt{(4-0)^{2}+(4-0)^{2}}=\sqrt{32}$
$M N=\sqrt{(8-4)^{2}+(8-4)^{2}}=\sqrt{32}$
So $\overline{M O} \cong \overline{M N}$.

By the Reflexive Property of Congruence, $\overline{P M} \cong \overline{P M}$. Therefore, by SAS, $\triangle P M O \cong \triangle P M N$.
In this case, either method will work to prove congruence.

Technology Activity for the lesson "Prove Triangles Congruent by SAS and HL"

Step 3.
$\overline{B D} \cong \overline{B E}$ because both segments are radii of the same circle. In $\triangle A B D$ and $\triangle A B E, \overline{A B} \cong \overline{A B}$ and $\angle B A D \cong \angle B A E$.

1. $\triangle A B D \not \equiv \triangle A B E$ because $\overline{D A} \not \equiv \overline{E A} \cdot \overline{E A}$ is obviously much longer than $\overline{D A}$.
2. $\angle B D A$ is a right angle. Because $\triangle A B D$ is a right triangle, the Hypotenuse-Leg Congruence Theorem guarantees that any triangle with these dimensions will also be congruent to $\triangle A B D$.
3. In this activity, SSA can yield two non-congruent triangles as in Exercise 1. However, HL results in only one triangle.
Mixed Review of Problem Solving for the lessons "Apply Triangle Sum Properties", "Apply Congruence and Triangles", "Relate Transformations and Congruence","Prove Triangles Congruent by SSS", and "Prove Triangles Congruent by SAS and HL"
4. a. acute triangles: $\triangle E B C, \triangle F C G, \triangle D C G, \triangle A C B$ obtuse triangles: $\triangle A E C, \triangle D F C$
b. All triangles in the figure are scalene.
5. Sample answer: You know that $\triangle P Q R \cong \triangle S T R$ by the SSS Congruence Postulate.
$P Q=T S=18$
$P R=Q R=T R=S R=3 \sqrt{34}$
6. $m \angle 1+90^{\circ}=160^{\circ}$

$$
m \angle 1=70^{\circ}
$$

4. Yes; $\overline{C E} \cong \overline{A G}$ and $\overline{A H} \cong \overline{D E}$, so $\overline{C E}-\overline{D E}$
$\cong \overline{A G}-\overline{A H}$, or $\overline{C D} \cong \overline{G H}$. Likewise, $\overline{B C} \cong \overline{F G}$.
Because $\angle G$ and $\angle C$ are both right angles, $\angle G \cong \angle C$.
Therefore, $\triangle B C D \cong \triangle F G H$ by the SAS Congruence Postulate.
5. a. Given: $\overline{F G} \cong \overline{H G}, \overline{B G} \perp \overline{F H}$

Prove: $\triangle F G B \cong \triangle H G B$

Statements	Reasons
1. $\overline{F G} \cong \overline{H G}$	1. Given
2. $\overline{B G} \perp \overline{F H}$	2. Given
3. $\angle B G F$ and $\angle B G H$ are right angles.	3. Definition of perpendicular lines
4. $\angle B G F \cong \angle B G H$	4. Right Angle Congruence Theorem
5. $\overline{G B} \cong \overline{G B}$	5. Reflexive Property of Congruence

6. SAS Congruence Postulate

Geometry

b. Yes;

Given: $\overline{D F} \cong \overline{E H}, m \angle E H B=25^{\circ}, m \angle B F G=65^{\circ}$, $\overline{D F} \perp \overline{A G}$ at point F.
Prove: $\triangle B D F \cong \triangle B E H$

Statements	Reasons
$\begin{aligned} & \text { 1. } \overline{D F} \cong \overline{E H}, \\ & m \angle E H B=25^{\circ}, \\ & m \angle B F G=65^{\circ}, \\ & \overline{D F} \perp \overline{A G} \text { at point } F . \end{aligned}$	1. Given
2. $\triangle F G B \cong \triangle H G B$	2. Proven in Ex. 5(a)
3. $\overline{F B} \cong \overline{H B}$	3. Corr. parts of \cong © are \cong.
4. $\angle D F G$ is a right angle.	4. Definition of perpendicular lines
5. $m \angle D F G=90^{\circ}$	5. Definition of a right angle
$\begin{aligned} & \text { 6. } m \angle D F B+m \angle B F G \\ & =m \angle D F G \end{aligned}$	6. Angle Addition Postulate
7. $m \angle D F B+65^{\circ}=90^{\circ}$	7. Substitution Property of Equality
8. $m \angle D F B=25^{\circ}$	8. Subtraction Property of Equality
9. $m \angle D F B=m \angle E H B$	9. Transitive Property of Equality
10. $\angle D F B \cong \angle E H B$	10. Definiton of congruent angles
11. $\triangle B D F \cong \triangle B E H$	11. SAS Congruence Postulate

6. $(4 x+18)^{\circ}=110^{\circ}$

$$
\begin{aligned}
4 x & =92 \\
x & =23
\end{aligned}
$$

Lesson 4.6 Prove Triangles Congruent by ASA and AAS

Guided Practice for the lesson "Prove Triangles Congruent by ASA and AAS"

1. You would use AAS to prove $\triangle R S T \cong \triangle V U T . \overline{R S} \cong$ $\overline{V U}$ and $\angle R S T \cong \angle V U T$ are given. The second pair of angles, $\angle R T S$ and $\angle V T U$, are congruent by the Vertical Angles Theorem.
2. Given: $\triangle A B C$

Prove: $m \angle 1+m \angle 2+m \angle 3=180^{\circ}$

3. The AAS Congruence Theorem could be used to prove $\triangle A B E \cong \triangle A D E$ because $\angle A B E \cong \angle A D E$, $\angle A E B \cong \angle A E D$, and $\overline{A E} \cong \overline{A E}$.
4. No, towers B and C could not be used to locate the fire. No triangle is formed by the towers and the fire, so the fire could be anywhere between towers B and C.

Exercises for the lesson "Prove Triangles Congruent by ASA and AAS"

Skill Practice

1. Sample answer: A flow proof shows the flow of a logical argument.
2. You need to show that any pair of corresponding sides are also congruent.
3. Yes; $\triangle A B C \cong \triangle Q R S$ by the AAS Congruence Theorem.
4. No; it cannot be proven that $\triangle X Y Z \cong \triangle J K L$.
5. Yes; $\triangle P Q R \cong \triangle R S P$ by the ASA Congruence Postulate.
6. There is no AAA congruence postulate or theorem.
7. B ;
two angles: $\angle C B A \cong \angle K J H$ and $\angle C A B \cong \angle K H J$
non-included side: $\overline{B C} \cong \overline{J K}$
So $\triangle A B C \cong \triangle H J K$ by AAS.
8. $\overline{G H} \cong \overline{M N}, \angle G \cong \angle M, \angle F \cong \angle L$
9. $\overline{F G} \cong \overline{L M}, \angle G \cong \angle M, \angle F \cong \angle L$
10. $\overline{F H} \cong \overline{L N}, \angle H \cong \angle N, \overline{H G} \cong \overline{N M}$
11. Given: $\overline{A F} \cong \overline{D F}$ and $\overline{F E} \cong \overline{F B} ; \angle A F E \cong \angle D F B$ by the Vertical Angles Congruence Theorem.
12. Given: $\angle E A D \cong \angle D B E$ and $\angle A E D \cong \angle B D E ; \overline{E D} \cong$ $\overline{D E}$ by the Reflexive Property of Segment Congruence.
13. Given: $\angle A E D \cong \angle B D C$ and $\overline{E D} \cong \overline{D C} ; \angle E D A \cong$ $\angle D C B$ by the Corresponding Angles Postulate.
14. Yes; $\triangle A B C \cong \triangle D E F$ by the SAS Congruence Postulate.
15. No; you cannot determine if triangles are congruent because there is no AAA congruence postulate or theorem.
16. No; you cannot determine if triangles are congruent because $\overline{A C}$ and $\overline{D E}$ are not corresponding sides.
17. No; you cannot determine if triangles are congruent because none of the congruent sides are corresponding.
18. No; you cannot prove that $\triangle A B C \cong \triangle D E C$.
19. Yes; $\triangle T U V \cong \triangle T W V$ can be proved by the SAS Congruence Postulate.
20. No; you cannot prove that $\triangle Q M L \cong \triangle L P N$.
21. a. slope $\overline{B C}=\frac{6-5}{6-2}=\frac{1}{4}$
slope $\overline{A D}=\frac{2-1}{4-0}=\frac{1}{4}$
Because slope $\overline{B C}=$ slope $\overline{A D}, \overline{B C}$ and $\overline{A D}$ are parallel. So $\angle C A D \cong \angle A C B$ by the Alternate Interior Angles Theorem.
b. From part (a), $\overline{B C}$ and $\overline{A D}$ are parallel. So $\angle A C D \cong$ $\angle C A B$ by the Alternate Interior Angles Theorem.
c. From parts (a) and (b), $\angle C A D \cong \angle A C B$ and $\angle A C D \cong \angle C A B$. Also, $\overline{A C} \cong \overline{C A}$ by the Reflexive Property. So $\triangle A B C \cong \triangle C D A$ by the ASA Congruence Postulate.
22. a.

b. Any real value except $m=2$ will form two triangles in the graph. The triangles will be congruent right triangles when $m=-\frac{1}{2}$ or 0 . The resulting triangles are congruent by the ASA Congruence Postulate or the AAS Congruence Theorem.

Problem Solving

23. In the picture, two pairs of angles and the included pair of sides are shown to be congruent, so the triangles are congruent by ASA.
24. In the picture, two pairs of angles and a nonincluded pair of sides are shown to be congruent, so the triangles are congruent by AAS.
25. Given: $\overline{A D} \| \overline{C E}, \overline{B D} \cong \overline{B C}$

Prove: $\triangle A B D \cong \triangle E B C$

26.

Yes, you will be able to locate the maple tree. Because two angles and the included side are given, there is only one possible triangle that can be formed.
27. $\triangle A B C \cong \triangle D E F$ by the AAS Congruence Theorem.
28. All right angles are congruent and the right angles are included between the pairs of congruent legs in the triangle. So the triangles are congruent by SAS.
29. All right angles are congruent and another pair of angles are given to be congruent. If the congruent legs are between the congruent pairs of angles, then the triangles are congruent by ASA. If the congruent legs are not included between the congruent pairs of angles, then the triangles are congruent by AAS.
30. All right angles are congruent. Because another pair of angles and the nonincluded sides are given to be congruent, the triangles are congruent by AAS.
31. Given: $\overline{A K} \cong \overline{C J}, \angle B J K \cong \angle B K J, \angle A \cong \angle C$

Prove: $\triangle A B K \cong \triangle C B J$

Statements	Reasons
1. $\overline{A K} \cong \overline{C J}, \angle A \cong \angle C$,	1. Given
$\angle B J K \cong \angle B K J$	
2. $\triangle A B K \cong \triangle C B J$	2. ASA Congruence Postulate

32. Given: $\overline{V W} \cong \overline{U W}, \angle X \cong \angle Z$

Prove: $\triangle X W V \cong \triangle Z W U$

33. Given: $\angle N K M \cong \angle L M K, \angle L \cong \angle N$

Prove: $\triangle N M K \cong \triangle L K M$

Statements	Reasons			
1. $\angle N K M \cong \angle L M K$,	1. Given	董		
$\angle L \cong \angle N$			\quad	2. Reflexive Property of
:---				
2. $\overline{M K} \cong \overline{K M}$				

Geometry

34. Given: X is the midpoint of $\overline{V Y}$ and $\overline{W Z}$.

Prove: $\triangle V W X \cong \triangle Y Z X$

35. Given: $\triangle A B F \cong \triangle D F B, F$ is the midpoint of $\overline{A E}, B$ is the midpoint of $\overline{A C}$.
Prove: $\triangle F D E \cong \triangle B C D \cong \triangle A B F$
Statements

1. F is the midpoint of
B is the midpoint of
2. $\overline{F E} \cong \overline{A F}, \overline{B C} \cong \overline{A B}$
3. $\triangle A B F \cong \triangle D F B$
4. $\overline{A F} \cong \overline{D B}, \overline{A B} \cong \overline{D F}$
5. $\overline{F E} \cong \overline{D B}, \overline{B C} \cong \overline{D F}$
6. $\angle A F B \cong \angle D B F$,
$\angle A B F \cong \angle D F B$
$\angle F A B \cong \angle B D F$
7. $m \angle A F B=m \angle D B F$, $m \angle A B F=m \angle D F B$, $m \angle F A B=m \angle B D F$
8. $m \angle A F B+m \angle D F B$
$+m \angle E F D=180^{\circ}$,
$m \angle A B F+m \angle D B F+$
$m \angle C B D=180^{\circ}$
9. $m \angle A F B+m \angle A B F$
$+m \angle E F D=180^{\circ}$,
$m \angle A B F+m \angle A F B+$
$m \angle C B D=180^{\circ}$
10. $m \angle E F D=180^{\circ}-$
$m \angle A F B-m \angle A B F$,
$m \angle C B D=180^{\circ}-$
$m \angle A F B-m \angle A B F$
11. $m \angle A F B+m \angle A B F+$ $m \angle F A B=180^{\circ}$
12. $m \angle F A B=180^{\circ}-$ $m \angle A F B-m \angle A B F$
13. $m \angle F A B=m \angle E F D=$ $m \angle C B D$
14. $\angle F A B \cong \angle E F D \cong$ $\angle C B D$
15. $\triangle F D E \cong \triangle B C D \cong$ $\triangle A B F$

Reasons

1. Given
2. Definition of midpoint
3. Given
4. Corr. parts of \cong © are \cong.
5. Transitive Property of Congruence
6. Corr. parts of $\cong \triangleq$ are \cong.
7. Definition of congruent angles
8. Definition of a straight angle
9. Substitution Property of Equality
10. Subtraction Property of Equality
11. Triangle Sum Theorem
12. Subtraction Property of Equality
13. Substitution Property of Equality
14. Definition of congruent angles
15. SAS Congruence Postulate

Investigating Geometry Construction for the lesson "Prove Triangles Congruent by ASA and AAS"

1. reflection in the line that contains $\overline{A B}$
2. reflection in the perpendicular bisector of $\overline{A B}$
3. yes; rotation of 180° around the midpoint of $\overline{A B}$
4. Rigid motions can be used to transform the triangles onto each other, so the triangles are all congruent.
5. Yes; the same rigid motions of reflection can be used to show that the triangles are all congruent.

Lesson 4.7 Use Congruent Triangles

Guided Practice for the lesson "Use Congruent Triangles"

1. $\overline{B D} \cong \overline{B D}$ by the Reflexive Property, so $\triangle A B D \cong \triangle C B D$ by SSS. Corresponding parts of congruent triangles are congruent, so $\angle A \cong \angle C$.
2. No; Because M is the midpoint of $\overline{N K}, \overline{N M} \cong \overline{M K}$. No matter how far apart the stakes at K and M are placed, the triangles will always be congruent by ASA.
3. You are given that $\overline{T U} \cong \overline{Q P}$ and you can deduce that $\overline{P U}=\overline{U P}$ by the Reflexive Property. Now you only need to show that $\overline{P T} \cong \overline{U Q}$ to prove congruence by SSS. To do this, you can show that triangles $Q S P$ and $T R U$ are right and congruent by HL. This leads to right triangles $U S Q$ and $P R T$ being congruent by HL, which gives $\overline{P T} \cong \overline{U Q}$.
4. $\overline{A C}$ and $\overline{A B}$

Exercises for the lesson "Use Congruent Triangles"

Skill Practice

1. Corresponding parts of congruent triangles are congruent.
2. Sample answer: You might choose to use congruent triangles to measure the distance across a river if you are unable to cross it. You could also use congruent triangles to measure the distance across a lake.
3. $\triangle C B A \cong \triangle C B D$ by SSS.
4. $\triangle Q P R \cong \triangle T P S$ by SAS.
5. $\triangle J K M \cong \triangle L K M$ by HL.
6. $\triangle C A D \cong \triangle B D A$ by AAS.
7. $\triangle J N H \cong \triangle K L G$ by AAS.
8. $\triangle V R T \cong \triangle Q V W$ by AAS.
9. $\angle A B C \cong \angle C D A$ is given, but this angle is not included between the pairs of congruent sides $\overline{B C}$ and $\overline{D A}$, and $\overline{C A}$ and $\overline{A C}$. So the triangles cannot be proven to be congruent.
10. Show $\overline{V T} \cong \overline{T V}$ by the Reflexive Property. So $\triangle V S T \cong \triangle T U V$ by SSS. Because corresponding parts of congruent triangles are congruent, $\angle S \cong \angle U$.
11. Show $\angle N L M \cong \angle P L Q$ by the Vertical Angles Congruence Theorem. So $\triangle N L M \cong \triangle P L Q$ by AAS. Because corresponding parts of congruent triangles are congruent, $\overline{L M} \cong \overline{L Q}$.
12. Sample answer:

$A B C D E \cong F G H I J$
When connecting any pair of corresponding vertices of congruent pentagons, a pair of congruent triangles will be formed by SAS. Because these diagonals are now corresponding parts of congruent triangles, the segments must be congruent.
13.

$$
\begin{array}{rlrlrl}
m \angle D & =m \angle A & m \angle E & =m \angle B & m \angle F & =m \angle C \\
(3 x+10)^{\circ} & =70^{\circ} & \left(\frac{y}{3}+20\right)^{\circ} & =60^{\circ} & \left(z^{2}+14\right)^{\circ} & =50^{\circ} \\
3 x & =60 & \frac{y}{3} & =40 & z^{2} & =36 \\
x & =20 & y & =120 & z & = \pm 6
\end{array}
$$

14. $\mathrm{B} ; \overline{B A} \cong \overline{B C}$ and $\angle B D C \cong \angle B D A$ are given. Also,
$\overline{B D} \cong \overline{B D}$ by the Reflexive Property. However, two pairs of congruent sides and a pair of non-included congruent angles are not enough to prove triangle congruence because there is no SSA congruence property.
15. Show $\overline{F G} \cong \overline{G F}$ by the Reflexive Property, so $\triangle K F G \cong \triangle H G F$ by AAS. Because $\overline{F K}$ and $\overline{G H}$ are corresponding parts of congruent triangles, $\overline{F K} \cong$ $\overline{G H}$. Also, $\angle F J K \cong \angle G J H$ by the Vertical Angles Congruence Theorem, so $\triangle F J K \cong \triangle G J H$ by AAS. Because corresponding parts of congruent triangles are congruent, $\angle 1 \cong \angle 2$.
16. $\triangle E A B \cong \triangle E D C$ by AAS. Because corresponding parts of congruent triangles are congruent, $\angle E B A \cong \angle E C D$. Because angles 1 and 2 are supplementary to congruent angles, $\angle 1 \cong \angle 2$.
17. $\angle S T R \cong \angle Q T P$ by the Vertical Angles Congruence Theorem. So $\triangle S T R \cong \triangle Q T P$ by ASA. $\overline{T R}$ and $\overline{T P}$ are corresponding sides of congruent triangles, so $\overline{T R} \cong \overline{T P}$. Because $\angle P T S$ and $\angle R T Q$ are vertical angles, $\triangle P T S \cong \triangle R T Q$ by SAS. Corresponding parts of congruent triangles are congruent, so $\angle 1 \cong \angle 2$.
18. Show $\triangle A B E \cong \triangle C B E$ by ASA, which gives you $\overline{A E} \cong \overline{C E}$. Use the Angle Addition Postulate and congruent angles to show $\angle F A E \cong \angle D C E$. Then $\triangle A E F \cong \triangle C E D$ by SAS, and $\angle 1 \cong \angle 2$.
19. Let P be the point where $\overleftrightarrow{N L}$ intersects $\overline{K M}$. Then $\triangle P K N \cong \triangle P M N$ by SSS. Corresponding parts of congruent triangles are congruent, so $\angle K P N \cong \angle M P N$. $\overline{P L} \cong \overline{P L}$ by the Reflexive Property, so $\triangle M P L \cong \triangle K P L$ by SAS. Because $\angle 1$ and $\angle 2$ are corresponding parts of congruent triangles, $\angle 1 \cong \angle 2$.
20. First, $\triangle T V Y \cong \triangle U X Z$ by SAS. $\overline{T Y}$ and $\overline{U Z}$ are corresponding parts of congruent triangles, so $\overline{T Y} \cong \overline{U Z}$. Then since $\overline{T Y} \| \overline{U Z}, \angle Y T W \cong \angle U Z W$ and $\angle T Y W \cong \angle Z U W$ by the Alternate Interior Angles Theorem. So $\triangle T W Y \cong \triangle Z W U$ by ASA. Then because corresponding parts of congruent triangles are congruent,
$\overline{T W} \cong \overline{Z W}$ and $\overline{Y W} \cong \overline{U W} . \angle T W U \cong \angle Z W Y$ by the Vertical Angles Theorem, so $\triangle T W U \cong \triangle Z W Y$ by SAS. $\angle 1 \cong \angle 2$ because corresponding parts of congruent triangles are congruent.
21. $A B=\sqrt{(6-3)^{2}+(11-7)^{2}}=\sqrt{25}=5$ $D E=\sqrt{(5-2)^{2}+(-8-(-4))^{2}}=\sqrt{25}=5$
So $\overline{A B} \cong \overline{D E}$.
$B C=\sqrt{(11-6)^{2}+(13-11)^{2}}=\sqrt{29}$
$E F=\sqrt{(10-5)^{2}+(-10-(-8))^{2}}=\sqrt{29}$
So $\overline{B C} \cong \overline{E F}$.
$A C=\sqrt{(11-3)^{2}+(13-7)^{2}}=\sqrt{100}=10$
$D F=\sqrt{(10-2)^{2}+(-10-(-4))^{2}}=\sqrt{100}=10$
So $\overline{A C} \cong \overline{D F}$.
Because all pairs of corresponding sides are congruent, $\triangle A B C \cong \triangle D E F$ by SSS. Therefore, since corresponding parts of congruent triangles are congruent, $\angle A \cong \angle D$.
22. $A B=\sqrt{(3-3)^{2}+(2-8)^{2}}=\sqrt{36}=6$
$D E=\sqrt{(5-(-1))^{2}+(5-5)^{2}}=\sqrt{36}=6$
So $\overline{A B} \cong \overline{D E}$.
$B C=\sqrt{(11-3)^{2}+(2-2)^{2}}=\sqrt{64}=8$
$E F=\sqrt{(5-5)^{2}+(13-5)^{2}}=\sqrt{64}=8$
So $\overline{B C} \cong \overline{E F}$.
$A C=\sqrt{(11-3)^{2}+(2-8)^{2}}=\sqrt{100}=10$
$D F=\sqrt{(5-(-1))^{2}+(13-5)^{2}}=\sqrt{100}=10$
So $\overline{A C} \cong \overline{D F}$.
Because all pairs of corresponding sides are congruent, $\triangle A B C \cong \triangle D E F$ by SSS. Therefore, because corresponding parts of congruent triangles are congruent, $\angle A \cong \angle D$.
23. Given: $\angle T \cong \angle U, \angle Z \cong \angle X, \overline{Y Z} \cong \overline{Y X}$

Prove: $\angle V Y X \cong \angle W Y Z$

Statements	Reasons
1. $\begin{aligned} & \angle T \cong \angle U, \overline{ } \\ & \angle Z \cong \angle X, \overline{Y Z} \cong \overline{Y X} \end{aligned}$	1. Given
2. $\triangle T Y Z \cong \triangle U Y X$	2. AAS
3. $\angle T Y Z \cong \angle U Y X$	3. Corr. parts of $\cong \star$ are \cong.
4. $m \angle T Y Z=m \angle U Y X$	4. Definiton of congruent angles
5. $m \angle T Y W+m \angle W Y Z$ $=m \angle T Y Z, m \angle T Y W+$ $m \angle V Y X=m \angle U Y X$	5. Angle Addition Postulate
$\begin{gathered} \text { 6. } m \angle T Y W+m \angle W Y Z= \\ m \angle T Y W+m \angle V Y X \end{gathered}$	6. Substitution
7. $m \angle W Y Z=m \angle V Y X$	7. Subtraction Property of Equality
8. $\angle W Y Z \cong \angle V Y X$	8. Definition of congruent angles

Geometry

24. Given: $\overline{F G} \cong \overline{H G} \cong \overline{J G} \cong \overline{K G}, \overline{J M} \cong \overline{K M} \cong \overline{L M} \cong \overline{N M}$ Prove: $\overline{F L} \cong \overline{H N}$

Statements	Reasons
1. $\begin{aligned} & \overline{F G} \cong \overline{H G} \cong \overline{J G} \cong \overline{K G}, \\ & \overline{J M} \cong \overline{K M} \cong \overline{L M} \cong \overline{N M} \end{aligned}$	1. Given
2. $\begin{aligned} & \angle F G J \cong \angle H G K, \\ & \angle J M L \cong \angle K M N \end{aligned}$	2. Vertical Angles Congruence Theorem
3. $\begin{aligned} & \triangle F G J \cong \triangle H G K, \\ & \triangle J M L \cong \triangle K M N \end{aligned}$	3. SAS
4. $\overline{F J} \cong \overline{H K}, \overline{J L} \cong \overline{K N}$	4. Corr. parts of \cong § are \cong.
5. $F J=H K, J L=K N$	5. Definition of congruent segments
6. $F J+J L=H K+K N$	6. Addition Property of Equaltiy
7. $F L=H N$	7. Segment Addition Postulate
8. $\overline{F L} \cong \overline{H N}$	8. Definition of congruent segments

25. Given: $\angle P R U \cong \angle Q V S, \overline{R S} \cong \overline{U V}$, $\angle T S U \cong \angle U S W \cong \angle T U S \cong \angle S U W$
Prove: $\triangle P U X \cong \triangle Q S Y$

Statements	Reasons
1. $\begin{aligned} & \angle P R U \cong \angle Q V S, \\ & \overline{R S} \cong \overline{U V}, \angle T S U \cong \\ & \angle U S W \cong \angle T U S \cong \\ & \angle S U W \end{aligned}$	1. Given
2. $\overline{S U} \cong \overline{S U}$	2. Reflexive Property of Congruence
3. $S U=S U, R S=U V$	3. Def. of congruent angles
4. $R S+S U=S U+U V$	4. Addition Prop. of Equality
5. $R U=S V$	5. Segment Add. Postulate
6. $\overline{R U} \cong \overline{S V}$	6. Def. of congruent segments
7. $\triangle Q S V \cong \triangle P U R$	7. ASA
8. $\begin{aligned} & \overline{P U} \cong \overline{Q S}, \\ & \angle R P U \cong \angle V Q S \end{aligned}$	8. Corr. parts of \cong § are \cong.
9. $m \angle T S U+m \angle U S W=$ $m \angle T S W, m \angle T U S+$ $m \angle S U W=m \angle T U W$	9. Angle Addition Postulate
$\text { 10. } m \angle T S U=m \angle U S W=$	10. Definition of congruent angles
11. $m \angle T S U=m \angle T S U=$ $m \angle T S W, m \angle T S U+$ $m \angle T S U=m \angle T U W$	11. Substitution
12. $m \angle T S W=m \angle T U W$	12. Transitive Property of Equality
13. $\angle T S W \cong m \angle T U W$	13. Definition of congruent angles
14. $\triangle P U X \cong \triangle Q S Y$	14. ASA

26. Given: $\overline{A D} \cong \overline{B D} \cong \overline{F D} \cong \overline{G D}$

Prove: $\overline{A C} \cong \overline{G E}$

Statements	Reasons			
1. $\overline{A D} \cong \overline{B D} \cong$	1. Given			
$\overline{F D} \cong \overline{G D}$		\quad	2. Vertical Angles Congruence	
:---	:---			
2. $\angle A D F \cong \angle B D G$	Theorem			
3. $\triangle A D F \cong \triangle G D B$	3. SAS			
4. $\angle C A D \cong \angle E G D$	4. Corr. parts of $\cong \mathbb{A}$ are \cong.			
5. $\angle A D C \cong \angle G D E$	5. Vertical Angles Congruence Theorem			
6. $\triangle A D C \cong \triangle G D E$	6. ASA			
7. $\overline{A C \cong \overline{G E}}$	7. Corr. parts of $\cong \mathbb{A}$ are \cong.			

27. $\triangle A B C \cong \triangle N P Q$ by ASA. Then $\overline{B C} \cong \overline{P Q} \cong \overline{E F} \cong \overline{H J}$. So, $\triangle A B C \cong \triangle D E F$ by HL and $\triangle A B C \cong \triangle G H J$ by SSS. $\triangle A B C, \triangle D E F, \triangle G H J$, and $\triangle N P Q$ are all congruent.

Problem Solving

28. Because $\overline{C D} \perp \overline{D E}$ and $\overline{C D} \perp \overline{A C}, \angle D$ and $\angle C$ are congruent right angles. $\angle D B E$ and $\angle C B A$ are vertical angles, so they are congruent. Because $\overline{D B} \cong \overline{C B}$, $\triangle D B E \cong \triangle C B A$ by ASA. Then because corresponding parts of congruent triangles are congruent, $\overline{A C} \cong \overline{D E}$. So you can find $A C$, the distance across the canyon, by measuring $D E$.
29. Given: $\overline{P Q}\|\overline{V S}, \overline{Q U}\| \overline{S T}, \overline{P Q} \cong \overline{V S}$

Prove: $\angle Q \cong \angle S$

Statements	Reasons		
1. $\overline{P Q} \\| \overline{V S}$ and $\overline{Q U} \\| \overline{S T}$.	1. Given		
2. $\angle Q P U \cong \angle S V T$,	2. Corresponding Angles		
$\angle Q U P \cong \angle S T V$	Postulate		
3. $\overline{P Q} \cong \overline{V S}$	3. Given		
4. $\triangle Q P U \cong \triangle S V T$	4. AAS		
5. $\angle Q \cong \angle S$	5. Corr. parts of $\cong \triangleq$ are \cong.		

30. By ASA, $\triangle A B C \cong \triangle E D C$ so $\overline{E D} \cong \overline{A B}$. Because $E C \approx 11.5 \mathrm{~m}$ and $C D \approx 2.5 \mathrm{~m}, E D \approx \sqrt{11.5^{2}-2.5^{2}}$ ≈ 11.2 by the Pythagorean Theorem. Because $\overline{E D}$ $\cong \overline{A B}$, then $A B$, the distance across the half pipe, is approximately 11.2 meters.
31. A; The SAS Congruence Postulate would not appear in the proof because you only have one pair of congruent sides, $\overline{W Z} \cong \overline{Z W}$.
32. Given: $\overline{A B} \cong \overline{A C}, \overline{B G} \cong \overline{C G}$ Prove: $\overrightarrow{A G}$ bisects $\angle A$.

Statements	Reasons
1. $\overline{A B} \cong \overline{A C}, \overline{B G} \cong \overline{C G}$	1. Given
2. $\overline{A G} \cong \overline{A G}$	2. Reflexive Property for Congruence
3. $\triangle C A G \cong \triangle B A G$	3. SSS
4. $\angle C A G \cong \angle B A G$	4. Corr. parts of \cong © are \cong.
5. $\overrightarrow{A G}$ bisects $\angle A$.	5. Definition of angle bisector

33. No; the given congruent angles are not the included angles, so you cannot prove that $\overline{A B} \cong \overline{B C}$.
34. Yes; $\triangle A D E \cong \triangle C D E$, so $\overline{A E} \cong \overline{C E}$ because corresponding parts of congruent triangles are congruent. Also, $\angle C E B \cong \angle A E B$ by the Right Angle Congruence Theorem. $\overline{B E} \cong \overline{B E}$ by the Reflexive Property, so $\triangle B A E \cong \triangle B C E$ by SAS. Because corresponding parts of congruent triangles are congruent, $\overline{A B} \cong \overline{B C}$.
35. Yes; By definition of a bisector, $\overline{A D} \cong \overline{C D} \cdot \overline{D B} \cong \overline{D B}$ by the Reflexive Property and $\angle A D B \cong \angle C D B$ by the Right Angles Congruence Theorem. So, $\triangle A D B$ $\cong \triangle C D B$ by SAS. Corresponding parts of congruent triangles are congruent, so $\overline{A B} \cong \overline{B C}$.
36. a.

Statements	Reasons
$\text { 1. } \begin{aligned} \overline{A P} & \cong \overline{B P} \\ \overline{A Q} & \cong \overline{B Q} \end{aligned}$	1. Given by construction
2. $\overline{P Q} \cong \overline{P Q}$	2. Reflexive Property of Congruence
3. $\triangle A P Q \cong \triangle B P Q$	3. SSS Congruence Postulate
4. $\angle A P M \cong \angle B P M$	4. Corr. parts of $\cong \subseteq$ are \cong.
5. $\overline{P M} \cong \overline{P M}$	5. Reflexive Property of Congruence
6. $\triangle A P M \cong \triangle B P M$	6. SAS Congruence Postulate
7. $\angle A M P \cong \angle B M P$	7. Corr. parts of $\cong \bigcirc$ are \cong.
8. $\overleftrightarrow{P M} \perp \overleftrightarrow{A B}$	8. If 2 lines intersect to form a linear pair of \cong \& , then the lines are \perp.
9. $\angle A M P$ and $\angle B M P$ are right angles.	9. If 2 lines are \perp, then they intersect to form 4 rt . \measuredangle.

b.

Statements	Reasons			
1. $\overline{A P} \cong \overline{B P}$,	1. Given by construction			
$\overline{A Q} \cong \overline{B Q}$	2. Reflexive Property of			
Congruence		$]$	2. $\overline{P Q} \cong \overline{P Q}$	3. SSS Congruence Postulate
:---	:---			
3. $\triangle A P Q \cong \triangle B P Q$	4. Corr. parts of $\cong \triangleq$ are $\cong . ~$			
4. $\angle Q P A \cong \angle Q P B$	5. If 2 lines intersect to form a linear pair of $\cong 太, ~ t h e n ~$ the lines are \perp.			

6. $\angle Q P A$ and $\angle Q P B$ are right angles.
7. If 2 lines are \perp, then they intersect to form 4 rt . \measuredangle.
8. Given: $\overline{M N} \cong \overline{K N}, \angle P M N \cong \angle N K L$, $\angle M J N$ and $\angle K Q N$ are right angles.
Prove: $\angle 1 \cong \angle 2$

Statements	Reasons
1. $\angle P M N \cong \angle N K L$	1. Given
2. $\overline{M N} \cong \overline{K N}$	2. Given
3. $\angle P N M \cong \angle L N K$	3. Vertical Angles Congruence Theorem
4. $\triangle P N M \cong \triangle L N K$	4. ASA
$\begin{aligned} & \text { 5. } \overline{P M} \cong \overline{L K}, \\ & \quad \angle M P J \cong \angle K L Q \end{aligned}$	5. Corr. parts of \cong \& are \cong.
6. $\angle P J M$ and $\angle L Q K$ are right angles.	6. Theorem 3.9
7. $\angle P J M \cong \angle L Q K$	7. Right Angles Congruence Theorem
8. $\triangle P J M \cong \triangle L Q K$	8. AAS
9. $\angle 1 \cong \angle 2$	9. Corr. parts of $\cong \triangleq$ are \cong.

38. Given: $\overline{T S} \cong \overline{T V}, \overline{S R} \cong \overline{V W}$

Prove: $\angle 1 \cong \angle 2$

Statements	Reasons
1. $\overline{T S} \cong \overline{T V}, \overline{S R} \cong \overline{V W}$	1. Given
2. $T S=T V, S R=V W$	2. Definition of congruent segments
$\begin{aligned} & \text { 3. } T S+S R=T R, \\ & T V+V W=T W \end{aligned}$	3. Segment Addition Postulate
4. $\begin{aligned} & T V+S R=T R, \\ & T V+S R=T W \end{aligned}$	4. Substitution Property of Equality
5. $T R=T W$	5. Transitive Property of Equality
6. $\overline{T R} \cong \overline{T W}$	6. Definition of congruent segments

Geometry

Statements	Reasons
7. $\angle R T V \cong \angle W T S$	7. Reflexive Property of Congruence
8. $\triangle R T V \cong \triangle W T S$	8. SAS
9. $\overline{R V \cong \overline{W S}}$	9. Corr. parts of \cong ® are \cong.
10. $\overline{S V} \cong \overline{V S}$	10. Reflexive Property of Congruence
11. $\triangle R S V \cong \triangle W V S$	11. SSS
12. $\angle R S V \cong \angle W V S$	12. Corr. parts of \cong § are \cong.
13. $\angle R S V$ and $\angle 1$ are	13. Linear Pair Postulate
supplementary.	
$\angle W V S$ and $\angle 2$ are	
supplementary.	14. Congruent Supplements
14. $\angle 1 \cong \angle 2$	Theorem

39. Given: $\overline{B A} \cong \overline{B C}, D$ and E are midpoints,
$\angle A \cong \angle C, \overline{D F} \cong \overline{E F}$
Prove: $\overline{F G} \cong \overline{F H}$

Statements	Reasons
1. $\overline{B A} \cong \overline{B C}, D$ and E are midpoints, $\begin{aligned} & \angle A \cong \angle C, \\ & \overline{D F} \cong \overline{E F} \end{aligned}$	1. Given
2. $\begin{aligned} & \overline{B D} \cong \overline{D A}, \\ & \overline{B E} \cong \overline{E C} \end{aligned}$	2. Definition of midpoint
3. $B D=D A, B E=E C$	3. Definition of congruent segments
$\text { 4. } \begin{aligned} B D+D A & =B A, \\ B E+E C & =B C \end{aligned}$	4. Segment Addition Postulate
$\begin{gathered} \text { 5. } B D+D A= \\ B E+E C \end{gathered}$	5. Substitution Property
$\text { 6. } B D+B D=~ 子 \begin{aligned} & B E+B E, D A+D A \\ & =E C+E C \end{aligned}$	6. Substitution Property of Equality
$\text { 7. } \begin{aligned} 2 B D & =2 B E, \\ 2 D A & =2 E C \end{aligned}$	7. Simplify.
8. $\begin{aligned} & B D=B E, \\ & D A=E C \end{aligned}$	8. Division Property of Equality
9. $\overline{\overline{B D}} \cong \overline{B E},$	9. Definition of congruent segments
10. $\overline{B J}$ containing point F	10. Construction
11. $\overline{B F} \cong \overline{B F}$	11. Reflexive Property of Congruence
12. $\triangle B F D \cong \triangle B F E$	12. SSS
$\text { 13. } \begin{aligned} & \angle B F E \cong \angle B F D, \\ & \angle B E F \cong \angle B D F \end{aligned}$	13. Corr. parts of \cong © are \cong.

Statements	Reasons
14. $\begin{aligned} & \angle B F E \cong \angle G F J, \\ & \angle B F D \cong \angle H F J \end{aligned}$	14. Vertical angles Congruence Theorem
15. $\angle G F J \cong \angle H F J$	15. Substitution
16. $\overline{F J} \cong \overline{F J}$	16. Reflexive Property of Segment Congruence
17. $\angle B E F$ and $\angle C E G$, $\angle B D F$ and $\angle A D H$ form linear pairs.	17. Definition of linear pair
18. $\angle B E F$ and $\angle C E G$, $\angle B D F$ and $\angle A D H$ are supplementary.	18. Linear Pair Postulate
19. $\angle C E G \cong \angle A D H$	19. Congruent Supplements Theorem
20. $\triangle C E G \cong \triangle A D H$	20. ASA
21. $\angle E G J \cong \angle D H J$	21. Corr. parts of $\cong \mathbb{\triangle}$ are \cong.
22. $\triangle G F J \cong \triangle H F J$	22. AAS
23. $\overline{F G} \cong \overline{F H}$	23. Corr. parts of \cong ® are \cong.

40. Given: $\overline{A B}\|\overline{E C}, \overline{A C}\| \overline{E D}, \overline{A B} \cong \overline{E D}, \overline{A C} \cong \overline{E C}$

Prove: $\overline{A D} \cong \overline{E B}$

Statements	Reasons		
1. $\overline{A B}\\|\overline{E C}, \overline{A C}\\| \overline{E D}$, $\overline{A B} \cong \overline{E D}, \overline{A C} \cong \overline{E C}$	1. Given		
	2. Alternate Interior Angles Theorem		
3. $\angle D E C \cong \angle B A C$	3. Transitive Property of Angle Congruence		
4. $\triangle D E C \cong \triangle B A C$	4. SAS		
$\begin{aligned} & \text { 5. } \overline{B C} \cong \overline{C D}, \\ & \quad \angle B C A \cong \angle D C E \end{aligned}$	5. Corr. parts of \cong \& are \cong.		
$\begin{gathered} \text { 6. } m \angle B C A= \\ m \angle D C E \end{gathered}$	6. Definition of congruent angles		
$\begin{aligned} & \text { 7. } m \angle B C A+m \angle A C E \\ &=m \angle D C E+ \\ & m \angle A C E \end{aligned}$	7. Addition Property of Equality		
$\begin{gathered} \text { 8. } m \angle B C E= \\ m \angle D C A \end{gathered}$	8. Angle Addition Postulate		
9. $\angle B C E \cong \angle D C A$	9. Definition of congruent angles		
10. $\triangle B C E \cong \triangle D C A$	10. SAS		
11. $\overline{A D} \cong \overline{E B}$	11. Corr. parts of \cong \& are \cong.		

Quiz for the lessons "Prove Triangles Congruent by SAS and HL", "Prove Triangles Congruent by ASA and AAS", and "Use Congruent Triangles"

1. SAS can be used to prove that the triangles are congruent.
2. HL can be used to prove that the right triangles are congruent.
3. AAS can be used to prove that the triangles are congruent.
4. Given: $\angle B A C \cong \angle D C A, \overline{A B} \cong \overline{C D}$

Prove: $\triangle A B C \cong \triangle C D A$

Statements	Reasons
1. $\overline{A B} \cong \overline{C D}$	1. Given
2. $\angle B A C \cong \angle D C A$	2. Given
3. $\overline{A C} \cong \overline{C A}$	3. Reflexive Property of Segment Congruence
4. $\triangle A B C \cong \triangle C D A$	4. SAS

5. Given: $\angle W \cong \angle Z, \overline{V W} \cong \overline{Y Z}$

Prove: $\triangle V W X \cong \triangle Y Z X$

Statements	Reasons
1. $\angle W \cong \angle Z$	1. Given
2. $\angle W X V \cong \angle Y X Z$	2. Vertical Angles Congruence Theorem
3. $\overline{V W} \cong \overline{Y Z}$	3. Given
4. $\triangle V W X \cong \triangle Y Z X$	4. AAS

6. Show that $\angle P \cong \angle M$ by the Right Angles Congruence Theorem and $\angle P L Q \cong \angle N L M$ by the Vertical Angles Theorem. $\overline{P Q} \cong \overline{M N}$ is given, so $\triangle P Q L \cong \triangle M N L$ by AAS. Then because corresponding parts of congruent triangles are congruent, $\overline{Q L} \cong \overline{N L}$.

Lesson 4.8 Use Isosceles and Equilateral Triangles

Guided Practice for the lesson "Use Isosceles and Equilateral Triangles"

1. If $\overline{H G} \cong \overline{H K}$, then $\angle H G K \cong \angle H K G$.
2. If $\angle K H J \cong \angle K J H$, then $\overline{H K} \cong \overline{K J}$.
3. $S T=T U$, so $S T=5$.
4. No; the Triangle Sum Theorem guarantees that the sum of the angles in a triangle will be 180°. Because an equilateral triangle contains three equal angles, each angle must measure exactly $\frac{180}{3}$, or 60°.
5. The large triangle is equilateral, so $x=60$. The smaller triangle is isosceles, with base angles $90^{\circ}-60^{\circ}$, or 30° each. So $y=180-30-30$, or 120 .
6. From part (b) in Example 4, $\triangle P Q T$ is isosceles, so $\overline{P T} \cong \overline{Q T}$. Then from part (c), $\triangle P T S \cong \triangle Q T R$, so $\overline{T R} \cong \overline{T S}$ because corresponding parts of congruent triangles are congruent. So $\overline{Q S} \cong \overline{P R}$ by substitution and the Segment Addition Postulate. $\overline{Q P} \cong \overline{P Q}$ by the Reflexive Property and $\overline{P S} \cong \overline{Q R}$ is given, so $\triangle Q P S \cong \triangle P Q R$ by SSS .

Exercises for the lesson "Use Isosceles and Equilateral Triangles"

Skill Practice

1. The vertex angle of an isosceles triangle is the angle formed by the congruent legs of the triangle.
2. In an isosceles triangle, the base angles are congruent.
3. If $\overline{A E} \cong \overline{D E}$, then $\angle A \cong \angle D$ by the Base Angles Theorem.
4. If $\overline{A B} \cong \overline{E B}$, then $\angle A \cong \angle B E A$ by the Base Angles Theorem.
5. If $\angle D \cong \angle C E D$, then $\overline{E C} \cong \overline{C D}$ by the Converse of Base Angles Theorem.
6. If $\angle E B C \cong \angle E C B$, then $\overline{E B} \cong \overline{E C}$ by the Converse of Base Angles Theorem.
7. $\triangle A B C$ is equilateral, so $A B=12$.
8. $\triangle M N L$ is equilateral, so $M L=16$.
9. $\triangle R S T$ is equilateral, so $\angle S T R$ is 60°.
10.

The vertex angle measures $180-37-37$, or 106°.
11. $3 x^{\circ}=60^{\circ}$
12. $5 x+5=35$
$x=20$
$5 x=30$
13. $9 x^{\circ}=27^{\circ}$
$x=8$
$x=6$
14. $\overline{A C}$ is not congruent to $\overline{B C}$. By the Converse of Base Angles Theorem, $\overline{A B} \cong \overline{B C}$, so $B C=5$.
15. $180^{\circ}-102^{\circ}=78^{\circ}$
$x^{\circ}=y^{\circ}=\frac{1}{2}(78)=39^{\circ}$
So $x=y=39$.
16. $(x+7)^{\circ}=55^{\circ}$

$$
\begin{aligned}
& \quad x=48 \\
& y=180^{\circ}-2(55)^{\circ} \\
& y=70
\end{aligned}
$$

17. $180^{\circ}-90^{\circ}=90^{\circ}$

$$
\begin{aligned}
x^{\circ} & =9 y^{\circ}=\frac{1}{2}(90)=45^{\circ} \\
x & =45 \\
9 y & =45 \\
y & =5
\end{aligned}
$$

18. No; Isosceles triangles could have a right or obtuse vertex angle, which would make the triangle right or obtuse.

Geometry

19. B;

$$
\begin{aligned}
3 x+4 & =22 \\
3 x & =18 \\
x & =6
\end{aligned}
$$

20. First, you find y by the Triangle Sum Theorem and the Base Angles Theorem.

$$
\begin{aligned}
2(2 y+64)^{\circ}+50^{\circ} & =180^{\circ} \\
4 y+128+50 & =180 \\
4 y & =2 \\
y & =\frac{1}{2}
\end{aligned}
$$

Then by the definition of a linear pair, the left triangle has a vertex measuring $180^{\circ}-\left(2\left(\frac{1}{2}\right)+64\right)^{\circ}$, or 115°.

Then to find x, use the Base Angles Theorem.

$$
\begin{aligned}
2\left(45-\frac{x}{4}\right)^{\circ}+115^{\circ} & =180^{\circ} \\
-\frac{x}{2}+205 & =180 \\
-\frac{x}{2} & =-25 \\
x & =50
\end{aligned}
$$

21. There is not enough information to find x or y. One of the vertex angles must be given.
22. By the Transitive Property of Congruence, all sides involving x and y are congruent. So first, solve the two expressions involving y, then use one of those expressions to solve for x.
23. $2 x+1=x+3$

$$
x=2
$$

Perimeter $=(x+3)+(2 x+1)+6$

$$
=2+3+2(2)+1+6=16 \text { feet }
$$

24. $4 x+1=x+4$

$$
3 x=3
$$

$$
x=1
$$

Perimeter $=(4 x+1)+(x+4)+7$

$$
=4(1)+1+1+4+7=17 \text { inches }
$$

25. $x+5=21-x$

$$
2 x=16
$$

$$
x=8
$$

Perimeter $=3(21-x)=3(21-8)=39$ inches
26. Not possible; The left triangle is isosceles with legs of length 7. If $x=90$, then the triangle would have base angles greater than 90°, which is not possible.
27. The x, y, and z values given are possible.
28. Not possible; If $x=25$ and $y=25$, then the supplementary angle to the left of y would be 155°. So the top left triangle would have an angle sum exceeding 180°, which is not possible.
29. The x, y, and z values given are possible.
30. $m \angle D+m \angle E+m \angle F=180^{\circ}$
$(4 x+2)^{\circ}+(6 x-30)^{\circ}+3 x^{\circ}=180^{\circ}$

$$
13 x=208
$$

$$
x=16
$$

$m \angle D=4 x+2=4(16)+2=66^{\circ}$
$m \angle E=6 x-30=6(16)-30=66^{\circ}$
$m \angle F=3 x=3(16)=48^{\circ}$
$\triangle D E F$ is isosceles. Because two angles have the same measure, two sides are the same length by the Converse of the Base Angles Theorem.
31. D is the midpoint of $\overline{A C}$, so $\overline{A D} \cong \overline{D C}$. Also, $\overline{B D} \perp \overline{A C}$, so $\angle A D B \cong \angle C D B$ by the Right Angles Congruence Theorem. Then by the Reflexive Property, $\overline{B D} \cong \overline{B D}$, so $\triangle B D A \cong \triangle B D C$ by SAS. Because corresponding parts of congruent triangles are congruent, $\overline{B A} \cong \overline{B C}$, so $\triangle A B C$ is isosceles.
32. One triangle is equiangular, so all angles are 60°. The other two triangles are congruent, so the vertices will be equal.

$$
\begin{aligned}
x^{\circ}+x^{\circ}+60^{\circ} & =360^{\circ} \\
2 x & =300 \\
x & =150
\end{aligned}
$$

33. The small top triangle is isosceles, with x° being a base angle. Because x and y are supplementary, $x+y=180^{\circ}$. Next consider the angles in the overall triangle. One angle measures x° and one is 90°. The other will be $\frac{180-y}{2}$, because the small bottom triangle is isosceles. The sum of the angles will be $x^{\circ}+90^{\circ}+\frac{180-y}{2}=$ 180°, which simplifies to $y=2 x$. Now you solve the system $x+y=180$ and $y=2 x$.

$$
\begin{aligned}
x+2 x & =180 \text { by substitution } \\
3 x & =180 \\
x & =60 \\
60+y & =10 \\
y & =120
\end{aligned}
$$

34. The top triangle is equiangular, and thus equilateral. So all angles in this triangle measure 60° and all sides have length 40 . Then the bottom triangle would have base angles of 30°, so the third angle is 120°. So $x^{\circ}=$ $60^{\circ}+30^{\circ}$, or $x=90$. Now the overall triangle is a right triangle with one leg of length 40 and the hypotenuse of length 80 . Use the Pythagorean Theorem to find y.
$8 y=\sqrt{80^{2}-40^{2}}$
$8 y \approx 69.28$
$y \approx 8.66$
35. There are two possible cases.
36. If the exterior angle is formed by extending a leg through the vertex angle, then the base angles must each be 65° and the vertex angle would be 50°.
37. If the exterior angle is formed by extending the base, then the base angles would each be 50° and the vertex angle would be 80°.
38. Because $\angle A$ is the vertex angle of isosceles $\triangle A B C$, $\angle B$ must be congruent to $\angle C$. Because 2 times any integer angle measure will always be an even integer, an even integer will be subtracted from 180 to find $m \angle A$. 180 minus an even integer will always be an even integer, therefore $m \angle A$ must be even.
39. If the exterior angle is formed by extending the base, the three angle measures will be: $180-x, 180-x$, and $180-(180-x)-(180-x)$, or $2 x-180$. If the exterior angle is formed by extending a leg, the three angle measures will be $180-x, \frac{x}{2}$, and $\frac{x}{2}$.

Problem Solving

38. $x=79$
$y^{\circ}=180^{\circ}-2(79)^{\circ}$
$y=22$
39.

Each side is 5 centimeters and each angle measures 60°.
40. $180^{\circ}-2(85)^{\circ}=10^{\circ}$

The vertex angle of the triangle is about 10°.
41. a. $\angle B A C \cong \angle C B D$ and $\angle B C A \cong \angle C D B$ by the Alternate Interior Angles Theorem. $\overline{B C} \cong \overline{B C}$ by the Reflexive Property. So $\triangle A B C \cong \triangle B C D$ by AAS.
b. The isosceles triangles are: $\triangle A B C, \triangle B C D, \triangle C D E, \triangle D E F, \triangle E F G$
c. Angles congruent to $\angle A B C$ are: $\angle B C D, \angle C D E, \angle D E F, \angle E F G$
42. a. The sides of each new triangle all contain the same number of congruent segments, so the triangles will be equilateral.
b. The areas of the first four triangles are $1,4,9$, and 16 square units.
c. The area pattern is $1^{2}, 2^{2}, 3^{2}, 4^{2} \ldots$ This sequence is the sequence of perfect squares. The seventh triangle will have an area of 7^{2}, or 49 square units.
43. $\overline{P Q} \cong \overline{P R}$, so $\angle Q \cong \angle R$.
$m \angle P=90^{\circ}$, so $m \angle Q=m \angle R=\frac{180^{\circ}-90^{\circ}}{2}$, or 45°.
44. If a triangle is equilateral, it is also isosceles. Using this fact, it can be shown that all angles in an equilateral triangle must be the same.
45. Given: $\angle B \cong \angle C$

Prove: $\overline{A B} \cong \overline{A C}$

Statements	Reasons
1. $\angle B \cong \angle C$	1. Given
2. Draw $\overline{A D}$, so $\overline{A D} \perp \overline{B C}$.	2. Perpendicular Postulate
3. $\angle A D C$ and $\angle A D B$ are right angles.	3. Definition of perpendicular lines
4. $\angle A D C \cong \angle A D B$	4. Right Angles Congruence Theorem
5. $\overline{A D} \cong \overline{A D}$. Reflexive Property of Congruence 6. $\triangle A D C \cong \triangle A D B$
6. AAS	
7. $\overline{A B} \cong \overline{A C}$	7. Corr. parts of \cong are \cong.

46. a. $\overline{A E} \cong \overline{D E}, \angle B A E \cong \angle C D E$, and $\overline{B A} \cong \overline{C D}$ are all given, so $\triangle A B E \cong \triangle D C E$ by SAS.
b. $\triangle A E D$ and $\triangle B E C$ are isosceles triangles.
c. $\angle E D A, \angle E B C$, and $\angle E C B$ are all congruent to $\angle E A D$.
d. No; $\triangle A E D$ and $\triangle B E C$ will still be isosceles triangles with $\angle B E C \cong \angle A E D$. So the angle congruencies in part (c) will remain the same.
47. No; $m \angle 1=50$, so $m \angle 2=50^{\circ}$. If $p \| q$, then the 45° angle would be the angle corresponding to $\angle 2$. Since 50° $\neq 45^{\circ}, p$ is not parallel to q.
48. Yes; $m \angle A B C=50^{\circ}$ by the Vertical Angles Congruence Theorem and $m \angle C A B=50^{\circ}$ by the Linear Pair Postulate, so $\angle A B C \cong \angle C A B$. By the Converse of the Base Angles Theorem, $\overline{A C} \cong \overline{B C}$, so $\triangle A B C$ is isosceles.
49. Given: $\triangle A B C$ is equilateral, $\angle C A D \cong \angle A B E \cong \angle B C F$. Prove: $\triangle D E F$ is equilateral.

Statements	Reasons
1. $\triangle A B C$ is equilateral,	1. Given
$\angle C A D \cong \angle A B E \cong \angle B C F$.	
2. $m \angle C A D=m \angle A B E=$ $m \angle B C F$	2. Definition of congruent angles
3. $m \angle C A D+m \angle D A B=$	3. Angle Addition Postulate

$m \angle C A B, m \angle A B E+$ $m \angle E B C=m \angle A B C$, $m \angle B C F+m \angle F C A=$ $m \angle B C A$
4. $m \angle C A B=m \angle A B C=$ $m \angle B C A$
5. $m \angle C A D+m \angle D A B=$ $m \angle A B E+m \angle E B C=$ $m \angle B C F+m \angle F C A$

Geometry

Statements
6. $m \angle C A D+m \angle D A B=$ $m \angle C A D+m \angle E B C=$ $m \angle C A D+m \angle F C A$
7. $m \angle D A B=m \angle E B C=$ $m \angle F C A$
8. $\angle D A B \cong \angle E B C \cong \angle F C A$
9. $\triangle A C F \cong \triangle C B E \cong \triangle B A D$
10. $\angle B E C \cong \angle A D B \cong$ $\angle C F A$
11. $\angle B E C$ and $\angle D E F, \angle A D B$ and $\angle E D F, \angle C F A$ and $\angle D F E$ are supplementary.
12. $\angle D E F \cong \angle E D F \cong$ $\angle D F E$
13. $\triangle D E F$ is equiangular.
14. $\triangle D E F$ is equilateral.

Reasons
6. Substitution Property of Equality
7. Subtraction Property of Equality
8. Definition of angle congruence
9. ASA
10. Corr. parts of \cong are \cong.
11. Linear Pair Postulate
12. Congruent Supplements Theorem
13. Definition of equiangular triangle
14. Corollary to the Converse of Base Angles Theorem
50. If V is at $(2,2)$, then the points T, U, and V will form a line, not a triangle. If V is anywhere else on the line $y=x, \triangle T U V$ will be formed and $\overline{T V} \cong \overline{U V}$ because T and U will always be the same distance from point V. So $\triangle T U V$ will be isosceles.
51. 3 possibilities:

$$
\begin{array}{rlrl}
5 t-12 & =3 t & 5 t-12 & =t+20 \\
2 t & =12 & 4 t & =32 \\
t & =6 & t & =8
\end{array}
$$

If $t=6,8$, or 10 , then the triangle will be isosceles.

Lesson 4.9 Perform Congruence Transformations

Investigating Geometry Activity for the lesson "Perform Congruence Transformations"

1. In a slide, the x-coordinates are changed by the amount the triangle was shifted up or down. The y-coordinates are changed by the amount the triangle was shifted left or right.
In a flip, only one coordinate of the triangle's vertices changes. The x-coordinate changes sign if the triangle is flipped over the y-axis or the y-coordinate changes sign if the triangle is flipped over the x-axis.
2. Yes; yes; When sliding or flipping a triangle, the size and shape do not change, only the position changes. So the original triangle is congruent to the new triangle.

Guided Practice for the lesson"Perform Congruence Transformations"

1. The transformation shown is a reflection.
2. The new coordinates are found by adding 1 to each x-coordinate and subtracting 1 from each y-coordinate.
$(x, y) \rightarrow(x+1, y-1)$
3. The y-coordinates are multiplied by -1 , so $\overline{R S}$ was reflected in the x-axis. $(x, y) \rightarrow(x,-y)$
4. $\triangle P Q R$ is a 180° rotation of $\triangle S T R$.
5. $P Q=S T=2$, so $\overline{P Q} \cong \overline{S T} . P R=S R=3$, so $\overline{P R} \cong \overline{S R} . \triangle P Q R$ and $\triangle S T R$ are right triangles, so $\triangle P Q R \cong \triangle S T R$ by HL. Therefore the transformation is a congruence transformation.

Exercises for the lesson "Perform Congruence Transformations"

Skill Practice

1. The new coordinates are formed by subtracting 1 from each x-coordinate and adding 4 to each y-coordinate.
2. The term congruence transformation is used because when an object is translated, reflected, or rotated, the new image is congruent to the original figure.
3. The transformation is a translation.
4. The transformation is a rotation.
5. The transformation is a reflection.
6. Yes; The moving part of the window is a translation.
7. No; The moving part of the window is not a translation.
8. Yes; The moving part of the window is a translation.
9. $(x, y) \rightarrow(x+2, y-3)$
$A(-3,1) \rightarrow(-1,-2)$
$B(2,3) \rightarrow(4,0)$
$C(3,0) \rightarrow(5,-3)$
$D(-1,-1) \rightarrow(1,-4)$

10. $(x, y) \rightarrow(x-1, y-5)$
$A(-3,1) \rightarrow(-4,-4)$
$B(2,3) \rightarrow(1,-2)$
$C(3,0) \rightarrow(2,-5)$
$D(-1,-1) \rightarrow(-2,-6)$

11. $(x, y) \rightarrow(x+4, y+1)$
$A(-3,1) \rightarrow(1,2)$
$B(2,3) \rightarrow(6,4)$
$C(3,0) \rightarrow(7,1)$
$D(-1,-1) \rightarrow(3,0)$
12. $(x, y) \rightarrow(x-2, y+3)$
$A(-3,1) \rightarrow(-5,4)$
$B(2,3) \rightarrow(0,6)$
$C(3,0) \rightarrow(1,3)$
$D(-1,-1) \rightarrow(-3,2)$

13. $(x, y) \rightarrow(x-4, y-2)$
14. $(x, y) \rightarrow(x+2, y-1)$
15. $(x, y) \rightarrow(x,-y)$
$(1,1) \rightarrow(1,-1)$
$(4,1) \rightarrow(4,-1)$
$(4,3) \rightarrow(4,-3)$
16. $(x, y) \rightarrow(x+6, y+3)$
17. $(x, y) \rightarrow(x-7, y+9)$

18. $(x, y) \rightarrow(x,-y)$
$(1,2) \rightarrow(1,-2)$
$(3,1) \rightarrow(3,-1)$
$(4,3) \rightarrow(4,-3)$
$(4,1) \rightarrow(4,-1)$
19. $(x, y) \rightarrow(x,-y)$
$(2,3) \rightarrow(2,-3)$
$(4,1) \rightarrow(4,-1)$
$(5,2) \rightarrow(5,-2)$

20. $\overline{C D}$ is a 90° clockwise rotation of $\overline{A B}$.

21. $\overline{C D}$ is not a rotation of $\overline{A B}$ because $m \angle A O C>m \angle B O D$.

22. $\overline{C D}$ is not a rotation of $\overline{A B}$ because the points are rotated in different directions.

23. $\overline{C D}$ is not a rotation of $\overline{A B}$ because $m \angle A O C>m \angle B O D$.

24. To find the angle of rotation, corresponding angles of the triangles should be used to find the rotation angle. The red triangle is rotated 90° clockwise.
25. Yes; Any point or line segment can be rotated 360° and be its own image.

26. If $(0,3)$ translates to $(0,0)$, then $(2,5)$ translates to $(2,2)$.
27. If $(0,3)$ translates to $(1,2)$, then $(2,5)$ translates to $(3,4)$.
28. If $(0,3)$ translates to $(-3,-2)$, then $(2,5)$ translates to $(-1,0)$.
29. $(x, y) \rightarrow(x+2, y-3)$
$(x, y) \rightarrow(4,0)$
$x+2=4 \quad y-3=0$

$$
x=2 \quad y=3
$$

The point on the original figure is $(2,3)$.
30. $(x, y) \rightarrow(-x, y)$
$(x, y) \rightarrow(-3,5)$
$-x=-3 \quad y=5$
$x=3$
The point on the original figure is $(3,5)$.
31. $(x, y) \rightarrow(x-7, y-4)$
$(x, y) \rightarrow(6,-9)$
$x-7=6 \quad y-4=-9$

$$
x=13 \quad y=-5
$$

The point on the original figure is $(13,-5)$.
32. Length of sides of upper triangle:
$\sqrt{(2-1)^{2}+(3-2)^{2}}=\sqrt{2}$
$\sqrt{(5-2)^{2}+(1-3)^{2}}=\sqrt{13}$
$\sqrt{(5-1)^{2}+(1-2)^{2}}=\sqrt{17}$
Length of sides of lower triangle:
$\sqrt{(0-(-1))^{2}+(1-0)^{2}}=\sqrt{2}$
$\sqrt{(3-0)^{2}+(-1-1)^{2}}=\sqrt{13}$
$\sqrt{(3-(-1))^{2}+(-1-0)^{2}}=\sqrt{17}$
Both triangles have congruent side lengths, so the triangles are congruent by SSS.
33. $\overline{U V}$ is a 90° clockwise rotation of $\overline{S T}$ about E.
34. $\overline{A V}$ is a 90° counterclockwise rotation of $\overline{B X}$ about E.
35. $\triangle D S T$ is a 180° rotation of $\triangle B W X$ about E.
36. $\triangle X Y C$ is a 180° rotation of $\triangle T U A$ about E.
37. $(x, y) \rightarrow(x-2, y+1)$

$$
\begin{aligned}
& A(2,3) \rightarrow(0,4)=C(m-3,4) \\
& B(4,2 a) \rightarrow(2,2 a+1)=D(n-9,5) \\
& m-3=0 \quad n-9=2 \quad 2 a+1=5 \\
& m=3 \quad n=11 \quad 2 a=4 \\
& a=2
\end{aligned}
$$

$$
\begin{aligned}
& (x, y) \rightarrow(x,-y) \\
& C(0,4) \rightarrow(0,-4)=E(0, g-6) \\
& D(2,5) \rightarrow(2,-5)=F(8 h,-5) \\
& g-6=-4 \quad 8 h=2 \\
& \quad g=2 \quad h=\frac{1}{4}
\end{aligned}
$$

So the variables are $m=3, n=11, a=2, g=2, h=\frac{1}{4}$.

Problem Solving

38. a. The designer can reflect the kite layout in the horizontal line.
b. The width of the top half of the kite is 2 feet, so the maximum width of the entire kite is 4 feet.
39. Starting at A, you will move the stencil 90° clockwise to get the design at B. To go from A to C, you move the stencil 90° counterclockwise.
40. a. Sample answer:
Мом тот
b. Sample answer:

41. a. The Black Knight moves up 2 spaces and to the left 1 space, so the translation is $(x, y) \rightarrow(x-1, y+2)$.
b. The White Knight moves down 1 space and to the right 2 spaces, so the translation is $(x, y) \rightarrow$ $(x+2, y-1)$.
c. No; the White Knight is directly below the Black Knight, so the Black Knight would miss the White Knight because it would have to move at least one square horizontally according to the rules.
42. slope $\overline{F E}=\frac{2-3}{-1-(-2)}=\frac{-1}{1}=-1$
slope $\overline{D E}=\frac{0-2}{-3-(-1)}=\frac{-2}{-2}=1$
So $\overline{F E} \perp \overline{D E}$ and $\angle F E D$ is a right angle.
slope $C B=\frac{1-2}{4-3}=\frac{-1}{1}=-1$
slope $A B=\frac{-1-1}{2-4}=\frac{-2}{-2}=1$
So $\overline{C B} \perp \overline{A B}$ and $\angle C B A$ is a right angle.
Length of hypotenuses:
$F D=\sqrt{(-2-(-3))^{2}+(3-0)^{2}}=\sqrt{10}$
$C A=\sqrt{(3-2)^{2}+(2-(-1))^{2}}=\sqrt{10}$
So $\overline{F D} \cong \overline{C A}$.

Length of corresponding legs:
$F E=\sqrt{(-1-(-2))^{2}+(2-3)^{2}}=\sqrt{2}$
$C B=\sqrt{(4-3)^{2}+(1-2)^{2}}=\sqrt{2}$
So $\overline{F E} \cong \overline{C B}$.
By the HL Congruence Theorem, $\triangle A B C \cong \triangle D E F$, so $\triangle D E F$ is a congruence transformation of $\triangle A B C$.
43. B; Figure B represents the reflection of the folded paper over the folded line, or the unfolded paper.
44. Undo translation and rotation:
$(x, y) \rightarrow(x, y-3) \rightarrow$ rotate 90° clockwise
$A(-4,4) \rightarrow(-4,1) \rightarrow(1,4)$
$B(-1,6) \rightarrow(-1,3) \rightarrow(3,1)$
$C(-1,4) \rightarrow(-1,1) \rightarrow(1,1)$
The vertices of the original triangle are $(1,4),(3,1)$, and $(1,1)$. The final image would be different if the original triangle was translated up 3 units and then rotated counterclockwise 90°. The final triangle would have vertices $(-7,1),(-4,3)$, and $(-4,1)$.

Quiz for the lessons "Use Isosceles and Equilateral Triangles" and "Perform Congruence Transformations"

1. $6 x+12=24$
$6 x=12$
$x=2$
2. $(3 x+48)^{\circ}=60^{\circ}$
x
$3 x=12$
$x=4$
3. $4 x+30=50$

$$
4 x=20
$$

$x=5$
4. $(x, y) \rightarrow(x+4, y-1)$
$E(0,2) \rightarrow(4,1)$
$F(2,1) \rightarrow(6,0)$
$G(1,0) \rightarrow(5,-1)$

The transformation is a translation.
5. $(x, y) \rightarrow(-x, y)$
$E(0,2) \rightarrow(0,2)$
$F(2,1) \rightarrow(-2,1)$
$G(1,0) \rightarrow(-1,0)$

The transformation is a reflection in the y-axis.
6. $(x, y) \rightarrow(x,-y)$
$E(0,2) \rightarrow(0,-2)$
$F(2,1) \rightarrow(2,-1)$
$G(1,0) \rightarrow(1,0)$

The transformation is a reflection in the x-axis.
7. $(x, y) \rightarrow(x-3, y+2)$
$E(0,2) \rightarrow(-3,4)$
$F(2,1) \rightarrow(-1,3)$
$G(1,0) \rightarrow(-2,2)$

The transformation is a translation.
8. No, Figure B is not a rotation of Figure A about the origin because not all the angles formed by connecting corresponding vertices are the same.

Mixed Review of Problem Solving for the lessons "Prove Triangles Congruent by ASA and AAS", "Use Congruent Triangles", "Use Isosceles and Equilateral Triangles", and "Perform Congruence Transformations"

1. a. Figure B is a reflection of Figure A in the y-axis.
b. Figure C is a 90° counterclockwise rotation of Figure A.
c. Figure D is a reflection of Figure A in the x-axis.
d. The pattern will be completed by rotating Figure A 90° clockwise and 180°.
2. No; because the given angle is not included between the given sides, more than one triangle could have these dimensions.
3. You friend could tell you either of the remaining two angles or the length of the other side that forms the 34° angle.
4. Yes; yes; $\angle A C D \cong \angle B C E$ by the Vertical Angles Congruence Theorem. $\overline{A C} \cong \overline{B C}$ and $\overline{D C} \cong \overline{E C}$ are given, so $\triangle A C D \cong \triangle B C E$ by SAS. Because corresponding parts of congruent triangles are congruent, $\overline{A D} \cong \overline{B E}$.
5. a. In $\triangle A B C$ it is given that $\overline{B A} \cong \overline{B C}$, so $\angle B C E \cong$ $\angle B A E$ by the Base Angles Theorem.
b. Given: $\overline{A B} \cong \overline{C B}, \overline{B E} \perp \overline{A C}, \angle A E F \cong \angle C E D$, $\angle E A F \cong \angle E C D$
Prove: $\overline{A F} \cong \overline{C D}$

Statements
1. $\overline{A B} \cong \overline{C B}$,
$\overline{B E} \perp \overline{A C}$,
$\angle A E F \cong \angle C E D$,
$\angle E A F \cong \angle E C D$

2. $\angle A E B$ and $\angle C E B$ are right angles.
3. $\angle A E B \cong \angle C E B$
4. $\angle B C E \cong \angle B A E$
5. $\triangle A E B \cong \triangle C E B$
6. $\overline{A E} \cong \overline{C E}$
7. $\triangle A E F \cong \triangle C E D$
8. $\overline{A F} \cong \overline{C D}$

Reasons

1. Given
2. Definition of perpendicular lines
3. Right Angles Congruence Theorem
4. Proven in Ex. 5(a).
5. AAS
6. Corr. parts of $\cong \triangleq$ are \cong.
7. ASA
8. Corr. parts of $\cong \&$ are \cong.
9. The triangles are congruent by AAS.

$$
\begin{aligned}
(4 x+17) \text { in. } & =45 \mathrm{in.} \\
4 x & =28 \\
x & =7
\end{aligned}
$$

Chapter Review for the chapter "Congruent Triangles"

1. A triangle with three congruent angles is called equiangular.
2. In an isosceles triangle, base angles are opposite the congruent sides while the congruent sides form the vertex angle.
3. An isosceles triangle has at least two congruent sides while a scalene triangle has no congruent sides.
4. Sample answer:

5. Corresponding angles: $\angle P$ and $\angle L, \angle Q$ and $\angle M$, $\angle R$ and $\angle N$
Corresponding sides: $\overline{P Q}$ and $\overline{L M}, \overline{P R}$ and $\overline{L N}$, $\overline{Q R}$ and $\overline{M N}$
6. $(2 x-25)^{\circ}=x^{\circ}+20^{\circ}$

$$
x=45
$$

$(2(45)-25)^{\circ}=65^{\circ}$
7. $8 x^{\circ}=2 x^{\circ}+90^{\circ}$

$$
6 x=90
$$

8. $(9 x+9)^{\circ}=5 x^{\circ}+45^{\circ}$
$x=15$

$$
4 x=36
$$

$8(15)^{\circ}=120^{\circ}$
$(9(9)+9)^{\circ}=90^{\circ}$
9. $m \angle B=180^{\circ}-50^{\circ}-70^{\circ}=60^{\circ}$
10. $\overline{A B} \cong \overline{U T}$, so $\overline{A B}=15 \mathrm{~m}$.
11. $\angle T \cong \angle B$, so $m \angle T=60^{\circ}$.
12. $\angle V \cong \angle A$, so $m \angle V=50^{\circ}$.
13. $(2 x+4)^{\circ}=180^{\circ}-120^{\circ}-20^{\circ}$

$$
\begin{array}{r}
2 x+4=40 \\
2 x=36
\end{array}
$$

$$
x=18
$$

14. $5 x^{\circ}=180^{\circ}-35^{\circ}-90^{\circ}$
$5 x=55$
$x=11$
15. The figure has been slid, so the transformation is a translation up and right.
16. The figure has been turned, so the transformation is a rotation.
17. The figure has been flipped, so the transformation is a reflection.
18. Check students' drawings.
19. True; $\overline{X Y} \cong \overline{R S}, \overline{Y Z} \cong \overline{S T}$, and $\overline{X Z} \cong \overline{R T}$, so $\triangle X Y Z \cong \triangle R S T$ by SSS.
20. Not true; $A C=5$ and $D B=4$, so $\overline{A C} \not \equiv \overline{D B}$. Therefore $\triangle A B C \nRightarrow \triangle D C B$.
21. True; $\angle Q S R \cong \angle T S U$ by the Vertical Angles Theorem. Because $\overline{Q S} \cong \overline{T S}$ and $\overline{R S} \cong \overline{U S}, \triangle Q R S \cong \triangle T U S$ by SAS.

Geometry

22. Not true; The triangle vertices are in the incorrect order. $\overline{D E} \cong \overline{H G}$ and $\overline{E F} \cong \overline{G F}$, so $\triangle D E F \cong \triangle H G F$ by HL.
23. $\overline{D E} \cong \overline{G H}, \angle D \cong \angle G, \angle F \cong \angle J$
24. $\overline{D F} \cong \overline{G J}, \angle F \cong \angle J, \angle D \cong \angle G$
25. Show $\triangle A C D$ and $\triangle B E D$ are congruent by AAS, which makes $\overline{A D}$ congruent to $\overline{B D} . \triangle A B D$ is then an isosceles triangle, which makes $\angle 1$ and $\angle 2$ congruent.
26. Show $\triangle F K H \cong \triangle F G H$ by HL. So $\angle 1 \cong \angle 2$ because corresponding parts of congruent triangles are congruent.
27. Show $\triangle Q S V \cong \triangle Q T V$ by SSS. So $\angle Q S V \cong \angle Q T V$ because corresponding parts of congruent triangles are congruent. Using vertical angles and the Transitive Property, you get $\angle 1 \cong \angle 2$.
28. $\angle L \cong \angle N$, so $x=65$.
29. $\triangle W X Y$ is equilateral;

$$
\begin{aligned}
\left(\frac{3}{2} x+30\right)^{\circ} & =60^{\circ} \\
\frac{3}{2} x & =30 \\
x & =20
\end{aligned}
$$

30. $\overline{T U} \cong \overline{V U}$;
$7 x+5=13-x$
$8 x=8$
$x=1$
31. $(x, y) \rightarrow(x-1, y+5)$
$Q(2,-1) \rightarrow(1,4)$
$R(5,-2) \rightarrow(4,3)$
$S(2,-3) \rightarrow(1,2)$

32. $(x, y) \rightarrow(x,-y)$
$Q(2,-1) \rightarrow(2,1)$
$R(5,-2) \rightarrow(5,2)$
$S(2,-3) \rightarrow(2,3)$

33. $(x, y) \rightarrow(-x,-y)$
$Q(2,-1) \rightarrow(-2,1)$
$R(5,-2) \rightarrow(-5,2)$
$S(2,-3) \rightarrow(-2,3)$

Chapter Test for the chapter "Congruent Triangles"

1. The triangle is equilateral and acute (or equiangular).
2. The triangle is scalene and right.
3. The triangle is isosceles and obtuse.
4. $x^{\circ}=180^{\circ}-30^{\circ}-80^{\circ}$

$$
x=70
$$

5. $2 x^{\circ}+x^{\circ}=180^{\circ}-90^{\circ}$

$$
\begin{aligned}
3 x & =90 \\
x & =30
\end{aligned}
$$

6. $x^{\circ}=180^{\circ}-55^{\circ}-50^{\circ}$

$$
x=75
$$

7. $3 x-5=10$
$(15 x+y)^{\circ}=90^{\circ}$

$$
\begin{array}{rlrl}
3 x & =15 & 15(5)+y & =90 \\
x & =5 & y & =15
\end{array}
$$

8. Sample answer: Rotation about point M and then a translation right and up.
9. $\triangle A B C \cong \triangle E D C$ can be proven by SAS because $\overline{A C} \cong \overline{E C}, \overline{B C} \cong \overline{D C}$, and $\angle A C B \cong \angle E C D$ by the Vertical Angles Congruence Theorem.
10. $\triangle F G H \cong \triangle J K L$ can be proven by ASA because both triangles are equilateral, so all angles are congruent by the Corollary to the Base Angles Theorem.
11. $\triangle M N P \cong \triangle P Q M$ can be proven by SSS because $\overline{M N} \cong \overline{P Q}, \overline{N P} \cong \overline{Q M}$, and $\overline{M P} \cong \overline{P M}$ by the Reflexive Property.
12. Given: $\triangle A B C$ is isosceles. $\overline{B D}$ bisects $\angle B$.

Prove: $\triangle A B D \cong \triangle C B D$

Statements	Reasons
1. $\triangle A B C$ is isosceles with base $\overline{A C}$.	1. Given
2. $\angle B A D \cong \angle B C D$	2. Base Angles Theorem
3. $\overline{B D} \cong \overline{B D}$	3. Reflexive Property of Congruence
4. $\overline{B D}$ bisects $\angle B$.	4. Given
5. $\angle A B D \cong \angle C B D$	5. Definition of angle bisector
6. $\triangle A B D \cong \triangle C B D$	6. AAS Congruence Theorem

13. a. $\triangle P Q R \cong \triangle S T U$ by HL if $\overline{P Q} \cong \overline{S T}$ or if $\overline{Q R} \cong \overline{T U}$.
b. $\triangle P Q R \cong \triangle S T U$ by AAS if $\angle P \cong \angle S$ or if $\angle R \cong \angle U$.
14. The figure transformation is a reflection.
15. The triangle transformation is a reflection.
16. The triangle transformation is a translation.

Algebra Review for the chapter "Congruent Triangles"

1. $x-6>-4$

$$
x>2
$$

2. $7-c \leq-1$
$-c \leq-8$

$$
c \geq 8
$$

3. $-54 \geq 6 x$
$-9 \geq x$
$x \leq-9$

4. $\frac{5}{2} t+8 \leq 33$
$\frac{5}{2} t \leq 25$
$t \leq 10$

5. $3(y+2)<3$

$$
y+2<1
$$

6. $\frac{1}{4} z<2$

7. $5 k+1 \geq-11$
8. $13.6>-0.8-7.2 r$
$14.4>-7.2 r$
$-2<r$
$r>-2$

9. $6 x+7<2 x-3$

$$
4 x<-10
$$

$$
x<-\frac{10}{4}
$$

$$
x<-\frac{5}{2}
$$

10. $-v+12 \leq 9-2 v$

11. $4(n+5) \geq 5-n$
$4 n+20 \geq 5-n$

$$
5 n \geq-15
$$

$$
\begin{aligned}
& 5 k \geq-12 \\
& k \geq-\frac{12}{5}
\end{aligned}
$$

12. $5 y+3 \geq 2(y-9)$
$5 y+3 \geq 2 y-18$

$$
\begin{array}{rlllll}
3 y & \geq-21 \\
y & \geq-7 \\
& \\
\hline
\end{array}
$$

13. $|x-5|=3$

$$
\begin{aligned}
x-5 & =3 & \text { or } & & x-5 & =-3 \\
x & =8 & & & x & =2
\end{aligned}
$$

The solutions are 2 and 8 .
14. $|x+6|=2$
$x+6=2$ or $x+6=-2$

$$
x=-4 \quad x=-8
$$

The solutions are -8 and -4 .
15. $|4-x|=4$

$$
4-x=4 \quad \text { or } \quad 4-x=-4
$$

$$
0=x
$$

$$
8=x
$$

The solutions are 0 and 8 .
16. $|2-x|=0.5$
$2-x=0.5 \quad$ or $\quad 2-x=-0.5$

$$
1.5=x \quad 2.5=x
$$

The solutions are 1.5 and 2.5 .
17. $|3 x-1|=8$

$$
\begin{array}{rlrlrl}
3 x-1 & =8 & \text { or } & 3 x-1 & =-8 \\
3 x & =9 & & 3 x & =-7 \\
x & =3 & x & =-\frac{7}{3}
\end{array}
$$

The solutions are $-\frac{7}{3}$ and 3 .
18. $|4 x+5|=7$

$$
\begin{aligned}
4 x+5 & =7 & \text { or } & 4 x+5 & =-7 \\
4 x & =2 & & 4 x & =-12 \\
x & =\frac{1}{2} & & x & =-3
\end{aligned}
$$

The solutions are -3 and $\frac{1}{2}$.
19. $|x-1.3|=2.1$

$$
\begin{aligned}
x-1.3 & =2.1 & \text { or } & & x-1.3 & =-2.1 \\
x & =3.4 & & & x & =-0.8
\end{aligned}
$$

The solutions are -0.8 and 3.4.
20. $|3 x-15|=0$

$$
\begin{aligned}
3 x-15 & =0 \\
3 x & =15 \\
x & =5
\end{aligned}
$$

The solution is 5 .
21. $|6 x-2|=4$
$6 x-2=4 \quad$ or $\quad 6 x-2=-4$

$$
\begin{array}{rlrl}
6 x & =6 & 6 x & =-2 \\
x & =1 & x & =-\frac{1}{3}
\end{array}
$$

The solutions are $-\frac{1}{3}$ and 1 .
22. $|8 x+1|=17$

$$
\begin{array}{rlrlrl}
8 x+1 & =17 & \text { or } & 8 x+1 & =-17 \\
8 x & =16 & & 8 x & =-18 \\
x & =2 & x & =-\frac{9}{4}
\end{array}
$$

The solutions are $-\frac{9}{4}$ and 2 .
23. $|9-2 x|=19$

$$
\begin{array}{rlrlrl}
9-2 x & =19 & \text { or } & & 9-2 x & =-19 \\
-2 x & =10 & & -2 x & =-28 \\
x & =-5 & & x & =14
\end{array}
$$

The solutions are -5 and 14 .
24. $|0.5 x-4|=2$

$$
\begin{array}{rlrlrl}
0.5 x-4 & =2 & \text { or } & & 0.5 x-4 & =-2 \\
0.5 x & =6 & & 0.5 x & =2
\end{array}
$$

$$
x=12 \quad x=4
$$

The solutions are 4 and 12 .
25. $|5 x-2|=8$

$$
\begin{array}{rlrlrl}
5 x-2 & =8 & \text { or } & 5 x-2 & =-8 \\
5 x & =10 & 5 x & =-6 \\
x & =2 & x & =-\frac{6}{5}
\end{array}
$$

The solutions are $-\frac{6}{5}$ and 2 .
26. $|7 x+4|=11$

$$
\begin{array}{rlrlrl}
7 x+4 & =11 & \text { or } & & 7 x+4 & =-11 \\
7 x & =7 & & 7 x & =-15 \\
x & =1 & x & =-\frac{15}{7}
\end{array}
$$

The solutions are $-\frac{15}{7}$ and 1 .
27. $|3 x-11|=4$
$3 x-11=4 \quad$ or $\quad 3 x-11=-4$

$$
\begin{array}{rlrl}
3 x & =15 & 3 x & =7 \\
x & =5 & x & =\frac{7}{3}
\end{array}
$$

The solutions are $\frac{7}{3}$ and 5 .

Extra Practice

For the chapter "Congruent Triangles"

1.

$$
\begin{aligned}
A B & =\sqrt{(-1-(-1))^{2}+(2-(-2))^{2}} \\
& =\sqrt{0+16}=\sqrt{16}=4 \\
A C & =\sqrt{(4-(-1))^{2}+(2-(-2))^{2}}=\sqrt{25+16}=\sqrt{41} \\
B C & =\sqrt{(4-(-1))^{2}+(2-2)^{2}}=\sqrt{25+0}=\sqrt{25}=5
\end{aligned}
$$

Because no sides are congruent, the triangle is scalene.
Slope of $\overline{A B}$: $m=\frac{2-(-2)}{-1-(-1)}=\frac{4}{0}$ undefined
Slope of $\overline{B C}$: $m=\frac{2-2}{4-(-1)}=\frac{0}{5}=0$
Because $\overline{A B}$ is vertical and $\overline{B C}$ is horizontal, $\overline{A B} \perp \overline{B C}$.
So, the triangle is a right triangle.
2.

$A B=\sqrt{(3-(-1))^{2}+(1-(-1))^{2}}=\sqrt{16+4}=\sqrt{20}$
$A C=\sqrt{(2-(-1))^{2}+(-2-(-1))^{2}}=\sqrt{9+1}=\sqrt{10}$
$B C=\sqrt{(2-3)^{2}+(-2-1)^{2}}=\sqrt{1+9}=\sqrt{10}$
Because two sides are congruent, the triangle is isosceles.
Slope of $\overline{A C}$: $m=\frac{-2-(-1)}{2-(-1)}=\frac{-1}{3}=-\frac{1}{3}$
Slope of $\overline{B C}$: $m=\frac{-2-1}{2-3}=\frac{-3}{-1}=3$
Because $-\frac{1}{3} \cdot 3=-1, \overline{A C} \perp \overline{B C}$. So, the triangle is a right triangle.
3.

$A B=\sqrt{(2-(-3))^{2}+(4-4)^{2}}=\sqrt{25+0}=\sqrt{25}=5$
$A C=\sqrt{(5-(-3))^{2}+(-2-4)^{2}}$
$=\sqrt{64+36}=\sqrt{100}=10$
$B C=\sqrt{(5-2)^{2}+(-2-4)^{2}}=\sqrt{9+36}=\sqrt{45}$
Because no sides are congruent, the triangle is scalene.
Slope of $\overline{A B}$: $m=\frac{4-4}{2-(-3)}=\frac{0}{5}=0$
Slope of $\overline{A C}: m=\frac{-2-4}{5-(-3)}=\frac{-6}{8}=-\frac{3}{4}$
Slope of $\overline{B C}$: $m=\frac{-2-4}{5-2}=\frac{-6}{3}=-2$
Because there are not any negative reciprocals, there are no perpendicular lines. So, the triangle is not a right triangle.
4. $x^{\circ}+3 x^{\circ}+56^{\circ}=180^{\circ}$

$$
\begin{aligned}
4 x+56 & =180 \\
4 x & =124 \\
x & =31
\end{aligned}
$$

The angles of the triangle are $31^{\circ},(3 \times 31)^{\circ}=93^{\circ}$, and 56°. So, the triangle is an obtuse triangle.
5. $x^{\circ}+(x+1)^{\circ}+(x+5)^{\circ}=180^{\circ}$

$$
\begin{aligned}
3 x+6 & =180 \\
3 x & =174 \\
x & =58
\end{aligned}
$$

The angles of the triangle are $58^{\circ},(58+1)^{\circ}=59^{\circ}$, and $(58+5)^{\circ}=63^{\circ}$. So, the triangle is an acute triangle.
6. Because the angles form a linear pair, $60^{\circ}+x^{\circ}=180^{\circ}$. So, $x=120$. The angles of the triangle are $90^{\circ}, 60^{\circ}$, and $(180-90-60)^{\circ}=30^{\circ}$. So, the triangle is a right triangle.
7. $\triangle D F G \cong \triangle F D E$; it is given that $\angle D G F \cong \angle F E D$ and $\angle G F D \cong \angle E D F ; \angle F D G \cong \angle D F E$ by the Third Angles Theorem; it is given that $\overline{D G} \cong \overline{F E}$ and $\overline{G F} \cong \overline{E D}$; $\overline{F D} \cong \overline{F D}$ by the Reflexive Property of Congruence; $\triangle D F G \cong \triangle F D E$ by the definition of congruence.
8. $\triangle J N M \cong \triangle K M L$; it is given that all pairs of corresponding sides are congruent and that $\angle J \cong \angle K$; $\angle N \cong \angle K M L$ by the Corresponding Angles Postulate; $\angle J M N \cong \angle L$ by the Third Angles Theorem; $\triangle J N M \cong \triangle K M L$ by the definition of congruence.
9. $S T W X \cong U T W V$; all pairs of corresponding angles and sides are congruent.
10. $5 x^{\circ}+36^{\circ}+49^{\circ}=180^{\circ}$

$$
\text { 11. }(7 x-5)^{\circ}=44^{\circ}
$$

$$
\begin{array}{rlrl}
5 x+85 & =180 & 7 x & =49 \\
5 x & =95 & x & =7 \\
x & =19 &
\end{array}
$$

12. No; the labels are not in the appropriate order to match the sides that are congruent. A true congruence statement would be $\triangle P Q R \cong \triangle T V U$.
13. No; the labels are not in the appropriate order to match the sides that are congruent. A true congruence statement would be $\triangle J K M \cong \triangle L K M$.
14. No; a true congruence statement would be $\triangle P Q R \cong \triangle T V U$.
15. No; a true congruence statement would be $\triangle J K M \cong \triangle L K M$.
16. Yes; use the Sedment Addition Postulate to get $\overline{A C} \cong \overline{B D}$. Also, $\overline{C D} \cong \overline{C D}$, so use the SSS Congruence Postulate.
17. $\triangle X U V \cong \triangle V W X$; because $\overline{X V} \cong \overline{X V}$, the triangles are congruent by the HL Congruence Theorem.
18. $\triangle N R M \cong \triangle P R Q$; because $\angle N R M \cong \angle P R Q$ by the Vertical Angles Congruence Theorem, $\triangle N R M \cong \triangle P R Q$ by the SAS Congruence Postulate.
19. $\triangle H J L \cong \triangle K L J ; \angle H J L \cong \angle J L K$ by the Alternate Interior Angles Theorem. Because $\overline{J L} \cong \overline{L J}, \triangle H J L \cong$ $\triangle K L J$ by the SAS Congruence Postulate.
20. Yes; because $\angle H L G \cong \angle K L J$ by the Vertical Angles Congruence Theorem, $\triangle G H L \cong \triangle J K L$ by the ASA Congruence Postulate.
21. Yes; because $\overline{Q N} \cong \overline{Q N}, \triangle M N Q \cong \triangle P N Q$ by the AAS Congruence Theorem.
22. No; you can only show that all 3 angles are congruent.
23. Yes; $\triangle A B C \cong \triangle D E F$ by the ASA Congruence Postulate.
24. No; there is no SSA Congruence Postulate.
25. State the given information from the diagram, and state that $\overline{A C} \cong \overline{A C}$ by the Reflexive Property of Congruence. Then use the SAS Congruence Postulate to prove $\triangle A B C \cong \triangle C D A$, and state $\angle 1 \cong \angle 2$ because corresponding parts of congruent triangles are congruent.
26. State the given information from the diagram. Prove $\triangle D E F \cong \triangle G H J$ by the HL Congruence Theorem, and state $\angle 1 \cong \angle 2$ because corresponding parts of congruent triangles are congruent.
27. State the given information from the diagram, and state that $\overline{S R} \cong \overline{S R}$ by the Reflexive Property of Congruence. Then use the Segment Addition Postulate to show that $\overline{P R} \cong \overline{U S}$. Use the SAS Congruence Postulate to prove $\triangle Q P R \cong \triangle T U S$, and state $\angle 1 \cong \angle 2$ because corresponding parts of congruent triangles are congruent.
28. $A B=\sqrt{(6-0)^{2}+(0-8)^{2}}=\sqrt{36+64}=\sqrt{100}=10$
$A C=\sqrt{(0-0)^{2}+(0-8)^{2}}=\sqrt{0+64}=\sqrt{64}=8$
$B C=\sqrt{(0-6)^{2}+(0-0)^{2}}=\sqrt{36+0}=\sqrt{36}=6$
$D E=\sqrt{(9-3)^{2}+(2-10)^{2}}$
$=\sqrt{36+64}=\sqrt{100}=10$
$D F=\sqrt{(3-3)^{2}+(2-10)^{2}}=\sqrt{0+64}=\sqrt{64}=8$
$E F=\sqrt{(3-9)^{2}+(2-2)^{2}}=\sqrt{36+0}=\sqrt{36}=6$
Because all 3 pairs of corresponding sides are congruent, $\triangle A B C \cong \triangle D E F$ by the SSS Congruence Postulate. Then, $\angle A \cong \angle D$ because corresponding parts of congruent triangles are congruent.
29. $A B=\sqrt{(-2-(-3))^{2}+(3-(-2))^{2}}$

$$
=\sqrt{1+25}=\sqrt{26}
$$

$A C=\sqrt{(2-(-3))^{2}+(2-(-2))^{2}}$

$$
=\sqrt{25+16}=\sqrt{41}
$$

$B C=\sqrt{(2-(-2))^{2}+(2-3)^{2}}=\sqrt{16+1}=\sqrt{17}$
$D E=\sqrt{(6-5)^{2}+(6-1)^{2}}=\sqrt{1+25}=\sqrt{26}$
$D F=\sqrt{(10-5)^{2}+(5-1)^{2}}=\sqrt{25+16}=\sqrt{41}$
$E F=\sqrt{(10-6)^{2}+(5-6)^{2}}=\sqrt{16+1}=\sqrt{17}$
Because all 3 pairs of corresponding sides are congruent, $\triangle A B C \cong \triangle D E F$ by the SSS Congruence Postulate. Then, $\angle A \cong \angle D$ because corresponding parts of congruent triangles are congruent.
30. $x^{\circ}+y^{\circ}+132^{\circ}=180^{\circ}$
$x^{\circ}+x^{\circ}+132^{\circ}=180^{\circ}$
$2 x^{\circ}=48^{\circ}$
$x=24$

$$
y=x=24
$$

Geometry

31. $9 x+12=12 x-6$

$$
\begin{aligned}
-3 x & =-18 \\
x & =6
\end{aligned}
$$

$$
\begin{aligned}
(9 x-12)^{\circ}+(12 x-6)^{\circ}+y^{\circ} & =180^{\circ} \\
9 x+12+12 x-6+y & =180 \\
21 x+6+y & =180 \\
y & =174-21 x \\
y & =174-21(6)=48
\end{aligned}
$$

32. $2 x-3=11$

$$
y+4=11
$$

$$
2 x=14
$$

$$
y=7
$$

$$
x=7
$$

33. $6 x-5=x+5$

$$
\begin{aligned}
5 x & =10 \\
x & =2
\end{aligned}
$$

34. $2(x+1)^{\circ}=62^{\circ}$

$$
\begin{aligned}
2 x+2 & =62 \\
2 x & =60 \\
x & =30
\end{aligned}
$$

$$
\begin{aligned}
2(x+1)^{\circ}+62^{\circ}+y^{\circ} & =180^{\circ} \\
2 x+2+62+y & =180 \\
2 x+64+y & =180 \\
y & =116-2 x \\
y & =116-2(30) \\
& =56
\end{aligned}
$$

35. Because the triangle is a right triangle with two congruent sides, the 2 remaining angles must measure $\frac{180^{\circ}-90^{\circ}}{2}=\frac{90^{\circ}}{2}=45^{\circ}$.

$$
\begin{array}{rlrl}
(2 x-11)^{\circ} & =45^{\circ} & (y+16)^{\circ} & =45^{\circ} \\
2 x & =56 & y & =29 \\
x & =28 &
\end{array}
$$

36.

37.

38.

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.
39.

Yes, $\overline{C D}$ is a rotation of $\overline{A B}$; the rotation is 180°.
40.

No, $\overline{C D}$ is not a rotation of $\overline{A B}$.

