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4.1  Expected Value of a Random Variable  215 

Mean Value: the expected mean value of measurements of a process involving a random 
variable. 

This is commonly called the expectation operator or expected value of …  
and is mathematically described as: 

   




 dxxfxXEX X  

For laboratory experiments, the expected value of a voltage measurement can be thought of as 
the DC voltage.  

For discrete random variables, the integration becomes a summation and 

     









xx

X xXxxfxXEX Pr  

General	concept	of	an	expected	value	

In general, the expected value of a function is: 

      




 dxxfXgXgE X  

          









xx

X xXXgxfXgXgE Pr  

      




 dxxfXgXgE X  

Estimating	a	parameter:	

If we know the expected value, you have a simple estimate of future expected outcomes. 

 XEXx ˆ  

Or for  xgy   

    XgEyEy ˆ  
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Example 4.1-2 Expected value of a Gaussian 

   




 dxxfxXEX X  
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
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Moments 

The moments of a random variable are defined as the expected value of the powers of the 
measured output or … 

   




 dxxfxXEX X
nnn  

     









x

n

x
X

nnn xXxxfxXEX Pr  

Therefore, the mean or average is sometimes called the first moment.  

 

Expected	Mean	Squared	Value	or	Second	Moment	

The mean square value or second moment is 

   




 dxxfxXEX X
222  

   





x

xXxXEX Pr222  

 

The second moment is related to the average “energy” or “power” in a signal, where the energy 
and power are defined as 

   





 dttxdttxE

T

T
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Central Moments and Variance 

The central moments are the moments of the difference between a random variable and its mean. 

        




 dxxfXxXXEXX X

nnn
 

Notice that the first central moment is 0 … 

        




 dxxfXxXXEXX X

1
 

     








 dxxfXdxxfxXX XX

1
 

  01
1

 XXXX  

The second central moment is referred to as the variance of the random variable … 

        




 dxxfXxXXEXX X

2222  

The square root of the variance is defined as the standard deviation, σ  

 2XX   

Note that the variance may also be computed as: 

       XXXXEXXE 
22  

 222 2 XXXXE   

    222 2 XXEXXE   

  222 2 XXXXE   

     22222 XEXEXXE   

222 XX   

The variance is equal to the 2nd moment minus the square of the first moment.. 

Another estimate of future outcomes, is the value that minimizes the mean squared error. 

     22 ˆminmin xXEerrorE   
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Power and Energy Considerations 

DC Power/Energy is related to the mean square   222 XXE    

AC Power/Energy is related to the variance     22
 XXE  

Notice that the 2nd moment has both AC and DC power terms …. 

22222   XX  

      222 XEXXEXE   

 

Means and Variances of Defined density functions. 
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Linearity of the expected values – a linear operator 

The linearity allowing “linear operate” characteristics can be interpreted as allowing the expected 
value of a function to be the expected value of the internal elements of a function.  

For	example	

      


 










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
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But this can be expanded or rewritten as 

      


 
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
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The order of integration and summation can also be changed 

       













 N

i
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N

i
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So that we have  

    









 N

i
i

N

i
i XgEXgE
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As	another	example	

      








 dydxyxfYXYXE YX ,,  

       
















 dydxyxfYdydxyxfXYXE YXYX ,, ,,  

     








 dyyfYdxxfXYXE YX  

     YEXEYXE   
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Examples 

First Moment of exponential 

for    xuexf x
X    

  


 
0

dxexXEX x  

Integral Table Formula  1
2




 xa
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e
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   
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e
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





 

     
















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

101
2
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2








 ee
XEX  

   


 1
1

1
0

2




  XEX  

Second Moment of exponential 

for    xuexf x
X    

  


 
0

222 dxexXEX x  

Integral Table 
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 
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







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
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
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Example 4.1-7 Variance of Gaussian 

      
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Letting  




x
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
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   





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


 



 dz

z
zXE 




2
exp

2

1 2

2
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Integrating by parts:    dvuuvduv  
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Example 4.1-15 Geometric Distribution 

      xaaxpmfxP x
XX  0,1  

Determine the expected value 
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a
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
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This allows the mean value to be quickly found once “a” is known.  

Determine the 2nd moment 

   





0

22

x
X nPxXE  

   





0

22 1
x

xaaxXE  

Note:  
 32

2

0

2

0
2

2

1

2

1

1
1

aada

d
axxa

da

d

x

x

x

x












 









 

      




 
0

2222 11
x

xx axaxxaaXE  

         









 
0

1

0

222 111
x

x

x

x axaaaxxaaXE  
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   
 

 
 23

22

1

1
1

1

2
1

a
aa

a
aaXE





  

 
 

 






 2
2

2
2 2

11

2

a

a

a

a
XE  

Determine the variance 

      222 XEXEXE    

  
 

2

2

2
2

111

2






















a

a

a

a

a

a
XE   

  
 

 





 2
2

2
2

11 a

a

a

a
XE  
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4.2  Conditional Expectations  232 

Expected	Values	for	Conditional	Probability	

The conditional expectation is defined as 

   




 dxBxfxBXE BX || |  

For discrete R.V. 
      

i
iBXi

i
iBXi BxpmfxBxxBXE ||Pr| ||  

As an “operator” the definition should be expected. 

Example	4.2‐1”	Conditional	expectation	of	a	uniform	R.V	

  10
01

,
1

xxx
xx

xf X 


  

  10
01

0 , xxx
xx

xx
xFX 




  

The condition  aXB   

Therefore: 

   
  1

1

,
1

1
| xxa

axaF

xf
Bxf

X

X
X 





  

     
  1

1

,
1

| xxa
ax

ax

aF

aFxF
BxF

X

XX
X 








  

Using some numbers and performing expectations. 

Assume that the RV was uniform from 0 to 100. What is the new expected value of X. 

  1000,
100

1

0100

1



 xxf X  

  1000,
1000100

0





 x
xx

xFX  

     
100

0 100

1
dxxdxxfxXE X  

  50
2

100

2

100

100

1

2

0

2

100

100

1

2100

1 222100

0

2











x
XE  
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The conditional was above 65, what is the new expected value of X. 

The condition  65 XB  

   
  10065,

35

1

65100

1

1
| 





 x

aF

xf
Bxf

X

X
X  

     
100

65

| 35

1
|| dxxdxBxfxBXE BX  

  5.82
70

5775

2

422510000

35

1

2

65

2

100

35

1

235

1
|

22100

65

2














x
BXE  

 

Expected	Values	for	Joint	Density	functions	and	Conditional	Probability	

The expected values of joint density functions where multiple random variables are involved and 
may or may not have conditions occurs often.  

 Public Health Considerations 
 Effects of one variable on another for a statistical or probabilistic experiment.  

 

Definition	4.2‐3	The	expected	value	of	a	conditional	probability.		

For the joint density function given as:   yxf YX ,,  

We want to now the expected value 
 xXYE |  

We know from before 

     
 

 
 xf

yxf

xf

yfyYxf
xXyf

XX

Y
YX

,|
|, 


  

     dyxXyfyxXYE YX || ,  

Usefulness or application is in the expected value of Y 

      dxdyyxfyYE YX ,,  
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Application 

      dxdyyxfyYE YX ,,  

But          xfxXyfyfyYxfyxf XY  ||,  

        dxdyxfxXyfyYE X|  

       











 dxxfdyxXyfyYE X|  

       dxxfxXYEYE X|  

This may or may not seem like a logical result …. 
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Properties of Conditional Expectations: 

Property I: Expected values of a conditional expected values: 

    XYEEYE |  

Derivation 

     dyyfyYE Y  

     dxyxfyf YXY ,,  

         xfxXyfyfyYxfyxf XY  ||,  

       dxxfxXyfyf XY |  

       











 dydxxfxXyfyYE X|  

       











 dxxfdyxXyfyYE X|  

        XYEEdxxfXYEYE X ||    

Property II: If X and Y are independent (X should not matters) 

   XYEYE |  

Derivation 

         xfxXyfyfyYxfyxf XY  ||,  

             xfxXyfyfyYxfxfyfyxf XYXY  ||,  

       xfxXyfxfyf XXY  |  

   xXyfyfY  |  

       dyxXyfydyyfyYE Y |  

   XYEYE |  
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Property III: A conditional chain rule … 

    XYXZEEXZE |,||   

I hate the textbook proof ! 

     dzxXzfzXZE XZ || |  

     dzyxzfzYXZE YXZ ,|,| ,|  

Taking the expected value, only X,Y remain 

        











 dydxyxfdzyxzfzYXZEE YXYXZ ,,|,| ,,|  

But 

        











 dyxyfdzyxzfzXYXZEE XYYXZ |,||,| |,|  

       dzyxzfdyxyfzXYXZEE YXZXY 











   ,|||,| ,||  

Based on this equation, all values of y have been considered. Therefore,  

      XZEdzXzfzXYXZEE XZ |||,| |    
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4.3  Moments of Random Variables  242 

Example	4.3‐1	Binomial	R.V.	

      xnx
XX pp

x

n
xpmfxP 








 1  

Determine the expected value 

   



n

x
X nPxXE

0

  

   












n

x

xnx pp
x

n
xXE

0

1  

Proof based on Wikipedia https://en.wikipedia.org/wiki/Binomial_distribution  

         






 






n

x

xnx
n

x

xnx pp
xxn

n
xpp

xxn

n
xXE

10

1
!!

!
1

!!

!
 

       






n

x

xnx pp
xxn

n
XE

1

1
!1!

!
 

   
           



 





n

x

xnx ppp
xxn

nn
XE

1

111 1
!1!11

!1
 

   
           



 





n

x

xnx pp
xxn

n
pnXE

1

111 1
!1!11

!1
 

1 xy  

   
     











1

0

11
!!1

!1n

y

yny pp
yyn

n
pnXE  

But     11
!!

!

0







m

y

ymy pp
yym

m
 

  pnXE   

Determine the 2nd moment 

   





0

22

x
X nPxXE  

         






n

x

xnx pp
xxn

n
xXE

0

2 1
!1!

!
11  
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               






 






n

x

xnx
n

x

xnx pp
xxn

n
pp

xxn

n
xXE

11

2 1
!1!

!
1

!1!

!
1  

The second term was previously computed 

        pnpp
xxn

n
XE

n

x

xnx 


 




2

2 1
!2!

!
 

     
            




 



n

x

xnx ppp
xxn

nnn
pnXE

2

22222 1
!2!22

1!2
 

     
            




 



n

x

xnx pp
xxn

n
pnnpnXE

2

22222 1
!2!22

!2
1  

    11 22  pnnpnXE  

    pnpnnXE  22 1  

Determine the variance 

      222 XEXEXE    

      222 1 pnpnpnnXE    

   pnpnpnpnpnpnXE  2222222  

     qpnppnXE  12  

 

Figure 4.3-1    Variance of a binomial RV versus p. 
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 Joint Moments  246 

When we have multiple random variables, additional moments can be defined.  

       








 dydxyxfyxgYXgE ,,,  

All expected values may be computed using the Joint pdf. There are some “new” relationships. 

Correlation	and	Covariance	between	Random	Variables	

The definition of correlation was given as 

    








 dydxyxfyxYXE ,  

But most of the time, we are not interested in products of mean values (observed when X and Y 
are independent) but what results when they are removed prior to the computation. Developing 
values where the random variable means have been extracted, is defined as computing the 
covariance 

               








 dydxyxfyxYEYXEXEYXCOV YX ,,   

This gives rise to another factor, when the random variable means and variances are used to 
normalize the factors or correlation/covariance computation. For example, the following 
definition – correlation coefficient based on the normalized covariance 

  















 







 
















 







 
 dydxyxf

yxYX
E

Y

Y

X

X

Y

Y

X

X ,












  

 
YX

YXCOV







,
 

Also 

 
YX

YXYXE








  

  YXYXYXE    
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The short derivation 












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
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


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
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X XYYX
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YX
E










  

The expected value is a linear operator … constants remain constants and sums are sums … 

     
YX

YXYX XEYEYXE








   

 
YX

YXXYYXYXE








   

 
YX

YXYXE








   
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For “standardized” random variables, the correlation coefficient can be solved for as the 
correlation value.  

     yxE
yxEyxE

YX

YX 









11

00




  

For either X or Y a zero mean variable,  

   
YXYX

YXEyxE









 0

 

 

For independent random variables … 

      YXYEXEYXE    

 
0








 

YX

YXYX

YX

YXYXE







  
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Mean and Variance of the Sum of two R.V.  

For X and Y uncorrelated … letting Z=X+Y 

       22
YXZ YXEZEZVAR    

Note, Linear Op:         YXZ YEXEYXEZE    

             222 2 YYXXYX YYXXEYXEZVAR    

            YXYX YXEYEXEZVAR   222  

       YVARYXCOVXVARZVAR  ,2  

  222 2 YYXXZZVAR    

For uncorrelated X and Y 

  222
YXZZVAR    
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A special note 

Independent random variables are uncorrelated. 

      YXYEXEYXE    

 
0








 

YX

YXYX

YX

YXYXE







  

However, uncorrelated random variables are not necessarily independent. 

Example 4.3-5: Given 
 

YXP ,  11 x  02 x  13 x  

01 y  0  3
1  0  

12 y  3
1  0  3

1  

   



2

1
, ,

j
jiYXiX yxPxP      

3

1
,

2

1
,  

j
jiYXiX yxPxP  

     
3

1
321  xPxPxP XXX  

       
3

2
,

3

1
, 10

3

1
,  



yPyPyxPyP YY
j

ijYXiY  

Note, not independent      iYjXijYX yPxPyxP ,,  

    0
3

1
1

3

1
0

3

1
1

3

1

 
i

iXi xPxXE  

   
3

2

3

2
1

3

1
0

2

1

 
i

iYi yPyYE  

   

0
3

1
11010

3

1
11001

3

1
00001

,
2

1

3

1
,



 
 i j

ijYXij yxPyxYXE
 

Therefore   0, YXCOV  
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Example 4.3-4 Linear Prediction – mean square error  

 

Figure 4.3-2    Pairwise observations on (X, Y) constitute a scatter diagram. The relationship 
between X and Y is approximated with a straight line. 

Under a linear assumption of the relationship between X and Y 

bXay ˆ  

An error can be defined as 

bXaYyY  ˆ  

We wish to form the variance of the error 

       222 ˆ bXaYEyYEE   

      222 2 bXabXaYYEE   

         222 2 bXaEbXaYEYEE   

            22222 222 bXEbaXEaYEbXYEaYEE   

        22222 222 bbaXEabXYEaYEE XY    

Minimization says to take the derivative in a and set the derivative to zero and then derivative in 
b and set its derivative to zero. 
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Taking	partial	derivatives	

      0222 22 



XbXEaXYEE
a

  

    XbXYEXEa  222 2  

Equation #1:     XbXYEXEa  22  

  02222 



baE
b XY   

XY ab   222  

Equation #2: XY ab    

Finding a (substitute b in #2 into #1) 

      XXY aXYEXEa   2  

    22
XXY aXYEXEa    

     XYX XYEXEa   22  

 
  X

Y

X

YX

X

XY

XE

XYE
a








 










222
 

Finding b (using a and #2) 

X
X

Y
YXY ab 




 


  

The linear predictor becomes 
bXay ˆ  

 X
X

Y
YX

X

Y
Y

X

Y XXy 




















ˆ  

Or 

 X
X

Y
Y Xy 




 


ˆ  



Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for 
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.  

B.J. Bazuin, Fall 2016 25 of 46 ECE 3800 

and the error is 

 X
X

Y
Y XYyY 




 


 ˆ  

Finally, determining the “minimum” mean square error 

        22222 222 bbaXEabXYEaYEE XY    
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Deleting where possible leaves, 

   222222 1   YYYE  

 

Things to notice …. see the following page. 
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Things to notice …. the linear predictive fit is based on the probability values computed. 

 

Figure 4.3-2    Pairwise observations on (X, Y) constitute a scatter diagram. The relationship 
between X and Y is approximated with a straight line. 

 X
X

Y
Y Xy 


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 


ˆ  

   222222 1   YYYE  

Meaning of the correlation coefficients … for a linear fit, correlation of some type is expected! 

If 0 : 
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 
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    01 222   YE  

Y is known one X is known, there for the estimation error must be zero! 
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Jointly Gaussian Random Variables  251 

If two R.V. are jointly Gaussian 
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Visualizing Joint Gaussians … 

Figure 4.3-4    Contours of constant density for the joint normal (X = Y = 0):  
(a) σX = σY, ρ = 0; (b)σX >σY, ρ=0; (c)σX <σY, ρ=0; (d)σX =σY ;ρ>0. 
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4.4  Chebyshev and Schwarz Inequalities  255 

There are a number of probability relationships that bound aspects of engineering problems. 
They are typically based on moments, particularly the mean and variance.  
This is the first. 

The Chebyshev inequality furnishes a bound on the probability of how much an R.V. can deviate 
from its mean value. 

Chebyshev	inequality	Theorem	4.4‐1	

Let X be an arbitrary R.V. with known mean and variance. Then for any 0  
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Derivation 
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Results #1:  



 XxP
2

2

 

If we also consider the complement of the probability described,  

    1  XxPXxP  

and using the complement 

 



 XxP1
2

2

 

Therefore 

Results #2:  
2

2

1

  XxP  
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It may be convenient to define the delta function in terms of a multiple of the standard deviation.  
  k  

Then the Chebyshev inequality becomes 

 
2

1

k
kXxP    

 
2

1
1

k
kXxP    

Example	4.4‐1	

Deviation from the mean for a Normal R.V. 

The Gaussian Normal CDF is 

   zerfdv
vXx

z
z

v

X 





















 
 

 2

1

2
exp

2

1
2

2





 

Therefore 

   kerfdv
v

k
Xx

P
k

kv


































2
2

exp
2

1
2

2





 

   
2

1
12

k
kerfkXxP    

and 

   
2

1
21

k
kerfkXxP    

The following table compares the Chebyshev inequality to the above function. 
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Markov	Inequality		 257	

The Markov inequality focuses on the mean values and states. For a non-negative R.V. 

  0,0  xforxf X  

Then 

   


 XE
XP   

Derivation 

         


 


XPdxxfdxxfxdxxfxXE XXX

0

 

Therefore 

   


 XE
XP   

 

Example	4.4‐2	Bad	Resistors		

Resistors have a mean value of 1000 ohms. If all resistors are to be measured and those above 
1500 ohms, discarded how many might you estimate would be discarded? 

 
3

2

1500

1000
1500 XP  

Note: this is a “bound” not the exact value, the exact value could be expected to be smaller than 
67% as the inequality suggests. .  
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The Schwarz Inequality  258 

Schwarz Inequality considers the magnitude of the covariance of two R.C. 

 
YX

YXCOV







,
 equality will hold if and only if Y is a linear function of X  

(a correlation coefficient of +/-1).  

The inequality  can be written as 

  222, YXYXCov    

or 

  22, YXYXCov    

Derivation: The covariance definition leads to a straight forward recognition of this inequality 

 
YX

YXCOV







,
 

Therefore 

  2222, YXYXCov    

with 11    

You have already experienced the Schwartz Inequality in other setting … 

For the inner product 

     




 dxxgxhgh *,  

  ghgh ,  

You may also see the convolution form as 

           












 dxxgxgdxxhxhdxxgxh ***  
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Law	of	Large	Numbers	

Now that we have discussed the Cheybyshev inequality, we can provide a proof of the Law of 
Large Numbers. The discussions here provides the condition that the sample mean converges to 
the ensemble mean … that is the statistical mean equals the R.V. ensemble mean. 

Example 4.4-3. The sample mean equals the expected value mean 

For a large enough number of samples, we say that 





n

i
iX X

n 1

1̂  

If we take the expected value 

  







 



n

i
iX X

n
EE

1

1̂  

   












n

i
i

n

i
iX XE

n
XE

n
E

11

11̂  

  XX

n

i
XX n

nn
E   



11
ˆ

1

 

and 

  







 



n

i
iX XVar

n
Var

1
2

1̂  

  2

2

1
ˆ XX n

n
Var    

  21
ˆ XX n

Var    

Therefore, using the Chebyshev inequality we state that 

 
2

2

ˆ








n
P X

XX  

Then for any fixed value of delta 

 
2

2

limˆlim








 n
P X

n
XX

n
 

and 
  0ˆlim 


 XX

n
P  
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4.5  Moment-Generating Functions  261 

The text is now moving into some advanced concepts that support mathematical derivation of 
higher order moments.  

I have been exposed to problems where the 4th moment of a R.V.  required as part of a solution. 
If you really like and are comfortable with Laplace and Fourier Transforms these approach 
provide solutions faster and more easily than more brute force integral approaches.  

The moment generation function (MGF) is the two sided Laplace transform of the probability 
density function (pdf).  If the MGF exists, there is a forward and inverse relationship between the 
MGF and the pdf. The MGF is defined bases on the expected value as 

    XtEtM X  exp  

Therefore 

     




 dxxtxftM XX exp  

If you like s better than t in your Laplace transforms … 

     




 dxxsxfsM XX exp  

For discrete R.V. we perform a discrete Laplace transform 

         









i

iiX
i

iiXX xsxPxsxpmfsM expexp  

Why do we do this? 

1. It enables a convenient computation of the higher order moments 

2. It can be used to estimate fx(x) from experimental measurements of the moments 

3. It can be used to solve problems involving the computation of the sums of R.V. 

4. It is an important analytical instrument that can be used to demonstrate results and 
establish additional bounds (the Chernoff Bound and the Central Limit Theorem). 
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It	enables	a	convenient	computation	of	the	higher	order	moments	

Based on the definition 

    XtEtM X  exp  

Perform the Taylor series expansion of the exponential 

   
!!2!1

1exp
2

n

xxx
x

n

 

          

















 

!!2!1
1exp

2

n

XtXtXt
EXtEtM

n

X  

or 

          
 










!!2!1
1exp

2
21

n

mtmtmt
XtEtM

n
n

X  

The mi are the ith moments of the density function! 

So how would we solve for the moments? By taking derivatives and setting t=0! 

     
   









 



!!1

1
1

kn

mtmt
mtM

t

kn
nk

kXk

k

 

by setting t=0 

      k
k

X

t

Xk

k

mMtM
t







0
0

 

Solution done by performing a 2-sided Laplace Transform and differentiation! 
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Example 4.5-1: The MGF of a Gaussian 

   
















 xfor
x

xf X ,
2

exp
2

1
2

2

2 



 

MGF:      




 dxxtxftM XX exp  

     



















 dxxt
x

tM X exp
2

exp
2

1
2

2

2 



 

When integrating Gaussians … form an integral of a correctly formed Gaussian function and 
equate it to 1.0.  

   



















 dx

xtxx
tM X 2

222

2 2

22
exp

2

1





 

   



















 dx

xtx
tM X 2

222

2 2

2
exp

2

1





 

   

   






































dx
txtx

t
tM X

2

2222

2

2

222

2

2
exp

2

1

2
exp









 

      



































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txt

tM X 2

22

22

222

2
exp

2

1

2
exp







 

The integral is now equal to 1.0. And we have 

   

























2

242

2

22422

2

2
exp

2

2
exp





 tttt

tM X  

  






 


2
exp

22 t
ttM X

  

Now we can generate the moments of a Gaussian function. 
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The 1st Moment 
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The 2nd Moment 
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The 3rd Moment 
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The 4th Moment 
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See: https://en.wikipedia.org/wiki/Normal_distribution  

Additional	useful	examples:	

Example 4.5-2 MGF of Binomial 
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Magical math step … not really, but I haven’t done the derivation myself … 

    n
X qtptM  exp  
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The 1st Moment 
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The 2nd Moment 
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Example 4.5-3 MGF of Geometric Distribution 
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The 2nd Moment 
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Checking the results from Table 4.3-2 All these results match, as expected. 
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4.6  Chernoff Bound  264 

The Chernoff bound is based on concepts related to the MGF.  

Looking at “the tail probability” for  aXP   where ‘a’ is a defined constant.  

As a tail, we expect the density function to have greatly decreased in this region … like an 
exponential or Gaussian. 

Then, we can state 

   



a

X dxxfaXP  

     




 dxaxuxfaXP X  

If the tail is such that      axtaxu  exp  

Then  

          








 dxaxtxfdxaxuxfaXP XX exp  

But then 

           tMtadxtxxftaaXP XX  




expexpexp  

To minimize the bound, the value of t that provides the smallest value should be used. Therefore, 
differentiate with respect to t, find the value of t for the minimum and use the derived value for 
the bounds.  

Example	4.6‐1	Chernoff	Bound	to	Gaussian	

Let X be Gaussian and consider the bounds where a> E[X]  

For the Gaussian 
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The Bound becomes 

        






 


2
expexpexp

22 t
ttatMtaaXP X

  

    






 


2
exp

22 t
taaXP

  

To find the minimum value of t 
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4.7  Characteristic Functions  266 

The characteristic function is to the MGF as the Fourier transform is to the Laplace transform. 
Instead of t being a complex variable (similar to s), we set t = jw.  

Therefore, the characteristic function is 

    XwjEwX  exp  

     
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For discrete RV 
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In general, the CF has similar properties to the MGF. In addition to those previously mentioned, 
the Fourier transform is very useful when performing time domain convolution.  

For sums of R.V., Z=X+Y, as previously shown the density function is the convolution of the 
two density function in X and Y.  
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But this can also be performed in the “frequency domain” by multiplication 
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As a result it makes it much easier to contemplate 
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Which would become 

       wwww
NXXXZ  

21
 

 



Notes and figures are based on or taken from materials in the course textbook: Probability, Statistics and Random Processes for 
Engineers, 4th ed., Henry Stark and John W. Woods, Pearson Education, Inc., 2012.  

B.J. Bazuin, Fall 2016 43 of 46 ECE 3800 

Example	4.7‐2	

For NXXXZ  21 , where the Xi are independent and identically distributed (IID) solve 

for the new distribution when Xi is a Gaussian normal R.V. (0 mean, unit variance). 
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Then for zero mean, unit variance 
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and for IID R.V.  
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The inverse transform (based on the forward transform with a variance) results in  
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Moment Generation with the Characteristic Function 

AS with the MGF, the CF can generate moments by differentiation. 
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Joint MGF and CF 

Joint MGF and CRF Function can and are defined. As may be expected, they can be used to 
compute “cross-products” of random variables just as they generated moments.  

The Joint MGF is defined as 
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The Joint CF is defined as 
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All the moments become for the joint and marginal variables can then be computed based on 
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The	Central	Limit	Theorem		

The central limit theorem states that the normalized sum of a large number of mutually 
independent R.V. with zero mean and finite variance tends to the Gaussian normal CDF, 
provided that the individual variances are small compared to the sum of the variances.  

Convolution in “time domain” is multiplication in the “frequency” or “Laplace” domains 
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Recap of Expected Values 

General	concept	of	an	expected	value	

In general, the expected value of a function is: 

      
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X xXXgxfXgXgE Pr  

Means and Variances of Defined density functions. 

Practice … calculate the means, 2nd moments and variances for the following: 

   222 XEXE   

 

 


