
Chapter 4

Duality

Given any linear program, there is another related linear program called the
dual. In this chapter, we will develop an understanding of the dual linear
program. This understanding translates to important insights about many
optimization problems and algorithms. We begin in the next section by
exploring the main concepts of duality through the simple graphical example
of building cars and trucks that was introduced in Section 3.1.1. Then, we
will develop the theory of duality in greater generality and explore more
sophisticated applications.

4.1 A Graphical Example

Recall the linear program from Section 3.1.1, which determines the optimal
numbers of cars and trucks to build in light of capacity constraints. There are
two decision variables: the number of cars x1 in thousands and the number
of trucks x2 in thousands. The linear program is given by

maximize 3x1 + 2.5x2 (profit in thousands of dollars)
subject to 4.44x1 ≤ 100 (car assembly capacity)

6.67x2 ≤ 100 (truck assembly capacity)
4x1 + 2.86x2 ≤ 100 (metal stamping capacity)
3x1 + 6x2 ≤ 100 (engine assembly capacity)
x ≥ 0 (nonnegative production).

The optimal solution is given approximately by x1 = 20.4 and x2 = 6.5,
generating a profit of about $77.3 million. The constraints, feasible region,
and optimal solution are illustrated in Figure 4.1.
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Figure 4.1: The constraints, feasible region, and optimal solution of the linear
program associated with building cars and trucks.

Written in matrix notation, the linear program becomes

maximize cT x
subject to Ax ≤ b

x ≥ 0,

where

c =

[
3

2.5

]
, A =


4.44 0
0 6.67
4 2.86
3 6

 and b =


100
100
100
100

 .

The optimal solution of our problem is a basic feasible solution. Since
there are two decision variables, each basic feasible solution is characterized
by a set of two linearly independent binding constraints. At the optimal
solution, the two binding constraints are those associated with metal stamp-
ing and engine assembly capacity. Hence, the optimal solution is the unique
solution to a pair of linear equations:

4x1 + 2.86x2 = 100 (metal stamping capacity is binding)
3x1 + 6x2 = 100 (engine assembly capacity is binding).

In matrix form, these equations can be written as Ax = b, where

A =

[
(A3∗)

T

(A4∗)
T

]
and b =

[
b3

b4

]
.
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Note that the matrix A has full rank. Therefore, it has an inverse A
−1

.
Through some calculations, we get (approximately)

A
−1

=

[
0.389 −0.185
−0.195 0.259

]
.

The optimal solution of the linear program is given by x = A
−1

b, and there-

fore, the optimal profit is cT A
−1

b = 77.3.

4.1.1 Sensitivity Analysis

Suppose we wish to increase profit by expanding manufacturing capacities.
In such a situation, it is useful to think of profit as a function of a vector
∆ ∈ <4 of changes to capacity. We denote this profit by z(∆), defined to be
the maximal objective value associated with the linear program

maximize cT x
subject to Ax ≤ b + ∆

x ≥ 0.
(4.1)

Hence, the maximal profit in our original linear program is equal to z(0). In
this section, we will examine how incremental changes in capacities influence
the optimal profit z(∆). The study of such changes is called sensitivity
analysis.

Consider a situation where the metal stamping and engine assembly ca-
pacity constraints are binding at the optimal solution to the linear program

(4.1). Then, this optimal solution must be given by x = A
−1

(b+∆), and the

optimal profit must be z(∆) = cT A
−1

(b + ∆), where

∆ =

[
∆3

∆4

]
.

Furthermore, the difference in profit is z(∆)− z(0) = cT A
−1

∆.
This matrix equation provides a way to gauge the impact of changes in

capacities on optimal profit in the event that the set of binding constraints
does not change. It turns out that this also gives us the information required
to conduct sensitivity analysis. This is because small changes in capacities
will not change which constraints are binding. To understand why, consider
the illustration in Figure 4.2, where the engine assembly capacity is increased
by a small amount. Clearly, the new optimal solution is still at the inter-
section where metal stamping and engine assembly capacity constraints are
binding. Similarly, though not illustrated in the figure, one can easily see that
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incremental changes in any of the other capacity constraints will not change
the fact that metal stamping and engine assembly capacity constraints are
binding.

10 20 30 40

10

20

30

40

trucks produced (thousands)

c
a
rs

 p
ro

d
u
c
e
d
 (

th
o
u
s
a
n
d
s
)

original


optimum

new


optimum

Figure 4.2: Changes in the optimal solution brought about by a small increase in
capacity for engine assembly.

This observation does not hold when we consider large changes. As illus-
trated in Figure 4.3, sufficiently large changes can result in a different set of
binding constraints. The figure shows how after a large increase in engine
assembly capacity, the associated constraint is no longer binding. Instead,
the truck assembly capacity constraint becomes binding.

The sensitivity yi of profit to quantity of the ith resource is the rate
at which z(∆) increases as ∆i increases, starting from ∆i = 0. It is clear
that small changes in non binding capacities do not influence profit. Hence,

y1 = y2 = 0. From the preceding discussion, we have z(∆)− z(0) = cT A
−1

∆,
and therefore

[
y3 y4

]
= cT A

−1
=

[
3 2.5

] [
0.389 −0.185
−0.195 0.259

]
=

[
0.681 0.092

]
.

In other words, the sensitivity is about $0.681 million per percentage of
metal stamping capacity and $0.092 million per percentage of engine assem-
bly capacity. If a 1% increase in metal stamping capacity requires the same
investment as a 1% increase in engine assembly, we should invest in metal
stamping.
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Figure 4.3: Changes in the optimal solution brought about by a large increase in
capacity for engine assembly.

4.1.2 Shadow Prices and Valuation of the Firm

The sensitivities of profit to resource quantities are commonly called shadow
prices. Each ith resource has a shadow price yi. In our example of building
cars and trucks, shadow prices for car and truck assembly capacity are zero.
Shadow prices of engine assembly and metal stamping capacity, on the other
hand, are $0.092 and $0.681 million per percent. Based on the discussion
in the previous section, if the metal stamping and engine assembly capacity
constraints remain binding when resource quantities are set at b + ∆, the
optimal profit is given by z(∆) = z(0) + yT ∆.

A shadow price represents the maximal price at which we should be willing
to buy additional units of a resource. It also represents the minimal price at
which we should be willing to sell units of the resource. A shadow price might
therefore be thought of as the value per unit of a resource. Remarkably, if we
compute the value of our entire stock of resources based on shadow prices,
we get our optimal profit! For instance, in our example of building cars and
trucks, we have

0.092× 100 + 0.681× 100 = 77.3.

As we will now explain, this is not just a coincidence but reflects a funda-
mental property of shadow prices.

From the discussion above we know that as long as the metal stamping
and engine assembly constraints are binding, that z(∆) = z(0) + yT ∆. If
we let ∆ = −b, then the resulting linear program has 0 capacity at each
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plant, so the optimal solution is 0, with associated profit of 0. Moreover,
both the metal stamping and engine assembly constraints are still binding.
This means that 0 = z(−b) = z(0) + yT (−b). Rearranging this gives that
z(0) = yT b. This is a remarkable fundamental result: the net value of our
current resources, valued at their shadow prices, is equal to the maximal
profit that we can obtain through operation of the firm – i.e., the value of
the firm.

4.1.3 The Dual Linear Program

Shadow prices solve another linear program, called the dual. In order to
distinguish it from the dual, the original linear program of interest – in this
case, the one involving decisions on quantities of cars and trucks to build in
order to maximize profit – is called the primal. We now formulate the dual.

To understand the dual, consider a situation where we are managing the
firm but do not know linear programming. Therefore, we do not know exactly
what the optimal decisions or optimal profit are. Company X approaches us
and expresses a desire to purchase capacity at our factories. We enter into a
negotiation over the prices y ∈ <4 that we should charge per percentage of
capacity at each of our four factories.

To have any chance of interesting us, the prices must be nonnegative:
y ≥ 0. We also argue that there are fixed bundles of capacity that we can use
to manufacture profitable products, and the prices y must be such that selling
such a bundle would generate at least as much money as manufacturing the
product. In other words, we impose requirements that

4.44y1 + 4y3 + 3y4 ≥ 3 and 6.67y2 + 2.86y3 + 6y4 ≥ 2.5.

The first constraint ensures that selling a bundle of capacity that could be
used to produce a car is at least as profitable as producing the car. The
second constraint is the analog associated with production of trucks.

Given our requirements, Company X solves a linear program to determine
prices that minimize the amount it would have to pay to purchase all of our
capacity:

minimize 100y1 + 100y2 + 100y3 + 100y4 (cost of capacity)
subject to 4.44y1 + 4y3 + 3y4 ≥ 3 (car production)

6.67y2 + 2.86y3 + 6y4 ≥ 2.5 (truck production)
y ≥ 0 (nonnegative prices).
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In matrix notation, we have

minimize bT y
subject to AT y ≥ c

y ≥ 0.

The optimal solution to this linear program is

y =


0
0

0.092
0.681

 ,

and the minimal value of the objective function is 77.3. Remarkably, we have
recovered the shadow prices and the optimal profit!

It is not a coincidence that the minimal cost in the dual equals the optimal
profit in the primal and that the optimal solution of the dual is the vector of
shadow prices – these are fundamental relations between the primal and the
dual. We offer an intuitive explanation now and a more in-depth analysis in
the next section.

The constraints ensure that we receive at least as much money from selling
as we would from manufacturing. Therefore, it seems clear that the minimal
cost in the dual is at least as large as the maximal profit in the primal. This
fact is known as weak duality. Another result, referred to as strong duality,
asserts that the minimal cost in the dual equals the maximal profit in the
primal. This is not obvious. It is motivated to some extent, though, by the
fact that Company X is trying to get the best deal it can. It is natural to
think that if Company X negotiates effectively, it should be able to acquire
all our resources for an amount of money equal that we would obtain as profit
from manufacturing. This would imply strong duality.

Why, now, should an optimal solution to the dual provide shadow prices?
To see this, consider changing the resource quantities by a small amount
∆ ∈ <4. Then, the primal and dual become

maximize cT x minimize (b + ∆)T y
subject to Ax ≤ b + ∆ and subject to AT y ≥ c

x ≥ 0 y ≥ 0.

The maximal profit in the primal and the minimal cost in the dual are both
equal to z(∆). Suppose that the optimal solution to the dual is unique – as
is the case in our example of building cars and trucks. Then, for sufficiently
small ∆, the optimal solution to the dual should not change, and therefore
the optimal profit should change by z(∆)−z(0) = (b+∆)T y−bT y = ∆T y. It
follows that the optimal solution to the dual is the vector of shadow prices.
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4.2 Duality Theory

In this section, we develop weak and strong duality in general mathematical
terms. This development involves intriguing geometric arguments. Devel-
oping intuition about the geometry of duality is often helpful in generating
useful insights about optimization problem.

Duality theory applies to general linear programs, that can involve greater-
than, less-than, and equality constraints. However, to keep things simple, we
will only study in this section linear programs that are in symmetric form.
Such linear programs take the form:

maximize cT x
subject to Ax ≤ b

x ≥ 0.

for some matrix A ∈ <M×N and vectors b ∈ <M and c ∈ <N . The decision
variables – called the primal variables – make up a vector x ∈ <N . As we
will discuss later in the chapter, general linear programs can be converted to
symmetric form, so our development of duality theory in this context also
applies to general linear programs.

The dual of a symmetric form linear program takes the form

minimize bT y
subject to AT y ≥ c

y ≥ 0.

The decision variables – called the dual variables – form a vector y ∈ <M .
Note that each decision variable in the primal problem corresponds to a

constraint in the dual problem, and each constraint in the primal problem
corresponds to a variable in the dual problem.

4.2.1 Weak Duality

Suppose that x is a feasible solution of the primal and y is a feasible solution
of the dual. Then, Ax ≤ b, yT A ≥ cT , x ≥ 0, and y ≥ 0. It follows that
yT Ax ≥ cT x and yT Ax ≤ yT b. Hence, cT x ≤ bT y. This is the weak duality
theorem, which we state below:

Theorem 4.2.1. (Weak Duality) For any feasible solutions x and y to
primal and dual linear programs, cT x ≤ bT y.

The following theorem states one immediate implication of weak duality.
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Theorem 4.2.2. (Certificate of Optimality) If x and y are feasible so-
lutions of the primal and dual and cT x = bT y, then x and y must be optimal
solutions to the primal and dual.

There is another interesting consequence of weak duality that relates in-
finiteness of profit/cost in the primal/dual with feasibility of the dual/primal,
as we now explain. Let y be a feasible solution of the dual. By weak duality,
we have cT x ≤ bT y for all feasible x. If the optimal profit in the primal is ∞,
then ∞ ≤ bT y. This is not possible, so the dual cannot have a feasible so-
lution. The following theorem captures this fact, together with its converse,
which can be established via a symmetric argument.

Theorem 4.2.3. (Infiniteness and Feasibility in Duality) If the optimal
profit in the primal is ∞, then the dual must be infeasible. If the optimal cost
in the dual is −∞, then the primal must be infeasible.

4.2.2 Strong Duality

Theorem 4.2.2 asserts that if x and y are feasible solutions of the primal and
dual and cT x = bT y, then x and y must be optimal solutions of the primal
and dual. This does not imply that there are feasible solutions x and y such
that cT x = bT y. However the strong duality guarantees this.

Theorem 4.2.4. (Strong Duality) The dual has an optimal solution if
and only if the primal does. If x∗ and y∗ are optimal solutions to the primal
and dual, then cT x∗ = bT y∗.

Note that here, and throughout the book, when we refer to an optimal
solution, it is implicitly assumed to be finite. If the optimal value can get
arbitrarily large, we say the objective is unbounded. There are two slightly
different sorts of unboundedness we discuss, subtly different. In the first,
the feasible region is unbounded, and in this situation we say the problem is
unbounded. In the second, the objective function can get arbitrarily large,
and we say that the objective value is unbounded. Note that the second sort
of unboundedness implies the first.

In order to prove the Strong Duality Theorem, we first have an aside, and
discuss optimality of slightly more general functions.

4.2.3 First Order Necessary Conditions

It is possible to establish the Strong Duality Theorem directly, but the KKT
conditions (given later in this section) are useful in their own right, and
strong duality is an immediate consequence.
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Before given the KKT conditions, we digress still more, and talk about
convex sets and hyperplanes. Given two sets, U and V , we say that a hyper-
plane H separates U and V if all of U is on one side of the hyperplane, and
all of V is on the other side. In other words, if H is given by {x|aT x = b},
then H separates <N into two sets, H+ = {x|aT x ≥ b} and H− {x|aT x ≤ b}.
H separates U and V if U is contained in H+ and V is contained in H− or
vice versa.

Theorem 4.2.5. (Separating Hyperplane) Let U and V be two disjoint
convex sets. Then, there exists a hyperplane separating U and V .

“Picture Proof:” Let δ = infu∈U,v∈V ‖u − v‖ We will demonstrate the
result only for the case where δ > 0 and there is a u ∈ U and v ∈ V with
‖u− v‖ = δ. This case is all that will be needed to cover all the applications
we will use of the theorem, and the full result is beyond the scope of this
book.

Take u ∈ U and v ∈ V with ‖u − v‖ = δ. Let H be the hyperplane
through v that is perpendicular to u − v. We claim that H is a separating
hyperplane for U and V .

Suppose this were not the case. Then, without loss of generality, we can
assume that v = 0 (we can translate every point by −v). The means that
H will be given by {x|uT x = 0}. Note that 0 ∈ H−. Suppose not all of U
is in H+. Then there would be some v ∈ U with uT v < 0. If d = v − u and
α = −uT d

dT d
∈ (0, 1), and let w = u + αd = αv + (1 − α)u. w must be in U

because it is a convex combination of things in U , and the length of w is

wT w = (u + αd)T (u + αd)

= uT u + 2αuT d + α2dT d

= uT u + αdT d(2
uT d

dT d
+ α)

< uT u

because uT d < 0. This contradicts the fact that u was the point in U closest
to the origin. Thus, all of U is in H+. A similar argument shows that each
point of V must lie in H− or else the convexity of V would generate a point
closer to u than 0, and so H is a separating hyperplane for U and V .

As discussed in the above proof, we will only be needing a restricted form
of the separating hyperplane here. In particular, the following result which
follows from the fact that polyhedra are closed (they are the intersection of
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closed half spaces), and for any point x and any closed set P , there is a point
in P that is closest to x.1

Corollary 4.2.1. Separating Hyperplane Theorem If P is a polyhedron,
and x is a point distinct from P , then there is a vector s such that sT x < sT p
for all p ∈ P .

A corollary of separating hyperplanes is Farkas’ lemma.

Lemma 4.2.1. Farkas’ Lemma For any A ∈ <M×N and b ∈ <M , exactly
one of the following two alternatives holds:
(a) There exists a vector x ∈ <N such that x ≥ 0, Ax = b.
(b) There exists a vector y ∈ <M such that bT y < 0 and AT y ≥ 0.

Proof:

If (a) and (b) are both true, then 0 > bT y = yT b = yT Ax = xT AT y ≥ 0,
which is a contradiction. This means that (a) being true makes (b) false.

Suppose that (a) is false, then b is not in the polyhedron P = {Ax, x ≥
0}2. Let y be the vector guaranteed by the separating hyperplane theorem.
This means that yT b < yT p for all p ∈ P . 0 is in P , so this means that
bT y = yT b < 0. Suppose yT Aj∗ < 0 for some j. Then for some α we must
have yT (αAj∗) < yT b violating the fact that αAj∗ is in P . Thus yT Aj∗ ≥ 0
for each j, or AT y ≥ 0 so that (b) is true.

We can now give the KKT conditions. Note that these conditions are
necessary, but not sufficient for a maximizer. There is a slight technical
condition on the maximizing point, it needs to be regular. A regular point
is one where if all active constraints are linearized (that is, replaced with
tangent hyperplanes), the set of feasible directions remains the same.3. This
rules out some extremely rare coincidences of constraints, and note that in
linear systems every point is regular.

That caveat aside, here are the KKT conditions.

Theorem 4.2.6. Suppose that f, g1, g2, . . . gM are differentiable functions
from <N into <. Let x be the point that maximizes f subject to gi(x) ≤ 0 for
each i, and assume the first k constraints are active and x is regular. Then
there exists y1, . . . , yk ≥ 0 such that ∇f(x) = y1∇g1(x) + . . . + yk∇gk(x).

1Despite being obvious if drawn, this result is typically established using the fact that
distance is a continuous function and applying Weierstrass’ theorem.

2To see that P is a polyhedron, it can also be written as {y|y = Ax, x ≥ 0}.
3If there is a feasible curve from x whose initial direction is d, then d is a feasible

direction.
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Proof: Let c = ∇f(x). The directional derivative of f in the direction
of unit vector z is zT c. Thus, every feasible direction z must have zT c ≤ 0.
Let A ∈ <k×N be the matrix whose ith row is (∇gi(x))T . Then a direction
z is feasible if Az ≤ 0. Thus, there is no z with Az ≤ 0 and cT z > 0.
From Farkas’ lemma, we can now say that there is a y such that y ≥ 0 and
AT y = c, which is the statement of the theorem.

Note that the conditions describe∇f as a combination of active constraint
gradients only. Another way of stating the conditions is to say that ∇f =
y1∇g1(x) + . . . + yn∇gn(x) where yigi(x) = 0. Now the sum is over all
constraints (not just the active ones), but the second condition says that the
coefficients of non-active constraints must be 0. The condition yigi(x) = 0 is
called a complementarity condition, and is another certificate of optimality.

The Strong Duality Theorem is an application of the KKT conditions to
the particular case where each of the functions being considered is linear.

Proof of strong duality: The primal problem is given by

maximize cT x
subject to Ax ≤ b

x ≥ 0.

Letting f(x) = cT x, g1(x) = (Ax − b)1, . . . , g
M(x) = (Ax − b)M , gM+1(x) =

−x1, . . . , g
M+N(x) = −xN , we see that the primal is equivalent to

maximize f(x)
subject to g(x) ≤ 0.

Note that ∇g(x∗) = c, ∇gk(x) = Ak∗ for k = 1, . . . ,M , and ∇gk(x) = −ek

for k = M + 1, . . . ,M + N .
Suppose x∗ is an optimal solution. The KKT conditions ensure existence

y ∈ <M and z ∈ <N such that y ≥ 0, z ≥ 0, c = AT y− z, and (Ax∗− b)T y−
(x∗)T z = 0. It follows that AT y ≥ c and bT y = (AT y − z)T x∗ = cT x. The
result follows.

4.2.4 Complementary Slackness

Recall that if x∗ and y∗ are optimal solutions to primal and dual linear pro-
grams, each dual variable y∗i can be viewed as the sensitivity of the objective
value to the value of bi. If the constraint AT

i∗x ≤ bi is not binding, the objec-
tive value should not be sensitive to the value of bi, and therefore, y∗i should
be equal to zero. The fact that this is true for every i can be expressed
concisely in terms of an equation: (b−Ax∗)T y∗ = 0; since all components of
both b−Ax∗ and y∗ are nonnegative, the only way the inner product can be
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equal to 0 is if, for each ith component, either AT
i∗x = bi or yi = 0 . Similarly,

since the primal is the dual of the dual, each x∗j represents sensitivity of the
objective value to cj, and we have (AT y∗ − c)T x∗ = 0.

The preceding discussion suggests that, for any optimal solutions x∗ and
y∗ to the primal and dual, (b−Ax∗)T y∗ = 0 and (AT y∗−c)T x∗ = 0. Interest-
ingly, in addition to this statement, the converse is true: for any feasible solu-
tions x and y to the primal and dual, if (b−Ax)T y = 0 and (AT y− c)T x = 0
then x and y are optimal solutions to the primal and dual. These facts
are immediate consequences of duality theory. They are captured by the
complementary slackness theorem, which we now state and prove.

Theorem 4.2.7. Complementary Slackness) Let x and y be feasible so-
lutions to symmetric form primal and dual linear programs. Then, x and y
are optimal solutions to the primal and dual if and only if (b − Ax)T y = 0
and (AT y − c)T x = 0.

Proof: Feasibility implies that (b − Ax)T y ≥ 0 and (AT y − c)T x ≥ 0.
Further, if x and y are optimal,

(AT y − c)T x + (b− Ax)T y = bT y − cT x = 0,

by strong duality (Theorem 4.2.4). Hence, if x and y are optimal, (b −
Ax)T y = 0 and (AT y − c)T x = 0.

For the converse, suppose that x and y are feasible and that (b−Ax)T y = 0
and (AT y − c)T x = 0. Then,

0 = (AT y − c)T x + (b− Ax)T y = bT y − cT x,

which provides a certificate of optimality (Theorem 4.2.2).
There are many interesting consequences to complementary slackness.

We will consider in Section 4.5 one application involving allocation of a labor
force among interdependent production processes.

4.3 Duals of General Linear Programs

For a linear program that isn’t in the symmetric form we can still construct
the dual problem. To do this, you can transform the linear program to sym-
metric form, and then construct the dual from that. Alternatively, you can
apply the KKT conditions directly. Either approach results in an equivalent
problem.

For example, suppose the linear program is minimize cT x subject to Ax ≤
b, x ≥ 0. Then because minimizing cT x is the same as maximizing −cT x =
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(−c)T x, the linear program is the same as maximize (−c)T x subject to Ax ≤
b, x ≥ 0.

The modifications needed are summarized below.

• If the objective function, cT x is minimized rather than maximized, then
replace c by −c.

• If a constraint is a greater than constraint, aT x ≥ β, then take the
negative of the constraint to get (−a)T x ≤ −β.

• If a constraint is an equality constraint, aT x = β, then treat it as a
greater than constraint and a less than constraint to get aT x ≤ β and
(−a)T x ≤ −β.

• If x is not constrained to be positive, then replace x by x+ and x−, there
x+ represents the positive part of x, and x− represents the negative
part of x, just like the arbitrage example of the previous chapter.

As an example, suppose the linear program is

minimize cT x
subject to A1x ≤ b1

A2x ≥ b2

A3x = b3

Then rearranging into symmetric form would give

maximize (−c)T x+ + cT x−

subject to A1x+ − A1x− ≤ b1

(−A2)x+ + A2x− ≤ −b2

A3x+ − A3x− ≤ b3

(−A3)x+ + A3x− ≤ −b3

x+, x− ≥ 0

Note that if x+, x− is a solution, then so is x+ + y, x− + y for any y ≥ 0.
However, if y 6= 0, then this will not represent a vertex.

Taking the dual of the above linear program gives

minimize (b1)T y1 − (b2)T y2 + (b3)T y3 − (b3)T y4

subject to (A1)T y1 − (A2)T y2 + (A3)T y3 − (A3)T y4 ≥ −c
(−A1)T y1 + (A2)T y2 − (A3)T y3 + (A3)T y4 ≥ c
y1, y2, y3, y4 ≥ 0
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Notice that y3 and y4 are exactly what they would have been if one had
replaced an unconstrained y with y3 = y+ and y4 = y−. Thus, writing
y = y3 − y4, we can rewrite the dual as

minimize (b1)T y1 − (b2)T y2 + (b3)T y
subject to (A1)T y1 − (A2)T y2 + (A3)T y ≥ −c

(−A1)T y1 + (A2)T y2 − (A3)T y ≥ c
y1, y2 ≥ 0

The fact that equality constraints in the primal correspond to uncon-
strained variables in the dual is but one aspect that can be observed by
looking at the above dual. Other features are summarized in the table be-
low, which describes how to take the dual of a general linear program.

PRIMAL maximize minimize DUAL
≤ bi ≥ 0

constraints ≥ bi ≤ 0 variables
= bi unconstrained
≥ 0 ≥ cj

variables ≤ 0 ≤ cj constraints
unconstrained = cj

Note, using the rules in the above table, the dual of

minimize cT x
subject to A1x ≤ b1

A2x ≥ b2

A3x = b3

becomes

maximize (b1)T y1 + (b2)T y2 + (b3)T y3

subject to (A1)T y1 + (A2)T y2 + (A3)T y3 = c
y1 ≤ 0
y2 ≥ 0

Since the dual of the dual is the primal, reorganizing the above table yields
an alternative procedure for converting primals that involve minimization to
their duals.
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PRIMAL minimize maximize DUAL
≤ bi ≤ 0

constraints ≥ bi ≥ 0 variables
= bi unconstrained
≥ 0 ≤ cj

variables ≤ 0 ≥ cj constraints
unconstrained = cj

4.4 Two-Player Zero-Sum Games

In this section, we consider games in which each of two opponents selects a
strategy and receives a payoff contingent on both his own and his opponent’s
selection. We restrict attention here to zero-sum games – those in which a
payoff to one player is a loss to his opponent. Let us recall our example from
Chapter ?? that illustrates the nature of such problems.

Example 4.4.1. (drug running) A South American drug lord is trying to
get as many of his shipments across the border as possible. He has a fleet of
boats available to him, and each time he sends a boat, he can choose one of
three ports at which to unload. He could choose to unload in San Diego, Los
Angeles, or San Francisco.

The USA Coastguard is trying to intercept as many of the drug shipments
as possible but only has sufficient resources to cover one port at a time.
Moreover, the chance of intercepting a drug shipment differs from port to
port. A boat arriving at a port closer to South America will have more fuel
with which to evade capture than one arriving farther away. The probabilities
of interception are given by the following table:

Port Probability of interception
San Diego 1/3
Los Angeles 1/2
San Francisco 3/4

The drug lord considers sending each boat to San Diego, but the coastguard
realizing this would always choose to cover San Diego, and only 2/3 of his
boats would get through. A better strategy would be to pick a port at random
(each one picked with 1/3 probability). Then, the coastguard should cover
port 3, since this would maximize the number of shipments captured. In this
scenario, 3/4 of the shipments would get through, which is better than 2/3.
But is this the best strategy?
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Clearly, the drug lord should consider randomized strategies. But what
should he optimize? We consider as an objective maximizing the probability
that a ship gets through, assuming that the Coastguard knows the drug lord’s
choice of randomized strategy. We now formalize this solution concept for
general two-person zero-sum games, of which our example is a special case.

Consider a game with two players: player 1 and player 2. Suppose there
are N alternative decisions available to player 1 and M available to player
2. If player 1 selects decision j ∈ {1, . . . , N} and player 2 selects decision
i ∈ {1, . . . ,M}, there is an expected payoff of Pij to be awarded to player
1 at the expense of player 2. Player 1 wishes to maximize expected payoff,
whereas player 2 wishes to minimize it. We represent expected payoffs for
all possible decision pairs as a matrix P ∈ <M×N .

A randomized strategy is a vector of probabilities, each associated with
a particular decision. Hence, a randomized strategy for player 1 is a vector
x ∈ <N with eT x = 1 and x ≥ 0, while a randomized strategy for player 2 is a
vector y ∈ <M with eT y = 1 and y ≥ 0. Each xj is the probability that player
1 selects decision j, and each yi is the probability that player 2 selects decision
i. Hence, if the players apply randomized strategies x and y, the probability
of payoff Pij is yixj and the expected payoff is

∑M
i=1

∑N
j=1 yixjPij = yT Px.

How should player 1 select a randomized policy? As a solution concept,
we consider selection of a strategy that maximizes expected payoff, assuming
that player 2 knows the strategy selected by player 1. One way to write this
is as

max
{x∈<N |eT x=1,x≥0}

min
{y∈<M |eT y=1,y≥0}

yT Px.

Here, y is chosen with knowledge of x, and x is chosen to maximize the
worst-case payoff. We will now show how this optimization problem can be
solved as a linear program.

First, consider the problem of optimizing y given x. This amounts to a
linear program:

minimize (Px)T y
subject to eT y = 1

y ≥ 0.

It is easy to see that the basic feasible solutions of this linear program are
given by e1, . . . , eM , where each ei is the vector with all components equal to
0 except for the ith, which is equal to 1. It follows that

min
{y∈<M |eT y=1,y≥0}

yT Px = min
i∈{1,...,M}

(Px)i.
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This minimal value can also be expressed as the solution to a linear program:

maximize v
subject to ve ≤ Px,

where v ∈ < is the only decision variable and x is fixed. In particular, the
optimal value v∗ resulting from this linear program satisfies

v∗ = min
{y∈<M |eT y=1,y≥0}

yT Px.

To determine an optimal strategy for player 1, we find the value of x that
maximizes v∗. In particular, an optimal strategy is delivered by the following
linear program:

maximize v
subject to ve ≤ Px

eT x = 1
x ≥ 0,

where v ∈ < and x ∈ <N are decision variables. An optimal solution to this
linear program provides a stochastic strategy x that maximizes the payoff v,
assuming that player 2 knows the randomized strategy of player 1 and selects
a payoff-minimizing counter-strategy. We illustrate application of this linear
program through a continuation of Example 4.4.2.

Example 4.4.2. (linear programming for drug running) To determine
an optimal drug running strategy, we formulate the problem in the terms we
have introduced. The drug lord’s strategy is represented as a vector x ∈ <3

of three probabilities. The first, second, and third components represent the
probabilities that a ship is sent to San Diego, Los Angeles, or San Francisco,
respectively. The payoff is 1 if a ship gets through, and 0 otherwise. Hence,
the expected payoff Pij is the probability that a ship gets through if player 1
selects decision j and player 2 selects decision i. The payoff matrix is then

P =

 2/3 1 1
1 1/2 1
1 1 1/4

 .

The optimal strategy for the drug lord is given by a linear program:

maximize v
subject to ve ≤ Px

eT x = 1
x ≥ 0.
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Suppose that the drug lord computes an optimal randomized strategy x∗

by solving the linear program. Over time, as this strategy is used to guide
shipments, the drug lord can estimate the Coastguard’s strategy y. Given y,
he may consider adjusting his own strategy in response to y, if that will in-
crease expected payoff. But should it be possible for the drug lord to improve
his expected payoff after learning the Coastguard’s strategy? Remarkably, if
the coastguard selects a randomized strategy through an approach analogous
to that we have described for the drug lord, neither the drug lord nor the
Coastguard should ever need to adjust their strategies. We formalize this
idea in the context of general two-player zero-sum games.

Recall from our earlier discussion that player 1 selects a randomized strat-
egy x∗ that attains the maximum in

max
{x∈<N |eT x=1,x≥0}

min
{y∈<M |eT y=1,y≥0}

yT Px,

and that this can be done by solving a linear program

maximize v
subject to ve ≤ Px

eT x = 1
x ≥ 0.

Consider determining a randomized strategy for player 2 through an analo-
gous process. An optimal strategy will then be a vector y∗ that attains the
minimum in

min
{y∈<M |eT y=1,y≥0}

max
{x∈<N |eT x=1,x≥0}

yT Px.

Similarly with the case of finding a strategy for player 1, this new problem
can be converted to a linear program:

minimize u
subject to ue ≥ P T y

eT y = 1
y ≥ 0.

A remarkable fact is that – if player 1 uses x∗ and player 2 uses y∗ – nei-
ther player should have any reason to change his strategy after learning the
strategy being used by the other player. Such a situation is referred to as an
equilibrium. This fact is an immediate consequence of the minimax theorem:

Theorem 4.4.1. (Minimax) For any matrix P ∈ <M×N ,

max
{x∈<N |eT x=1,x≥0}

min
{y∈<M |eT y=1,y≥0}

yT Px = min
{y∈<M |eT y=1,y≥0}

max
{x∈<N |eT x=1,x≥0}

yT Px.
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The minimax theorem is a simple corollary of strong duality. In particu-
lar, it is easy to show that the linear programs solved by players 1 and 2 are
duals of one another. Hence, their optimal objective values are equal, which
is exactly what the minimax theorem states.

Suppose now that the linear program solved by player 1 yields an optimal
solution x∗, while that solved by player 2 yields an optimal solution y∗. Then,
the minimax theorem implies that

(y∗)T Px ≤ (y∗)T Px∗ ≤ yT Px∗,

for all x ∈ <N with eT x = 1 and x ≥ 0 and y ∈ <M with eT y = 1 and y ≥ 0.
In other words, the pair of strategies (x∗, y∗) yield an equilibrium.

4.5 Allocation of a Labor Force

Our economy presents a network of interdependent industries. Each both
produces and consumes goods. For example, the steel industry consumes
coal to manufacture steel. Reciprocally, the coal industry requires steel to
support its own production processes. Further, each industry may be served
by multiple manufacturing technologies, each of which requires different re-
sources per unit production. For example, one technology for producing steel
starts with iron ore while another makes use of scrap metal. In this section,
we consider a hypothetical economy where labor is the only limiting resource.
We will develop a model to guide how the labor force should be allocated
among industries and technologies.

In our model, each industry produces a single good and may consume
others. There are M goods, indexed i = 1, . . . ,M . Each can be produced
by one or more technologies. There are a total of N ≥ M technologies,
indexed j = 1, . . . , N . Each jth technology produces Aij > 0 units of some
ith good per unit of labor. For each k 6= i, this jth industry may consume
some amount of good k per unit labor, denoted by Akj ≤ 0. Note that
this quantity Akj is nonpositive; if it is a negative number, it represents
the quantity of good k consumed per unit labor allocated to technology j.
The productivity and resource requirements of all technologies are therefore
captured by a matrix A ∈ <M×N in which each column has exactly one
positive entry and each row has at least one positive entry. We will call this
matrix A the production matrix. Without loss of generality, we will assume
that A has linearly independent rows.

Suppose we have a total of one unit of labor to allocate over the next
year. Let us denote by x ∈ <N our allocation among the N technologies.
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Hence, x ≥ 0 and eT x ≤ 1. Further, the quantity of each of the M goods
produced is given by a vector Ax.

Now how should we allocate labor? One objective might be to optimize
social welfare. Suppose that the amount society values each unit of each ith
good is ci > 0, regardless of the quantity produced. Then, we might define
the social welfare generated by production activities to be cT Ax. Optimizing
this objective leads to a linear program:

maximize cT Ax
subject to Ax ≥ 0

eT x ≤ 1
x ≥ 0.

(4.2)

A production matrix A is said to be productive if there exists a labor
allocation x (with x ≥ 0 and eT x = 1) such that Ax > 0. In other words,
productivity means that some allocation results in positive quantities of every
good. It turns out that – when the production matrix is productive – only M
technologies are beneficial, and the choice of M technologies is independent of
societal values. This remarkable result is known as the substitution theorem:

Theorem 4.5.1. (substitution) If a production matrix A is productive,
there is a set of M technologies such that for any vector c of societal values,
social welfare can be maximized by an allocation of labor among only these
M technologies.

In the remainder of this section, we will leverage linear algebra and duality
theory to prove the substitution theorem.

4.5.1 Labor Minimization

Consider a related problem with an objective of minimizing the labor required
to generate a particular “bill of goods” b ∈ <M . Here, each bi is nonnegative
and represents the quantity of good i demanded by society. This problem is
captured by the following linear program:

minimize eT x
subject to Ax ≥ b

x ≥ 0.
(4.3)

As before, each xj is the amount of labor allocated to the jth technology.
The requirement is that we produce at least bi units of each ith good, and
we wish to minimize the quantity eT x of labor used to accomplish this. The
following lemma relates solutions of (4.3) to (4.2).
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Lemma 4.5.1. Let x∗ be an optimal solution to (4.2) and let b = Ax∗. Then,
the set of optimal solutions to (4.3) is the same as the set of optimal solutions
to (4.2).

Proof: Note that eT x∗ = 1; if this were not true, x∗/eT x∗ would be
another feasible solution to (4.2) with objective value cT Ax∗/eT x∗ > cT x∗,
which would contradict the fact that x∗ is an optimal solution.

We now show that x∗ (and therefore any optimal solution to (4.2)) is an
optimal solution to (4.3). Let x be an optimal solution to (4.3). Assume for
contradiction that x∗ is not an optimal solutoin to (4.3). Then, eT x < eT x∗

and

cT Ax/eT x = cT b/eT x > cT b/eT x∗ = cT Ax∗.

Since x/eT x is a feasible solution to (4.2), this implies that x∗ is not an
optimal solution to (4.2), which is a contradiction. The conclusion is that x∗

is an optimal solution to (4.3).

Since the fact that x∗ is an optimal solution to (4.3) implies that eT x =
eT x∗ = 1. It follows that x is a feasible solutoin to (4.2). Since cT Ax ≥
cT b = cT Ax∗, x is also an optimal solution to (4.2).

4.5.2 Productivity Implies Flexibility

Consider M technologies, each of which produces one of the M goods. To-
gether they can be described by an M × M production matrix A. Inter-
estingly, if A is productive then any bill of goods can be met exactly by
appropriate application of these technologies. This represents a sort of flexi-
bility – any demands for goods can be met without any excess supply. This
fact is captured by the following lemma.

Lemma 4.5.2. If a square production matrix A ∈ <M×M is productive then
for any b ≥ 0, the equation Ax = b has a unique solution x ∈ <M , which
satisfies x ≥ 0.

Proof: Since A is productive, there exists a vector x ≥ 0 such that
Ax > 0. The fact that only one element of each column of A is positive
implies that x > 0.

Since the rows of A are linearly independent, Ax = b has a unique solution
x ∈ <N . Assume for contradiction that there is some b̂ ≥ 0 and x̂ with at
least one negative component such that Ax̂ = b̂. Let

α = min{α ≥ 0|αx + x̂ ≥ 0},
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and note that α > 0 because some component of x̂ is negative. Since only
one element of each column of A is positive, this implies that at least one
component of A(αx + x̂) is nonpositive.

Recall that Ax > 0 and Ax̂ ≥ 0, and therefore

Ax̂ < αAx + Ax̂ = A(αx + x̂),

contradicting the fact that at least one component of A(αx+x̂) is nonpositive.

4.5.3 Proof of the Substitution Theorem

Since A is productive, there exists a vector x ≥ 0 such that Ax > 0. Let
b1 = Ax and consider the labor minimization problem:

minimize eT x
subject to Ax ≥ b1

x ≥ 0.

Let x1 be an optimal basic feasible solution and note that Ax1 ≥ b1 > 0.
Since x1 is a basic feasible solution, at least N − M components must be
equal to zero, and therefore, at most M components can be positive. Hence,
the allocation x1 makes use of at most M technologies. Lemma 4.5.2 implies
that these M technologies could be used to fill any bill of goods.

Given an arbitrary bill of goods b2 ≥ 0, we now know that there is a vector
x2 ≥ 0, with x2

jk
= 0 for k = 1, . . . , N −M , such that Ax2 = b2. Note that

x2 ≥ 0 and satisfies N linearly independent constraints of and is therefore a
basic feasible solution of the associated labor minimization problem:

minimize eT x
subject to Ax ≥ b2

x ≥ 0.

Let y1 be an optimal solution to the dual of the labor minimization problem
with bill of goods b1. By complementary slackness, we have (e−AT y1)T x1 =
0. Since x2

j = 0 if x1
j = 0, we also have (e − AT y1)T x2 = 0. Further,

since Ax2 = b2, we have (Ax2 − b2)T y1 = 0. Along with the fact that x2

is a feasible solution, this gives us the complementary slackness conditions
required to ensure that x2 and y1 are optimal primal and dual solutions to
the labor minimization problem with bill of goods b2.

We conclude that there is a set of M technologies that is sufficient to
attain the optimum in the labor minimization problem for any bill of goods.
It follows from Lemma 4.5.1 that the same set of M technologies is sufficient
to attain the optimum in the social welfare maximization problem for any
societal values.
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4.6 Exercises

Question 1

Consider the following linear program (LP).

max x1 − x2

s.t. − 2x1 − 3x2 ≤ −4

−x1 + x2 ≤ −1

x1, x2 >= 0

(a) Plot the feasible region of the primal and show that the primal objec-
tive value goes to infinity.

(b) Formulate the dual, plot the feasible region of the dual, and show
that it is empty.

Question 2

Convert the following optimization problem into a symmetric form linear
program, and then find the dual.

max − x1 − 2x2 − x3

s.t. x1 + x2 + x3 = 1

|x1| ≤ 4

x1, x2, x3 ≥ 0

Note: |x| denotes the absolute value of x.

Question 3

consider the LP

max − x1 − x2

s.t. − x1 − 2x2 ≤ −3

−x1 + 2x2 ≤ 4

x1 + 7x2 ≤ 6

x1, x2 ≥ 0

(a) solve this problem in Excel using solver. After solver finds an optimal
solution, ask it to generate the sensitivity report.
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(b) Find the dual of the above LP. Read the shadow prices from the
sensitivity report, and verify that it satisfies the dual and gives the same
dual objective value as the primal.

Question 4

Consider the LP

min 2x1 + x2

s.t. x1 + x2 ≤ 6

x1 + 3x2 ≥ 3

x1, x2, x3 ≥ 0

Note: there is an x3.
(a) plot the feasible region and solve the problem graphically.
(b) Rearrange into symmetric form and find the dual. Solve the dual graph-
ically.
(c) Verify that primal and dual optimal solutions satisfy the Strong Duality
Theorem.

Question 5

(a) Consider the problem of feeding an army presented in Section 3.1.2. Pro-
vide a dual linear program whose solution gives sensitivities of the cost of
an optimal diet to nutritional requirements. Check to see whether the sensi-
tivities computed by solving this dual linear program match the sensitivities
given by Solver when solving the primal.

(b) Suppose a pharmaceutical company wishes to win a contract with the
army to sell digestible capsules containing pure nutrients. They sell three
types of capsule, with 1 grams of carbohydrates, 1 gram of fiber, and 1
grams of protein, respectively. The army requires that the company provide
a price for each capsule independently, and that substituting the nutritional
value of any food item with capsules should be no more expensive than
buying the food item. Explain the relation between the situation faced by
the pharmaceutical company and the dual linear program.
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Question 6

Consider a symmetric form primal linear program:

maximize cT x
subject to Ax ≤ b

x ≥ 0.

(a) Find the dual of this problem. Noting that max f(x) = min−f(x)
rearrange the dual into symmetric form. Take the dual of you answer, and
rearrange again to get into symmetric form.

(b) Explain why the sensitivities of the optimal dual objective to the dual
constraints should be optimal primal variables.

Question 7

Recall Question 8, Homework 4, the diet Problem for the pigs. We found an
optimal solution for that problem (see Solution Homework 4). Now, suppose
that Dwight doesn’t have a good estimate of the price of Feed type A because
of some turbulence in the market. Therefore, he would like to know how
sensitive is his original optimal solution with respect to changes in the price
of Feed Type A. In particular, in what range around $0.4 can the price of
Feed Type A change, without changing the original optimal solution? For
prices out of this range, what are the new optimal solutions? Now suppose
Dwight doesn’t have a good estimate of the requirements of vitamins. In
what range around 700 does the requirement of vitamins can change without
changing the original optimal solution? For values out of this range, what
are the new optimal solutions? Your arguments should be geometric (and
not based on Excel), that is, you should draw the problem in R2 and see
what is going on.

Question 8

Consider the linear program

maximize −qT z
subject to Mz ≤ q

z ≥ 0.

where

M =

[
0 A

−AT 0

]
, q =

[
c
−b

]
, z =

[
x
y

]
.
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a) Derive the dual
b) Show that the optimal solution to the dual is given by that of the primal
and vice-versa.
c) Show that the primal problem has an optimal solution if and only if it is
feasible.

Question 9

Consider the following LP.

maximize cT x
subject to Ax ≤ b

x ≥ 0.

Show that if A, b and c are all positive, then both the primal and dual
feasible regions are non-empty.

Question 10

Why is it that, if the primal has unique optimal solution x∗, there is a
sufficiently small amount by which c can be altered without changing the
optimal solution?

Question 11 - Games and Duals

Show that the linear programs given in the notes to determine the strategies
of player 1 and player 2 are indeed duals of one another.

Question 12 - Drug Runners

Consider the drug running example from the notes. Imagine the drug lord
has a 4th alternative which involves transporting his drugs overland.

a) Suppose that the DEA can reassign its agents from coastguard duty
to guarding the border, and if it does so any shipment of drugs transported
overland will be caught. Will the drug lord ever choose to send shipments
overland? If so, with what probability? If not, why not.

b) Suppose that guarding the border does not require the coastguard to
reassign its agents, so that it can still guard a port (for instance, suppose the
customs agents at the border are sufficiently equipped to detect most drug
shipments). Suppose that an overland shipment will get through 85% of the
time. Will the drug lord ever choose to go overland? With what probability?
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c) Suppose the percentage in part b) were changed to %80. What would
be the probability now.

d) Suppose the percentage in part b) were changed to %90. What would
be the probability now.

e) Suppose that if the DEA reassigns its agents to the border, they will
certainly catch any overland drug shipments, but if the agents are not reas-
signed, then the customs agents will catch %80 of all drug shipments. Should
the DEA ever assign their agents to the border? With what probability?

Question 13 - Elementary Asset Pricing and Arbitrage

You are examining a market to see if you can find arbitrage opportunities.
For the same of simplicity, imagine that there are M states that the market
could be in next year, and you are only considering buying a portfolio now,
and selling it in a years time. There are also N assets in the market, with
price vector ρ ∈ <N . The payoff matrix is P . So, the price of asset i is ρi

and the payoff of asset i in state j is Pji.
You have observed some relationships amongst the prices of the assets,

in particular you have found that the price vector is in the row space of P .
a) Suppose that ρT = qT P for some q ∈ <M . An elementary asset is

another name for an Arrow-Debreu security. That is, it is an asset that pays
$1 in a particular state of the market, and $0 in any other state. So, there
are M elementary assets, and the ith elementary asset pays $1 if the market
is in state i, and $0 otherwise. Suppose that the ith elementary asset can be
constructed from a portfolio x ∈ <N . What is the price of x in terms of q
and ρ? (Assume that there are no arbitrage opportunities.)

b) Suppose that however I write ρ as a linear combination of rows of P ,
the coefficient of each row is non-negative. Is it possible for there to be an
arbitrage opportunity? If not, why not. If so, give an example.

c) Suppose that ρ can be written as a linear combination of rows of P ,
where the coefficient of each row is non-negative. Is it possible for their to be
an arbitrage opportunity? If not, why not. If so, give an example. Note, this
is a weaker condition than (b) because there may be many ways of writing ρ
as a linear combination of rows of P .

Hint: Note that ρ being in the row space of P means that there is a vector
q such that ρT = qT P . Consider a portfolio x.


