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4.1 Expected Value of a Random Variable 215

Mean Value: the expected mean value of measurements of a process involving a random
variable.

This is commonly called the expectation operator or expected value of ...
and 1s mathematically described as:

X = E[X]= ]ix' f, (x)-dx

For laboratory experiments, the expected value of a voltage measurement can be thought of as
the DC voltage.

For discrete random variables, the integration becomes a summation and
X =E[X]= D x f,(x)= D x-Pr(X =x)
X=—00 X=—00

General concept of an expected value

In general, the expected value of a function is:

Estimating a parameter:

If we know the expected value, you have a simple estimate of future expected outcomes.
%=X =E[X]
Or for y = g(X)

y=Ely]=E[g(x)]

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Example 4.1-2 Expected value of a Gaussian

2
f o (x)= 1 exp[_(x_él) J for —oo < X <o
2r-o? 2.0
X = E[X]= [x.——) —(x—p)’
X—E[X]__J;x. 2”.02.@;1{ 5 -dx
Letting Z=X_—’u with dz=%
(o} o)

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Moments

The moments of a random variable are defined as the expected value of the powers of the
measured output or ...

X" =E[x"]= Tx“ - f, (x)-dx

X" =E[x"]= ix“ : fx(x):xix” -Pr(X =x)

X=—00

Therefore, the mean or average is sometimes called the first moment.

Expected Mean Squared Value or Second Moment

The mean square value or second moment is

X* =E[x?]= _sz- f. (x)-dx

X2 = E[xz]:zwlx2 Pr(X =x)

X=—00

The second moment is related to the average “energy” or “power” in a signal, where the energy
and power are defined as

Tow

7 .
E, =lim [[x(t)"-dt= [[x(t) -dt
_% —00

TA)OOT

1 7 2
P =lim—- [|x(t) -dt
e

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Central Moments and Variance

The central moments are the moments of the difference between a random variable and its mean.

m: E[(X —Y)n]:_]i(x—Y)n - f, (x)-dx

Notice that the first central momentis O ...

The second central moment is referred to as the variance of the random variable ...

ot~ (x X —[x _y)z]:];(x_y)z.fx@).dx

The square root of the variance is defined as the standard deviation, ¢
—\2
o=1(x -X)
Note that the variance may also be computed as:
2 ¥V V2 V2
o = B[~ XJ |- Eflx =%)-(x -X]

o2 =E[X2 -2 X X +X]

o’ =E[x?]-2- X -E[x]+ X"

—2

o’ =E[X?]-2-X X + X
o’ =E[x?]- X" =g[x?]-g[x}
o =X2-X

The variance is equal to the 2" moment minus the square of the first moment..

Another estimate of future outcomes, is the value that minimizes the mean squared error.
min E[(error)z]z min E[(X - x)z]

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Power and Energy Considerations

—2

X

DC Power/Energy is related to the mean square E[X ]2 =u’

AC Power/Energy is related to the variance El(X X[ J: o’

Notice that the 2" moment has both AC and DC power terms ....

—2
X*=0c>+X =0+ 4’

e[x2]=x -XJ |+ Elx]’

Means and Variances of Defined density functions.

Table 4.3-1 Means, Variances and Mean-Square values for Common Continuous RVs

Family pdf f(z) Mean ;= E[X] Variance o° Mean square E[XQ]
. i 1 i . 1.5 5
Uniform Ula,b) —(a+b) E(b —a) g(b“ + ab+ a”)

1 : ' ‘
Exponential —e %/ ry(z) 7 2 2?
T
1 _(e-wm? N , :
Gaussian e 202 1 o 2+ o
V2o b !
Laplacian ;("._% i 0 o o2
V20
. £ 'rT 5 T\ 2 02
Rayleigh 53¢ 202 yu(x) 5 (2 - 5) o 20

Copyright ©2012 Pearson Education, publishing s Prentice Hall

Table 4.3-2 Means, Variances, and Mean-Square Values for Common Discrete RVs

Family PMF P(k) Mean ;. = E[K] Variance o Mean
square
E[K?
Bernoulli Pp(k) = tlj {; q - P P pq D
Binomial b(k;n,p) = (;’_)pkq"_k np npq (np)® + npq
2 ke
1 ’ y
Geometric' T (1 i ,u) u(k) 7 p+ p? u+2u®
1{\'
Poisson %I—f.’_”n.(k) fo" o' o +a

Copyright ©2012 Pearson Education, publishing s Prentice Hall

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Linearity of the expected values — a linear operator

The linearity allowing “linear operate” characteristics can be interpreted as allowing the expected
value of a function to be the expected value of the internal elements of a function.

o Zo0)

But this can be expanded or rewritten as

30,00 [[ 20,00 1.0 -0

For example

Eiga(x)} £ (x)-d

i-1

i-1

The order of integration and summation can also be changed

{“ } ZI J)-ox

i-1 _

So that we have

As another example

E[X +Y :TTX+Y |- fuy (x,y)-dx-dy

X+Y:TTX fyy (X y) dx- dy+IIY fyy(xy) dx-dy

E[X +Y]= IX fy -dx+TY-fY(y)-dy

E[X +Y]=E[X]+E[Y]

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Examples

First Moment of exponential

for

Integral Table Formula

Second Moment of exponential

for
F_E[Xz]:sz A-e7M . dx
0
2 a-x 2 a-x a-x a-X
IntegralTable‘fxz-e""'X e 2 jx gxx =X ¢ _2 xze +2e3
a a a a a
X7 —E[x]=pern [ XX 2
A1 X .
_ 2 2 .
X2 =E[x?]=| e | -2 2| g e [0 20 2
A A A A A A

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Example 4.1-7 Variance of Gaussian

el |- o= 1,00

2
fX(X):;.eXP[M} for —00 < X <0
2ol 2-0

[ 1 —(x—p)
EI(X =uVl= 1(X=u)- . B AR R S
(X — )] _w( u) Py |

2]_ ¢ » 1 —(x—u)
E[(X—ﬂ) ]—_W(X—/l) ' Y " €Xp ool -dx

Letting 7=X7# ith dz = ax

(o} o)

E[(X —,u)z]:;fzz -

1 (—zzj
-exp co-dz
N2r-o? 2

Ekx—¢04=\%%~TZ”em{_§z)dz

—0o0

Integrating by parts: Iv-du =V-u —Iu'dv

oot ool

EkX—¢Jﬂ=&%;'%0+0+yﬁz-ﬂ=az

0 o By
+ﬂ~j\/;_-exp£_2z J-dz}
Zo VLT

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Example 4.1-15 Geometric Distribution
P, (x)= pmf, (x)=(1-a)-a*, 0<X

Determine the expected value

E[X]= =3 x-P(n)

x=0

E[x]:gx.@_a).ax:(1_a).ix.ax

x=0
< 1
Note: Y= f 1
ote XZ:(;a . or [a] <
d& , < w d( 1 1
d - = . = — =
o da;a gxa da(l—a} (1-a)
< 1
E[X]=(1-a)-a-) x-a*" =(1-a)-a
X]=1-a)a Txea (=)0
a
EX|=u=—
(X]= ==
This allows the mean value to be quickly found once “a” is known.
Determine the 2™ moment
Elx?]=>x B (n)
x=0
E[x2]=Y % -(1-a)-a"
x=0
Note: L ia":ix-(x—l).ax‘z: dz( ! j= 2
. da’ x=0 X=0 da’(1-a (1—3.)3

E[X2]=(1—a)~82 'g[x'(x—l)'a“ +x-a*?
e[x?]=(1-a)-a*- 3 [ (x-1)-a]+(1-a)-a- 3 x-a*"

x=0 x=0

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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E[x?]=

2-a’° a
=21+
(i—ay 1-a “7F

Determine the variance
E[(x - |- E[x]- E[x]

E[(x —ﬂ)2]={(12;22)2 ¥ :a}[fa}z

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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4.2 Conditional Expectations 232

Expected Values for Conditional Probability

The conditional expectation is defined as
E[X |B]= [x- f,5(x|B)-dx
For discrete R.V.
E[X |B]= in Prye (X | B)= in -pmf g (x; | B)
As an “operator” the definition should be expected.

Example 4.2-1” Conditional expectation of a uniform R.V

fx(x)_x1 o X, < X< X
X — X
FX(X):X,—XOO’ X, <X <X
The condition B= {X > a}
Therefore:
f, o (x) 1
f B)=—<% = <
«(x|B) “F,(@) x-a’ a<x<x,
F.(x|B)= Fx(x)-Fy(a) _ x- , a<x<X
1-F (@) x-a

Using some numbers and performing expectations.

Assume that the RV was uniform from 0 to 100. What is the new expected value of X.

1 1
f. (x)= =— 0<x<100
< () 100-0 100’ <X
F)===0 - X gox<i00
100-0 100
100 1
E[X]=Ix'fx(x)'dx:}[x'm'dx
2 |100 2 2 2
e o e
0

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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The conditional was above 65, what is the new expected value of X.

The condition B ={X >65}

f(x|B)=- fx (x) L1 s<x<100
I-F.(a) 100-65 35

100

E[X |B =Ix fX|B x|B) dx—J.x % dx

2

E[X |B]=—

v 1002 _657)_ 1 10000-4225 _ 5775
35 2 70 '

Expected Values for Joint Density functions and Conditional Probability

The expected values of joint density functions where multiple random variables are involved and
may or may not have conditions occurs often.

e Public Health Considerations
e Effects of one variable on another for a statistical or probabilistic experiment.

Definition 4.2-3 The expected value of a conditional probability.

For the joint density function given as: fuy (x,y)

We want to now the expected value
E[V | X =x]

We know from before

oty x =)= TV =P 0)

E[Y | X = X]:Iy‘ 1:x,\((y| X = X)'dy
Usefulness or application is in the expected value of Y

= J-_[y fX,Y (X: y)-dy~dx

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Application
N1~ [y by ()i
But Fy)=F(x|Y =y) - f,(y)=fly[ X =x) fx(x)

EV]= ]y fyI X =x)- f,(x)-dy-dx

E[Y]=f{jy- f(ylX =X)'dy] fy (x)- dx

E[Y]=[E[ | X =x]- £, (x)-dx

This may or may not seem like a logical result ....

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Properties of Conditional Expectations:
Property I: Expected values of a conditional expected values:

E[v]=E[E[Y | X]]

Derivation

E[Y]=[y-f,(y)-dy

fy (y):_[fx,v (X,y)-dX
fo,y)=f(x]Y =y)-f,(y)=f(y| X =x) f,(x)

)= 01X =) £, ()
E[Y]=jy-{jf(y| X =x)- fx(x)-dx]dy
)= [y 11y 1oy -1,
elv]- el 1] 0)-0x— Elely 1 X]

Property II: If X and Y are independent (X should not matters)
E[v]=E[Y | X]
Derivation
f(xy)=f(x]Y =y)-f,(y)= f(y| X =x) f,(x)
flxy)=f,(y)- fx ()= F(x|Y =y)- f,(y)= f(y| X =x)- £, (x)
fo(y)- f ()= Fly I X =x)- £, (x)
fo(y)=flyI X =x)
E[V]=[y-f,(y)-dy=[y-f(y| X =x)-dy

E[v]=E[Y | X]

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Property III: A conditional chain rule ...
E[z| X]=E[E[Z | X,Y]I X]
I hate the textbook proof!

E[z | X]=Iz- fx (z] X =x)-dz

E[z | X,Y]=J'z~ foxy (21X, ) dz

Taking the expected value, only X,Y remain

E[Z|XY ”l:jz f2|><\(Z|Xy } XY(X y) dx - dy

But

E[E[z | X,Y]IX] j{jz foxy (21%,y)-d ]~fyx(y|x)-dy
elEfz ) X.v] X [ 2 {jfyxyu) dy} o (2 50y)-

Based on this equation, all values of y have been considered. Therefore,

E[E[Z | X, Y] X]=[z-f, (2] X)-dz=E[Z | X]

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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4.3 Moments of Random Variables 242

Example 4.3-1 Binomial R.V.
n X n-—x
Pe (x) = pmfx(X){X]- p*-(1-p)

Determine the expected value

Hﬂ=u=gxPAm
E[X]=§x-@- p*-(1-p)”

Proof based on Wikipedia https://en.wikipedia.org/wiki/Binomial distribution

E[X]=ix-(n+!()!_)d- p*-(1-p)"”" =ix-(n_n)!()!_xl- p*-(1-p)""

X=Xy P
E[X]:Xn_l (n-1) ((xn—_ll);!!-(x—l), p-p*-(1-p)"
SR (o s o T

y=x-1

Determine the 2" moment

E[Xz]:gXZ-PX (n)

n

E[X2]= X_O[x—1+1]-m‘ p*-(1-p)™

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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E[X ] Zx 1)- m p*-(1-p)"* + : n! )_px_(l_p)nx

~(n—xx-1)

The second term was previously computed

E[x2]= Z 2 p* (1= p) " +n-p

E[X 2]= n-p+ XZL: ((n _(2)—_2())'(n_ (n —1) 2 p.p*? .(1 _ p)(n—2)—(x—2) N

E[X ] n-p+n-(n-1)-p*- Zn“ ( 2)' 'px—z.(l_p)(n—z)—(x—z)_i_

E[Xz]:n- p+n-(n—1)-p>-1

E[X?|=n-(n-1)- p>+n-p
Determine the variance
E[(x - |- E[x]-E[x]

E|(X - u)|=n-(0-1)- p* +n-p-[n-p]
E[(X—y)2]:n2p2—n~p2+n-p—nzpzz—n-p2+n-p

E[(X -xf|=n-p-(-p)=n-p-q

o

n
0.3 |
0.2
0.1 |
| | |
0 i1 3 p
F 2 3

Figure 4.3-1 Variance of a binomial RV versus p.

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Joint Moments 246

When we have multiple random variables, additional moments can be defined.

o0 0

Elo(x.)]= [ [aley)- flxy)-ox-ay

—00 —00
All expected values may be computed using the Joint pdf. There are some “new” relationships.

Correlation and Covariance between Random Variables

The definition of correlation was given as

E[X-Y]= J Ix-y- f(x,y)-dx-dy
—00 —00
But most of the time, we are not interested in products of mean values (observed when X and Y
are independent) but what results when they are removed prior to the computation. Developing

values where the random variable means have been extracted, is defined as computing the
covariance

COVX.¥]= E[(X~E[X]-(¢ ~EN D= [ Jx=e)-(y=s)- 1 y)- -y

This gives rise to another factor, when the random variable means and variances are used to
normalize the factors or correlation/covariance computation. For example, the following
definition — correlation coefficient based on the normalized covariance

e [ s

_Cov(X,Y)

Oy 'Oy

Also

E[X-Y]- g -
Oy *Oy

E[X~Y]=p'ax “Oy + Uy -y

p:

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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The short derivation

p=E X — Hy ) Y -y -E XY =y Y =y - X+ py -y
Ox Oy Ox Oy

The expected value is a linear operator ... constants remain constants and sums are sums ...

E[X-Y]-uy -ENV]-py - E[X]+ py - g1y
O-X 'O-Y

D= E[X 'Y]_,ux “Hy THy My T Hyx My
Oy 'Oy

= EDXCY ]y
Oy Oy

Properties of Uncorrelated Random Variables 248

For “standardized” random variables, the correlation coefficient can be solved for as the
correlation value.

_ E[x- y]—uy - 1 _E[x-y]-0-0 _ E[x-y]

P Oy -0y I-1

For either X or Y a zero mean variable,

pE[x-y]—O E[X Y]

Oy Oy Oy Oy

For independent random variables ...

E[X Y]=E[X] E[Y]=px - 1y

oo EXCY It gt _ it =ity
Oy Oy Oy Oy

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Mean and Variance of the Sum of two R.V.

For X and Y uncorrelated ... letting Z=X+Y
VAR[Z]=E|Z - 11, P |=E[(X +Y = sty — 5, )]
Note, Linear Op:  E[Z]= u, = E[X +Y]=E[X]+E[Y]= 1y + 11,
VAR[Z] = E|(X — a4 = g1, )| = E[(X = 41 ) 2 (X = a1y )- (Y =)+ (Y = 11, )]
VAR(Z]= E[(X -t |+ E|Y = a0, ) 2 E(X =41, )- (v =1, )]

VAR[Z]=VAR[X]+2-COV(X,Y)+VAR[Y]
VAR[Z]=0," =0, +2-p-0y -0, +0,°

For uncorrelated X and Y

VARZ]=0," =0, +0,°

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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A special note
Independent random variables are uncorrelated.
E[X-Y]=E[X] E[Y]= sy - 1y

S EXY]mpcp i —any
Oy Oy Oy Oy

However, uncorrelated random variables are not necessarily independent.

Example 4.3-5: Given

Py X =-1 X, =0 X; =1
y, =0 0 1 0

PX(X,)=2PXY(X,,V,) Px(x,):i_lpm(xi,yj):%
PX(XI): PX(X2): PX(XS):%
2 0)= 3 B 001,02

Note, not independent Py v (X i Yi )¢ Py (X j ) P (yi )

=—1~0-0+o.0%+1-o.0+—1-1%+0.1.0+1-1%=0

Therefore COV (X,Y)=0

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Example 4.3-4 Linear Prediction — mean square error

Y
¥ x X
X XX
X x X
X X X X X
X_X % X
X

Figure 4.3-2 Pairwise observations on (X, Y) constitute a scatter diagram. The relationship
between X and Y is approximated with a straight line.

Under a linear assumption of the relationship between X and Y
j=a-X+b
An error can be defined as
E=Y-J=Y-a-X-b
We wish to form the variance of the error
Ele*]=E|Y - 97 |=E[(v -a-x -b)]
Ele’]=E[y>=2-Y-(a- X +b)+(a- X +b)|
Ele’]=E[y?]-2-E[Y -(a- X +b)]+ E|(a- X +b)’]
Ele?|=E[?|-2-a-E[y - X]-2-b-E[Y]+a-> E[Xx?|+2-a-b-E[X]+b?
Ele’|=E[?|-2-a-E[Y - X]-2-b- g, +a E[X?|+2-a-b- u, +b’

Minimization says to take the derivative in a and set the derivative to zero and then derivative in
b and set its derivative to zero.

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Taking partial derivatives
%E[gz]?z- E[Y - X]+2-a-E[X2]+2:b- 1, =0

2-a-E[X?|=2-E[V - X]-2-b- z,

Equation #1: 2-a-E[X2]=E[Y-X]—b~,uX
iE[gz]=—2-,u +2-a-pu, +2-b=0
ab Y X

2:b=2-pu,-2-a-u,
Equation #2: b=u —a-puy
Finding a (substitute b in #2 into #1)
a-E[X?|=E[Y - X]-(u, —a- g1y ) 1y

a-E[X2|=E[Y - X]- 1, gy +a- s’

a'(E[Xz]_ﬂxz): E[Y ' X]_,UY " Hx

ElY - X]-p -t _p-oy-o, _p-oy

E[X?]- oy’ oy
Finding b (using a and #2)
PO
b=y —a-py =py - iy
X
The linear predictor becomes
y=a-X+b
§_ PO PO PO
J="—" X+ - Tty = gy + Y'(x_ﬂx)
Ox O'x Ox

Or

§— gty =220 (X - 1)
Oy

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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and the error is

e=Y =9 =Y -, ~ T (X - )

O
Finally, determining the “minimum’ mean square error
9

Ele?|=E[Y?]-2-a-E[Y - X]-2-b- 1, +a> E[X?|+2-a-b- sy +b°

el ]2 2% el X2 (2%, o+ 220 ]

Oy X X

2
p-o p-o p-o
+2'—Y'(,UY_ Y'/ij',ux +(ﬂv_ Y',uxj
o) (o2

Oy X X

PO o
Y'(p'o'x'o_v"',ux',u-v)_z'(ﬂv_ !

E[gz]:avz"'ﬂvz_z' '/Jx]'luv
X X

2 2
po po po po
J{—Y] (0, + %)+ 2 — '(ﬂv— — 'ﬂxj'ﬂx"‘(ﬂy— — 'ﬂxj

Oy X X X

Oy

“Hx o Hy

p-o p
. ',Ux'/u'Y_Z'/JYz"'z'

Ox X

p’ oy’ p-o p’ oy’

2 : 2 * * 2

+p -0y +{—2YJ-/1X + 20 iy s ply = 20—

Oy

Oy Oy

E[52]20Y2 +u’-2-p' 0, =2

2 2
ez - O,
+ﬂY2 _2.,00- e phy - iy +[p—2Y]'/uX2
X

Deleting where possible leaves,

E[gz]:ayz—p2 o, =0,’ -(1—,02)

Things to notice .... see the following page.

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Things to notice .... the linear predictive fit is based on the probability values computed.

%
X L
X X%
X X X
X X X X X
X—X % X
== Y, =ax +B

Figure 4.3-2 Pairwise observations on (X, Y) constitute a scatter diagram. The relationship
between X and Y is approximated with a straight line.

V= ny S '(X_,Ux)

Oy

E[gz]:ayz—p2 o, =0,’ -(1—,02)

Meaning of the correlation coefficients ... for a linear fit, correlation of some type is expected!

If p=0:
g =, + 70 (X =) =
Oy
E[gz]=O'Y2-(1—,02):0'\(2
If p==1:
g =, + 270 (X =)= gy £ 20 (X = 1)
Oy Oy
y—my X —py
Oy - Oy

Ele*]=0,2-(1-p*)=0

Y is known one X is known, there for the estimation error must be zero!

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Jointly Gaussian Random Variables 251

If two R.V. are jointly Gaussian

I .{(X_ﬁ;x)z _2_p_(X—ﬂx)-(y—uy)+(>'—/21y)2}
. (x y)_ 2-(1—,0 ) Oy Oy 'Oy Oy
e 270y Oy Al-p’

If p=0:

fo (X y)= = . .
X,Y( y) 27 -0y -0y /27[.O-X ,2”'0'\(

Visualizing Joint Gaussians ...

Figure 4.3-4 Contours of constant density for the joint normal (X =Y =0):
(a) ox = oy, p = 0; (b)ox >ov, p=0; (c)ox <oy, p=0; (d)ox =oy ;p>0.

y y

so
Soy
—S0x ~ SOx

750'),

-
\
(
\

(c) (d)

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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4.4 Chebyshev and Schwarz Inequalities 255
There are a number of probability relationships that bound aspects of engineering problems.
They are typically based on moments, particularly the mean and variance.

This is the first.

The Chebyshev inequality furnishes a bound on the probability of how much an R.V. can deviate
from its mean value.

Chebyshev inequality Theorem 4.4-1

Let X be an arbitrary R.V. with known mean and variance. Then for any 6 > 0

PIX = 1|2 8] < ng

Derivation

o = (¢ XT =efx % |2 [6- %) - 1,00-0n
Then h

o’ = T(X—Y)z - fy (x)-dx > J‘(X—Y)z - fy (x)-dx

- ‘x—ﬂzﬁ
and
o’ > I(X—Y)z fy (x)-dx > I(&)2 fy(x)-dx =57 Pﬂx—ﬂ > 5]
x-X|26 |x-X|26
Results #1: 6—j2 Pﬂx—ﬂz&]
1)

If we also consider the complement of the probability described,
Phx—ﬂ > 5J+ Phx —Y‘ < 5J:1

and using the complement

2 —
%ZI—PHX—X‘<5]
Therefore
_ o
Results #2: PHX—X‘<5]21——2
o

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.

B.J. Bazuin, Fall 2016 28 of 46 ECE 3800



It may be convenient to define the delta function in terms of a multiple of the standard deviation.
o=k-o

Then the Chebyshev inequality becomes
Pﬂx—ﬂ >k -a]s kLZ
Pﬂx—ﬂ <k ~a]21—ki2
Example 4.4-1

Deviation from the mean for a Normal R.V.

The Gaussian Normal CDF is

x-X) + 1 ~(v—p) 1

@X(z: - megp( 2ot | =prertd

Therefore
x—X P —(v—p)
P k|= . dv=2-erf(k
[ § e 55 “
PHX—Y‘<k-a]:2-erf(k)21—ki2

and
The following table compares the C i i nction.

k P[|X -X| < ko] a8
0 0 1
0.5 0.383 1
1.0 0.683 1
1.5 0.866 0.444
2.0 0.955 0.250
g5 0.988 0.160
3.0 0.997 0.111

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Markov Inequality 257
The Markov inequality focuses on the mean values and states. For a non-negative R.V.

f.(x)=0,  forx<0

Then
P[X >§]< E[X]
o
Derivation
E[X]:Ix f,(x) dx>.[x fx(x)-dx>J.5 f, (x)-dx=5-P[X > 6]
0 5 5
Therefore
P[X > 6]< E[EX]

Example 4.4-2 Bad Resistors
Resistors have a mean value of 1000 ohms. If all resistors are to be measured and those above

1500 ohms, discarded how many might you estimate would be discarded?

P[X >1500]< 1000 _2
1500 3

Note: this is a “bound” not the exact value, the exact value could be expected to be smaller than
67% as the inequality suggests. .

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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The Schwarz Inequality 258
Schwarz Inequality considers the magnitude of the covariance of two R.C.

COV(X,Y
| COV(X,Y)

Oy Oy

equality will hold if and only if Y is a linear function of X
(a correlation coefficient of +/-1).

The inequality can be written as

CovX,Y[ <o,’ 0,

or

|COV[X,Y]| < Jo -0,

Derivation: The covariance definition leads to a straight forward recognition of this inequality

COV(X,Y)
P=—"""""
Oy - Oy
Therefore
CovX,Y] = p* -0, 0oy
with -1<p<1

You have already experienced the Schwartz Inequality in other setting ...

For the inner product

(1.0)= - -

(h.g)<[h]- o]

You may also see the convolution form as
S \/

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.

o0

() g(x) -

—00

00

J'h(x)- h(x)" - dx

—00

J 0 gl e
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Law of Large Numbers

Now that we have discussed the Cheybyshev inequality, we can provide a proof of the Law of
Large Numbers. The discussions here provides the condition that the sample mean converges to
the ensemble mean ... that is the statistical mean equals the R.V. ensemble mean.

Example 4.4-3. The sample mean equals the expected value mean
For a large enough number of samples, we say that

n
A

1
ll'lX :H. L Xi

If we take the expected value

and

Var[ﬁx ]:

Therefore, using the Chebyshev inequality we state that

2
PU/}x _/Jx|25]£ :X52

Then for any fixed value of delta

lim PU — Uy | > 5]< lim-Z

n—o0 n—w | - 5

and
lim P[ 2y — s> 8]<0

n—oo

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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4.5 Moment-Generating Functions 261

The text is now moving into some advanced concepts that support mathematical derivation of
higher order moments.

I have been exposed to problems where the 4™ moment of a R.V. required as part of a solution.
If you really like and are comfortable with Laplace and Fourier Transforms these approach
provide solutions faster and more easily than more brute force integral approaches.

The moment generation function (MGF) is the two sided Laplace transform of the probability
density function (pdf). If the MGF exists, there is a forward and inverse relationship between the
MGEF and the pdf. The MGF is defined bases on the expected value as

M (t) = Efexp(t- X)]

Therefore

0

M, (t)= J'fx(x)'exp(t-x)'dx

—0

If you like s better than t in your Laplace transforms ...

o0

M, (s)= jfx(x)~exp(s-x)-dx

—00

For discrete R.V. we perform a discrete Laplace transform

o0

Mx(s): i pmf, (Xi)'eXp(s'Xi): pr (Xi)'eXp(S'Xi)

i=—0 i=—00

Why do we do this?

1. It enables a convenient computation of the higher order moments

2. It can be used to estimate fy(x) from experimental measurements of the moments
3. It can be used to solve problems involving the computation of the sums of R.V.
4

It is an important analytical instrument that can be used to demonstrate results and
establish additional bounds (the Chernoff Bound and the Central Limit Theorem).

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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It enables a convenient computation of the higher order moments

Based on the definition
M (t) = Elexp(t- X )]
Perform the Taylor series expansion of the exponential
2 Xn

exp(x):1+%+%+...+ﬁ+...

M (1) = Efexplt- X = ] 14 X XD OXT

or

M, ()= Elesplt-x)) =1 L) TS

The m; are the i moments of the density function!

So how would we solve for the moments? By taking derivatives and setting t=0!

o t-m,,) t-m )"
ﬁMx(t):mk+( 1'!”) +---+((n_i)! +

by setting t=0

ak
M) =M1 0)=m,

t=0

Solution done by performing a 2-sided Laplace Transform and differentiation!

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Example 4.5-1: The MGF of a Gaussian

2
fX(X):;-exp[M} for oo < x< oo
2ol 2-0
MGF: M (t) = [ f (x)- exp(t - x)- dx

0

Mx(t)zj

I —(x—u)
-exp -exp(t-x)-dx
\N27m-o? [ 2-0° j

When integrating Gaussians ... form an integral of a correctly formed Gaussian function and
equate it to 1.0.

x> =2 -u-x=u*)l+2-6%-t-
.exp( (x U X2_52>+ o Xj-dx

M (t): _]C- \/27;(72

_x2—2-(ﬂ+az.t).x+y2}dx

o1
Mx(t):_jﬁ.exp( 5

2.0°

Mx(t)=exp[('u+02 .t)Z _luzj.

T;-exp(— x2—2.(ﬂ+a2 .t).x+(,u+a2 't)z]'dx

\N2r7-o? 2-0°

an%mq{@+oliy_”z @_@+“2¢Wde

T 1
. . ex f—
2.0 ] _-[01/27;.0-2 p{ 2.0’
The integral is now equal to 1.0. And we have

2 2 4 12\ 2 2t 4 12
Mx(t)=exp((’u +2.-0 t2,u—2k0' t ) 7 j:exl{z o t-u+o” -t j
Xes

2 2
Mx(t)=exp£,u~t+a 1 ]

2

Now we can generate the moments of a Gaussian function.

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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The 1* Moment

a a 2't2 2't2
aMx(t)(tzozaexp(,u-t+o-2 jz(ﬂ+0‘2-t)-exp[,u-t+o-2 j
2 2
EMX(% z(,u+02-0)-exp(,u-0+o- 0 J:,u-lz,u
ot =0 2
The 2™ Moment
0’ 0 o’ -t’
at—ZMX(t*tzo:a(,u+0'2-t)-exp(,u-t+ 5 ]

2 2 2 2 2
a—zMx(t :(,u+0'2-t)2-exp(y-t+o- L j+(0'2)-exp(y-t+o- L j
ot o 2 2

0’ 2 2 2 2 2
_ng(t :(,u+0' -O) -1+(0' )-lz,u +o
ot o
The 3" Moment
0’ 0 .t
at—sMX(t*O=a[(,u+~02-t)2+az]-exp(,u~t+o-2 j
3 2 2
8—3Mx(t* Z[(,IH-'O'2-'[)3+0'2-(,u+-0'2-t)]-exp(,u-'[+(7 't ]
ot o 2
0_2.t2
+[2~(,u+~0'2-t)-02]~exp(y~t+ > j
3
%Mx(t){ z[(,u+-0'2-0)3+0'2-(/1+-0'2-0)]-1+[2-(/1+-0'2-0)-0‘2]-1
t=0
83
&jMX(t*tOZ'Lﬁ*—&ﬂ.O—z

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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The 4™ Moment

! 2 2
a_Mx(t)( :%[(/H“O'Z 't)3 +3.0’ -(y+-0'2 -t)]-exp(,u-t+ g 2't ]
t=0

ott

:[(,u+-0'2 -t)4 +3.07 -(,u+-0'2 -t)z]-exp[,u-t+622.t2J

+[3-(u+-02 -t)2 o’ +3-0’ -(O+-62)]-exp(y-t+o-22't2j

iMx(t* =[(,u+~62-0>4+3'0'2'(,U-I-'GZ-O)Z]'l

+[3-(,u+-62 -0)2 0’ +3-0° -(O+'az)]'l

4
St_“MX(t)‘ =pu*+6-0°-u*+3-0'

t=0

See: https://en.wikipedia.org/wiki/Normal distribution

Additional useful examples:

Example 4.5-2 MGF of Binomial

MGF: M (t) = [ f (x)- exp(t - x)- dx

Magical math step ... not really, but I haven’t done the derivation myself ...

M, (t)=(p-exp(t)+q)’

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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The 1* Moment

ﬁmxd_=ﬁ«paquﬂ=wmeWM+ﬂ”pemM

ot ot t=0
Im (t)( =n-(p+q)""-p=n-p
ot ",
QM (t)( :a-(l—(x)-exp(t)| :a-(l—a)-lz a
X 2 2
t=0 (l—a~exp(t)) ‘t:O (l_a'l) l-a
The 2™ Moment
0’ 0 n-
Zomt) = Zlopen) prentysar |
0 n-i
M) =n-p-exp(t) (p-exp(t)+a)"| |
t=0
+n-p-exp(t)-(n-1)- (p-exp(t) + )" - p-exp(t)

Pk N ~
at—zMx(t){ =n-p-(p+q)”" +n-p”>-(n-1)-(p+q)”
t=0
62 2 2
at—zMx(t =n-p+n-p>-(n=1)=(n-p)+n-p-(1-p)
t=0
6—22Mx(t)( =(n-p)’+n-p-q
ot B

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Example 4.5-3 MGF of Geometric Distribution

pmf, (n)=(1-a)-a", for0<a <1

MGF: M, (0)= [ 1, (x)-explt-x)-dx

My ()= (1-a) " -exp(t-n)

n=0

l-a
MX(t):l—a-exp(t)

The 1°* Moment

R

ng(t)( a-(l—a)-exp(t)| _a-(l—a)-lz a

t=0

t=0 (1 -a- exp(t))2 LO (1 —a- 1)2 -

The 2™ Moment

T A

ot (1-a-exp(t))’

iMX(t% :a'(l_a)'eXp(t)_z.a'(l_a)'eXp(t)-(—a~exp(t))

ot? (1—a -exp(t))’ (1—a -exp(t))’
i :a-(l—a)-exp(t)| N .az.(l—a)~exp(2~t)|
ot (t*t—o (1 —a: exp(t))2 ‘t:O ’ (1 - exp(t))3 ‘t:O

0? a- 2-a’
—M, (t =
] i

Checking the results from Table 4.3-2 All these results match, as expected.

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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4.6 Chernoff Bound 264
The Chernoff bound is based on concepts related to the MGF.

Looking at “the tail probability” for P[X > a] where ‘a’ is a defined constant.

As a tail, we expect the density function to have greatly decreased in this region ... like an
exponential or Gaussian.

Then, we can state

P[X > a]:]o f, (x)-dx

P[X >a]= _T f. (x)-u(x—a)-dx

If the tail is such that u(x—a)<exp(t-(x—a))
Then

PIX > a]= [ £, (0)-u(x—a)-dx < [ f, (x)-exp(t-(x—a))-x

But then

PIX > a]<exp(-a-t): [ f, (x)-exp(x-1)-dx = exp(-a-)- M, (t)

—0

To minimize the bound, the value of t that provides the smallest value should be used. Therefore,
differentiate with respect to t, find the value of t for the minimum and use the derived value for
the bounds.

Example 4.6-1 Chernoff Bound to Gaussian

Let X be Gaussian and consider the bounds where a> E[X]

For the Gaussian

2
fX(X):;-exp(M} for oo < x< o
o2 2-0

2 2
Mx(t)=exp(,u~t+a ; ]

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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The Bound becomes

P[X > a]<exp(-a-t) My (t)= eXP(—a't)'exp(,U't+ azétzj

P[X >a]< exp((lu_a)_,“_ o’ .tz)

2

To find the minimum value of t

2 2
%exp{(y—a)‘t%— o -t j=0

2
o2 .12

exp((ﬂ_a).u : J-((,u—a)+02-t):0

(,u—a)+0'2 =0

Therefore

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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4.7 Characteristic Functions 266

The characteristic function is to the MGF as the Fourier transform is to the Laplace transform.
Instead of t being a complex variable (similar to s), we set t = jw.

Therefore, the characteristic function is
@, (W)= E[exp(j-w- X)]

@, ()= ] ()-expljw- X

—00

For discrete RV

mef )-exp(j-w-x,) ZP )-exp(j-w-x;)

|:7®

In general, the CF has similar properties to the MGF. In addition to those previously mentioned,
the Fourier transform is very useful when performing time domain convolution.

For sums of R.V., Z=X+Y, as previously shown the density function is the convolution of the
two density function in X and Y.

£ (2)= J 1601,z =)-d= [ (), (y)- 0y

But this can also be performed in the “frequency domain” by multiplication
@, (W) =D, (W) @, (W)

As a result it makes it much easier to contemplate
Z=X +X,+-+ X

Which would become

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Example 4.7-2

For Z = X, + X, +---+ X, , where the X are independent and identically distributed (IID) solve

for the new distribution when X; is a Gaussian normal R.V. (0 mean, unit variance).

2

f,(x)= -exp| —=— |, for —o0 < x <00
" N2z 2

2 2
MG(t):exp(,u-t+O- 2't ]

2

2 (5 a2 2
(DG(W):eXPLj'W'ﬂﬁ'WJ:eXP(j'W';U_U éW J

Then for zero mean, unit variance

and for IID R.V.

The inverse transform (based on the forward transform with a variance) results in

1 -7’
folz)= e ,for —o<z< o
0= prz.N]

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Moment Generation with the Characteristic Function

AS with the MGF, the CF can generate moments by differentiation.

6k
2ot =m,0)-m,

t=0

or

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Joint MGF and CF

Joint MGF and CRF Function can and are defined. As may be expected, they can be used to
compute “cross-products” of random variables just as they generated moments.

The Joint MGF is defined as
Mo iyt ooty ) = Efexplt, X o+, X o+t X )]
The Joint CF is defined as

Dy yoox, WLW, Wy, ) = Efexp(j-w, X i+ jw, X oo Jwy - X )]

All the moments become for the joint and marginal variables can then be computed based on

|v|X,Y(““)(o,o)s%M”(tl,tz){ =m,,
at' - at, .
or
. Pl
@, " (O,O)EWCDX,Y(WI,W%W]_WZ_O
and

(_ j)I+n 'q)x,Y(l,n)(OsO): m ,

The Central Limit Theorem

The central limit theorem states that the normalized sum of a large number of mutually
independent R.V. with zero mean and finite variance tends to the Gaussian normal CDF,
provided that the individual variances are small compared to the sum of the variances.

Convolution in “time domain” is multiplication in the “frequency” or “Laplace” domains

Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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Recap of Expected Values

General concept of an expected value

In general, the expected value of a function is:

ela()]= [a(x)- £, (x)-dx

o)1= 30(%)- £ ()= Fo(x)-Pr(x =x)

X=—00

Means and Variances of Defined density functions.

Practice ... calculate the means, 2™ moments and variances for the following:
o> =E[X?|-E[X ]

Table 4.3-1 Means, Variances and Mean-Square values for Common Continuous RVs

Family pdf f(z) Mean p = E[X] Variance o> Mean square E[X?]
. ) 1 1 . 1 "
Uniform Ula,b) —(a+b) 3 (b—a) g(b“ + ab + a”)

1, . ' 2
Exponential —e %/ Pu(x) it p? 21

I

1 _(==w? N , ‘
Gaussian e 2d2 1 o 2 + o?

vV 2mo k /

Laplacian L el 0 & o?

\/50'

5 a2 ; ’ , ,
Rayleigh %6_275 u(x) %J (‘2 - %) o 20°
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Table 4.3-2 Means, Variances, and Mean-Square Values for Common Discrete RVs

Family PMF P(k) Mean p = E[K] Variance ¢ Mean
square
E[K?

Bernoulli Pp(k) = {[lj ‘3 q =0 P P pq P

Binomial b(k;n,p) = (;)pkq"*k np npq (np)? + npqg

1 i A
Geometric' u(k : e on?
eometric T+ (1 n “) u( k) 7 jL+ o+ 2
(TAI o
Poisson Trf.*_”'n(ﬁ.') a o a” +
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Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.
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