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CHAPTER 4  

FINITE ELEMENT MODELING OF COMPOSITE FLOORS FOR VIBRATION SERVICEABILITY 

 

4.1 Finite Element Modeling of Composite Floors for Vibration Serviceability 

The objective of this chapter is to present general finite element (FE) modeling 

techniques for composite floor systems.  Methods of creating valid computational models of 

composite floors subjected to dynamic loads provide a tool for designers, consultants, and 

researchers to evaluate proposed and existing composite floor systems for serviceability.  The 

actual method of evaluation using the computed parameters and response values is still a subject 

of debate, even amongst the various simplified methods for evaluating serviceability.  However, 

without question, the ability to adequately represent the dynamic behavior of a floor system with 

a computational model provides many options for the development of serviceability evaluation 

methods because iterations of analyses on a suite of computational models is much easier than 

testing even a small sample size of in-situ floors. 

This chapter discusses the fundamental techniques used in development of FE models of 

the tested in-situ floors.  Although three floors were tested, only the NOC VII-18 and VTK2 

floors were modeled.  Only one model was developed for NOC VII, as the two different tested 

floors (NOC VII-24 and NOC VII-18) shared identical framing with only slightly different 

interior partition configurations.  NOC VII-18 was the basis for comparison for the NOC VII 

model, as this was the most extensively tested of the two floors in the NOC VII building.  The 

intent of the investigation was not to independently create ideal models for each individual floor 

using automated finite element modeling algorithms, but rather to model both floors using broad, 

fundamental, logical, and most importantly common/shared techniques that resulted in FE 

models that adequately represented the dynamic behavior of the floors.  The two modeled floors 

were different, both in geometry and boundary conditions, thus identifying common modeling 

techniques that applied to both floor models builds confidence that the techniques are applicable 

to a variety of configurations of composite floor systems.  Although three tested in-situ floors 

may seem to be a low number of test specimens for identification of fundamental modeling 

techniques, additional “samples” are intrinsic from bays of variable geometry and boundary 
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conditions within each floor’s own assemblage.  Each tested bay demonstrated unique dynamic 

behavior, including different dominant frequencies.  Thus, the measurements from the in-situ 

floors presented in Chapter 3 provide an adequate sample of stiffness, geometry, and boundary 

conditions for identification of the FE modeling trends required to bring experimental and 

analytical results into agreement  

Dynamic FE models of composite floor systems require adequately representing mass, 

stiffness, and boundaries within the model to analytically compute frequencies and mode shapes.  

Damping in a structure is not computed by FE analysis.  For forced response computations, 

damping must be specified within the model, either from assumed values or based on measured 

estimates.  Theoretically, if all of the above listed parameters are adequately represented, a 

forced response analysis should result in computed accelerations similar to measured 

acceleration response.  Previous FE modeling research has had success in matching frequencies 

of composite floors but struggled to adequately predict the acceleration response, the most 

important value for vibration serviceability (Sladki 1999; Alvis 2001; Perry 2003).   

The process of developing the modeling techniques described in this chapter involved 

creating FE models of the NOC VII and VTK2 floors and manually updating the models to bring 

the computed dynamic properties and acceleration response into agreement with the 

experimentally measured values presented in Chapter 3.  In the most basic terms, floor models 

were created in the XY-plane with the Z-plane representing the direction of vibration.  The 

models consisted of frame and rectangular plate area elements located in the same plane (with 

stiffness adjustments to represent composite behavior) and analyzed as a plane grid structure, 

using only UZ, RX, and RY as available degrees of freedom (DOF).  UZ is the out-of-plane 

translational DOF, and RX and RY are the rotational DOFs about the X and Y axes, respectively. 

Creating an FE model of a floor system for evaluation of vibration serviceability can be 

summarized in six general steps: 

1) Lay out the floor geometry using the design specified steel framing members for the 

beams and girders and vertical restraints at the locations of the columns. 

2) Define area elements and materials to represent the composite slab and apply the slab 

area elements to the model. 

3) Adjust model to adequately reflect mass and stiffness (mesh size and subdivision of 

members, additional restraints or releases, application of stiffness property modifiers to 
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represent composite stiffness, etc.). 

4) Perform modal analysis on the FE model to compute the frequencies and mode shapes. 

5) Specify damping in the model. 

6) Apply dynamic loads and perform forced response analysis for use in evaluation of 

vibration serviceability. 

The recommended techniques used for the above listed steps are presented first in Sections 4.1.1 

and 4.1.2 using an example 8-bay floor model, followed by the application of these techniques to 

generate and analyze FE models for the two tested floors presented in Section 4.2.   

The commercially available finite element analysis software used in the presented 

research was SAP2000 Nonlinear version 9.1.4 (CSI 2004).  SAP2000 was used for its 

availability to the researcher, its dynamic finite element capability including transient time 

history analysis and steady-state analysis, and its popularity with practicing design engineers.  

The latter broadens the applicability of the presented research, as more practicing design 

engineers are likely familiar with performing analysis using commercial software like SAP2000 

than with other FE analysis programs such as ANSYS, ABACUS, or ADINA, which are more 

oriented towards research.  The practicing engineer’s familiarity with the software is likely 

limited to static analysis rather than dynamic analysis, but the basic menus and commands for 

modeling structures for dynamic analysis are very similar. 

Many of the basic techniques used for modeling composite floors in SAP2000 were 

based on those used by others for floor vibration research (Kitterman 1994; Rottman 1996; 

Beavers 1998; Sladki 1999; Alvis 2001; Perry 2003).  These basic techniques were either used 

as-is, improved upon, disproved, or new techniques developed through comparison of the 

modeling results with measured in-situ floor behavior, which was generally not available when 

the basic techniques were originally developed.  The initial discussion and application of the 

modeling techniques are presented in a fair amount of detail, thus Section 4.3 is a concise 

summary of the recommended modeling techniques.  Section 4.4 presents a proposed method of 

evaluation for vibration serviceability using the forced response analysis results of composite 

floor FE models.  The method combines the forced response analysis presented in this chapter 

with present design guidance for representing forces due to walking and the threshold of human 

tolerance.   
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4.1.1 Representing Mass, Stiffness, and Boundary Conditions 

Mass & Materials  

Within SAP2000, the mass of an individual element is computed from its volume and the 

mass density of the material, which is lumped at its joints and assigned to the translational 

degrees of freedom (UZ for the modeled floors analyzed as plane grid structures).  SAP2000 

does not compute or assign mass moments of inertia for the rotational degrees of freedom (CSI 

2004).  The mass of the floor in the FE model, or more accurately the distribution of mass of the 

floor, is represented by the mass of the assembled elements.  The beams and girders of the floor 

framing were modeled using the predefined wide flange sections available within SAP2000.  

These predefined frame elements included all the geometric section properties necessary for 

analysis, including cross-section area, torsional constant, moments of inertia, and shear areas.  

Additionally, these frame elements are assigned SAP2000’s default STEEL material, which 

contains necessary constitutive properties such as mass density, modulus of elasticity, and 

Poisson’s ratio.  An example of the first general step of creating an FE model, laying out the 

floor geometry with the specified framing members, is shown for an example 8-bay floor model 

in Figure 4.1.  

 

Figure 4.1: 8-Bay Floor Model Example – Framing Member Layout 

The concrete slab on steel deck was represented by user-defined rectangular plate area 

elements assigned a user-defined material.  It should be noted that plate elements were used to 
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represent the composite floor slab in lieu of shell elements.  The in-plane forces from membrane 

behavior are not a factor for vibrations of composite floors.  Several iterations of analysis were 

performed using full space frame analysis (all six available DOF) and shell area elements.  The 

results indicated there was no significant effect on the computed frequencies, mode shapes, and 

response, only a significant increase in computation time.  Rather than using a predefined 

material of concrete or steel, a user-defined material named VIBCON was created and assigned 

to the plate area elements to represent the dynamic properties of the concrete slab and metal 

deck.  These properties included the composite slab’s mass, the mass of any superimposed loads, 

and the dynamic stiffness of concrete (1.35*Ec). For both the tested/modeled floors, the same 

composite slab system was used, a 5.25-in. total depth slab with 18-gage 2-in. LOK-Floor steel 

deck.  The thickness of the user-defined plate element named SLAB was specified as 3.25 in., 

equal to the depth of the concrete above the corrugated steel deck ribs.  It should be noted that 

this method is purely a convenience to ensure adequate mass distribution using the assigned 

material weight and mass densities; the ramifications of this approach on representing stiffness 

of an orthotropic deck must be dealt with in a manner discussed in the following sections.  The 

weight density and mass density of the user-defined material were computed using Equations 

(4.1) and (4.2), respectively (Beavers 1998; Sladki 1999; Perry 2003).   
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The advantage of using this method for assigning weight and mass density is that it 

allows any desired superimposed dead or live load (furniture, lighting, utilities, etc.) to be 

included as additional mass in the computation of frequencies and mode shapes, although no 

superimposed loads were used in the models of the presented research due to the bare conditions 

of the tested floors.  Because the tested floor systems had no superimposed load, only the unit 

weight of the concrete slab, wc = 115 lb/ft
3
, and area weight of the steel deck, wdeck = 2.4 lb/ft

2
, 

was included in the specified mass density of the material.  For the 5.25-in. composite slab of 

both modeled floors, the depth of the concrete above the ribs, d, is 3.25 in. and the depth of the 

steel deck, dr, is 2 in. 

Besides specifying weight and mass density, the constitutive properties of the user-

defined material were defined per DG11 recommendations previously described in Section 1.1.2. 

The modulus of elasticity of the user-defined material representing the concrete slab was taken as 

1.35 times the modulus of elasticity of the concrete as “specified  in current structural standards” 

to account for a greater stiffness of the floor slab system under dynamic loads (Murray et al. 

1997).  The modulus of elasticity of concrete used was based on the unit weight and compressive 

strength and was computed using Equation (1.6).  Poisson’s ratio for the user-defined material 

was taken as 0.2, a typical value for concrete.   

Because the FE analysis program apportions the mass of an element at each of its joints, 

it was important to use enough elements to properly represent the uniform distribution of mass 

across the slab areas and along the framing member lengths.  To adequately distribute the mass 

of the floor, the SLAB area elements were appropriately meshed across their areas and the 

beam/girder framing members were similarly subdivided along their lengths at each mesh joint.  

An overly fine meshed model is computationally expensive, thus the frequencies and mode 

shapes of a single-bay FE model were computed at various mesh subdivisions until the first four 

frequencies of the model converged to within 0.01 Hz.  It was found that SLAB area element 

sizes of 26 in. to 30 in. along each side gave convergent results, which corresponded to a mesh 

with 12 to 20 elements along a bay’s width or length, depending on the floor model and bay’s 

configuration.  SAP2000 recommends an element aspect ratio close to unity for best results (CSI 

2004), which was factored into determining the mesh and element sizes.  The plate area elements 

representing the composite slab and the corresponding area mesh for the example 8-bay floor 

model are shown in Figure 4.2. 
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Figure 4.2: 8-Bay Floor Model Example – Plate Area Element Layout and Mesh 

To ensure connectivity of the slab and framing elements and to provide the same 

distribution of mass along their lengths, the frame elements representing the girders and beams 

were auto-subdivided along their lengths corresponding with the slab mesh size.  Experimental 

measurements were taken at quarter points of the bays of the tested floors.  For convenience, the 

number of elements used along the length/width of a bay in the model was kept to a multiple of 

four to ensure a joint existed where the mode shape or response value was desired.    

Stiffness  

As previously stated in Section 1.1.2, if a slab/deck system is in continuous contact with 

the beams and girders, the floor system is assumed to act compositely, regardless of whether or 

not the floor was designed with shear connectors (Murray et al. 1997).  The assumption did not 

have to be made for the two modeled floors, as they were both designed with composite shear 

studs on all beams and girders.  By modeling both the area elements and the framing elements in 

the same plane to take advantage of the plane grid analysis, an adjustment must be made to the 

stiffness properties to account for the composite bending stiffness.  As the first step in this 

adjustment, the composite transformed moment of inertia for each beam/slab and girder/slab 

element was computed using traditional engineering mechanics and the recommended dynamic 

modulus of elasticity and concrete effective width guidelines of DG11.  The effective width 

guidelines include limitations based on beam/girder span as well as considerations for spandrel 



 229 

members.  Because the steel deck is oriented perpendicular to the beam framing members, the 

transformed moments of inertia were based on only the 3.25-in. thickness of concrete raised 

above the steel member, as shown in Figure 4.3(a).  For girder members, where the deck is 

parallel to the girder span, the transformed moments of inertia were based on a T-beam 

approximation of the slab, as shown in Figure 4.3(b).  

 

(a) Composite Slab on Beam (Deck Ribs Perpendicular to Member) 

 

(b) Composite Slab on Girder (Deck Ribs Parallel to Member) 

Figure 4.3: Representations of Composite Slab and Framing Members 

Because the slab and framing members were modeled as separate elements, each has its 

own assigned moment of inertia about its own centroid, and from the plane grid modeling 
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choice, the centroids are located in the same XY-plane as shown in Figure 4.3(a) and (b).    Thus, 

because the individual moments of inertia for the frame and slab elements about their own 

centroids are known, and the target transformed moment of inertia is also known, then a stiffness 

property modifier (PM) can be assigned to the strong axis moment of inertia of the frame 

members to represent a composite stiffness.  Within SAP2000, property modifiers are 

multiplication factors that are applied to the desired geometric or material property of an element 

to increase or decrease its value.  Using this approach, the sum of the transformed moment of 

inertia of the slab about its own neutral axis and the “modified” moment of inertia of the framing 

member will equal any desired target transformed moment of inertia for the composite beam/slab 

or girder/slab members.  Identifying the strong axis stiffness property modifier to be applied to 

the framing member involved several steps, including computing the transformed moment of 

inertia for the beam/slab or girder/slab, subtracting out the computed transformed moment of 

inertia of the 3.25-in. slab area element about its own neutral axis, and then dividing through by 

the default strong axis moment of inertia of the predefined wide flange framing member.  For 

girders, which include the deck ribs in calculations, the orthotropic stiffness property modifier on 

the slab must also be subtracted out so that it is not accounted for twice.  An example of the 

computation of a transformed moment of inertia and baseline stiffness property modifier for a 

beam and a girder member can be found in Appendix K.  It should be noted that property 

modifiers were computed using this method for all framing members of the modeled floors.  

These represent the “baseline” PM values computed and applied to the framing members.  

Adjustments to the stiffness PMs was the primary method for representing a different stiffness 

that was not considered in the composite calculations, such as spandrel or interior boundary 

members that may have greater stiffness due to attached exterior cladding or partition walls.  The 

stiffness PMs used on these stiffer boundary elements are expressed as a multiple of the baseline 

values (e.g. 2.5 times baseline) in the presented research.  The baseline computed composite 

stiffness property modifiers typically ranged from approximately 2.5 to 3.8 for the primary 

framing members of the modeled floors.   

The user-defined VIBCON material was specified as an isotropic material, which assumes 

the same constitutive properties (modulus of elasticity, Poisson’s ratio) in all directions.  While 

not an orthotropic material, the slab has an orthotropic stiffness due to the corrugated ribs.  

Assigning a property modifier to the girder members accounts for the composite action, however 
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using area elements with a constant 3.25-in. thickness (the portion of the slab above the deck 

ribs) does not account for the additional bending stiffness of the corrugated slab spanning the 

direction between beams.  The strong direction moment of inertia of the 5.25-in. corrugated slab 

(i.e. bending includes deck ribs) is approximately three times larger than the moment of inertia of 

just the 3.25-in slab above the ribs, which is the effective portion resisting bending in the weak 

direction.  To account for this, a bending stiffness property modifier of 2.88 was assigned to the 

SLAB plate area elements, which is the computed ratio of strong direction-to-weak direction 

moment of inertia of the concrete.  As expected, applying this bending stiffness property 

modifier to the slab had the effect of increasing computed frequencies by 5-10%.  More 

importantly, the effect was quite evident on the computed mode shapes, which included much 

more participation in bays adjacent in the direction of the deck ribs.  This follows the behavior 

observed during experimental testing.  The 2.88 ratio assigned to the slab element was also used 

to compute the PM for the girders, so as not to double count the orthotropic stiffness (although 

the bending stiffness of the slab is much smaller than the composite stiffness of the girder, so not 

subtracting out the 2.88 modifier has negligible effect). 

As previously mentioned, the wide flange beams and girders were modeled explicitly 

using SAP2000’s predefined steel sections rather than creating user-defined frame elements.  An 

obvious advantage to this approach is that it more easily accommodates adjusting an existing 

floor model created by a design engineer for other analysis.  Creating user-defined sections for a 

large number of framing members would be tedious, requiring the input of a wide variety of 

cross section properties that may or may not apply to the floor model.  Although property 

modifiers were assigned to the strong axis moment of inertia to increase the section’s bending 

stiffness to represent composite action, using the specified steel section kept all of the other 

member section properties intact and ensured the mass of the frame member was captured 

correctly.  This approach also allows, if desired, shear deformations to be included in the 

computed frequencies and mode shapes.  Shear deformations could be neglected simply by 

setting the framing members’ shear area property modifiers to zero.  Neglecting shear 

deformations essentially neglects flexibility, resulting in stiffer framing members and a 3-5% 

increase in computed frequencies for the floor models used in this study but no notable effect on 

mode shapes.   
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The plate elements used in the floor models of this research were the program default 

thin-plate elements, based on the Kirchhoff (thin-plate) formulation, which neglects transverse 

shear deformations.  The alternative plate elements (not used) available in SAP2000 are based on 

the Mindlin/Reissner (thick-plate) formulation, which includes the effects of transverse shearing 

deformation but tends to be somewhat stiffer than the thin-plate formulation (CSI 2004).  

Iterations of models comparing the two plate formulations showed this to be true; however the 

computed frequencies were less than 1% higher for the stiffer thick-plate elements.   

End Releases, Partial Fixity, and Boundary Conditions 

Although modeling end and boundary conditions is a subset of representing the stiffness 

in a floor structure, they deserve a separate section to stress their importance as the greatest 

unknowns in modeling floors for evaluation of serviceability.  One of the most significant 

modeling parameters that affected the computed frequencies and mode shapes was the stiffness 

of connections between beam, girders, and columns.  The stiffness of beam and girder 

connections was handled using moment end releases and restrained DOFs in SAP2000.  Moment 

end releases specify a pinned connection, allowing rotation between the end of the member and 

whatever it is connected to.  When the end moment is not released, rotation between connected 

members is not allowed, however the joint itself is still free to rotate.  Moment end releases 

differ from rotationally restrained DOF in that the assigned joint is not allowed to rotate when 

the DOF is restrained.   

Intuition would suggest using a rotationally restrained DOF for members connected to 

columns with moment connections, however several model iterations demonstrated that this 

modeling technique over-restrained the models and did not allow certain mode shapes (and 

response in the members framing between columns) that were clearly measured during testing.  

Intuition may also suggest releasing the end moment of all members that are connected to 

columns with simple shear connections; however this provided too flexible of a system that also 

poorly represented mode shapes when the technique was applied to all locations with this 

connection type.  From the presented research, the recommended configuration of beam/girder-

to-column moment end releases that produced the best results for both frequency and mode 

shapes was releasing all end moments of members framing into column webs and not releasing 

end moments of members framing into column flanges, despite whether either connection was 

specified as a moment connection.  It should be noted that this is a very simplified approach to 
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very complicated behavior of the column joint that is a function of several competing sources of 

stiffness, some of which are:   

• Shear connections are not true pinned connections and provide rotational restraint. 

• Centerline dimensions are used for the modeled geometry of all framing members and 

composite stiffness calculations, however members framing into column flanges can be 

12-18-in. shorter (thus stiffer) based on actual clear distance.    

• Although the framing members are assigned a composite moment of inertia over their full 

length, the actual stiffnesses at the ends are probably reduced by the perforation of the 

slab/deck system by the column and cracks that typically occur in the slabs over inter-

column beams and girders, particularly if they are part of a moment frame (observed in 

the tested buildings). 

• Shear connections into the webs of columns are rotationally more flexible compared to 

shear connections into the flange of a column.  Moment end-plate weak axis connections 

(i.e. through the web of a column) are also rotationally flexible.   

• The rotational contribution of the column will also affect the behavior of the joint for 

both moment and shear connected framing members.  

Obviously the numerous contributions to the rotational stiffness of column joints, many of which 

remain unknown, are difficult and tedious to account for in a manner appropriate for the 

presented research.  However, the competing inaccuracies of the proposed simplification resulted 

in models that adequately represented the behavior and response of the tested floors.  

Most beams are connected to girder webs with simple shear connections, and it is 

generally assumed the continuity of the slab/deck over the joint provides enough continuity in 

the composite system that the slopes of the connecting beams on either side of girder are 

approximately the same.  When moment end releases were applied to the ends of beams framing 

into girder webs, some of the computed mode shapes resulted in excessively discontinuous (i.e. 

kinked) mode shapes over the girder between adjacent panels due to differential rotation of the 

ends of the beams.  Examining the experimentally measured mode shapes of the tested floors, 

there was often a noticeable discontinuity in the shape over the girder supports, although 

generally not nearly as excessive as in the full moment end-released models.  It should also be 

noted that inspection of the tested floors showed cracks in the concrete slab over most girders 

and many beams spanning between columns, indicating a less-than-continuous floor slab over 
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these intermediate supports.  The implication of this experimental observation on FE modeling is 

quite significant.  Essentially, neither a continuous beam representation (i.e. no moment end 

releases for the beam members on either side of the girder web) or fully end-released beam 

representation may be adequate.  When full moment end releases are specified, the only element 

providing continuity between adjacent bays across a girder is the thin 3.25-in. slab area element, 

which has a relatively weak bending stiffness resulting in the excessively discontinuous mode 

shapes.  The measured behavior implies a rotational stiffness at this interface somewhere 

between the two representations.  When specifying an end release in SAP2000, the option to 

include a partial fixity is available, which for moment end releases requires a value for the 

rotational spring in units of kip-in/rad.  Figure 4.4 shows the example 8-bay floor model framing 

members with assigned releases and partial fixity designations.  The columns in the example are 

oriented with their webs parallel to the direction of the beam framing, thus all girders have full 

moment end releases and the inter-column beams do not have any moment releases.  

 
Figure 4.4: 8-Bay Floor Model Example – End-Release and Partial Fixity 

Partial fixity spring values used were not based on experimental testing of the joints, 

instead they were determined from model iterations that produced frequencies and mode shapes 

that were in agreement with measured values.  However, the values used were based on an 

assumed level of rotation at the end of the member that was translated into a fraction (or 

multiple) of EI/L for the framing member.  This approach for specifying partial fixity was used 

for several reasons, but mainly so the rotational spring value used for any model would be based 

on properties of the actual framing member rather than arbitrary values.  Additionally, by 
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specifying the rotational spring in terms of a coefficient to the frame member’s baseline EI/L 

value, this coefficient can be used as an iteration parameter for model refinement.  From 

iterations of the floor models in the presented research, it is recommended to use a moment end 

release partial fixity rotational spring value of 6EI/L at both ends for floor beam members that 

frame into girders.  The 6EI/L value corresponds to a rotational spring at the ends of a simply 

supported beam under a static uniform load that responds with 25% of the rotation of a pinned-

pinned supported member and 75% of the end moment of a fixed-fixed supported member under 

the same load.  Ordered pairs of assumed moment and rotation can be used to solve for a value of 

the coefficient, such as 2EI/L for 50% end fixity or (2/3)EI/L for 25% end fixity, although 6EI/L 

was used in the models of the presented research.  A derivation of this method for determining 

rotational spring values is found in Appendix L.   

The only end releases used in the presented models were the strong axis moments.  Perry 

(2003) suggested releasing the weak axis moments at both ends of the member as well as one 

end of the torsional moment.  The weak axis moment end releases had no effect on the computed 

frequencies because the floor models were analyzed as plane grid structures and the RZ 

rotational DOF was not used in analysis.  Model iterations investigating the effect of releasing 

the torsional moment showed that this practice had virtually no effect on results, only changing 

frequencies by less than 0.001 Hz. 

Like the end releases and partial fixity values, the boundary conditions of the floor 

models arguably had a very significant effect on the computed frequencies and damping.  

Boundary conditions consist of interior boundaries such as columns, interior partition walls, and 

the exterior spandrel members of the floor.  The building’s columns were modeled as pinned 

supports that restrained translational movement but allowed rotation.  The vertical response of 

the columns was considered negligible because experimentally measured values from driving 

sinusoidally at the dominant frequency indicated the response was less than 1% of the response 

at the center of the bay.  This small response at other frequencies was also confirmed by 

experimental measurements.  The minimal response that was measured at the columns was more 

likely a function of the accelerometer being located some distance from the column centroid than 

an actual vertical response.  Interior braced frames, such as those in the end bays of NOC VII, 

were also represented by pinned supports. 
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Generally, spandrel beams and girders were modeled with an increased stiffness modifier 

to represent the stiffening effect of the exterior cladding.  An “increased” stiffness modifier 

means that a larger PM was used on the spandrel member than the original baseline PM 

computed based on DG11 composite section transformed moment of inertia calculations.  Perry 

suggested using a stiffness property modifier of 1000 on the strong axis moment of inertia for 

spandrel beams and girders because the exterior walls and cladding sufficiently stiffen these 

members for floor vibration purposes (Perry 2003).  Assigning stiffness property modifiers this 

large, the exterior boundary members essentially act like rigid walls within the model, however 

the experimental behavior of the tested floors proved otherwise.  The measured response at these 

boundaries was much greater than an assumed wall (9-26% the mid-bay response), thus the 

suggested PM of 1000 was not used for spandrel members in the presented floor models.  From 

model iterations comparing the spandrel member response with the mid-bay response, it is 

recommended to use a stiffness property modifier of 2.5 times the computed baseline PM.  

Another method used to stiffen the interior bays enclosed by full height partition walls was 

placing pin supports within the bays, essentially restraining the interior of the bay from vibration.  

Figure 4.5 shows the final layout of the example 8-bay floor model, including pinned supports 

along an interior beam to simulate cross bracing and additional pinned restraints to the slab on 

the interior of an enclosed bay to simulate an increased stiffness within this bay due to small 

mechanical rooms or elevator cores. 

 

Figure 4.5: 8-Bay Floor Model Example – Pinned Supports Representing Interior Restraints 
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4.1.2 Dynamic Finite Element Analysis Techniques for Floor Systems  

The previous section presented the first three general steps for creating an FE model of a 

floor system for evaluation of vibration serviceability, but the final three general steps described 

in this section outline the dynamic analysis of a floor’s FE model for interpretation and 

evaluation.  There are a variety of dynamic analysis case types available in SAP2000, including 

multi-step static, modal, response spectrum, time history, moving load, buckling, steady state, 

and power spectral density (CSI 2004).  There are even more sub-options within each type of 

analysis case.  Only three of these analysis case types were used and are discussed here: modal 

analysis, time history analysis, and steady state analysis (although modal analysis and steady 

state analysis are highlighted as the most important for the presented research).  It should be 

noted that rather than describing all options and sub-options of each of the analysis cases in 

detail, only the relevant modeling choices (and justifications for each) are discussed.  Beyond 

what is necessary to describe for the presented research, presentation of detailed background on 

the computational methods of SAP2000 is best left to the program’s user manual.  Additionally, 

the computational methods used in the research are described in as generic terms as possible so 

that the fundamental modeling and analysis techniques may be applied to other dynamic FE 

programs. 

Modal Analysis  

SAP2000’s modal analysis of the floor’s FE model computes the frequencies and mode 

shapes based on the assembled mass and stiffness matrices, without consideration of the presence 

or level of damping in the structure.  The computed modes can be used as the basis for time 

history analysis; although the most important aspects of the modal analysis feature for evaluation 

of vibration serviceability are the computed dominant frequencies and the visual shapes of 

vibration for each of the modes.  From experimental measurements, the lowest modes of a floor 

system generally have single curvature within bays, resulting in a concave up or concave down 

shape of the panel between columns.  The same holds true for the FE model of a floor: the lowest 

computed modes are represented by single curvature within a bay, and double curvature within 

bays is not encountered until higher frequency modes.  For a computed mode shape, just as in 

experimentally measured mode shapes, the response may be localized to just one bay or to 

several bays, generally located adjacent to one another.  Again, this is a very important property 

for evaluation of serviceability because it links an area of the floor to a resonant frequency that 



 238 

has the potential for excessive vibration due to human activities such as walking.  In essence, 

visual inspection of the computed mode shapes highlights areas of vulnerability of a floor at their 

respective frequencies.  The computed frequencies themselves are equally important, because the 

lower the frequencies of the floor, the more susceptible it is to lower harmonics of walking 

excitation.  Using the 8-bay floor model as an example, the first six mode shapes and frequencies 

were computed using eigenvector modal analysis and are displayed in Figure 4.6.   

     
 Mode 1: 5.119 Hz Mode 2: 5.149 Hz Mode 3: 5.327 Hz 

 

     
 Mode 4: 5.622 Hz Mode 5: 5.692 Hz Mode 6: 6.051 Hz 

Figure 4.6: 8-Bay Floor Example – Computed Frequencies and Mode Shapes 

The term “dominant” frequency is just as applicable for discussing computed frequencies 

as for experimentally measured frequencies.  As shown for the computed mode shapes in Figure 

4.6, a single bay of the floor model generally has dominant participation (as defined as the bay 

with the greatest response for the mode shape) at one frequency, and perhaps significant 

response at one or more other frequencies.  For example, the bottom left bay has a dominant 

response in Mode 2 (5.149 Hz) and a significant response in Mode 4 (5.622 Hz) as well.  It is 

from this observation that it can be expected any forced response analysis for loads placed within 

this particular bay will be dominated by contributions from these participating mode shapes.  

This follows experimentally measured behavior indicated by the dominant peaks (and other 

significant peaks) of the mid-bay driving point accelerance FRFs.   
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SAP2000 offers two methods of modal analysis, eigenvector analysis and Ritz-vector 

analysis.  Eigenvector analysis determines the undamped free-vibration natural frequencies and 

mode shapes using only the mass and stiffness matrices to solve the generalized eigenvalue 

problem, whereas Ritz-vector analysis looks to compute the modes that are excited by a 

particular applied loading pattern (CSI 2004).  Theoretically, Ritz vectors yield excellent results 

in dynamic analysis because they account for the spatial distribution of the loading, whereas the 

natural mode shapes do not.  Ritz-vector analysis requires at least one starting load vector, such 

as an acceleration load or any of the defined load cases for the model.  Several analysis iterations 

for both types of modal analysis were applied to the 8-bay example floor model to investigate the 

effect on the computed frequencies and mode shapes.  The starting load vectors used for Ritz-

vector analysis included the dead load of the structure from its self-weight under gravity (a 

logical choice) and various mid-bay point loads applied to the bays for forced response analysis.  

To briefly summarize the investigation, it was found that using Ritz vectors did not offer any 

advantage over eigenvectors for computing the frequencies and mode shapes for plane grid floor 

models.  Depending on the number of Ritz vectors specified to be computed, the lowest 

computed Ritz-vector modes gave reasonable frequencies and shapes; however the higher 

computed modes were largely illogical.  In certain cases, some lower frequency modes were only 

computed when a higher number of Ritz-vector modes were specified in the analysis case.  In 

contrast, eigenvector analysis always computed the same lower modes despite the number 

specified in the analysis, which was advantageous for identifying how many modes were needed 

to cover a frequency range of interest (such as 4-12 Hz).   The inconsistency of the computed 

mode shapes indicates the use of Ritz vectors is likely better reserved for other structure types, 

such as those with multi-direction mode shapes where only one direction is of interest.  For 

example, a joist-supported footbridge with each member explicitly modeled may have “flapping” 

modes of the joist members and only the vertical modes of vibration are of interest.  In this 

situation, Ritz-vectors computed using gravity dead loads as the starting load vector may be 

advantageous in filtering out these unnecessary modes.  For the plane grid floor models in the 

presented research, however, the direction of vibration was never in question.  Eigenvector 

analysis consistently produced logical mode shapes and thus it was used exclusively for the floor 

models in the presented research.  It is recommended that a large number of modes be computed 

during early iterations of modal analysis of the floor model to ensure that all modes including 
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single curvature within all bays of interest are represented.  Once these modes (and frequencies) 

are determined, subsequent analyses involving the modal analysis case can be scaled back in the 

interest of computation effort to only include the relevant modes. 

Damping  

As previously mentioned, eigenvector modal analysis assumes all modes computed for 

the structure are non-complex, hence it solves the eigenvalue problem for frequencies and mode 

shapes without consideration of the presence or level of damping.  For computation of forced 

response, however, SAP2000 requires damping to be specified.  SAP2000 allows the option to 

specify damping in several different ways, generally in the form of modal damping ratios or as 

Rayleigh damping (i.e. using mass and stiffness proportional coefficients), depending on the type 

of dynamic analysis and the methods used to solve them.  Brief descriptions of how damping 

was specified in the analysis methods used in this research are presented in this section.  The 

user’s manual for SAP2000 gives a more detailed description of the various ways the FE 

software incorporates damping in its analyses (CSI 2004).  

For time history analysis using modal superposition (i.e. using the computed modes from 

the modal analysis), modal damping may be specified as constant for all modes, specified for 

each mode individually, interpolated by period or frequency, or even specified as a proportional 

level of damping based on the mass and stiffness matrices.  For time history analysis using direct 

integration, where computed modes are not used in the computation of the response, Rayleigh 

damping is used and requires specification of mass and stiffness proportional coefficients.  

Additional damping may be included in the response if it is also included as an assigned property 

of the material.   

For frequency-domain response calculations, such as the steady state analysis heavily 

used in this research, damping is specified in terms of hysteretic damping (also known as rate-

independent damping) in the form of mass and stiffness proportional damping coefficients.  

These coefficients may be specified as either constant hysteretic damping for all frequencies or 

interpolated between specified frequencies and their respective damping values.  As with time 

history analysis, stiffness and mass proportional coefficients may also be specified for individual 

materials to be included in frequency-domain computations.  The steady state analysis solution is 

solved directly without computing the modes, thus specifying modal damping directly is not an 

option, only hysteretic damping.  However, modal damping can be approximated by specifying 
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the mass proportional coefficient as zero and the stiffness proportional coefficient equal to twice 

the modal damping ratio (i.e. use 0.02 as a stiffness proportional coefficient for a target modal 

damping ratio of 1%).  A full derivation of this property is presented in the text by Chopra 

(2000).   

As previously stated, damping is not a value computed by FE analysis; it is specified 

from experimental measurements as estimated damping values.  Unfortunately, the 

experimentally measured values of damping for the two modeled floors varied significantly with 

no discernable trend based on their corresponding frequencies.  Measured modal damping values 

for NOC VII-18 were 0.60% to 2.4% of critical for frequencies between 4.85 Hz and 6.55 Hz.  

For VTK2, damping values were 0.50% to 1.3% of critical for frequencies between 6.58 Hz and 

8.20 Hz.  This wide range of damping values for the relatively narrow range of frequencies posed 

a significant challenge for specifying damping in the FE models and achieving forced response 

analysis results that were in agreement with measured response.   

For simplicity, constant damping values for all frequencies were used in all steady state 

analyses in the presented research. The constant damping value used for each mid-bay analysis 

location was the estimated damping at the dominant frequency of the corresponding 

experimental driving point accelerance FRF measurement.  This simplification was made for the 

benefit of using the recommended modeling and analysis techniques for evaluation of vibration 

serviceability.  In the absence of any measured values, which is the case for a design engineer 

modeling a floor that has not yet been constructed, there is no other choice but to assume a level 

of damping for forced response analysis.  DG11 recommends several damping ratios based on 

the structure type and fit out (Murray et al. 1997).  For bare floors with no non-structural fit out 

components or furnishings, such as the tested floor, it recommends a damping ratio of 1% of 

critical (0.01).  DG11 also recommends a damping ratio of 2% for floors with few non-structural 

components or furnishings and 3% for floors with non-structural components, furnishings, and 

small demountable partitions that are found in modular office spaces.  To investigate the ability 

of the recommended modeling techniques to adequately represent the measured response 

assuming no prior knowledge of measured damping values, assumed values of damping were 

used in analysis for each investigated location on the floor models.  This resulted in two steady 

state analyses for each mid-bay forcing location for comparison with measured values, one using 

a measured damping value and one using an assumed damping value.  As expected from the 
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wide range of measured damping values, efforts using a single assumed value of 1% for all bays 

investigated did not give very good results.  However, based on a few observations of the 

measured damping in different locations of the tested floor, there was much better agreement 

using the following recommended damping values: 

• 1% damping for typical bays 

• 1.5% damping for corner bays 

• 2% damping for interior bays adjacent to interior framing 

Although the higher levels of damping were not always observed for corner bays or interior bays, 

the trends were observed in some cases and are appropriate assumptions considering the most 

significant source of damping for a bare floor will likely be at its boundaries, such as the friction 

at exterior boundaries (a corner bay has two exterior boundaries) or semi-structural interior 

framing.  Once a floor is occupied, the addition of fit out materials will likely become the 

dominant source of damping, and thus a constant value for all bays should be appropriate for 

modeling purposes.   

Time-History Analysis and Steady State Analysis  

For comparison of measured acceleration response to computed values, dynamic loads 

were applied to the FE models for forced response analysis.  The two types of forced response 

analysis used were time-history analysis and frequency-domain steady state analysis, the latter 

being the most used type of analysis in the presented research for its direct comparison with 

measured response values in the frequency domain.  Steady state analysis also serves as the 

cornerstone of the proposed method of vibration serviceability evaluation presented at the end of 

this chapter.  Each of the two types of forced response analysis requires load(s) applied spatially 

to the structure.  Because experimental measurements of the tested floors were only taken with 

one shaker at the center of a tested bay, the corresponding forced response analysis was 

performed with a single point load located at the mid-bay location.  There are several 

opportunities when setting up the analysis cases in SAP2000 to scale the applied loads, therefore 

the magnitude of the mid-bay point load was set to 1 lb to allow flexibility in later analysis.  The 

use of a unit load also proved advantageous for comparison with measured accelerance values 

because the computed steady state acceleration response to sinusoidal load in in/s
2
 units would 

also be equivalent to accelerance units of in/s
2
/lb of input force at the driving frequency.  Figure 

4.7 shows an example of the mid-bay location of the applied unit load for the 8-bay floor model.  
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Both the time-history analysis and frequency-domain steady state analysis examples that follow 

in this section refer to this driving point location as well as the computed mode shapes for the 8-

bay floor model shown in Figure 4.6.  

 

Figure 4.7: 8-Bay Floor Example – Applied Unit Load (1 lb) for Forced Response Analysis 

Time-History Analysis – Time-history analysis, like its name, computes the time history 

response to a dynamic (time-varying) load.  The dynamic equations of motion that are solved 

during the time-history analysis are shown in Equation (4.3) (CSI 2004):   

  ( )  ( )  ( ) ( )t t t t+ + =�� �M u C u K u r  (4.3) 
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There are several options for time-history analysis.  For floor models, it is recommended 

that linear analysis is used rather than nonlinear.  This is a safe assumption, as the small 

amplitude vibrations do not approach yielding conditions.  Two different solution methods are 

available to perform the time-history analysis of the equations in Equation (4.3): modal 

superposition using the modes computed from the modal analysis, or direct integration of the 

coupled equations of motion.  Ideally, both methods should yield the same results, however the 

modal method is recommended.  Modal damping is generally used for the modal time-history 

analysis, and it is generally much faster than direct integration, which requires damping to be 
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specified using mass and stiffness proportional coefficients.  It should be noted that modal time-

history analysis uses all modes in the specified modal analysis case, thus any number of modes 

can be used for computation of the time-history response, depending on modes computed in the 

modal analysis case.  Lastly, the time-history analysis may be performed considering the applied 

load is either transient or periodic.  A transient solution considers the load as a one-time event, 

thus the solution is computed assuming the structure starts from rest when the applied loading 

begins and includes the transient response.  The periodic solution considers the load to repeat 

indefinitely, with the transient response damped out (CSI 2004).  The periodic option is only 

available if modal time-history analysis is used.  For the purposes of any time-history analysis 

for floor models, it is recommended to use transient analysis. 

SAP2000 offers several types of time history functions to attach to the applied load for 

dynamic analysis, such as sine, cosine, ramp, or triangular functions.  The ability to apply a 

sinusoidal load to the model and compute the acceleration response is of immediate interest for 

several reasons.  First, the accelerance frequency response function is simply a representation of 

the steady state sinusoidal response at various frequencies.  More importantly, driving the model 

sinusoidally at its resonant frequency, by definition, will generate its greatest acceleration 

response.  Additionally, the acceleration response at the mid-bay forcing location is the quantity 

most often computed by the various simplified design methods for comparison with some form 

of serviceability criterion.  How to define a sinusoidal forcing function in SAP2000 is not 

presented here, but can be found in the thesis by Perry (2003) or the user’s manual of the FE 

program (CSI 2004).  

To demonstrate this application of time-history analysis, the example 8-bay floor model 

was driven sinusoidally by the mid-bay unit load shown in Figure 4.7 at 5.149 Hz, the dominant 

frequency of the bay of interest (as shown by the greatest response in this bay of any of the mode 

shapes in Figure 4.6).  A linear modal-time history analysis was performed assuming a transient 

time history type.  The analysis included all six modes shown in Figure 4.6 that were computed 

using eigenvector analysis, and modal damping was input as a constant 0.95% of critical for all 

modes.  The computed time-history of the acceleration response at the mid-bay location is shown 

in Figure 4.8.  The acceleration response is as expected, which includes the floor starting at rest 

followed by a build-up to resonance (note that there is a slight transient response at the beginning 

of the build-up) before reaching steady state response.  The magnitude of the steady state portion 
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of the computed acceleration response is 0.8013 in/s
2
.  Because a unit load was used, it could be 

stated that the computed accelerance at the resonant frequency of 5.149 Hz was 0.8013 in/s
2
/lb 

of input force.  Response in the form of accelerance is a result that could be directly compared to 

experimentally measured values as the applied sinusoidal loads (and thus the corresponding 

acceleration responses) varied for different tests and different frequencies.  
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Figure 4.8: 8-Bay Floor Example – Time History Response to Sinusoidal Load 

Note that the dynamic loading, r(t), in Equation (4.3) is arbitrary.  Besides the ability to 

define the above listed periodic time history functions, SAP2000 also allows the user to define 

any time varying load.  Theoretically, the experimentally measured time-varying loads from the 

force time-histories of instrumented heel drops or burst chirp signals could be imported for 

analysis of the computed response and compared to measured response.  Although a convenient 

feature that will likely prove useful in future research, the only dynamic functions analyzed using 

time-history analysis in the presented research were sinusoidal loads.  While the computed 

acceleration response from an applied sinusoidal load is a convenient demonstration of mid-bay 

time-history analysis for comparison with measured values, it is a rather clumsy method for 

computing the accelerance because it is limited to the response at only a single frequency.  

Frequency-domain steady state analysis provides the most efficient method of comparison of 

response between measured and computed behavior. 

Steady State Analysis – Frequency-domain steady state analysis computes the dynamic 

response to a set of harmonically varying loads (e.g. a sine and cosine function) at specified 

frequency increments.  It seeks the steady state response, thus assuming the harmonic loading is 

indefinite and all transient response has damped out.  Equation (4.4) shows the dynamic 

equations of motion that are solved in the frequency domain, for which the form of the solution 

is explained in greater detail in the user’s manual for SAP2000 (CSI 2004): 
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where ( ),  ( ),  and ( ) are the same as previously definedt t t�� �M, C, K, u u u  and 

( ) harmonic loading where  is the in-phase (real) component 

          and  is the 90  out-of-phase (imaginary) component 
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The most important feature of Equation (4.4) is the harmonic loading that represents an 

in-phase and 90
ο
 out-of-phase component.  This simplifies the equations to be solved in the 

frequency domain, but more importantly the resulting solution represents the real and imaginary 

components of response at each frequency increment.  At each frequency increment, the real and 

imaginary component of response can be combined through a square root of the sum of the 

squares (SRSS) computation to give the magnitude of response.  These quantities can also be 

used to determine the phase angle between the applied loading and the acceleration response.  

While any spatially distributed load can be used in steady state analysis (i.e. multiple point loads, 

distributed loads, acceleration loads, etc.), the choice of using a unit point load at a single 

location for steady state analysis results in the computational equivalent of the accelerance 

frequency response and yields quantities directly comparable to measured accelerance FRFs.  

Because steady state analysis computes the response for all degrees of freedom of the FE model, 

the results essentially represent a column of the accelerance FRF matrix just as a full set of 

experimentally measured accelerance FRFs would for a single location of excitation.  This ability 

to compute the accelerance FRF of a floor’s FE model is the most significant feature for 

validation of a model with respect to experimental measurements and also forms the basis for a 

proposed method of evaluation for vibration serviceability presented at the end of this chapter. 

The application of steady state analysis is best demonstrated using the previously 

discussed example 8-bay floor model.   For this example and comparison with the previous time-

history analysis, the model was analyzed with the unit load located in the bay as shown in Figure 

4.7.  A target value of damping for the floor was 0.95% of critical for all modes.  As previously 

stated, SAP2000 specifies hysteretic damping for frequency-domain calculations, thus damping 

must be specified as mass and stiffness proportional coefficients.  It may be specified as constant 

hysteretic damping for all modes or interpolated hysteretic damping by frequency.  For the 

presented example, an equivalent 0.95% modal damping for all modes was approximated by 

choosing constant hysteretic damping and specifying the mass proportional coefficient as 0 and 
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the stiffness proportional coefficient as 0.019 (see previous Damping section for details on this 

method).   The range of frequencies to be solved was chosen to be 4 Hz to 8 Hz divided into 80 

increments, resulting in a frequency resolution of the computed values of 0.05 Hz.  It should be 

noted that the computed steady state solution is performed directly for all specified frequency 

increments, without use of the modes computed in the modal analysis case like the presented 

time-history analysis example.  Consequently, computed values are just as susceptible to the 

effects of frequency resolution as experimental measurements because peak frequencies may lie 

between two computed/measured frequency increments.  Although the modal analysis is not 

used directly in computing the solution, the frequencies from the modal analysis can be included 

as specified frequency increments to be solved during the analysis.  Steady state analysis results 

may be presented in a variety of ways, although all are based on the computed real and 

imaginary components of response as shown in Figure 4.9 for the driving point location. 
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Figure 4.9: 8-Bay Floor Example – Driving Point Accelerance FRF (Real and Imaginary) 

Although plotting the real and imaginary components gives valid representations of the 

accelerance FRFs, a more intuitive representation of the response for the presented research is 

given by the magnitude and phase as shown in Figure 4.10.  From this representation, a few 

features are of immediate interest and provide valuable insight into the floor’s behavior.  First, 

there are clearly two significant peaks in the response, 5.149 Hz and 5.622 Hz, which correspond 

to the second and fourth modes of the 8-bay floor model as shown in Figure 4.6.  Secondly, the 
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magnitudes of the computed response indicate both frequencies participate significantly, but the 

5.149 Hz mode is clearly dominant.  Lastly, the peak accelerance of the 5.149 Hz frequency was 

0.8075 in/s
2
/lb of input force, which is in excellent agreement with the 0.8013 in/s

2
/lb 

accelerance estimated from the time-history analysis.  Because steady state analysis directly 

solves the system of equations of motion, the results are likely to be more accurate than a modal 

time-history analysis that uses a finite number of modes and relies on the cumbersome method of 

identifying the peak amplitude of the time-history response once it achieves steady state. 
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Figure 4.10: 8-Bay Floor Example – Driving Point Accelerance FRF and Phase 

The computed real, imaginary, and magnitude components of response can be displayed 

in SAP2000 or exported for plotting in other programs, however the phase plot shown in Figure 

4.10 is not internally computed by the program and was plotted by taking the inverse tangent of 

the imaginary component over the real.  It should be noted that the computed accelerance trace 

shown in Figure 4.10 is only for one location on the floor, the driving point, and there are 

literally thousands of similar traces computed for all mass degrees of freedom in the floor model 

(1843 mass DOFs for the example 8-bay floor model).  Like the experimental testing of in-situ 

floors, the driving point response is the most important computed response, however 

representing the response over the entire floor area is also of interest.  SAP2000 allows 

animation of the computed response at any frequency increment (and any phase at that frequency 

increment).  Figure 4.11 displays two animated representations of the response that are useful 

from a vibration serviceability standpoint.  The first animated shape shown in Figure 4.11(a) is 

the floor response at its 5.149 Hz dominant frequency.  Note that although this closely 
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approximates the mode shape, as a forced vibration response it is actually the computed 

equivalent of the operating deflection shape (ODS) at this frequency.  It is plotted at a phase of 

90
ο
, as the response at resonance is almost purely defined by the imaginary component.  Another 

useful form of the response is shown in Figure 4.11(b), which is the envelope of response that 

displays the absolute maximum response at any point on the floor model for any of the computed 

frequency increments between 4 Hz and 8 Hz.  This is useful for displaying areas of the floor 

that are excited by the forcing location but are not readily apparent in the computed driving point 

accelerance FRF or the computed ODS at the dominant frequency. 

    

 (a) Computed Forced Response (b) Steady State Response Envelope (4-8 Hz) 

        ODS at 5.149 Hz (90
ο
 phase) 

Figure 4.11: 8-Bay Floor Example – Other Representations of Response 

Although a unit load is used for steady state analysis to ensure the units of response are 

in/s
2
/lb, the mid-bay unit load may be scaled to any value to effectively convert the computed 

accelerance values to the units of choice.  For example, all accelerance FRF measurements in the 

presented research originated in units of volts/volts from the DSP spectrum analyzers.  During 

post-processing, calibration values were used (240 lbs/volt for the force plate and 1 g/volt for the 

accelerometers) to convert to accelerance units of in/s
2
/lb.  For pre-test modeling of a floor 

system, the unit loading could be scaled to 0.622, effectively converting all computed response 

values from in/s
2
/lb to volts/volt and allowing easy real-time comparison of measured 

accelerance magnitudes to pre-test FE values. 

Constant hysteretic damping for all frequencies was used for the example presented 

above.  The alternative method for specifying damping in steady state analysis is interpolated 
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hysteretic damping, which allows mass and stiffness proportional coefficients to be specified for 

any number of frequencies.  To investigate the effect on the computed response using this 

interpolated hysteretic damping option, two analyses were run on the same 8-bay floor model.  

The first analysis specified 0.95% damping at the first peak (5.149 Hz) and twice as much 

damping, 1.80%, at the second peak (5.622 Hz).  This effectively specified a linearly increasing 

level of damping that includes these two ordered pairs.  For comparison with the constant 

hysteretic damping option, the second analysis specified 0.95% damping at both 4 Hz and 8 Hz, 

effectively specifying a constant level across the frequency range.  The two computed driving 

point accelerance traces are plotted in Figure 4.12.  As shown, nearly identical response was 

computed for the 5.149 Hz peak where 0.95% damping was specified for both cases.  For the 

5.622 Hz peak with twice as much specified damping, the response is obviously lower but not 

quite half the previous level of response, which would be expected.  The analysis specifying 

constant damping using the interpolated option computed the exact same response as when 

constant hysteretic damping was specified.  Although constant hysteretic damping was 

exclusively used in the presented research, the examples using the interpolated hysteretic 

damping option are presented for demonstration of alternative approaches to force response.  
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Figure 4.12: 8-Bay Floor Example – Examples Using Interpolated Hysteretic Damping 

The implications of this application of FE frequency-domain steady state analysis is 

substantial for potential evaluation of vibration serviceability as well as experimental testing of 

in-situ floors.  While the computed frequencies and mode shapes may provide insight into the 

areas of a floor that are potentially vulnerable to excitation at certain frequencies, this is only half 

of the information needed for evaluation of vibration serviceability, with the other half being the 

acceleration response in those areas at the vulnerable frequencies.  The computed mid-bay 

driving point accelerance FRF provides all information in a single trace, with the magnitude and 

locations of the computed accelerance peaks representing the dominant and other significantly 
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participating frequencies (modes) of the bay as well as the estimated level of acceleration 

response.   If an in-situ floor is modeled prior to experimental testing, the measured mid-bay 

driving point accelerance FRF can be directly compared to the computed accelerance FRF in the 

field for instant feedback of the validity of the pre-test FE floor model.  This instant feedback 

may also alleviate the need for extensive modal measurements and post-processing to extract the 

experimentally derived mode shapes.  Additionally, the experimental mid-bay floor evaluation 

approach described in Section 3.4 may be all that is required for validating and updating floor FE 

models.  Using this approach, a set of experimental mid-bay driving point accelerance FRFs 

would indicate the participating frequencies of a bay, the accelerance at the peaks, the general 

mode shape if a set of mid-bay measurements were acquired, and measured estimates of 

damping that may differ from assumed values of the pre-test FE model.   
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4.2 Finite Element Analysis of Tested Floors  

This section presents the finite element models of the tested floors that were generated 

using the techniques discussed in the previous section.  It should be noted that the recommended 

techniques, particularly recommendations of spandrel member property modifiers, member end 

releases and partial fixity values, and damping used for analysis were developed during efforts to 

bring the results of the FE models into agreement with experimentally measured values.  The FE 

models were developed in parallel so that the same techniques applied to each gave adequate 

results for both models.  Although not presented here, certain model iterations were better at 

predicting frequencies and mode shapes, and other iterations were better at predicting 

acceleration response.  This was achieved with different combinations of the above listed 

parameters; however the objective of the research was to identify a set of common/fundamental 

modeling techniques that yielded adequate results, not adjustments required to optimize an 

individual model unless those adjustments improved the results of both models.  Thus, while the 

presented results may not represent the closest match of frequencies, mode shapes, and 

acceleration results achieved during the course of research, the promising results presented in 

this section demonstrate that an adequate representation of in-situ floor behavior is possible 

using a common set of basic modeling techniques.  Although the two FE models of the tested 

floors were developed simultaneously, the FE model for NOC VII is presented first in Section 

4.2.1, followed by the model for VTK2 in 4.2.2.   

4.2.1 New Jersey Office Building, NOC VII  

Two FE models are presented for the NOC VII floor.  The first model represents the 

whole floor.  A smaller model, representing a portion of the floor, was developed to address 

difficulties in achieving proper frequencies and mode shapes in bays along the long length of the 

building.  Although not originally the intent of the research, the smaller model of a portion of the 

floor was generated using the same fundamental techniques and provided some encouraging 

results, highlighting an area for further research.   

NOC VII Full Floor Model – Following the general steps previously discussed, the floor 

framing geometry was laid out for the full floor model with the steel framing members specified 

in the design drawings and pinned supports were applied at the column locations.  A user-defined 

material (NOCVII-VIBCON) and area plate element (NOCVII-SLAB) were created to represent 
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the composite slab in the floor model.  The input values of these user-defined parameters and the 

composite slab properties used in their development are presented in Table 4.1.  The DG11 

recommended dynamic modulus of elasticity was used (1.35*Ec) and the weight and mass 

densities of the material were computed using Equations (4.1) and (4.2).  Slab details and the 

framing plan of the specified steel sections for NOC VII are presented in Appendix A.  Plan and 

3-D views of the floor model’s slab and framing layout are in Figure 4.13, including the eleven 

locations of forced response analysis presented later in this section for comparison with 

experimental measurements.  

Table 4.1: NOC VII – Composite Slab Parameters & Slab Area Element/Material Properties 

Overall Slab/Deck Height: 5.25 in. Unit weight of concrete, w c :  115 pcf

Slab height above ribs, d : 3.25 in. Concrete compressive strength, f’ c : 4000 psi

Deck rib height, d r : 2.00 in. Dynamic modulus of elasticity, 1.35*E c 3300 ksi

Area weight of steel deck, w deck : 2.4 psf Superimposed loads, w d  + w l  + w coll : 0 psf

User-Defined Material Name: NOCVII-VIBCON User-Defined Area Section Name: NOCVII-SLAB

Type of Material: Isotropic Type of Area Section: Plate-Thin

Mass per unit Volume: 2.3869x10
-7

 k-s
2
/in

4 Assigned Material: NOCVII-VIBCON

Weight per unit Volume: 9.2156x10
-5

 k/in
3 Thickness (Membrane/Bending) 3.25 in.

Poisson's Ratio 0.2 Stiffness Modifiers: Bending m11 = 2.88

Additional Material Damping: None  

 

 (a) NOC VII Floor Framing Layout  (b) FE Model Plan View of Framing & Slab 

 

 (b) 3-D View – Framing Only (c) 3-D View – Framing and Slab 

Figure 4.13: NOC VII – Floor Layout and Full Floor FE Model 

It was found that a slab area element size of 30 in. x 28 in., which corresponds to a mesh 

size of 12x16 elements for interior bays and 12x20 elements for exterior bays, gave convergent 
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results.  With this configuration, the full floor model contains over 7,000 mass degrees of 

freedom (UZ).  With the vast number of joint numbers to track, the joints were renumbered in a 

manner to ease analysis of the results.  Initially, all joints were automatically numbered using the 

features available in SAP2000, starting from 1001.  The joints on the model corresponding to a 

measured location were manually renumbered in the pattern of Figure 3.8.  (Although not 

required, this practice is recommended as a convenience when models are to be used in 

comparison with floor testing.  This method simplifies identifying points of interest for 

extracting accelerance response from steady state analysis.  Additionally, this practice is also 

conducive for comparing measured/computed mode shapes because the DOFs of interest are the 

first in the list of tabulated joint numbers and the remaining values can be discarded.)   

The transformed composite moments of inertia were computed for each framing member 

to determine the baseline stiffness property modifiers, which ranged from 2.6 to 3.6 for NOC 

VII.  The modifiers were computed as described in Section 4.1, and an example of this 

computation is presented in Appendix K.  A full listing of the calculated transformed moments of 

inertia and their respective baseline PMs for NOC VII is found in Appendix M.  The baseline 

values were applied as PMs to the strong axis moment of inertia for all framing members, and 

2.5 times the baseline values were applied as PMs to all spandrel beams, spandrel girders, and 

the interior girders adjacent to bays with full height partition walls to account for the increased 

stiffness along these interior boundaries.  Final assigned PMs are also listed in Appendix M.  

Strong axis bending moment releases without any partial fixity were applied to all 

members framing into the webs of columns, which were limited to all girders for NOC VII.  No 

moment releases were applied to the beam members that framed into the flanges of columns.  

Strong axis moment releases were applied to all beams framing into the webs of girders, and 

partial fixity values of 6EI/L (EI/L computed using properties of the beam member) were applied 

at both ends.  Again it should be noted that the release and/or partial fixity condition of the end 

of a beam member framing into a spandrel girder had a negligible effect on the frequencies and 

mode shapes of the floor because of the minute contribution of the torsional stiffness of the 

spandrel girders to the stiffness of the system.  Because the effect is negligible, it is 

recommended to include the release and partial fixity at both ends for the convenience of not 

having to be concerned with the local axis of the member and whether or not the correct end is 
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released.  Figure 4.14 shows the framing layout of NOC VII, the end releases, and members with 

assigned partial fixities. 

 

Figure 4.14: NOC VII – Full Floor Model Moment End Releases and Partial Fixities 

Besides increasing the stiffness properties of the interior girders adjacent to the partition 

walls, additional pinned restraints were applied to the interior bays to represent elevator core 

framing, stairwells, restroom, mechanical room, electrical room partition walls, etc.  The actual 

partition layout was not available, thus the layout of the pinned restraints was based on 

judgment.  Along grid lines D and M, several pin restraints were added to represent the heavy 

concentrically braced frames attached to the beam members spanning between the columns.  The 

locations of the interior pinned restraints are shown in Figure 4.15.  It should be noted that the 

locations of these interior pins were based on judgment and may provide some degree of over-

restraint that prevented the model from accurately predicting the mode shapes and frequencies of 

the exterior bays along the long side of the floor.   

 

Figure 4.15: NOC VII – Full Floor Model Interior Restraints 

An eigenvector modal analysis was performed on the floor model to compute the 

frequencies and mode shapes.  The frequencies of the first 24 modes are presented in Table 4.2 

and the corresponding mode shapes are presented in Figures 4.16 and 4.17.   
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Table 4.2: NOC VII – Computed Modes for Full Floor Model 

Mode: Frequency (Hz) Mode: Frequency (Hz) Mode: Frequency (Hz)

1 5.151 9 5.475 17 6.025

2 5.151 10 5.492 18 6.047

3 5.191 11 5.618 19 6.103

4 5.192 12 5.627 20 6.134

5 5.316 13 5.774 21 6.138

6 5.322 14 5.774 22 6.141

7 5.374 15 5.914 23 6.939

8 5.390 16 5.926 24 6.955  

 Mode 1: 5.151 Hz Mode 2: 5.151 Hz 

 
 Mode 3: 5.191 Hz Mode 4: 5.192 Hz 

 
 Mode 5: 5.316 Hz Mode 6: 5.322 Hz 

 
 Mode 7: 5.374 Hz Mode 8: 5.390 Hz 

 
 Mode 9: 5.475 Hz  Mode 10: 5.492 Hz 

 
 Mode 11: 5.618 Hz Mode 12: 5.627 Hz 

 

Figure 4.16: NOC VII – Full Floor Model Computed Mode Shapes (Modes 1-12) 
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 Mode 13: 5.774 Hz Mode 14: 5.774 Hz 

 
 Mode 15: 5.914 Hz Mode 16: 5.926 Hz 

 
 Mode 17: 6.025 Hz Mode 18: 6.047 Hz 

 
 Mode 19: 6.103 Hz Mode 20: 6.134 Hz 

 
 Mode 21: 6.138 Hz Mode 22: 6.141 Hz 

 
 Mode 23: 6.939 Hz Mode 24: 6.955 Hz 

 

Figure 4.17: NOC VII – Full Floor Model Computed Mode Shapes (Modes 13-24) 

Several iterations of the modal analysis were performed while varying the number of 

modes to be computed.  This was accomplished to ensure that all mode shapes of interest were 

captured, namely the shapes that represented single curvature within a bay.  It was determined 

that 24 modes were necessary to capture the dominant shapes of all bays; modes beyond this had 

double curvature within bays, which is not particularly of interest in the presented research due 

to comparison with mid-bay excitation locations that would likely not represent these modes 

well.   



 258 

There are some interesting items to note in the computed mode shapes shown in Figures 

4.16 and 4.17.  First was the computation of “pairs” of point-symmetric mode shapes computed 

at nearly identical frequencies for the first 18 modes.  Although not originally anticipated, this is 

a logical result due to the point symmetric nature of the floor framing with only slight differences 

in some of the interior restraints used toward the ends of the interior core of bays.  Also because 

of this symmetry, it would be expected that the measured frequencies at the respective bays on 

either end of the floor will be the same or very similar, although this was not verified for the 

tested floor.   The second observation is that certain mode shapes show a dominant response in a 

localized area, consistent with what was observed in experimental measurements.  In particular, 

Modes 1, 3, 20, and 23 show clearly dominant response in the bays containing Points 21, 73, 25, 

and 69, respectively.  These four mode shapes of the end portion of the floor that was tested are 

shown in Figure 4.18, along with the ODSs of the respective bay’s dominant frequency.  The 

frequencies for these modes and their respective shapes are in good agreement with the measured 

frequencies of the bays (less than 6% difference in frequency).   

   
 Point 21  Point 73 

 Mode 1 = 5.151 Hz  ODS at 4.875 Hz Mode 3 = 5.191 Hz  ODS at 5.05 Hz 

     
 

 Point 25 Point 69 

 Mode 20 = 6.134 Hz   ODS at 6.05 Hz Mode 23 = 6.939 Hz  ODS at 6.55 Hz 

    

Figure 4.18: NOC VII – Full Floor Model Mode Shape and ODS Comparison 
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Unfortunately, there were several areas of the floor (the points of excitation other than the 

four listed above) that were not well represented with clearly dominant shapes, although they 

should be as indicated by dominant peaks in the experimentally measured driving point 

accelerance FRFs.  Points 65 and 281 are the most notable locations with large accelerance 

values not well represented in the mode shapes of the model.  Additionally, all excitation 

locations along the length of the building (Points 125, 177, 216, 281, and 333) had measured 

dominant frequencies of 5.025-5.05 Hz, indicating a dominant mode shape that was common to 

all bays along this strip.  Extensive testing with the shaker located at Point 281 showed this shape 

to be a simple mode that alternated concavity at each bay (Figure 3.14).  Examining the mode 

shapes for this strip of bays in Figure 4.16, Mode 5 at 5.316 Hz looks the most similar, however 

there are 13 other modes between 5.322 Hz and 6.103 Hz that show significant participation 

along this strip in various concave up or down configurations of the bays.  As a result, it is likely 

that none of these modes will dominate the response, which is clearly not the case as indicated 

from experimental testing.  A separate model representing this strip of bays was generated to try 

and isolate the response better than the full floor model and is discussed later in this section. 

Although comparison of frequencies and mode shapes was a necessary step in the model 

validation process, the comparison of forced response analyses with experimental measurements 

was the final step in assessing the ability of the FE model to adequately represent the dynamic 

behavior of the floor system.  Steady state analysis was performed on the modeled floor for the 

eleven different unit load locations shown in Figure 4.13(b), each corresponding to a driving 

point location on the floor during modal testing.  These eleven locations were all at mid-bay with 

the exception of Point 216, which was at the quarter point of the bay along the centerline of the 

long direction of the floor.  To correspond with the burst chirp frequency range of the 

experimental driving point accelerance FRFs, the steady state analyses evaluated response at 

increments between 4 Hz and 8 Hz with roughly a 0.05 Hz frequency resolution.  Although the 

experimental measurements were taken with a 0.025 Hz frequency domain resolution, the FE 

steady state response functions generally do not require that fine a resolution, particularly 

because the computed modal frequencies were also included as frequency increments to ensure 

the peak response was captured (a luxury not afforded during experimental testing). 

Steady state analysis was performed twice for each of the driving point locations.  For the 

two analyses at each point, damping was specified as a constant value for all frequencies and was 
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input as either the estimated damping at the dominant frequency from experimental 

measurements of the bay under investigation or using the proposed damping values for a bare 

floor based on general bay location (1%, 1.5%, 2%).  The results using the measured damping 

values are presented first in this section, followed by an overall summary of how well the 

response using an assumed level of damping was in agreement with measured response, which 

would be the only option for a designer modeling this floor prior to construction.  The points of 

excitation and each of the two damping ratios used for analysis are shown in Figure 4.19. 

 

Figure 4.19: NOC VII – Constant Damping Ratios Used in Steady State Analysis 

The computed driving point accelerance FRFs for each of the eleven bays are presented 

in Figures 4.20 and 4.21.  As expected from the computed mode shapes, the FE accelerance 

FRFs are in better agreement with the measured accelerance FRFs for Points 21, 25, 69, and 73 

as shown in the Figure 4.20.  As shown in these four plots, using the measured estimates of 

damping did not always result in better agreement, which is particularly apparent for Point 21 

where the computed response is nearly one and a half times larger than measured.  This is likely 

a result of the dominant mode shape for Point 21 not being accurately represented by the 

computed shape of Mode 1.  The shape for this mode is localized to a small area around the bay 

containing Point 21, which essentially translates into a small participating (effective) mass.  An 

underestimation of the effective mass of that mode will result in excessively high computed 

acceleration response because the modal mass term is in the denominator.  The same effect can 

be seen by the overestimated response for Point 25.  It is encouraging to know, however, that an 

extremely localized mode results in an excessively large computed response and to recognize 

that it is likely a conservative estimate of response when the localized mode shape is observed 

from the modal analysis.  The computed accelerance FRFs for Points 69 and 73 are in good 

agreement with the experimental FRFs. 
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 21

Test 263, Ch 3 - Point = 21

FE FRF - Constant 0.85% Damping (Measured)

FE FRF - Constant 1.5% Damping (Assumed)
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 25

Test 268, Ch 6 - Point = 25

FE FRF - Constant 1.40% Damping (Measured)

FE FRF - Constant 1.5% Damping (Assumed)
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 69

Test 231, Ch 8 - Point = 69

FE FRF - Constant 2.40% Damping (Measured)

FE FRF - Constant 2% Damping (Assumed)
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 73

Test 199, Ch 8 - Point = 73

FE FRF - Constant 1.15% Damping (Measured)

FE FRF - Constant 1.5% Damping (Assumed)

 

Figure 4.20: NOC VII – Full Floor Accelerance FRFs (Points 21, 25, 69, 73) 

The computed accelerance FRFs for the remaining seven tested/analyzed locations were 

not in agreement with the measured FRFs for either magnitude or shape, as shown in Figure 

4.21.  The inability to match response at Points 65 and 281 with this model, which both have 

clearly dominant single peaks, is disappointing because they have the largest magnitudes of any 

of the measured locations on the floor and thus represent vulnerabilities of the floor that a 
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designer would strive to identify in the design phase.  Again, the inability for the model to 

correctly represent the mode shapes of the entire strip of bays, namely a single dominant shape 

of alternating concavity, is the reason for the poor correlation.   
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 65

Test 240, Ch 8 - Point = 65

FE FRF - Constant 0.85% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 117

Test 257, Ch 7 - Point = 117

FE FRF - Constant 1.20% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 125

Test 142, Ch 8 - Point = 125

FE FRF - Constant 0.80% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 177

Test 136, Ch 5 - Point = 177

FE FRF - Constant 0.90% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 216

Test 132, Ch 8 - Point = 216

FE FRF - Constant 0.62% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 281

Test 121, Ch 8 - Point = 281

FE FRF - Constant 0.65% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 333

Test 129, Ch 2 - Point = 333

FE FRF - Constant 0.60% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)

 

Figure 4.21: NOC VII – Full Floor Accelerance FRFs (Pts 65,117,125,177,216,281, & 333) 

While the computed accelerance FRFs in Figure 4.21 did not match the measured FRFs 

for any level of damping, the assumed levels of damping used in the four plots of Figure 4.20 

actually provided a reasonable approximation of the measured response.  While notably high for 

Point 25 (which was true for both measured and assumed) and about 25% low for Point 73, the 

response was within 12% for Points 21 and 69.  Overall, there seemed to be about the same 
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number of locations in agreement using either measured or assumed damping values.  Although 

the computed traces are not overwhelmingly in agreement with measured values for this model, 

the frequencies were predicted within 6% of measured and the general shape of the accelerance 

FRF peaks from the different participating frequencies are represented well, including 

magnitude.  Despite the discrepancies, this is an encouraging result for the recommended 

modeling techniques. 

NOC VII 10-Bay Strip Model – To further investigate the bays along the length of the floor 

that did not agree well with measured values, a reduced model including just the 10-bay strip 

along the floor’s length was generated using the same recommended techniques and analyzed 

using the same methods as presented above.  The 10-bay coverage area of the reduced FE model 

is shown in Figure 4.22 along with the 3-D views of the model’s framing and slab.  All floor 

beams spanning between girders retained their end moment releases and partial fixity values, 

although due to the absence of members framing into the beam-to-girder joints on the other side 

of the girders, the effect of the partial fixity on frequencies and mode shapes was negligible.  

N M L K J H G F E D C B

3 1 10 19 28 37 50 63 76 89 102 115 128 141 154 167 180 193 206 219 232 245 258 271 284 297 310 323 336 349 362 375 388 401 414 427 440 453 466 479 492 505 3

2 11 20 29 38 51 64 77 90 103 116 129 142 155 168 181 194 207 220 233 246 259 272 285 298 311 324 337 350 363 376 389 402 415 428 441 454 467 480 493 506

3 12 21 30 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260 273 286 299 312 325 338 351 364 377 390 403 416 429 442 455 468 481 494 507

4 13 22 31 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313 326 339 352 365 378 391 404 417 430 443 456 469 482 495 508

4 5 14 23 32 41 54 67 80 93 106 119 132 145 158 171 184 197 210 223 236 249 262 275 288 301 314 327 340 353 366 379 392 405 418 431 444 457 470 483 496 509 518 527 536 545 4

6 15 24 33 42 55 68 81 94 E 224 E 276 E 328 341 354 458 471 484 497 510 519 528 537 546

7 16 25 34 43 56 69 82 95 E 225 E 277 E 329 342 355 459 472 485 498 511 520 529 538 547

8 17 26 35 44 57 70 83 96 E 226 E 278 E 330 343 356 460 473 486 499 512 521 530 539 548

5 9 18 27 36 45 58 71 84 97 110 123 136 149 162 175 188 201 214 227 240 253 266 279 292 305 318 331 344 357 370 383 396 409 422 435 448 461 474 487 500 513 522 531 540 549 5

46 59 72 85 98 111 124 137 150 163 176 189 202 215 228 241 254 267 280 293 306 319 332 345 358 371 384 397 410 423 436 449 462 475 488 501 514 523 532 541 550

47 60 73 86 99 112 125 138 151 164 177 190 203 216 229 242 255 268 281 294 307 320 333 346 359 372 385 398 411 424 117 450 463 476 65 502 515 524 21 542 551

48 61 74 87 100 113 126 139 152 165 178 191 204 217 230 243 256 269 282 295 308 321 334 347 360 373 386 399 412 425 438 451 464 477 490 503 516 525 534 543 552

6 49 62 75 88 101 114 127 140 153 166 179 192 205 218 231 244 257 270 283 296 309 322 335 348 361 374 387 400 413 426 439 452 465 478 491 504 517 526 535 544 553 6

N M L K J H G F E D C B  
 

               

 

Figure 4.22: NOC VII – 10-Bay Strip FE Model 

To account for the missing portions of the slab on the end bays that were adjacent to open 

areas of the floor (bays containing Points 73, 65, and 21 in Figure 4.22), a modeling technique 
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recommended by Perry (2003) was used.  He recommended applying a mass property modifier 

of 0.5 to the girder and a strong axis moment of inertia property modifier of 0.5 times the 

baseline value (i.e. half mass and half composite stiffness), resulting in a member that has the 

same static deflection as if the adjacent bay were present.  This technique was applied without 

any refinement to attempt to improve the results.  All spandrel members (bottom, right, and left 

edges) retained their originally applied property modifiers, which were 2.5 times the computed 

baseline values.  The girders that bound interior bays (i.e. girders beneath full height partition 

walls) also retained their respective 2.5-times-baseline stiffness property modifiers.  No 

adjustments were made to the stiffness or mass of these interior girders to account for the 

missing interior bays.   

The main difference of this 10-bay strip model compared to the full floor model is the 

absence of the highly restrained interior bays, which is probably the main contributor to the 

discrepancy.  As expected, the computed frequencies of the 10-bay strip model were lower than 

their full floor model counterparts.  Modal analysis of the 10-bay strip model for NOC VII 

computed the 16 frequencies listed in Table 4.3.  It is interesting to note the first 10 computed 

frequencies are within 0.4 Hz of one another; however there is a 1.5 Hz gap in frequency 

between the 10
th

 and 11
th

 modes, which represents the delineation between modes with single 

curvature within a bay and those with double curvature.  This is readily apparent in floor models 

with the same or very similar bay dimensions and framing members but may be less obvious in 

floor models that have smaller interior bays.  These small interior bays tend to have higher 

frequencies that may be close to the double curvature modes of the larger exterior bays.  The first 

12 mode shapes are presented in Figure 4.23.   

Table 4.3: NOC VII – Computed Modes for 10-Bay Strip Model 

Mode: Frequency (Hz) Mode: Frequency (Hz)

1 4.823 9 5.219

2 4.845 10 5.235

3 5.009 11 6.790

4 5.057 12 6.888

5 5.087 13 7.055

6 5.124 14 7.292

7 5.161 15 7.597

8 5.194 16 7.969  
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 Mode 1: 4.823 Hz Mode 2: 4.845 Hz 

  
 Mode 3: 5.009 Hz Mode 4: 5.057 Hz 

 
 Mode 5: 5.087 Hz Mode 6: 5.124 Hz 

 
 Mode 7: 5.161 Hz Mode 8: 5.194 Hz 

 
 Mode 9: 5.219 Hz Mode 10: 5.235 Hz 

 
 Mode 11: 6.790 Hz Mode 12: 6.888 Hz 

 

Figure 4.23: NOC VII – 10-Bay Strip Model Computed Mode Shapes 

As anticipated, the lower modes show the greatest response in the “softer” areas of the 

floor, which are the end bays with the girders assigned lower stiffness property modifiers.  As 

with the full floor model, the lower modes are also represented by localized response in a few 

adjacent bays, which would indicate large forced response values for excitations in these 

locations at their dominant frequencies.  Unlike the full floor model, however, the frequency of 

the first mode shape with significant response along the middle portion of the model (Mode 4: 

5.057 Hz) is very close to the measured frequencies in these bays (5.025 Hz to 5.075 Hz) and the 

mode shape is very similar to the measured dominant shape, as shown in Figure 4.24. 

Point 281 - Mode 4 = 5.057 Hz  

 
Measured ODS at 5.025 Hz (Forcing at Point 281) 

 

Figure 4.24: NOC VII – 10-Bay Strip Model Mode Shape and ODS Comparison (Point 281) 
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It should be noted that due to the point symmetric nature of the floor geometry, the mid-

bay locations on the end three bays of the right side (Points 533, 489, and 437) should 

demonstrate the same response as the corresponding locations on the opposite corner of the 

building, which are Points 21, 65, and 117, respectively.  Thus, unit point loads were applied to 

the 10-bay strip FE model and analyzed to represent these respective locations.  The mode 

shapes with responses in these locations can also be compared with measured shapes.  Figure 

4.25 shows the comparison of Mode 3 with the measured ODS at the dominant frequency of 

Point 65.  Note that the FE model was rotated to reflect its representation of Point 65 and for 

comparison with the ODS at the 4.875 Hz dominant frequency.  Although the ODS used in the 

comparison was obtained by driving at Point 73, the similarity in shape is apparent by the two 

corresponding upper bays that are in phase (concave up).  This is a promising result because this 

dominant response shape in the bay containing Point 65 could not be achieved in the full floor 

model.  

  Point 65 

 Mode 3 = 5.009 Hz  ODS at 4.875 Hz 

    

Figure 4.25: NOC VII – 10-Bay Strip Model Mode Shape and ODS Comparison (Point 65) 

The computed driving point accelerance FRFs from steady state analysis of the tested 

bays are presented in Figure 4.26.  While the strip model was expected to better represent the 

response of the bays in the middle of the strip, all of the analyzed bays’ computed accelerance 

FRFs are in better agreement with the measured accelerance FRFs than the corresponding 

analyses of the full floor model. While the computed peak response magnitude for Point 65 was 

nearly 25% low using the measured value of damping (37% low for assumed level of damping), 

the shape of the FRF was much improved in this model.  For Point 21, the computed response 

was essentially the same for the strip model as it was for the full floor model, which is consistent 
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with the observation that the mode shape is localized to the immediately adjacent bays and thus 

the bulk of the participating (effective) mass was not removed with the other portion of the floor. 
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 117

Test 257, Ch 7 - Point = 117

FE FRF - Constant 1.20% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 73

Test 199, Ch 8 - Point = 73

FE FRF - Constant 1.15% Damping (Measured)

FE FRF - Constant 1.5% Damping (Assumed)
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 125

Test 142, Ch 8 - Point = 125

FE FRF - Constant 0.80% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 177

Test 136, Ch 5 - Point = 177

FE FRF - Constant 0.90% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)
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Test 132, Ch 8 - Point = 216
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NOC VII - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 281

Test 121, Ch 8 - Point = 281

FE FRF - Constant 0.65% Damping (Measured)
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Figure 4.26: NOC VII – 10-Bay Strip Model Accelerance FRFs 
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The remaining analyzed locations predicted dominant frequencies within 10% of 

measured dominant frequencies and response magnitudes at the peaks using measured damping 

values to within 25%.  Using an assumed level of damping, the computed peak response values 

were generally 10-20% low, but not unreasonable considering the smaller values of damping 

estimated from measurements of the bays along the interior of the strip (0.6-0.9%).  It is 

interesting to note the ability of the model to predict the general shape of the odd multi-mode 

response for Point 177 and the double curvature mode measured at the higher frequencies in the 

FRF for Point 216, the only driving point not located at mid-bay.  Overall, the reduced strip 

model provided some very encouraging results for both the recommended modeling techniques 

as well as the implication that reduced floor models can be effective in adequately predicting the 

response.   
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4.2.2 VT KnowledgeWorks 2 Building, VTK2 

For the FE model of VTK2, the floor framing geometry was laid out with the steel 

framing members specified in the design drawings and pinned supports were applied at the 

column locations.  Like NOC VII, a user-defined material (VTK2-VIBCON) and area plate 

element (VTK2-SLAB) were created to represent the composite slab in the floor model.  The 

input values of these user-defined parameters, and the composite slab properties used in their 

development, are presented in Table 4.4.   

Table 4.4: VTK2 – Composite Slab Parameters and Slab Area Element/Material Properties 

Overall Slab/Deck Height: 5.25 in. Unit weight of concrete, w c :  115 pcf

Slab height above ribs, d : 3.25 in. Concrete compressive strength, f’ c : 3000 psi

Deck rib height, d r : 2.00 in. Dynamic modulus of elasticity, 1.35*E c 2884 ksi

Area weight of steel deck, w deck : 2.4 psf Superimposed loads, w d  + w l  + w coll : 0 psf

User-Defined Material Name: VTK2-VIBCON User-Defined Area Section Name: VTK2-SLAB

Type of Material: Isotropic Type of Area Section: Plate-Thin

Mass per unit Volume: 2.3869x10
-7

 k-s
2
/in

4 Assigned Material: VTK2-VIBCON

Weight per unit Volume: 9.2156x10
-5

 k/in
3 Thickness (Membrane/Bending) 3.25 in.

Poisson's Ratio 0.2 Stiffness Modifiers: Bending m11 = 2.88

Additional Material Damping: None  

A notable difference in the VTK2 floor from the NOC VII floor is the irregular framing 

in portions of the building.  For both the experimentally derived mode shapes and the computed 

mode shapes it was found that the irregular locations of various columns and offset bays tended 

to localize the participation of the floor in a given mode to just a few adjacent bays.  Slab details 

and the framing plan of the specified steel sections for VTK2 are found in Appendix A.  Plan and 

3-D views of the floor model’s slab and framing layout are presented in Figure 4.27, including 

the twelve locations of forced response analysis presented later in this section for comparison 

with experimental measurements.  

Using a slab area element size that was similar to the one used for the NOC VII model 

gave convergent results.  This corresponded to a mesh size of 12x12 elements for interior bays 

(30 in. x 30 in.) and 12x16 elements (30 in. x 26.25 in.) for exterior bays.  Because of the 

irregular geometry in some areas of the floor and the offset end bays, a few smaller rectangular 

elements were used in the transition areas.  With this configuration, the full floor model contains 

nearly 3,400 mass degrees of freedom (UZ) (slightly less than half the size of the NOC VII full 

floor model).  The joints corresponding to test locations were renumbered to the pattern shown in 

Figure 3.52 to ease analysis of results.   
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 (a) VTK2 Floor Framing Layout  (b) FE Model Plan View of Framing & Slab 

   

 (b) FE Model 3-D View – Framing Only (c) FE Model 3-D View – Framing and Slab 

Figure 4.27: VTK2 – Floor Layout and FE Model 

The transformed composite moments of inertia were computed for each framing member 

to determine the baseline stiffness property modifiers, which ranged from 2.5 to 3.8 for the main 

framing members of VTK2.  A full listing of the calculated transformed moments of inertia and 

their respective baseline (and final) PMs is found in Appendix N.  The baseline values were 

applied as PMs to the strong axis moment of inertia for all framing members, and 2.5 times the 

baseline values were applied as PMs to all spandrel beams and girders with the exception of the 

two spandrel members of bay A/C-2.5/3.8.  This bay contained Point 25 and was in a stage of 

construction that essentially left it with two free edges.  For this same reason, a smaller assumed 

damping value of 1% was used for analysis rather than the recommended 1.5% for a corner bay.   

Strong axis bending moment releases without any partial fixity were applied to all 

members framing into the webs of columns, and no moment releases were applied to the beam 

members that framed into the flanges of columns.  For beams framing into the webs of girders, 

strong axis moment releases with partial fixity values of 6EI/L were applied at both ends.  No 

partial fixity values were assigned to beams framing into the webs of girders if there was not a 

corresponding beam framing into the other side of the beam-to-girder web connection (i.e. 

representing a loss of continuity and the flexibility of the unsupported girder web).  Because of 

the irregular framing, this condition existed for several joints in the interior of the floor other 
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than at spandrel beams/girders.  The framing layout of VTK2 showing end releases and members 

with assigned partial fixities is presented in Figure 4.28. 

 

Figure 4.28: VTK2 – Moment End Releases and Partial Fixities 

Additional pinned restraints were applied to two interior bays (bays F/G-3/4 and G/H-3/4 

in Figure 3.45) to represent the full-height light gage steel stud framing in place above and below 

the floor at the time of testing (Figure 3.51).  The locations of the interior pinned restraints are 

shown in Figure 4.29. Although the metal stud framing was connected to the underside of the 

floor using a clip designed to allow vertical movement, the bays with this framing were 

considerably stiffer.  Like the stiffened behavior of the spandrel members that also had similar 

vertical clips at the slab edges, it is likely that the amplitudes of vibration were not enough to 

overcome friction at all locations and cause the increased stiffness.   

 

Figure 4.29: VTK2 – Interior Pinned Restraints 

It should be noted that pinned supports at the interior locations shown in Figure 4.29 are 

likely to be much stiffer than the in-situ framing; however they were used in lieu of vertical 

springs, which more truly reflect the restraint condition in these areas.  The use of pinned 

restraints was justified because formulating a vertical spring value for the light gage framing 
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would be impractical (and more likely inaccurate) due to variability in construction at that stage 

of installation and the contribution of friction at the vertical clips.  The locations of these interior 

pins were based on judgment and the layout of the framing.  It is likely they provide some degree 

of over-restraint in those areas that may be reflected in inaccuracies of the mode shapes and 

frequencies of the adjacent bays.  While there is no comparison of accuracy for the untested far 

end of the floor, the bays most likely to be affected include Points 182 and 230.   

The frequencies of the first 20 modes are presented in Table 4.5.   It was determined only 

20 modes were necessary to capture the dominant shapes of all bays; modes beyond this 

demonstrated double curvature within a bay.  The 13 mode shapes that have a preponderance of 

participation (say that 10 times fast!) in the tested areas of the floor are presented in Figures 4.30 

and 4.31.   

Table 4.5: VTK2 – Computed Modes 

Mode: Frequency (Hz) Mode: Frequency (Hz)

1 6.535 11 7.725

2 6.689 12 7.795

3 6.772 13 8.024

4 6.867 14 8.129

5 6.870 15 8.399

6 7.055 16 8.509

7 7.200 17 8.659

8 7.295 18 8.828

9 7.307 19 8.936

10 7.387 20 9.152  

 Mode 1: 6.535 Hz Mode 2: 6.689 Hz Mode 3: 6.772 Hz 

  
 

 Mode 4: 6.687 Hz Mode 6: 7.055 Hz Mode 7: 7.200 Hz 

  

Figure 4.30: VTK2 – Computed Mode Shapes 1-7 (Tested Area of Floor) 
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 Mode 8: 7.295 Hz Mode 9: 7.307 Hz Mode 10: 7.387 Hz 

 
   

 Mode 11: 7.725 Hz Mode 13: 8.024 Hz Mode 14: 8.129 Hz 

 
 

Mode 20: 9.152 Hz 

 

Figure 4.31: VTK2 – Computed Mode Shapes 8-20 (Tested Area of Floor) 

In contrast to all but a handful of computed modes for NOC VII, it is interesting to note 

the localization of response within many of the modes.  As previously observed in the NOC VII 

models, almost every mode has one or two bays with dominant participation, highlighting the 

dominant or significantly participating frequencies of that location of the floor.  These 

frequencies will be significant or dominant peaks in the computed accelerance FRFs, just as they 

would from testing an in-situ floor.  It is also evident that the irregularity of the framing and the 

column locations causes what could be considered “complicated” mode shapes, or mode shapes 

that are not necessarily intuitive or expected.  However, when comparing the computed mode 

shapes to those measured during testing, the validity of many difficult-to-anticipate shapes was 

confirmed, making a strong argument for additional case studies with high quality modal testing 

of in-situ floors (or mid-bay testing, at the very least).  Because a large area of VTK2 was tested 

using multiple references, the experimental data was more conducive to curve fitting and 

extracting quality mode shapes of multiple modes.  Access to reliable extracted mode shapes (or 

high quality ODSs that closely resemble the mode shape near resonance) eases the comparison of 
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experimental data and computed mode shapes.  Seven of the extracted mode shapes from in-situ 

testing are presented in Figure 4.32 for comparison with the respective computed mode shapes of 

the FE model.  For reference, the area of the floor represented in the presented experimental 

mode shapes is shown at the top of Figure 4.32. 

 
 

 Mode 1: 6.53 Hz  Curve Fit: 6.56 Hz Mode 4: 6.87 Hz Curve Fit: 6.98 Hz 

 
 

 Mode 6: 7.05 Hz Curve Fit: 7.19 Hz Mode 7: 7.20 Hz Curve Fit: 7.30 Hz 

 
  

 Mode 8: 7.29 Hz Curve Fit: 7.58 Hz  Mode 11: 7.73 Hz Curve Fit: 7.97 Hz 

 
   

 Mode 13: 8.02 Hz Curve Fit: 8.21 

 

Figure 4.32: VTK2 – FE Mode Shape and Curve Fit Mode Shape Comparison 

Although a numerical comparison between the computed and experimental mode shapes 

was not accomplished, there is exceptional agreement from visual inspection of the seven modes 
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compared in Figure 4.32.  This is a very encouraging result given the simplified approach of 

many of the applied modeling techniques.  Several modes were likely present in the in-situ 

structure but were not captured from modal testing due to either the lack of adequately exciting 

the mode at the forcing location or not measuring the area during the modal sweep.  The three 

mode shapes in Figure 4.33 are the computed dominant modes at Points 25, 230, and 21.  The 

computed modes that cannot be remarked upon due to lack of measurement of the far areas of 

the floor are presented in Figure 4.34. 

 Point 230 Point 25 Point 21 

 Mode 2: 6.69 Hz Mode 3: 6.77 Hz  Mode 20: 9.15 Hz 

 

Figure 4.33: VTK2 – Dominant Mode Shapes (Points 25, 230, 21) 

  

 Mode 5: 6.87 Hz Mode 12: 7.79 Hz Mode 15: 8.40 Hz 

  
 

 Mode 16: 8.51 Hz  Mode 17: 8.66 Hz  Mode 19: 8. 38 Hz 

 

Figure 4.34: VTK2 – Computed Modes (Non-Tested Area of Floor and Double Curvature) 

Steady state analysis was performed on the modeled floor for the twelve different unit 

load locations shown in Figure 4.27(b), each corresponding to a mid-bay driving point location 

on the floor during modal testing.  To correspond with the burst chirp frequency range of the 

experimental driving point accelerance FRFs, the steady state analyses evaluated response at 

increments between 4 Hz and 12 Hz with roughly a 0.05 Hz frequency resolution.  Steady state 

analysis was performed twice for each of the driving point locations.  In he first analysis, 

constant damping was specified for all frequencies using measured estimates of damping 

(estimated at the dominant frequency of the tested bay) and a second analysis using the proposed 
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damping values for a bare floor based on general bay location (1%, 1.5%, 2%).  The points of 

excitation and each of the two damping ratios used for analysis are shown in Figure 4.35.  Note 

that 1% damping was used for the assumed damping analysis of Point 25.  As a corner bay, 1.5% 

would follow the recommendations; however this bay had two sides that were essentially free 

edges.  This is a good example of how engineering judgment must be applied at several steps in 

the modeling process to maximize the chances of adequately representing the in-situ behavior.  

 

Figure 4.35: VTK2 – Constant Damping Ratios Used in Steady State Analysis 

The computed driving point accelerance FRFs for each of the twelve bays analyzed are 

presented in Figures 4.36, 4.37, 4.38, and 4.39.  The accelerance FRFs in these four figures are 

presented in sets of three to correspond with a three-bay strip along the short direction of the 

building.    Although the computed FRFs are not ideal representations of the measured driving 

point FRFs, they provide very encouraging results for this floor model and the recommended 

modeling techniques.  The dominant and participating frequencies of nearly all analysis locations 

are in good agreement with the measured frequencies, which was anticipated from the visual 

comparison of the computed mode shapes with the experimentally extracted modes shapes.  The 

predicted dominant frequencies of the analyzed bays were all within 5% of the measured 

dominant frequencies, and half of the analyzed bays were within 1% of measured.  For predicted 

accelerance, however, it was observed that using the measured estimates of damping did not 

always result in better agreement in the magnitude of the peaks of the accelerance FRFs.   
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VTK2 - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 21

Test 84, Ch 8 - Point = 21

FE FRF - Constant 1.00% Damping (Measured)

FE FRF - Constant 1.5% Damping (Assumed)

 
 

Point 25: 
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VTK2 - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 25

Test 83, Ch 8 - Point = 25

FE FRF - Constant 0.60% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)

 
 

Point 230: 
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Test 24, Ch 3 - Point = 230
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Figure 4.36: VTK2 – Accelerance FRFs (Points 21, 25, 230) 
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VTK2 - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 74

Test 94, Ch 8 - Point = 74
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FE FRF - Constant 1.20% Damping (Measured)
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Figure 4.37: VTK2 – Accelerance FRFs (Points 74, 78, 82) 
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Point 126: 
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VTK2 - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 126

Test 187, Ch 8 - Point = 126

FE FRF - Constant 0.60% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)
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VTK2 - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 130

Test 238, Ch 8 - Point = 130

FE FRF - Constant 0.60% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)
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VTK2 - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 134

Test 211, Ch 8 - Point = 134

FE FRF - Constant 0.55% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)

 

Figure 4.38: VTK2 – Accelerance FRFs (Points 126, 130, 134) 
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Point 178: 
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VTK2 - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 178

Test 277, Ch 8 - Point = 178

FE FRF - Constant 0.50% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)
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VTK2 - Driving Point Accelerance FRF Magnitude - Experimental vs Analytical, Point = 182

Test 254, Ch 8 - Point = 182

FE FRF - Constant 1.30% Damping (Measured)

FE FRF - Constant 2% Damping (Assumed)
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Test 253, Ch 8 - Point = 186

FE FRF - Constant 0.65% Damping (Measured)

FE FRF - Constant 1% Damping (Assumed)

 

Figure 4.39: VTK2 – Accelerance FRFs (Points 178, 182, 186) 
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Using the measured estimates of damping, the FE steady state analyses predicted peak 

accelerance values (at the dominant frequency) higher than measured values in all but one of the 

twelve analyzed bays.  Additionally, six out of the twelve bay analyzes predicted a peak 

accelerance within 25% of measured, although the computed accelerance for three of the bay 

analyses exceeded the measured value by over 50%.  The substantial disagreements in magnitude 

for these three dominant peaks are likely attributed to an overly localized response, which 

translates into a smaller effective mass for that mode.  The effective mass of a mode is inversely 

proportional to the acceleration response at resonance, hence the overestimation of the peak.  

Using assumed values of damping in the analyses, all but one of the twelve bay analyzes 

underestimated the peak accelerance value at the dominant frequency; however, ten of the twelve 

bay analyses predicted values within 25% of measured while the other two were within 50%.   

Although there is admittedly room for refinement to the proposed modeling techniques, 

the encouraging results presented in this section demonstrate that steel composite floor systems 

can be modeled using a set of fundamental techniques where the resulting dynamic analyses 

adequately represent the behavior of an in-situ floor.  Other encouraging results demonstrated 

that partial floor models developed with the recommended techniques can also provide a good 

representation of in-situ behavior.  This is beneficial because creating a detailed finite element 

model of an entire floor system can be excessive and costly, especially if only a portion of the 

floor requires modeling for purposes of an adequate evaluation.  The computed mid-bay 

accelerance FRF is the cornerstone of analysis using the FE method because of its ability to 

represent all important dynamic characteristics of the most vulnerable portion of a floor.  It also 

remains an invaluable tool for validating an FE model because of its ability for direct comparison 

to mid-bay driving point measurements of in-situ structures.   
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4.3 Summary of Recommended FE Modeling Techniques for Composite Floors 

This section serves as a consolidated summary of the recommended modeling techniques 

presented in Section 4.1 and applied to the two tested in-situ floor models in Section 4.2.  The 

recommended techniques are presented in bullet format and follow the same order as the six 

general steps of creating an FE model of a floor system for evaluation of vibration serviceability 

that were presented in Section 4.1; that is, 

1) Lay out the floor geometry using the design specified steel framing members for the 

beams and girders and apply vertical restraints at the location of the columns. 

2) Define area elements and materials to represent the composite slab and apply the slab 

area elements to the model. 

3) Adjust model to adequately reflect mass and stiffness (releases, restraints, PMs, etc.). 

4) Perform modal analysis on the FE model to compute the frequencies and mode shapes. 

5) Specify damping in the model. 

6) Apply dynamic loads and perform forced response analysis for use in evaluation of 

vibration serviceability. 

Mass & Materials 

• Lay out the geometry of the steel floor framing in the XY-plane using the predefined frame 

elements in the FE program that correspond to the steel sections of the design drawings.  Use 

centerline dimensions. 

• Apply translational (vertical) restraints at all column locations. 

• Create a user-defined isotropic material, and specify the modulus of elasticity to reflect the 

dynamic modulus of elasticity of concrete (1.35*Ec as computed by Equation (1.6)).  Specify 

weight and mass densities of the material as computed using Equations (4.1) and (4.2) to 

account for the composite slab and superimposed loads, and specify a Poisson’s ratio of 0.2. 

• Create a user-defined thin-plate area element to represent the composite slab.  Assign the 

user-defined concrete material to the element and input a plate thickness equal to the depth of 

the slab above the deck ribs.  Determine the bending stiffness property modifier (PM) to 

represent the orthotropic stiffness of the corrugated slab by computing the ratio of strong-to-

weak direction moments of inertia of the slab.  Assign this PM to the appropriate plate 

bending moment direction (this will be based on the element’s local axis). 
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• Apply the slab area elements to the model in the same plane as the steel framing members.  

Mesh the slab area elements over the floor system attempting to keep the element aspect ratio 

close to unity.  Use at least twelve elements along the length of a bay, but slab area element 

sizes of 26 in. to 30 in. along each side will generally give convergent results.  Using a finer 

mesh is acceptable but will be computationally more expensive.   

• Ensure framing members are auto-subdivided along their lengths corresponding with the slab 

mesh size to ensure connectivity to the slab and adequate distribution of mass. 

Stiffness and Boundary Conditions 

• Compute the transformed composite moments of inertia for all framing members using DG11 

fundamentals.  Using the computed moments of inertia, calculate the respective baseline PMs 

for the framing members.  When computing the PMs for members parallel to the deck ribs, 

account for the orthotropic bending stiffness PM assigned to the slab area elements. 

• Apply the computed baseline PMs to all interior framing members and 2.5 times the baseline 

PMs to all spandrel members that are not free edges.  Use the baseline PMs for free-edge 

spandrel members.  Exercise engineering judgment on other members of the floor that may 

justify an increased stiffness PM, such as members adjacent to full-height interior partition 

walls or elevator cores. 

• Release the strong-axis end-moment of all beams and girders framing into a column web. 

• Do not assign a moment end release for any beam or girder connected to a column flange, 

regardless of whether it is part of a moment frame or not. 

• Release the strong-axis moment in all beam-to-girder web connections that are not restrained 

on the other side by another member (e.g. framing into spandrel girders). 

• Release the strong-axis moment and assign a partial fixity for all continuous beam-to-girder 

connections.  Use a partial fixity rotational spring value equal to 6EI/L, where EI/L is 

determined using the connecting members properties. 

• Using engineering judgment, apply pinned restraints where appropriate to simulate unknown 

contributions of stiffness from interior partitions or interior/boundary conditions. 

• In general, over-restraint of the floor using excessive numbers of interior pinned restraints, 

rotationally restrained degrees of freedom, or very high stiffness property modifiers does not 

produce good results.  When in doubt, leave the model flexible in areas of unknown restraint. 
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Modal Analysis and Steady State Analysis 

• Ensure all dynamic analysis is performed with the structure analyzed as a plane grid (UZ, 

RX, and RY are the available DOFs), with UZ the only translational mass DOF. 

• Perform an eigenvector modal analysis to compute the frequencies and mode shapes.  To 

determine the range of the frequencies of interest for the modeled floor, adjust the number of 

modes to be computed to account for all modes with single curvature within a bay. 

• Apply mid-bay unit loads at all bays of interest (separate load cases for each). 

• Generate separate steady state analysis cases for each bay to be evaluated and assign the 

respective mid-bay load case.   

• Determine the frequency range of interest and the frequency increments for the steady state 

analysis.  A frequency resolution of 0.05 Hz or finer is recommended.  Include the 

frequencies from the modal analysis case to ensure the peak response is computed. 

• Determine the assumed level of damping for each steady state analysis case based on the 

bay’s location.  Recommended levels of damping for bare floors are 1% for typical bays, 

1.5% for corner bays (two exterior boundaries), and 2% for interior bays that are adjacent to 

interior framing.  For occupied floors, assume 3% for all bays.   

• For each steady state analysis case, input the assumed (or measured) level of damping as 

constant hysteretic damping for all frequencies.  Constant modal damping is approximated by 

specifying the mass proportional coefficient as zero and the stiffness proportional coefficient 

as twice the modal damping ratio (i.e. for the assumed levels of damping for bare floors, the 

ratios would be 0.02, 0.03, and 0.04). 

• Perform the steady state analysis and interpret the results.  The most informative results are 

the computed driving point accelerance FRFs.  Other available evaluation tools include the 

floor’s computed operating deflection shape at resonance (very close to the computed mode 

shape only in actual displacement units) and envelope contour plots showing the maximum 

computed response at any frequency across the area of the floor.  
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4.4 Floor Vibration Serviceability Evaluation Using the Finite Element Method 

The following section proposes a method for evaluation of vibration serviceability using 

the mid-bay driving point accelerance FRFs of a floor.   In its most basic form, the method 

proposes using a design accelerance curve to represent a limit of vibration serviceability, and 

thus the peaks of an accelerance FRF for a floor must fall below the design accelerance curve to 

be considered acceptable.  While the focus of the proposed method in this section uses the 

computed mid-bay accelerance FRFs from forced response analyses of a floor’s FE model, the 

method is also applicable to evaluation of existing floors using measured mid-bay accelerance 

FRFs, allowing instant evaluation with field measurements.  It should be noted that only the 

fundamental premise of the method is presented in this research, and it is neither in a final form 

nor validated by any case studies of floors with known serviceability problems.  Efforts to 

identify a final form are left for future research endeavors; however the strength of the proposed 

method of evaluation lies in its ability to be verified with field measurements and its potential for 

automation within an FE program.  Ideally, the form of a design accelerance threshold would be 

based on a database of high-quality accelerance FRFs measured from both acceptable floors and 

problem floors, allowing researchers to hone in on a form that is statistically significant.  

Unfortunately, as mentioned in Chapter 1, there is currently a very limited database of these 

types of measurements in the published literature, with this document possibly representing the 

most comprehensive listing of mid-bay driving point accelerance measurements for in-situ 

floors.  In the absence of a significant database of measured accelerance FRFs and their 

corresponding subjective serviceability evaluations (human surveys of whether the floor is 

acceptable or unacceptable), a suggested form should be based on current practice of floor 

vibration evaluation.  A source for this practice is the current design guidance used for 

serviceability evaluation.  In the following section, a proposed design accelerance curve is 

presented based on DG11 fundamentals, although other design/evaluation methodologies are 

briefly discussed for reference on how their fundamentals could be adapted to develop similar 

design accelerance curve(s). 

As mentioned in Section 1.1, the various design guidance and codes currently in use 

around the world address vibration serviceability in the same general manner:  

1) Estimate the dynamic properties of the floor. 

2) Estimate a dynamic loading to simulate the forces applied from human activities. 
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3) Compute the acceleration response of the floor for comparison with an established level 

of acceptability.   

The two leading publications presently used for evaluation of vibration serviceability for walking 

excitation are the AISC/CISC Steel Design Guide Series 11: Floor Vibrations Due to Human 

Activities (Murray et al. 1997), which is used extensively in North America, and the Steel 

Construction Institute (SCI) Design Guide for Vibrations of Long Span Composite Floors (Hicks 

et al. 2000), which is often followed in the United Kingdom.  Both publications offer simplified 

methods for manually computing the dynamic properties of fundamental frequency and effective 

mass/weight of the floor and provide recommended values of damping.  Both publications 

recognize the complexity of representing the forces from human activities such as walking and 

take the approach of representing this complex loading as a Fourier series of the harmonics of 

footfall frequency.  Lastly, using the computed properties of the floor and assumed loading, the 

publications compute an acceleration response to compare to acceptability criteria.  For office 

floors, the acceptability criteria suggested by DG11 is a constant 0.005g for frequencies between 

4 Hz and 8 Hz, whereas SCI allows for three different tolerance thresholds depending on a 

busy/general/special office occupancy condition.  As discussed in Section 1.3.2, a notable 

difference in the two evaluation methods is in the recommended Fourier coefficients for the 

harmonics of step frequency.  While each method recognizes a stepped nature of the dynamic 

load coefficients within certain frequency ranges (corresponding to the various harmonics of step 

frequency) DG11 offers a simplified exponentially decreasing term, 0.83exp
-0.35f

, and the SCI 

method remains as stepped values.  Young (2001) analyzed extensive footfall data and developed 

linear functions within each harmonic, which are still stepped in nature but with a slight upward 

slope.  This form of the dynamic load coefficients was incorporated into more recent methods of 

evaluation that have been presented by Arup (Willford et al. 2006).  The Arup method includes a 

more complex computation of acceleration response that includes the mode shape and off-

resonant response in its formulation.  Willford presents a reduction factor to be applied to the 

computed acceleration to account for not achieving full steady state response.  This reduction 

accounts for two phenomena: an individual walks across the bay rather than exciting it 

sinusoidally at its anti-node, and a floor with a low level of damping may not undergo enough 

loading cycles to achieve steady state.  While a similar reduction factor is included in the DG11 

method of evaluation (R=0.5), the Arup method directly includes the bay dimensions, stride 
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length of an individual, and damping ratio.  The computed acceleration using DG11 or SCI 

applies for a single fundamental frequency used in analysis and no other consideration is given 

for the response at (or contribution from) other frequencies.  In this respect, using the 

accelerance FRF differs because it describes the response (and allows evaluation) over a range of 

frequencies and includes the contribution of other modes. 

The fundamental premise of the proposed evaluation method, and its ability to represent 

the computed acceleration response of a floor and a level of serviceability over a range of 

frequencies, is the accelerance frequency response.   The value of accelerance is best described 

by its definition as a measured quantity: 

 
 steady state acceleration response

 input force

 Accelerance  
 = 

 FRF Magnitude

measured

measured

Measured
 (4.5) 

Equation (4.5) states the magnitude of the measured accelerance at a given frequency is equal to 

the magnitude of the measured steady state response divided by the magnitude of the input force.  

Because current design guidance defines a steady state acceleration limit for human comfort and 

estimates the applied loading from walking excitation as a steady state harmonic force, a design 

accelerance magnitude is defined: 

 
 acceleration limit for human comfort

 input force

 Accelerance  
 = 

 FRF Magnitude

design

design

Design
 (4.6) 

Although the design acceleration limit is typically taken as a constant value over the frequency 

range of interest, the accelerance FRF is a function of frequency and does not require a constant 

acceleration threshold for all frequencies.  The input force from walking excitation is generally 

considered a function of frequency and the magnitude of the simulated sinusoidal force is based 

on the harmonic of walking that will likely correspond with frequency of the floor.  Thus, the 

design accelerance curve, Ao(f), is defined in general terms as 

 (acceleration units)

(force units)

 steady state acceleration limit

 sinusoidal input force due to walking

( ) 
( ) = =   

( )

o
o

design

design

a f
A f

F f
 (4.7) 

Using this form, the design accelerance curve can easily accommodate the suggested 

acceleration limits and effective harmonic force representation of walking excitation from DG11:  

 0.35

0.35
( ) fo o o

o f

i o o

a a a
A f e

R P P e Pα −

 
= = =  

 
 (4.8) 
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where  
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Although the variables ao, R, and αiP in the basic expression of Equation (4.8) are from 

DG11, they represent the general terms used in all of the evaluation methods (acceleration limit, 

reduction factor, and effective forcing amplitude, respectively).  Using DG11 values to evaluate 

the expression, a final form of the design accelerance curve for a reduction factor R = 0.5 is: 

2 2
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o R

in s

lb
A f e

=
≅  (4.9) 

The acceleration limit ao and forcing terms αiP are based on established theories of human 

tolerance to vibration and the effective harmonic force due to walking, however R represents a 

catch-all reduction factor used to account for less-than-full steady state resonant response and 

because the individual walking and the individual subject to vibration are not located at the point 

of maximum response within a bay.  The subjective nature of its suggested value means that 

other values of R may be considered in determining a final form of a design accelerance curve.  

The design accelerance curve of Equation (4.9) for R=0.5 is plotted in Figure 4.40 along with 

other values of R to illustrate the effect on using a different reduction factor.   
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Figure 4.40: Proposed DG11 Design Accelerance Curves for Different Reduction Factors 
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Note that the design accelerance curves in Figure 4.40 are plotted from 4 Hz to 9 Hz, 

which corresponds with the lower 0.005g plateau in Figure 1.1, the figure illustrating the 

recommended peak accelerations for human comfort for vibrations due to human activities.  The 

simplified dynamic load coefficient term used by DG11 makes each design accelerance curve a 

smooth increasing exponential.  The other methods of evaluation offered by SCI and Arup use a 

stepped dynamic load coefficient (or stepped function with slight slope), and thus the form of the 

design accelerance “curve” would also be stepped.  The reduction factor included in the Arup 

method would be computed for each analyzed bay because it is based on damping and the bay 

dimensions.  Thus, the Arup design curves for each analyzed bay would shift up or down 

depending on the computed reduction factor.  Although specific terms of the other methods 

differ from DG11, they are only highlighted to demonstrate that they are not insurmountable for 

developing a design accelerance curve based on the evaluation method fundamentals. 

A demonstration of the proposed method for evaluation is made using the design 

accelerance curve for R=0.5 shown in Figure 4.40 and the VTK2 FE model presented in Section 

4.2.2.  The development and analysis of the FE model presented in that section comprise the first 

step in the proposed evaluation process, simply modeling the floor assuming bare conditions.  

This floor was modeled assuming a bare floor condition with no superimposed loads and was 

analyzed using the recommended damping values for a bare floor (1%, 1.5%, and 2% depending 

on bay type).  Although the acceleration response is the critical parameter for evaluation, there 

are other modeling results that provide insight on the predicted performance of the floor.  Modal 

analysis of the bare floor system indicates both frequency content of the floor as well as the 

general shapes of expected modes.  For the bare condition VTK2 FE model, the lowest computed 

frequencies were 6.5-7.0 Hz, a bit high for floors that historically have shown serviceability 

problems.  The frequencies of a floor will decrease with superimposed load, thus if the computed 

bare floor frequencies are initially low (4-5 Hz), this may indicate a potential problem floor early 

in the design process.  Additionally, examining the mode shapes of the bare floor model also 

provides preliminary evaluation, as certain mode shapes may indicate problem areas of the floors 

at certain frequencies.  These “soft spots” (very localized mode shapes) may result in large 

accelerance values at resonant frequencies due to the smaller effective mass of the mode.  

Performing a forced response steady state analysis of the floor at each mid-bay location will give 

an overall idea of the performance of that area of the floor.  Analysis of the bare floor does not 
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have much relevance for comparison to recommended design accelerance values because it is 

unlikely that the floor is occupied in such a condition.  The performance of the occupied 

condition is of the most interest for evaluation, however the computed accelerance FRFs of the 

bare floor (with the smaller assumed damping values) are important because they highlight 

dominant and significantly participating frequencies/modes.  At higher levels of damping, many 

of these peaks will be smoothed out and difficult to distinguish. (However, on the usefulness of 

bare floor FE models, a bare floor is a much more likely condition for the acquisition of field 

measurements for validation of an FE model).   

The second step in the evaluation process is to adjust the bare floor model to reflect the 

occupied condition.  To simulate the increased load of an occupied condition, superimposed 

loads of 4 pounds per square foot (psf) of dead load and 6-11 psf of live load are assumed 

(Murray et al. 1997).  This superimposed load is applied to the model by re-computing the 

weight and mass densities of the slab user-defined material using Equations (4.1) and (4.2).  The 

mass density, assuming a live load of 11 psf, and the first 10 computed frequencies of the 

occupied floor model are listed in Table 4.6 for comparison with the mass density and 

frequencies of the bare floor model.   

Table 4.6: FE Serviceability Evaluation Example – Change in Computed Frequencies 

Mode: Frequency (Hz) Mode: Frequency (Hz)

1 6.535 1 5.699

2 6.689 2 5.828

3 6.772 3 5.901

4 6.867 4 5.983

5 6.870 5 5.991

6 7.055 6 6.155

7 7.200 7 6.281

8 7.295 8 6.358

9 7.307 9 6.371

10 7.387 10 6.442

2.3869x10-7 k-s2/in4 3.2171x10-7 k-s2/in4

VTK2 Bare Floor VTK2 Occupied

Mass Density: Mass Density:

 

A superimposed load is assumed to add mass to the system and not stiffness.  For a 

typical steel composite floor, the slab will be 80-90% of a floor’s mass, with the remainder 

belonging to the steel framing members (for the bare VTK2 model in this example, the slab 

elements were 86% of the floor’s total mass).  Thus, any increase in the mass density of the slab 

material to account for superimposed load will effectively be a uniform increase in the total 
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system mass.  As a result, the shape and order of all mode shapes will not change but their 

respective frequencies will decrease, as will the acceleration response due to an increase in 

effective mass.  Note this only holds true for the addition of a superimposed load.  An increase in 

slab thickness must be accounted for in the mass and stiffness of the slab as well as a 

corresponding increase in composite stiffness of the steel framing members. 

For the provided example, a forced response steady state analysis was conducted on the 

mass density-adjusted model at the mid-bay location of Point 82 assuming an occupied condition 

damping value of 3%.  This location was originally analyzed with an assumed bare floor 

damping value of 1.5% (corner bay).  A comparison of the two computed accelerance FRFs is 

presented in Figure 4.41.  As expected, the peaks of the accelerance FRF shift to reflect the 

decrease in frequencies due to the applied superimposed load.  The increased level of damping 

smoothes out all but two dominant peaks, and the peak accelerance values decrease due to both 

the higher damping and the increase in mass.  Using DG11 as a basis for evaluation, the design 

accelerance curve for an office floor (R=0.5) is plotted along with the two computed accelerance 

traces.  The most important comparison in Figure 4.41 is the peak magnitude of the occupied 

floor model’s computed accelerance FRF in relation to the design accelerance curve.  For this 

example, the peak at 5.70 Hz dominant peak is 0.17 in/s
2
/lb of input force, below the 0.22 in/s

2
/lb 

design curve value.  Because the computed peak accelerance was less than the design 

accelerance curve, this bay would be considered acceptable for vibration serviceability using the 

proposed method of evaluation.   
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FE FRF - Occupied Floor (4psf DL + 11psf LL, Constant 3% Damping)

DG11 Design Accelerance Limit Curve, R = 0.5

 

Figure 4.41: FE Serviceability Evaluation Example – Accelerance FRFs and Design Curve 
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Note that the comparison of this single peak accelerance value to the design accelerance 

curve is equivalent to the single frequency response computation of DG11 with one exception: 

the bay’s dominant frequency and effective weight were calculated within the FE model rather 

than using DG11’s simplified methods.  The availability of the peak response of all participating 

modes over the frequency spectrum is advantageous, particularly if an analyzed location has 

multiple significant peaks, which was observed for some locations of the tested in-situ floors.  

Additional advantages of using the finite element method for evaluation of vibration 

serviceability are that the predicted frequencies of simplified methods often do not account for 

the effect of non-standard conditions such as different beam sizes between columns, increased 

stiffness at boundaries, or irregular framing that may affect the mode shapes.  The effective mass 

estimated using these simplified procedures is also based on gross generalizations, a necessity for 

their broad application, whereas the FE models determine effective mass based on mode shapes 

that account for irregular framing or the non-standard conditions, provided they are included in 

the model.  

Continuing the previous evaluation example, the remaining bays of the floor were 

analyzed in a similar manner with steady state analyses at all mid-bay locations for comparison 

with the design accelerance curve.  The computed accelerance FRFs for the bare floor and 

occupied floor FE models are presented below in Figures 4.42(b) and (c) for comparison.  

According to the serviceability evaluation of the occupied floor model in Figure 4.42(c), all but 

two bays on the floor satisfy the 0.005g serviceability limit at their respective dominant peaks.  If 

all bays had exceeded the design curve, then a major change in the design may be warranted, 

however the slight overage in only a few bays may only call for some minor adjustments or may 

even be considered acceptable given the assumptions built into the FE model.  To demonstrate 

the reasonableness of this example to represent in-situ floor behavior, the measured accelerance 

FRFs from each of the twelve analyzed bays in VTK2 are also included in Figure 4.42(a). 
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(a) VTK2 - Measured Mid-Bay Driving Point Accelerance FRFs (All Bays) 
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VTK2 - FE Model Driving Point Serviceability Evaluation - Bare Floor Conditions Accelerance FRFs

Pt 21 - Bare Floor (Corner Bay , 1.5% Damping)

Pt 25 - Bare Floor (Corner Bay **, 1% Damping)

Pt 74 - Bare Floor (Ty pical Bay , 1% Damping)

Pt 78 - Bare Floor (Ty pical Bay , 1% Damping)

Pt 82 - Bare Floor (Corner Bay , 1.5% Damping)

Pt 126 - Bare Floor (Ty pical Bay , 1% Damping)

Pt 130 - Bare Floor (Ty pical Bay , 1% Damping)

Pt 134 - Bare Floor (Ty pical Bay , 1% Damping)

Pt 178 - Bare Floor (Ty pical Bay , 1% Damping)

Pt 182 - Bare Floor (Interior Adjacent Bay , 1% Damping)

Pt 186 - Bare Floor (Ty pical Bay , 1% Damping)

Pt 230 - Bare Floor (Corner Bay , 1.5% Damping)

DG11 Design Accelerance Limit Curv e, R = 0.5

 
(b) Bare Floor FE Model Accelerance FRFs – 1%, 1.5%, 2% Damping  
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VTK2 - FE Model Driving Point Serviceability Evaluation - Occupied Condition Accelerance FRFs (3% Damping)

 
(c) Occupied Floor FE Model Accelerance FRFs – 3% Damping (All Bays)  

Figure 4.42: FE Serviceability Evaluation Example – All Bays 
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Another valuable observation can be made from Figures 4.41 and 4.42 in the example.  

The simple comparison of the computed accelerance FRFs of an adjusted FE model is a good 

tool to help designers visualize the effect of design or occupancy changes on vibration 

performance.  Using a lower damping value and decreasing the superimposed load of an existing 

floor system may simulate a change to a more open and lightly furnished office floor plan.  Some 

design changes may be more tedious to address than simple occupancy-change adjustments to 

superimposed load and damping, adjustments to member sizes, slab thicknesses, strength or unit 

weight of concrete, or even the depth of steel deck can be investigated to determine their effect 

on vibration performance.  All of the above listed items have the potential to change the 

frequencies and mode shapes of a floor, but sifting through a list of frequencies and looking at 

displayed mode shapes can easily obscure the important performance parameter, acceleration 

response.  The computed accelerance FRF allows instant and intuitive feedback on how the 

design change affects vibration performance across a range of frequencies.  If the computed 

accelerance FRFs are compared to a design accelerance curve representing a level of vibration 

serviceability, then the designer can make informed decisions early in the design process. 

The ease of computing a design accelerance curve and the simplicity of the proposed 

modeling techniques and mid-bay steady state analysis presented in Sections 4.1 and 4.2 make 

the proposed method of evaluation for vibration serviceability a viable candidate for automation 

within an FE program.  It should be stressed, however, that the final form of the proposed 

evaluation process is not calibrated against any known problem floor case studies and should 

not be viewed as a replacement for current design guidance at this point.  Although the 

recommended FE modeling techniques demonstrated a modest ability to adequately represent 

measured behavior, future refinement of the modeling techniques using further testing of in-situ 

structures will strengthen both the accuracy of the models and the method of evaluation.  DG11 

seems to be a good starting point for the form of the design accelerance curve; however the final 

form should be based on a survey of tested in-situ floors with known subjective serviceability 

evaluations.  Although the database of floors with high-quality accelerance measurements is very 

limited, an extensive database of problem floors does exist with response-only measurements 

and subjective evaluations.  This is where a refined and accurate method for modeling floors 

would help define the form of the design curve, because FE models of the database of surveyed 

floors could be generated in lieu of high quality accelerance FRF measurements.   
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A final note on the proposed method is that it also serves as a simplified method of 

evaluating existing floors in the field.  Current methods of on-site serviceability evaluation 

typically involve a series of heel drop or walking tests to record peak acceleration response, 

generally as response-only single channel measurements.  A general understanding of the floor 

response is achieved by looking at the acceleration traces and autospectra from these excitations.  

Using an instrumented heel drop (Class-III Testing per Section 2.5) instantly provides a high-

quality accelerance FRF that can immediately be compared to a predefined design accelerance 

curve.   

 


