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Chapter 4 Fluid Kinematics

Introductory Problems

4-1C
Solution We are to define and explain kinematics and fluid kinematics.
Analysis Kinematics means the study of motion. Fluid kinematics is the study of how fluids flow and how to

describe fluid motion. Fluid kinematics deals with describing the motion of fluids without considering (or even
understanding) the forces and moments that cause the motion.

Discussion Fluid kinematics deals with such things as describing how a fluid particle translates, distorts, and rotates,
and how to visualize flow fields.

4-2C
Solution We are to discuss the difference between derivative operators d and 0.
Analysis Derivative operator d is a total derivative, and implies that the dependent variable is a function of only

one independent variable. On the other hand, derivative operator 0 is a partial derivative, and implies that the
dependent variable is a function of more than one independent variable. When du/ox appears in an equation, we
immediately know that u is a function of x and at least one other independent variable.

Discussion In our study of fluid mechanics, velocity is usually a function of more than one variable, although for some
simple problems, we approximate it as a function of only one variable so that the problem can be solved analytically.

4-3
Solution We are to write an equation for centerline speed through a nozzle, given that the flow speed increases
parabolically.

Assumptions 1 The flow is steady. 2 The flow is axisymmetric. 3 The water is incompressible.
Analysis A general equation for a parabola in the x direction is
General parabolic equation: u= a+b(x—c)2 (1)

We have two boundary conditions, namely at X = 0, U = Uengance @aNd at X = L, U = Ugye. By inspection, Eq. 1 is satisfied by
setting ¢ = 0, & = Ugntrance aNd b = (Uexit - Uenyrance)/L%. Thus, Eq. 1 becomes

Uy, —U
Parabolic speed: u=u (ex“—e”"m)xz 2

— Hentrance L2

Discussion You can verify Eq. 2 by plugging in x =0 and x = L.
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Chapter 4 Fluid Kinematics
4-4
Solution For a given velocity field we are to find out if there is a stagnation point. If so, we are to calculate its
location.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is

V:(u,v):(az—(b—cx)2)7+(—2cby+2c2xy)J (1)

At a stagnation point, both u and v must equal zero. At any point (x,y) in the flow field, the velocity components u and v are
obtained from Eq. 1,

Velocity components: u=a’—(b- cx)2 v = —2cby + 2¢*xy )

Setting these to zero and solving simultaneously yields
. . O:az—(b—cx)2 X=——0
Stagnation point: c 3
v=-2cby+2c’xy y=0

So, yes there is a stagnation point; its location is x = (b —a)/c,y = 0.

Discussion If the flow were three-dimensional, we would have to set w = 0 as well to determine the location of the
stagnation point. In some flow fields there is more than one stagnation point.

4-5
Solution For a given velocity field we are to find out if there is a stagnation point. If so, we are to calculate its
location.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is

V =(u,v)=(-0.781-4.67x)i +(-354+4.67y)] (1)

At a stagnation point, both u and v must equal zero. At any point (x,y) in the flow field, the velocity components u and v are
obtained from Eq. 1,

Velocity components: u=-0.781-4.67x v=-3.54+4.67y 2

Setting these to zero yields

0=-0.781-4.67x X =-0.16724

Stagnation point:
0=-354+4.67y y =0.75803
So, yes there is a stagnation point; its location is x =-0.167, y = 0.758 (to 3 digits).

Discussion If the flow were three-dimensional, we would have to set w = 0 as well to determine the location of the
stagnation point. In some flow fields there is more than one stagnation point.
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Chapter 4 Fluid Kinematics
4-6
Solution For a given velocity field we are to find out if there is a stagnation point. If so, we are to calculate its
location.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is
V =(u,v) = (0.66 + 2.1X)i + (-2.7—2.1y)] (1)

At a stagnation point, both u and v must equal zero. At any point (x,y) in the flow field, the velocity components u and v are
obtained from Eq. 1,

Velocity components: u=0.66+2.1x v=-27-21y (2)

. . 0=0.66+2.1x x=-0.314
Stagnation point: 3)
0=-27-21y y=-1.29

So, yes there is a stagnation point; its location is x =-0.314, y = -1.29 (to 3 digits).

Discussion If the flow were three-dimensional, we would have to set w = 0 as well to determine the location of the
stagnation point. In some flow fields there is more than one stagnation point.

Lagrangian and Eulerian Descriptions

4-7C

Solution We are to define the Eulerian description of fluid motion, and explain how it differs from the Lagrangian
description.

Analysis In the Eulerian description of fluid motion, we are concerned with field variables, such as velocity,

pressure, temperature, etc., as functions of space and time within a flow domain or control volume. In contrast to the
Lagrangian method, fluid flows into and out of the Eulerian flow domain, and we do not keep track of the motion of
particular identifiable fluid particles.

Discussion ~ The Eulerian method of studying fluid motion is not as “natural” as the Lagrangian method since the
fundamental conservation laws apply to moving particles, not to fields.

4-8C
Solution We are to compare the Lagrangian method to the study of systems and control volumes and determine to
which of these it is most similar.

Analysis The Lagrangian method is more similar to system analysis (i.e., closed system analysis). In both cases,
we follow a mass of fixed identity as it moves in a flow. In a control volume analysis, on the other hand, mass moves into
and out of the control volume, and we don’t follow any particular chunk of fluid. Instead we analyze whatever fluid
happens to be inside the control volume at the time.

Discussion In fact, the Lagrangian analysis is the same as a system analysis in the limit as the size of the system shrinks
to a point.

4-4
PROPRIETARY MATERIAL. © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or
posted on a website, in whole or part.




Chapter 4 Fluid Kinematics

4-9C
Solution We are to define the Lagrangian description of fluid motion.
Analysis In the Lagrangian description of fluid motion, individual fluid particles (fluid elements composed of a

fixed, identifiable mass of fluid) are followed.

Discussion  The Lagrangian method of studying fluid motion is similar to that of studying billiard balls and other solid
objects in physics.

4-10C
Solution We are to determine whether a measurement is Lagrangian or Eulerian.
Analysis Since the probe is fixed in space and the fluid flows around it, we are not following individual fluid

particles as they move. Instead, we are measuring a field variable at a particular location in space. Thus this is an Eulerian
measurement.

Discussion If a neutrally buoyant probe were to move with the flow, its results would be Lagrangian measurements —
following fluid particles.

4-11C
Solution We are to determine whether a measurement is Lagrangian or Eulerian.
Analysis Since the probe moves with the flow and is neutrally buoyant, we are following individual fluid particles as

they move through the pump. Thus this is a Lagrangian measurement.

Discussion If the probe were instead fixed at one location in the flow, its results would be Eulerian measurements.

4-12C

Solution We are to define a steady flow field in the Eulerian description, and discuss particle acceleration in such a
flow.

Analysis A flow field is defined as steady in the Eulerian frame of reference when properties at any point in the

flow field do not change with respect to time. In such a flow field, individual fluid particles may still experience non-zero
acceleration — the answer to the question is yes.

Discussion  Although velocity is not a function of time in a steady flow field, its total derivative with respect to time
(é = d\7/dt) is not necessarily zero since the acceleration is composed of a local (unsteady) part which is zero and an

advective part which is not necessarily zero.
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Chapter 4 Fluid Kinematics

4-13C
Solution We are to list three alternate names for material derivative.
Analysis The material derivative is also called total derivative, particle derivative, Eulerian derivative,

Lagrangian derivative, and substantial derivative. “Total” is appropriate because the material derivative includes both
local (unsteady) and convective parts. “Particle” is appropriate because it stresses that the material derivative is one
following fluid particles as they move about in the flow field. “Eulerian” is appropriate since the material derivative is used
to transform from Lagrangian to Eulerian reference frames. “Lagrangian” is appropriate since the material derivative is
used to transform from Lagrangian to Eulerian reference frames. Finally, “substantial” is not as clear of a term for the
material derivative, and we are not sure of its origin.

Discussion  All of these names emphasize that we are following a fluid particle as it moves through a flow field.

4-14C
Solution We are to determine whether a measurement is Lagrangian or Eulerian.
Analysis Since the weather balloon moves with the air and is neutrally buoyant, we are following individual “fluid

particles” as they move through the atmosphere. Thus this is a Lagrangian measurement. Note that in this case the “fluid
particle” is huge, and can follow gross features of the flow — the balloon obviously cannot follow small scale turbulent
fluctuations in the atmosphere.

Discussion ~ When weather monitoring instruments are mounted on the roof of a building, the results are Eulerian
measurements.

4-15C
Solution We are to determine whether a measurement is Lagrangian or Eulerian.
Analysis Relative to the airplane, the probe is fixed and the air flows around it. We are not following individual fluid

particles as they move. Instead, we are measuring a field variable at a particular location in space relative to the moving
airplane. Thus this is an Eulerian measurement.

Discussion  The airplane is moving, but it is not moving with the flow.

4-16C
Solution We are to compare the Eulerian method to the study of systems and control volumes and determine to
which of these it is most similar.

Analysis The Eulerian method is more similar to control volume analysis. In both cases, mass moves into and out
of the flow domain or control volume, and we don’t follow any particular chunk of fluid. Instead we analyze whatever fluid
happens to be inside the control volume at the time.

Discussion In fact, the Eulerian analysis is the same as a control volume analysis except that Eulerian analysis is
usually applied to infinitesimal volumes and differential equations of fluid flow, whereas control volume analysis usually
refers to finite volumes and integral equations of fluid flow.
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Chapter 4 Fluid Kinematics
4-17
Solution We are to calculate the material acceleration for a given velocity field.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is
V=(uv)=(U,+bx)i —=byj (1)
The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,
ou ou ou ou
=—F+U—+V—+W—
ot OX oy oz
o oV oV ov

a, :E+u&+va—y+W5=0+(U0 +bx)0+(-by)(-b)+0

a =0+(U, +bx)b+(-by)0+0

@

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-
dimensional. Eq. 2 simplifies to

Material acceleration components:

a =b(U,+bx)  a,=bly| (3

In terms of a vector,

Material acceleration vector: ‘é =h(U, +bx)i +b*yj ‘ 4)

Discussion For positive x and b, fluid particles accelerate in the positive x direction. Even though this flow is steady,
there is still a non-zero acceleration field.

4-18
Solution For a given pressure and velocity field, we are to calculate the rate of change of pressure following a fluid
particle.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The pressure field is
inld- _p_P 2(y2 2
Pressure field: P=R -3 [Zuobx+b (x*+y )] 1)

By definition, the material derivative, when applied to pressure, produces the rate of change of pressure following a fluid
particle. Using Eq. 1 and the velocity components from the previous problem,

DP 0 oP  OP o)
—= +U—+V—+ W
Dt OX oy oz

Steady Twmnal (2)
= (U, +bx)(=pUgb— pb*x )+ (~by)(-pb’y)

where the unsteady term is zero since this is a steady flow, and the term with w is zero since the flow is two-dimensional.
Eq. 2 simplifies to the following rate of change of pressure following a fluid particle:

DbP

2 Lo menly )] @

Discussion ~ The material derivative can be applied to any flow property, scalar or vector. Here we apply it to the
pressure, a scalar quantity.
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Chapter 4 Fluid Kinematics
4-19
Solution For a given velocity field we are to calculate the acceleration.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity components are
Velocity components: u=1.85+2.33x+0.656y v=0.754-2.18x — 2.33y 1)

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,

ou ou ou ou
=—+U—+V—+W—
ot OX oy oz
ov ov ov ov

R raa v 0-+(1.85+2.33x +0.656Y)(~2.18) + (0.754 — 2.18x — 2.33y)(~2.33) + 0

a =0+ (1.85+2.33x +0.656Y)(2.33) +(0.754 — 2.18x — 2.33y)(0.656) + 0

O]

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-
dimensional. Eq. 2 simplifies to

Acceleration components: a, =4.8051+3.9988x a, =-5.7898 +3.9988y (3)

At the point (x,y) = (-1,2), the acceleration components of Eq. 3 are
Acceleration components at (-1,2): a, =0.80628 = 0.806 a, =2.2078=2.21

Discussion  The final answers are given to three significant digits. No units are given in either the problem statement or
the answers. We assume that the coefficients have appropriate units.
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Chapter 4 Fluid Kinematics
4-20
Solution For a given velocity field we are to calculate the acceleration.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.
Analysis The velocity components are

Velocity components: u=0.205+0.97x + 0.851y v =-0.509 + 0.953x — 0.97y Q)

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,

a, = u +U u + V&_u + Wa—u =0+ (0.205+ 0.97x + 0.851y)(0.97) + (—0.509 + 0.953x — 0.97y)(0.851) + O
X oz

ot OX oy
ov o oV
y = tUu_—+v—
ot OX oy

()

a + w;ﬂ =0+ (0.205+0.97x + 0.851y)(0.953) + (~0.509 + 0.953x — 0.97y)(~0.97) + 0
Z

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-
dimensional. Eq. 2 simplifies to

Acceleration components:

a, =-0.234309 +1.751903x

3
a, =0.689095+1.751903y @)

At the point (x,y) = (2, 1.5), the acceleration components of Eq. 3 are
Acceleration components at (2, 1.5):

a, =3.269497 = 3.27
a, =3.31699=3.32

Discussion  The final answers are given to three significant digits. No units are given in either the problem statement or
the answers. We assume that the coefficients have appropriate units.
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Chapter 4 Fluid Kinematics

4-21
Solution For a given velocity field we are to calculate the streamline that will pass through a given point.
Assumptions 1 The flow is steady. 2 The flow is three-dimensional in the x-y-z plane.
Analysis
dx _dy dz
u v w
d_dy _dz
3x -2y 2z
For the first two pairs we have
ox__dy or —Inx_——In y+Inc
3x -2y
1 -1
x3y2 =c, or,

For the point given x=1,y=1,z=0

1 4
1812 =¢;=>c =1 or x =y, y=x¥
on the other hand,

dx dx
_:—or—lnz——lnx Inc

2z 3x 2 3

Jz/x¥3 =c or%_c —z=cx??
A(1,1,0),

0=c1%% c=00rz=0
Therefore the streamline is given by,

y=x%%2=0

4-22
Solution We are to write an equation for centerline speed through a diffuser, given that the flow speed decreases
parabolically.

Assumptions 1 The flow is steady. 2 The flow is axisymmetric.
Analysis A general equation for a parabola in x is
General parabolic equation: u= a+b(x—c)2 Q)

We have two boundary conditions, namely at X = 0, U = Uengance aNd at X = L, U = Ugyit. By inspection, Eq. 1 is satisfied by
setting ¢ = 0, & = Ugngrance aNd b = (Ueyit - Uenrance)/L2. Thus, Eq. 1 becomes

(uexit ~ Uentrance ) X2 (2)

Parabolic speed: U = Ugpirance T 2

Discussion You can verify Eq. 2 by plugginginx=0and x =L
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Chapter 4 Fluid Kinematics
4-23
Solution We are to generate an expression for the fluid acceleration for a given velocity, and then calculate its value
at two x locations.

Assumptions 1 The flow is steady. 2 The flow is axisymmetric.

Analysis In the previous problem, we found that along the centerline,
S dal terli £ diff . _ (uexit _uentrance) 2 (1)
peed along centerline of diffuser: U = Ugprance TX

To find the acceleration in the x-direction, we use the material acceleration,

Acceleration along centerline of diffuser: a, = g +u6—u+ % 9 + wa 2)
OX oy oz

The first term in Eq. 2 is zero because the flow is steady. The last two terms are zero because the flow is axisymmetric,
which means that along the centerline there can be no v or w velocity component. We substitute Eq. 1 for u to obtain

- . . ou
Acceleration along centerline of diffuser:a, =u—={ U,z +
OX

(uexit ~ Uentrance ) X2 ] (2) (uexit ~ Uenirance )

L? L’ X
or
(U it ~ Uent ) (U it ~ Uent )2
ax — 2uemrance exi Lzen rance X+ 2 exi L:n rance X3 (3)
At the given locations, we substitute the given values. At x =0,
Acceleration along centerline of diffuser at x = 0: a,(x=0)=0 4)
Atx=1.0m,
Acceleration along centerline of diffuser at x = 1.0 m:
—7.5m/s ~7.5mis)’
a,(x=1.0m)=2(24.3 m/s)g(l.o m)+2( 2 ( m)3 (5)
(1.56 m) (1.56 m)

=-130.782 m/s* =-131m/s’

Discussion a, is negative implying that fluid particles are decelerated along the centerline of the diffuser, even though
the flow is steady. Because of the parabolic nature of the velocity field, the acceleration is zero at the entrance of the
diffuser, but its magnitude increases rapidly downstream.
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Chapter 4 Fluid Kinematics
4-24
Solution For a given velocity field we are to calculate the acceleration.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity components are
Velocity components: u=0.523-1.88x+3.94y v=-244+1.26x+1.88y (1)

The acceleration field components are obtained from its definition (the material acceleration) in Cartesian coordinates,

ou ou ou ou
L =—+tU—+V—+W—
ot OX oy oz
ov ov ov ov

R Raraa v 0+(0.523-1.88x+3.94y)(1.26)+(-2.44+1.26x+1.88y)(1.88)+0

a =0+(0.523-1.88x +3.94y)(~1.88) + (-2.44 +1.26x +1.88y)(3.94) + 0

O]

where the unsteady terms are zero since this is a steady flow, and the terms with w are zero since the flow is two-
dimensional. Eq. 2 simplifies to

Acceleration components: a, =—10.59684 + 8.4988x a, =-3.92822 +8.4988y (3)

At the point (x,y) = (-1.55, 2.07), the acceleration components of Eq. 3 are
Acceleration components at (-1.55, 2.07): a, =—-23.76998 = -23.8 a, =13.6643=13.7

Discussion  The final answers are given to three significant digits. No units are given in either the problem statement or
the answers. We assume that the coefficients have appropriate units.

4-25
Solution We are to generate an expression for the fluid acceleration for a given velocity.

Assumptions 1 The flow is steady. 2 The flow is axisymmetric. 3 The water is incompressible.
Analysis In Problem 4-2 we found that along the centerline,

. Uy, —U
Speed along centerline of nozzle: u=u +Mx2 (1)

~ “entrance L2

To find the acceleration in the x-direction, we use the material acceleration,

. . 0 ou 0 0
Acceleration along centerline of nozzle: a, = +U—+V 2 + W 2)
y

The first term in Eq. 2 is zero because the flow is steady. The last two terms are zero because the flow is axisymmetric,
which means that along the centerline there can be no v or w velocity component. We substitute Eq. 1 for u to obtain

. . ou u,.—u u,.—u
Acceleration along centerline of nozzle: A =U—=| Uy e Jr(ex"—z‘*””a’“)x2 (Z)W‘—f“me)x (3)
OX L L
or
a =2u (uexil - uentrance) X4 2 (uexit - uentrance )2 X3 (4)
X entrance Lz + L4

Discussion Fluid particles are accelerated along the centerline of the nozzle, even though the flow is steady.
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Chapter 4 Fluid Kinematics

Flow Patterns and Flow Visualization

4-26C
Solution We are to define pathline and discuss what pathlines indicate.
Analysis A pathline is the actual path traveled by an individual fluid particle over some time period. It indicates

the exact route along which a fluid particle travels from its starting point to its ending point. Unlike streamlines, pathlines
are not instantaneous, but involve a finite time period.

Discussion If a flow field is steady, streamlines, pathlines, and streaklines are identical.

4-27C
Solution We are to determine what kind of flow visualization is seen in a photograph.
Analysis Since the picture is a snapshot of dye streaks in water, each streak shows the time history of dye that was

introduced earlier from a port in the body. Thus these are streaklines. Since the flow appears to be steady, these streaklines
are the same as pathlines and streamlines.

Discussion It is assumed that the dye follows the flow of the water. If the dye is of nearly the same density as the water,
this is a reasonable assumption.

4-28C
Solution We are to define streamline and discuss what streamlines indicate.
Analysis A streamline is a curve that is everywhere tangent to the instantaneous local velocity vector. It

indicates the instantaneous direction of fluid motion throughout the flow field.

Discussion If a flow field is steady, streamlines, pathlines, and streaklines are identical.

4-29C
Solution We are to define streakline and discuss the difference between streaklines and streamlines.
Analysis A streakline is the locus of fluid particles that have passed sequentially through a prescribed point in

the flow. Streaklines are very different than streamlines. Streamlines are instantaneous curves, everywhere tangent to the
local velocity, while streaklines are produced over a finite time period. In an unsteady flow, streaklines distort and then
retain features of that distorted shape even as the flow field changes, whereas streamlines change instantaneously with the
flow field.

Discussion If a flow field is steady, streamlines and streaklines are identical.

4-30C
Solution We are to determine what kind of flow visualization is seen in a photograph.
Analysis Since the picture is a snapshot of dye streaks in water, each streak shows the time history of dye that was

introduced earlier from a port in the body. Thus these are streaklines. Since the flow appears to be unsteady, these
streaklines are not the same as pathlines or streamlines.

Discussion It is assumed that the dye follows the flow of the water. If the dye is of nearly the same density as the water,
this is a reasonable assumption.
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4-31C
Solution We are to determine what kind of flow visualization is seen in a photograph.
Analysis Since the picture is a snapshot of smoke streaks in air, each streak shows the time history of smoke that was

introduced earlier from the smoke wire. Thus these are streaklines. Since the flow appears to be unsteady, these streaklines
are not the same as pathlines or streamlines.

Discussion It is assumed that the smoke follows the flow of the air. If the smoke is neutrally buoyant, this is a
reasonable assumption. In actuality, the smoke rises a bit since it is hot; however, the air speeds are high enough that this
effect is negligible.

4-32C
Solution We are to determine what kind of flow visualization is seen in a photograph.
Analysis Since the picture is a time exposure of air bubbles in water, each white streak shows the path of an

individual air bubble. Thus these are pathlines. Since the outer flow (top and bottom portions of the photograph) appears to
be steady, these pathlines are the same as streaklines and streamlines.

Discussion It is assumed that the air bubbles follow the flow of the water. If the bubbles are small enough, this is a
reasonable assumption.

4-33C
Solution We are to define timeline and discuss how timelines can be produced in a water channel. We are also to
describe an application where timelines are more useful than streaklines.

Analysis A timeline is a set of adjacent fluid particles that were marked at the same instant of time. Timelines
can be produced in a water flow by using a hydrogen bubble wire. There are also techniques in which a chemical reaction is
initiated by applying current to the wire, changing the fluid color along the wire. Timelines are more useful than streaklines
when the uniformity of a flow is to be visualized. Another application is to visualize the velocity profile of a boundary layer
or a channel flow.

Discussion  Timelines differ from streamlines, streaklines, and pathlines even if the flow is steady.

4-34C
Solution For each case we are to decide whether a vector plot or contour plot is most appropriate, and we are to
explain our choice.

Analysis In general, contour plots are most appropriate for scalars, while vector plots are necessary when vectors are
to be visualized.
(a) A contour plot of speed is most appropriate since fluid speed is a scalar.
(b) A vector plot of velocity vectors would clearly show where the flow separates. Alternatively, a vorticity contour
plot of vorticity normal to the plane would also show the separation region clearly.
(c) A contour plot of temperature is most appropriate since temperature is a scalar.
(d) A contour plot of this component of vorticity is most appropriate since one component of a vector is a scalar.

Discussion  There are other options for case (b) — temperature contours can also sometimes be used to identify a
separation zone.
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Chapter 4 Fluid Kinematics

4-35
Solution For a given velocity field we are to generate an equation for the streamlines.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The steady, two-dimensional velocity field of Problem 4-17 is
Velocity field: V=(uv)=(U,+bx)i —byj (1)
For two-dimensional flow in the x-y plane, streamlines are given by
Streamlines in the x-y plane: ﬂ} _Y 2
dX along a streamline u

We substitute the u and v components of Eq. 1 into Eq. 2 and rearrange to get

dy _ by
dx U, +bx

We solve the above differential equation by separation of variables:

dy  dx
_-[b_y_-[Uo+bx

Integration yields
1 1 1
—=In(by)==In(U, +bx)+=InC 3
SIn(by) =< In(Ug +bx)+-InC, - (3)

where we have set the constant of integration as the natural logarithm of some constant C;, with a constant in front in order
to simplify the algebra (notice that the factor of 1/b can be removed from each term in Eq. 3). When we recall that In(ab) =
Ina + Inb, and that —Ina = In(1/a), Eq. 3 simplifies to

. . C
Equation for streamlines: y= m (4)
0

The new constant C is related to Cy, and is introduced for simplicity.

Discussion Each value of constant C yields a unique streamline of the flow.
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Chapter 4 Fluid Kinematics

4-36
Solution For a given velocity field we are to calculate the pathline of a particle at a given location.
Analysis
u=4x
v=5y+3  are the velocity components.
w= 3t?
From the definition,
u= % =4x
dt
dy
v=—=5y+3
a Y
w= B2 _ g2
dt
For t=1 sec, the location of the particle is (X,y,z)=(1,2,4) that is, x=1m, y=2m, z=4m. Integrating given functions,
K _adt — I =4t > Inxini=4(-1)
X
Inx=4(t-1)
dy 1 y oot
=dt > =In(5y+3)|. =t
5y +3 5 ( y )|2 |1
In(5y+3) - In(13)= 5(t-1)
In(5y+3)=In(13) + 5(t-1)
t
jdz - '[3t2dt - = t3‘1 —z-4=t31
=13 +3
We have 3 equations. If we eliminate the time (t) we get path line function in terms of x, y, z only.
INX= 4t =4 e (1)
| (5“3}:&—5 ....................... @)
2= 43, ©)

Adding (1) and (2) would yield,
Inx + In(5y+3j = 0t-9,
13

Solve for t

In 5xy + 3x + 0=t
13

or
t= 1+ In[ 203X}
13

Substituting this t into Eq. 3 leads to

3
z=f(x,y)= {1+In[5xy1; SXH +3
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Chapter 4 Fluid Kinematics

4-37
Solution For a given velocity field we are to generate an equation for the streamlines and sketch several streamlines
in the first quadrant.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.
Analysis The velocity field is given by
V =(u,v)=(4.35+0.656X)i +(-1.22-0.656y) ] 1)
For two-dimensional flow in the x-y plane, streamlines are given by
dy
We substitute the u and v components of Eq. 1 into Eq. 2 and rearrange to get

dy ~1.22-0.656y
dx  4.35+0.656x

Streamlines in the x-y plane: =Y 2
u

We solve the above differential equation by separation of variables:

dy 3 dx N J- dy _J- ax
-1.22-0.656y 4.35+0.656x -1.22-0.656y 4,35+ 0.656x
Integration yields
1 1
- In(-1.22-0.656y) = In(4.35+0.656x)————InC 3
0.656 ( ) 0.656 ( ) 0.656 ' @)

where we have set the constant of integration as the natural logarithm of
some constant C;, with a constant in front in order to simplify the

algebra. When we recall that In(ab) = Ina + Inb, and that —Ina = In(1/a),
Eq. 3 simplifies to 6 ]
C 5 >
Equation for streamlines: |y = —1.85976
0.656(4.35+ O.656x) 4 |
y ny
The new constant C is related to C,, and is introduced for simplicity. C 3 -~
can be set to various values in order to plot the streamlines. Several .
streamlines in the upper right quadrant of the given flow field are shown 2
in Fig. 1.
The direction of the flow is found by calculating u and v at some 1
point in the flow field. We choose x = 3, y = 3. At this point u is positive
and v is negative. The direction of the velocity at this point is obviously 0 )
to the lower right. This sets the direction of all the streamlines. The o 1 2z 3 4 5

arrows in Fig. 1 indicate the direction of flow.

FIGURE 1

Streamlines (solid black curves) for the
given velocity field.

Discussion  The flow appears to be a counterclockwise turning flow
in the upper right quadrant.
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Chapter 4 Fluid Kinematics
4-38
Solution For a given velocity field we are to generate a velocity Scale: 10 m/s
vector plot in the first quadrant. : >

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in 61 N\
the x-y plane. 59- \
Analysis The velocity field is given by y 44 \ '
V =(u,v)=(4.35+0.656x)i +(-1.22-0.656y)] (1) 3 §\ S
At any point (x,y) in the flow field, the velocity components u and v are 27 \\‘
obtained from Eq. 1, 11- \
Velocity components: u = 4.35+ 0.656x v=-1.22-0.656y 2) 0 Frrrrber . ~
) ) ) ) 0 1 2 3 4 5
To plot velocity vectors, we simply pick an (x,y) point, calculate u and v X

from Eq. 2, and plot an arrow with its tail at (x,y), and its tip at

(x+Su, y+Sv) where S is some scale factor for the vector plot. For the F|GURE 1 ) o
vector plot shown in Fig. 1, we chose S = 0.13, and plot velocity ~ Velocity vectors for the given velocity field.
vectors at several locations in the first quadrant. The scale is shown by the top arrow.

Discussion  The flow agrees with the previous problem — a counterclockwise turning flow in the upper right quadrant.

4-39
Solution For a given velocity field we are to generate an acceleration vector plot in the first quadrant.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is given by
V =(u,v) =(4.35+0.656x)i +(~1.22—0.656Y) | 1)
At any point (x,y) in the flow field, the velocity components u and v are 10 m/s?
obtained from Eq. 1, Scale: m/s
Velocity components: u=4.35+0.656x v=-122-0.656y (2)
777
The acceleration field is obtained from its definition (the material ®3 7
acceleration), 5
. 4 7z 7
Acceleration components: y *3 L
ou 6u _ou  du s T
a =—+U—+V—+w—=0+(4.35+0.656x)(0.656)+0+0 3
X ot ox 8y oz ( )( ) (3) 2 _LI,I -
Ly e t |
N N oV ov 13
a =—+U—+v—+w—=0+0+(-1.22-0.656y)(—0.656)+0 ]
G ox oy 0z ( y)( ) olm-v-l;r. BRI
0 1 2 3 4 5
where the unsteady terms are zero since this is a steady flow, and the terms X
with w are zero since the flow is two-dimensional. Eq. 3 simplifies to
] FIGURE 1
Acceleration components: Acceleration vectors for the velocity field.

a =28536+043034x  a =080032+0.43034y ) Tnescale is shown by the top arrow.

To plot the acceleration vectors, we simply pick an (x,y) point, calculate a, and a, from Eq. 4, and plot an arrow with its
tail at (x,y), and its tip at (x+Sa,, y+Sa,) where S is some scale factor for the vector plot. For the vector plot shown in
Fig. 1, we chose S = 0.20, and plot acceleration vectors at several locations in the first quadrant.

Discussion Since the flow is a counterclockwise turning flow in the upper right quadrant, the acceleration vectors point
to the upper right (centripetal acceleration).
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Chapter 4 Fluid Kinematics
4-40
Solution For the given velocity field, the location(s) of stagnation point(s) are to be determined. Several velocity
vectors are to be sketched and the velocity field is to be described.

Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional, implying no z-component of
velocity and no variation of u or v with z.

Analysis (a) The velocity field is Scale: L0M/s
V =(u,v)=(1+25x+y)i +(-0.5-3x-2.5y) ] (1) 4]
Since V is a vector, all its components must equal zero in order for V 3 ] \
itself to be zero. Setting each component of Eq. 1 to zero, . AN\ \
. . u= 1+25x+ y=0 2 3 X\
Simultaneous equations: y
v=-05-3x-25y=0 .
13 X
We can easily solve this set of two equations and two unknowns ] \ \
simultaneously. Yes, there is one stagnation point, and it is located at 0 ] \
Stagnation point: X =-0.615m y=0.538m g N

0 1 2 3 4 5
(b) The x and y components of velocity are calculated from Eq. 1 for

several (x,y) locations in the specified range. For example, at the point (x =

2m,y=3m), u=9.00m/s and v = -14.0 m/s. The magnitude of velocity

(the speed) at that point is 16.64 m/s. At this and at an array of other FIGURE 1
locations, the velocity vector is constructed from its two components, the Velocity vectors in the upper right quadrant
results of which are shown in Fig. 1. The flow can be described as a turning for the given velocity field.

slightly counterclockwise, accelerating flow from the upper left to the

lower right. The stagnation point of Part (a) does not lie in the upper right

quadrant, and therefore does not appear on the sketch.

Discussion  The stagnation point location is given to three significant digits. It will be verified in Chap. 9 that this flow
field is physically valid because it satisfies the differential equation for conservation of mass.
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Chapter 4 Fluid Kinematics
4-41
Solution For the given velocity field, the material acceleration is to be calculated at a particular point and plotted at
several locations in the upper right quadrant.

Assumptions 1 The flow is steady and incompressible. 2 The flow is two-dimensional, implying no z-component of
velocity and no variation of u or v with z.

Analysis (a) The velocity field is

V =(u,v)=(1+25x+y)i +(-05-3x—2.5y) ] (1)

Using the velocity field of Eq. 1 and the equation for material acceleration in Cartesian coordinates, we write expressions
for the two non-zero components of the acceleration vector:

10 m/s?
a, :8_u+u8_u +V8_u +Wa_“ Scale: "—
ot ox oy oz £ ] ‘ ]
= 0 +(1+25x+ y)(2.5)+(—0.5—3x—2.5y)(1)+ 0 /
4 7
and 3 é' /
o oV ov ov ]
a,=—+U— +V— +W— E | A 7
Yot ox oy oz y 21
= 0 +(1+25x+y)(-3)+(-0.5-3x—-2.5y)(-2.5)+ 0 17 -
At (x=2m,y=3m), a,=8.50m/s’and a, = 8.00 m/s*. O e S
(b) The above equations are applied to an array of x and y values in the 1 S SN AN (N N
upper right quadrant, and the acceleration vectors are plotted in Fig. 1. o 1 2 3 4 5
Discussion ~ The acceleration vectors plotted in Fig. 1 point to the upper X
right, increasing in magnitude away from the origin. This agrees FIGURE 1

qualitatively with the velocity vectors of Fig. 1 of the previous problem;
namely, fluid particles are accelerated to the right and are turned in the
counterclockwise direction due to centripetal acceleration towards the
upper right. Note that the acceleration field is non-zero, even though the
flow is steady.

Acceleration vectors in the upper right
quadrant for the given velocity field.
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Chapter 4 Fluid Kinematics
4-42
Solution For a given velocity field we are to plot a velocity magnitude contour plot at five given values of speed.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis Since u; = 0, and since w is positive, the speed is equal to
the magnitude of the -component of velocity, )
Speed: V:/ +u,” =|u,| = er
p £ o | 9| @ 1
0 1 4
Thus, contour lines of constant speed are simply circles of constant radius ]
given by Y o1
v (m) 1
Contour line of constant speed: r=— ]
w 14
For example, at V = 2.0 m/s, the corresponding contour line is a circle ]
of radius 1.3333... m, o
. 2.0 m/s -2 -1 0 1 2
Contour line at constant speed V=2.0 m/s: r = =1.33333..m
1.51s x (m)
FIGURE 1

We plot a circle at this radius and repeat this simple calculation for the four Contour plot of velocity magnitude for solid
other values of V. We plot the contours in Fig. 1. The speed increases body rotation. Values of speed are labeled in
linearly from the center of rotation (the origin). units of mys.

Discussion  The contours are equidistant apart because of the linear nature of the velocity field.

4-43
Solution For a given velocity field we are to plot a velocity magnitude contour plot at five given values of speed.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis Since u; = 0, and since K is positive, the speed is equal to
the magnitude of the &-component of velocity, 2
K ] |
. 2
Speed: V= }y{{+u9 =|u§|=T 2] ‘1.5
N ] w
. . . . 13/ 20~
Thus, contour lines of constant speed are simply circles of constant radius y 3
given by ]
(m)°
Contour line of constant speed: r= K 14\ 257N 1.0
V ] : :
For example, at V = 2.0 m/s, the corresponding contour line is a circle 2 3 i 05
of radius 0.75 m, 3 e T
. 1.5 m?/s 3 2 -1 0 1 2 3
Contour line at constant speed V=2.0m/s: r=———=0.75m x (M)
2.0 m/s
FIGURE 1

We plot a circle at this radius and repeat this simple calculation for the four Contour plot of velocity magnitude for a line
other values of V. We plot the contours in Fig. 1. The speed near the center vortex. Values of speed are labeled in units
is faster than that further away from the center. of m/s.

Discussion ~ The contours are not equidistant apart because of the nonlinear nature of the velocity field.
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Chapter 4 Fluid Kinematics
4-44
Solution For a given velocity field we are to plot a velocity magnitude contour plot at five given values of speed.
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.
Analysis The velocity field is

Line source: u =—o u,=0 Q)

Since uy= 0, and since m is positive, the speed is equal to the magnitude of the r-component of velocity,

Speed: V= |u? +/uji:|ur| =% @) .
0

Thus, contour lines of constant speed are simply circles of constant radius 2
given by . ]
2) o
L 0
Contour line of constant speed: r= m \2r) 3 (m) ]
27V \Y 1]
For example, at V = 2.0 m/s, the corresponding contour line is a circle 2_
of radius 0.75 m, e
2 '3-lllllllllllllllllllllllllllll
Contour line at speed V = 2.0 m/s: r :M =0.75m 4 3 2 1 0 1 2 3
2.0 m/s X (m)

We plot a circle at this radius and repeat this simple calculation for the four FIGURE 1
other values of V. We plot the contours in Fig. 1. The flow slows down as it Contour plot of velocity magnitude for a line
travels further from the origin. source. Values of speed are labeled in units

of m/s.
Discussion ~ The contours are not equidistant apart because of the

nonlinear nature of the velocity field.

4-45
Solution We are to generate an expression for the tangential velocity of a liquid confined between two concentric
cylinders, and we are to estimate the torque exerted by the fluid on the cylinders.

Assumptions 1 The flow is incompressible and two-dimensional, and thus the end effects (front and back of the cylinder)
are negligible. 2 The flow has been running for a long time so that it is steady.

Analysis Since both cylinders are rotating at the same rate, after a long enough time, the fluid will also rotate at the
same rate. The entire system will behave as solid body rotation. So, the tangential velocity will be uy= rw, where v = @, =
w, = constant. Thus,

u, =aor
and u, is not a function of any of the other variables.

There is no shear stress on the walls since everything is rotating like a solid body. Thus, we expect that the torque on either
cylinder wall is zero.

Discussion  The equation for u, applies to both the solid cylinders and the fluid, since everything in the system is
rotating as solid body rotation.
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Chapter 4 Fluid Kinematics
4-46
Solution We are to discuss the type of flow that is approximated by two concentric cylinders with the inner cylinder
spinning very fast while its radius goes towards zero, while the outer cylinder is large (far away) and stationary.

Assumptions 1 The flow is incompressible and two-dimensional, and thus the end effects (front and back of the cylinder)
are negligible. 2 The flow has been running for a long time so that it is steady.

Analysis Since the inner cylinder is rotating but the outer cylinder is not, after a long enough time, the fluid
behaves like a line vortex, but with a missing core region. [This is good, actually, since the tangential velocity of a line

S constant . . .
vortex at the origin is infinite!] Thus, we expect u, =————. Note that u, is not a function of any of the fluid
r

properties. We calculate the constant by specifying u, at the inner cylinder surface, where uy= wR; and r = R;. The constant
becomes @R, and therefore

_a)iRiz

r

Uy

There is no shear stress on the walls since everything is rotating like a solid body. Thus, we expect that the torque on either
cylinder wall is zero.

Discussion  The equation for u, is valid in the fluid only, and we expect some error in our approximate analysis as the
radius approaches the outer cylinder radius, which is not infinitely far away in a real-life situation.

4-4TE
Solution For a given velocity field we are to plot several
streamlines for a given range of x and y values.
2
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in ]
the x-y plane. \
Analysis From the solution to the previous problem, an equation 1 N
for the streamlines is ] \§
L C y 4 —
Streamlines in the x-y plane: y=—— (1) (ft) 0
(U, +bx) ] ——
Constant C is set to various values in order to plot the streamlines. /

Several streamlines in the given range of x and y are plotted in Fig. 1. 1 i
The direction of the flow is found by calculating u and v at

some point in the flow field. We choose x =1 ft, y = 1 ft. At this point u

is positive and v is negative. The direction of the velocity at this point is

obviously to the lower right. This sets the direction of all the -2

streamlines. The arrows in Fig. 1 indicate the direction of flow. 0

=
N

3 4 5

Discussion  The flow is type of converging channel flow. x (f)

FIGURE 1
Streamlines (solid blue curves) for the given
velocity field; x and y are in units of ft.
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Chapter 4 Fluid Kinematics

Motion and Deformation of Fluid Elements; Vorticity and Rotationality

4-48C
Solution We are to explain the relationship between vorticity and rotationality.
Analysis Vorticity is a measure of the rotationality of a fluid particle. If a particle rotates, its vorticity is non-zero.

Mathematically, the vorticity vector is twice the angular velocity vector.

Discussion If the vorticity is zero, the flow is called irrotational.

4-49C
Solution We are to name and describe the four fundamental types of motion or deformation of fluid particles.

Analysis
1. Translation — a fluid particle moves from one location to another.
2. Rotation — a fluid particle rotates about an axis drawn through the particle.
3. Linear strain or extensional strain — a fluid particle stretches in a direction such that a line segment in that
direction is elongated at some later time.
4. Shear strain — a fluid particle distorts in such a way that two lines through the fluid particle that are initially
perpendicular are not perpendicular at some later time.

Discussion In a complex fluid flow, all four of these occur simultaneously.

4-50
Solution For a given velocity field, we are to determine whether the flow is rotational or irrotational.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is
V=(uv)=(U,+bx)i —=byj (1)
By definition, the flow is rotational if the vorticity is non-zero. So, we calculate the vorticity. In a 2-D flow in the x-y plane,
the only non-zero component of vorticity is in the z direction, i.e. &,
Vorticity component in the z direction: g, = N_u =0-0=0 (1)

X oy

Since the vorticity is zero, this flow is irrotational.

Discussion ~ We shall see in Chap. 10 that the fluid very close to the walls is rotational due to important viscous effects
near the wall (a boundary layer). However, in the majority of the flow field, the irrotational approximation is reasonable.
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Chapter 4 Fluid Kinematics
4-51
Solution For a given velocity field we are to generate an equation for the x location of a fluid particle along the x-axis
as a function of time.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is
Velocity field: V=(uv)=(U,+bx)i =byj (1)

We start with the definition of u following a fluid particle,

. - - . dxparlicle
x-component of velocity of a fluid particle: ———=U=Uy +bX e 2

dt

where we have substituted u from Eq. 1. We rearrange and separate variables, dropping the “particle” subscript for
convenience,

dx
=dt
U, +bx ®)

Integration yields
%In(U0+bx):t—%lnCl 4)

where we have set the constant of integration as the natural logarithm of some constant Cy, with a constant in front in order
to simplify the algebra. When we recall that In(ab) = Ina + Inb, Eq. 4 simplifies to
In(C, (U, +bx)) =t
from which
U, +bx =C,e” 5)

where C, is a new constant defined for convenience. We now plug in the known initial condition that at t = 0, X = X to find
constant C, in Eq. 5. After some algebra,

. . . . 1
Fluid particle’s x location at time t: X=X = E[(UO +bx, )e” —UOJ (6)

Discussion ~ We verify thatatt = 0, x = X, in Eq. 6.

4-25
PROPRIETARY MATERIAL. © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or
posted on a website, in whole or part.




Chapter 4 Fluid Kinematics
4-52
Solution For a given velocity field we are to generate an equation for the change in length of a line segment moving
with the flow along the x-axis.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis Using the results of the previous problem,

Location of particle A at time t: Xy = %[(UO +bxg )e™ —UOJ (1)
and

Location of particle B at time t: Xy = %[(UO +bxg )™ —Uo] )

Since length £ = xg — Xxa and length &+ A& = Xg — Xa, We Write an expression for A&,

Change in length of the line segment:
A& =(Xg —Xp ) —(Xg =X )

1 1 2
:B[(UO +bXB)eb‘ _UO:'_B[(UO-'—bXA)ebI_UO]—(XB—XA) ( )
= XBebI _XAebt _ XB i XA

Eq. 3 simplifies to

Change in length of the line segment: A& =(Xg =X, )(e" -1) (4)

Discussion ~ We verify from Eq. 4 that whent =0, Aé=0.
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Chapter 4 Fluid Kinematics
4-53
Solution By examining the increase in length of a line segment along the axis of a converging duct, we are to
generate an equation for linear strain rate in the x direction and compare to the exact equation given in this chapter.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.
Analysis From the previous problem, we have an expression for the change in length of the line segment AB,
Change in length of the line segment: A& =(Xg —Xa )(ebt —1) €))

The fundamental definition of linear strain rate is the rate of increase in length of a line segment per unit length of the line
segment. For the case at hand,

d(§+A8)-¢ dag_d Aé

Linear strain rate in x direction: ¢,, = =— (2)
dt & dt & dt xg—X,
We substitute Eqg. 1 into Eq. 2 to obtain
Xg — X, )(€” -1
Linear strain rate in x direction: Ey = EM = i(ebt —l) ()
dt Xg — Xa dt
In the limit as t — 0, we apply the first two terms of the series expansion for e,
(bt)
Series expansion for e™: e™ =1+bt+ TR 1+bt 4
Finally, for small t we approximate the time derivative as 1/, yielding
1
Linear strain rate in x direction: £y > ¥(1+ bt—1)=b 5)
Comparing to the equation for &,
. . . L au
Linear strain rate in x direction: Ey = ™ =b (6)
Equations 5 and 6 agree, verifying our algebra.
Discussion Although we considered a line segment on the x-axis, it turns out that &, = b everywhere in the flow, as

seen from Eq. 6. We could also have taken the analytical time derivative of Eq. 3, yielding &, = be™. Then, ast — 0, gy —
b.
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Solution For a given velocity field we are to generate an equation for the y location of a fluid particle as a function of
time.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is
Velocity field: V=(uv)=(U,+bx)i —by] (1)
We start with the definition of v following a fluid particle,
dy .
y-component of velocity of a fluid particle: % =V =-bY ek 2

where we have substituted v from Eq. 1. We and rearrange and separate variables, dropping the “particle” subscript for
convenience,

dy
— =—bhdt 3
y ®)
Integration yields
In(y)=-bt-InC, (4)

where we have set the constant of integration as the natural logarithm of some constant C;, with a constant in front in order
to simplify the algebra. When we recall that In(ab) = Ina + Inb, Eq. 4 simplifies to

In(C,y)=-t
from which
y=Ce™ (%)

where C, is a new constant defined for convenience. We now plug in the known initial condition that att = 0, y = y to find
constant C, in Eq. 5. After some algebra,

Fluid particle’s y location at time t: Y=Yu =y, (6)
Discussion  The fluid particle approaches the x-axis exponentially with time. The fluid particle also moves downstream

in the x direction during this time period. However, in this particular problem v is not a function of x, so the streamwise
movement is irrelevant (u and v act independently of each other).
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Solution For a given velocity field we are to generate an equation for the change in length of a line segment in the y
direction.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis Using the results of the previous problem,

Location of particle A at time t: Yo =Yae™ 1)
and

Location of particle B at time t: Yo = Vg€ 2

Since length 7 =yg —ya and length 77+ An = yg — ya, We Write an expression for Az,
Change in length of the line segment:
An = (yB’ - yA’)_(yB - yA) = yBeibt - y/-\emt _(yB - yA) = yaerbt - yA67bt —YetVYa

which simplifies to

Change in length of the line segment: A =(Ys—Ya )(e’IDt —1) )

Discussion  We verify from Eq. 3 that whent=0, A =0.
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Solution By examining the increase in length of a line segment as it moves down a converging duct, we are to
generate an equation for linear strain rate in the y direction and compare to the exact equation given in this chapter.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis From the previous problem we have an expression for the change in length of the line segment AB,

Change in length of the line segment: An=(ys - yA)(e’bt —1) (1)

The fundamental definition of linear strain rate is the rate of increase in length of a line segment per unit length of the line
segment. For the case at hand,

Linear strain rate in y direction:

, _dntAn)-n_dAg_d Ag @
Yot n dt 7 dt yg—Va

We substitute Eqg. 1 into Eq. 2 to obtain

y _ y efbt _1
Linear strain rate iny direction: &, = %( i )( ) = %(e’b‘ —l) 3
Ys = Ya

In the limit as t — 0, we apply the first two terms of the series expansion for e™,
; ; -bt bt (_bt)2
Series expansion for e™: e =1+(—bt)+T+...:1—bt 4

Finally, for small t we approximate the time derivative as 1/, yielding

1
Linear strain rate in y direction: £y i(l—bt -1)=-b (5)

Comparing to the equation for &,

. . . L ov
Linear strain rate in y direction: Epy = 5 =-b (6)

Equations 5 and 6 agree, verifying our algebra.

Discussion Since v does not depend on x location in this particular problem, the algebra is simple. In a more general
case, both u and v depend on both x and y, and a numerical integration scheme is required. We could also have taken the
analytical time derivative of Eq. 3, yielding &y, = —be™. Then, ast — 0, g4 — —b.
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Solution For a given velocity field we are to use volumetric strain rate to verify that the flow field is incompressible..

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.
Analysis The velocity field is
Velocity field: V=(uv)=(U,+bx)i —=byj (1)

We use the equation for volumetric strain rate in Cartesian coordinates, and apply Eq. 1,

Volumetric strain rate:

VD o tewTe =—+—+—=b+(-b)+0=0 @

Where &, = 0 since the flow is two-dimensional. Since the volumetric strain rate is zero everywhere, the flow is
incompressible.

Discussion  The fluid particle stretches in the horizontal direction and shrinks in the vertical direction, but the net
volume of the fluid particle does not change.

4-58
Solution For a given steady two-dimensional velocity field, we are to calculate the x and y components of the
acceleration field.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is

V=(u,v)=(U+ax+by)i +(V+ax+by)] (1)
The acceleration field is obtained from its definition (the material acceleration). The x-component is

x-component of material acceleration:

ax:g+u6—u+v%+yg=(u +ax+by)a +(V +a,x+hb,y)b )

OX

e
Steady Two-D

The y-component is

y-component of material acceleration:

ay:g+u%+v%+%:(u +a,x+by)a, +(V +a,x+b,y)b, 3)

Steady Two-D

Discussion If there were a z-component, it would be treated in the same fashion.
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Solution We are to find a relationship among the coefficients that causes the flow field to be incompressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis We use the equation for volumetric strain rate in Cartesian coordinates, and apply Eqg. 1 of the previous
problem,
Volumetric strain rate: 1bv =& tEytE, = 6_u+@+ =a +h,
V Dt x oy Sz ()
——

Two-D

We recognize that when the volumetric strain rate is zero everywhere, the flow is incompressible. Thus, the desired
relationship is

Relationship to ensure incompressibility: (2

Discussion If Eq. 2 is satisfied, the flow is incompressible, regardless of the values of the other coefficients.

4-60
Solution For a given velocity field we are to calculate the linear strain rates in the x and y directions.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis We use the equations for linear strain rates in Cartesian coordinates, and apply Eq. 1 of Problem 4-58,
Linear strain rates: £, = u_ a, & = o b 1
: =5 R

Discussion In general, since coefficients a; and b, are non-zero, fluid particles stretch (or shrink) in the x and y
directions.

4-61
Solution For a given velocity field we are to calculate the shear strain rate in the x-y plane.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis We use the equation for shear strain rate &, in Cartesian coordinates, and apply Eq. 1 of Problem 4-58,
1{ou ov) 1
Shear strain rate in x-y plane: &, =6, =—| —+— |==(b, +a 1
y p Xy yX 2 ( a GX] 2 (bl 2) ( )

Note that by symmetry & = &.

Discussion In general, since coefficients b; and a, are non-zero, fluid particles distort via shear strain in the x and y
directions.
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Solution For a given velocity field we are to form the 2-D strain rate tensor and determine the conditions necessary
for the x and y axes to be principal axes.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The two-dimensional form of the strain rate tensor is
. Ex  Exy
2-D strain rate tensor: & = (1)
gyx gyy

We use the linear strain rates and the shear strain rate from the previous two problems to generate the tensor,

= 2

] a  Z(hva)
%(bl+a2) b,

&
2-D strain rate tensor: & = (8

If the x and y axes were principal axes, the diagonals of &; would be non-zero, and the off-diagonals would be zero. Here
the off-diagonals go to zero when

Condition for x and y axes to be principal axes: 3

Discussion For the more general case in which Eq. 3 is not satisfied, the principal axes can be calculated using tensor
algebra.

4-63
Solution For a given velocity field we are to calculate the vorticity vector and discuss its orientation.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis We use the equation for vorticity vector ¢ in Cartesian coordinates, and apply Eq. 1 of Problem 4-52,

Vorticity vector:

) N v N b S SCLRCL iy DA o ) R €
5_% %Hé %j+[ax 6yjk_(a2 b, )k

Two-D Two-D Two-D  Two-D

The only non-zero component of vorticity is in the z (or —z) direction.

Discussion For any two-dimensional flow in the x-y plane, the vorticity vector must point in the z (or —z) direction. The
sign of the z-component of vorticity in Eq. 1 obviously depends on the sign of a, — b;.
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Solution For the given velocity field we are to calculate the two-dimensional linear strain rates from fundamental
principles and compare with the given equation.

Assumptions 1 The flow is incompressible. 2 The flow is steady. 3 The flow is two-dimensional.

Analysis First, for convenience, we number the equations in the problem statement:
Velocity field: V=(uv)=(a+by)i+0] (1)
Lower left corner at t + dt: (x+(a+by)dt,y) )
Linear strain rate in Cartesian coordinates: £, = o _w

A h- v ©)

(@) The lower right corner of the fluid particle moves the same amount as the lower left corner since u does not
depend on y position. Thus,

Lower right corner at t + dt: <x+dx+(a+by)dt, y) 4

Similarly, the top two corners of the fluid particle move to the right at speed a + b(y+dy)dt. Thus,

Upper left corner at t + dt; (x+(a+b(y+dy))dt, y+dy) (5)
and
Upper right corner at t + dt: (x+dx+(a+b(y+dy))dt,y+dy) (6)
(b) From the fundamental definition of linear strain rate in the x-direction, we consider the lower edge of the fluid

particle. Its rate of increase in length divided by its original length is found by using Egs. 2 and 4,

Length of lower edge at t-+dt Length of lower edge at t

1| x+dx+(a+by)dt—(x+(a+by)dt)- dx
o =gt dx

-0 (8)

We get the same result by considering the upper edge of the fluid particle. Similarly, using the left edge of the fluid particle
and Egs. 2 and 5 we get

Length of leftedge at t+dt  Length of left edge at t
—— =
1 y+dy-y - dy 0
dt dy

U]

Eyy- Syy =

We get the same result by considering the right edge of the fluid particle. Thus both the x- and y-components of linear strain
rate are zero for this flow field.

(© From Eq. 3 we calculate

_8u_0 ov

Linear strain rates: Ey = rv &y=—=0 (8)

Discussion  Although the algebra in this problem is rather straight-forward, it is good practice for the more general case
(a later problem).
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Solution We are to verify that the given flow field is incompressible using two different methods.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional.

Analysis
(@) The volume of the fluid particle at time t is.
Volume at time t: V (t) = dxdydz (1)

where dz is the length of the fluid particle in the z direction. At time t + dt, we assume that the fluid particle’s dimension dz
remains fixed since the flow is two-dimensional. Thus its volume is dz times the area of the rhombus shown in Fig. P4-58,
as illustrated in Fig. 1,

Volume at time t + dt: V (t+dt) = dxdydz )

Since Egs. 1 and 2 are equal, the volume of the fluid particle has not
changed, and the flow is therefore incompressible.

(b) We use the equation for volumetric strain rate in Cartesian I‘_ q
coordinates, and apply the results of the previous problem, x

Volumetric strain rate:  —2Y — £y &y +E,=0+0+0=0 (3) FIGURE 1
V D The area of a rhombus is equal to its base

Where g, = 0 since the flow is two-dimensional. Since the volumetric times its height, which here is dxdy.

strain rate is zero everywhere, the flow is incompressible.

Discussion  Although the fluid particle deforms with time, its height, its depth, and the length of its horizontal edges
remain constant.
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Solution For the given velocity field we are to calculate the two-dimensional shear strain rate in the x-y plane from
fundamental principles and compare with the given equation.

Assumptions 1 The flow is incompressible. 2 The flow is steady. 3 The

flow is two-dimensional. (x+(a+b(y+dy))dt, y+dy)
Analysis
(a) The shear strain rate is
Shear strain rate in Cartesian coordinates: ¢, L 8_u+@ Q)
2\ oy ox

From the fundamental definition of shear strain rate in the x-y plane, we
consider the bottom edge and the left edge of the fluid particle, which
intersect at 90° at the lower left corner at time t. We define angle « between

the lower edge and the left edge of the fluid particle, and angle g, the x
complement of « (Fig. 1). The rate of decrease of angle « over time /
interval dt is obtained from application of trigonometry. First, we calculate <x+(a+by)dt, y)

angle 3, <x+dx+(a+by)dt,y)

FIGURE 1
A magnified view of the deformed fluid
The approximation is valid for very small angles. As the time interval dt —  Particle at time t + dt, with the location of

0, Eq. 2 is correct. At time t + dt, angle « is three corners indicated, and angles ¢ and S
defined.

Angle Battimet +dt: S =arctan ( b?jydtj =arctan (bdt) ~ bdt 2)
y

Angle ¢ at time t + dt: a:%—ﬂz%—bdt (3)

During this time interval, « changes from 90° (/2 radians) to the expression given by Eq. 2. Thus the rate of change of « is

da 1|(7x T
Rate of change of angle o —=—||=-bdt|- = |=-b
ge ot angie o dt dt (2 ] 2 @

o att+dt aat

Finally, since shear strain rate is defined as half of the rate of decrease of angle ¢,

Shear strain rate: &y = _1da = b (5)
2.dt |2
(b) From Eq. 1 we calculate
Shear strain rate: £, _Lfou v l(b+0) : (6)
Y o2ley ox) 2 2

Both methods for obtaining the shear strain rate agree (Eq. 5 and Eq. 6).

Discussion  Although the algebra in this problem is rather straight-forward, it is good practice for the more general case
(a later problem).

4-36
PROPRIETARY MATERIAL. © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or
posted on a website, in whole or part.




4-67
Solution
fundamental principles and compare with the given equation.

Assumptions

Analysis

(a)

The rate of rotation in Cartesian coordinates is

1({ov ou
w,=—| ——

2(6x ay]
From the fundamental definition of rate of rotation in the x-y plane, we
consider the bottom edge and the left edge of the fluid particle, which
intersect at 90° at the lower left corner at time t. We define angle g in Fig.
1, where g is the negative of the angle of rotation of the left edge of the

fluid particle (negative because rotation is mathematically positive in the
counterclockwise direction). We calculate angle £ using trigonometry,

Rate of rotation in Cartesian coordinates:

(1)

Angle gattimet+dt: g =arctan ( bc(ijydt (2)
y

j =arctan (bdt) ~ bdt

The approximation is valid for very small angles. As the time interval dt —
0, Eq. 2 is correct. Meanwhile, the bottom edge of the fluid particle has not
rotated at all. Thus, the average angle of rotation of the two line segments
(lower and left edges) at time t + dt is

AVG =1(0- )~ 2t @)
2 2
Thus the average rotation rate during time interval dt is
L d(AVG) 1( b
Rate of rotation in x-y plane: 0w, =———-=—|—=dt |=
dt dt\ 2

(b)

From Eq. 1 we calculate

Rate of rotation: o, _lfv_u =1(0—b)=
2{ox oy ) 2
Both methods for obtaining the rate of rotation agree (Eg. 4 and Eq. 5).

Discussion

Chapter 4 Fluid Kinematics

For the given velocity field we are to calculate the two-dimensional rate of rotation in the x-y plane from

1 The flow is incompressible. 2 The flow is steady. 3 The flow is two-dimensional.

(x+(a+b(y+dy))dt,y+dy)

bdydt

dy

I(—dX—?
(x+(a+by)adt,y)
(x+dx+(a+by)dt,y)

FIGURE 1

A magnified view of the deformed fluid
particle at time t + dt, with the location of
three corners indicated, and angle g defined.

b
=l @
b

;| ©

The rotation rate is negative, indicating clockwise rotation about the z-axis. This agrees with our intuition as

we follow the fluid particle.

4-68
Solution
calculate the vorticity in the z direction.

Analysis
(@)
(b)

Vorticity component:

b
¢, =20, = 2(7} =-b

Discussion

We are to determine whether the shear flow of Problem 4-22 is rotational or irrotational, and we are to

Since the rate of rotation is non-zero, it means that the flow is rotational.
Vorticity is defined as twice the rate of rotation, or twice the angular velocity. In the z direction,

M

Vorticity is negative, indicating clockwise rotation about the z-axis.
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Solution We are to prove the given expression for flow in the xy-plane.

Assumptions 1 The flow is incompressible and two-dimensional.
Analysis For flow in the xy-plane, we are to show that:

Rate of rotation: w=0,= v a 1)
2\ 0x oy

By definition, the rate of rotation (angular velocity) at a point is the average rotation rate of two initially perpendicular lines
that intersect at the point. In this particular problem, Line a (PA) and Line b (PB) are initially perpendicular, and intersect at
point P. Line a rotates by angle «,, and Line b rotates by angle o, Thus, the average angle of rotation is

a, + a,

2

During time increment dt, point P moves a distance udt to the right and vdt up (to first order, assuming dt is very small).

Average angle of rotation:

@

Similarly, point A moves a distance (u +g—udxjdt to the right and (v+?dxjdt up, and point B moves a distance
X X

1
u +a—udy dt to the right and v+@dy dt up. Since point A is initially ‘u/ab—ﬂ Fluid element
oy dy LN :
\\ 1,0 attime t,
at distance dx to the right of point P, the horizontal distance from point P’ \ |/ \
to point A’ at the later time t, is k v
p 2 V7! Lineb
ou v 7 \ i
dx + —dxdt B' M /i \ e
6X T 1 \ ’
d
. . ) ] . : At
On the other hand, point A is at the same vertical level as point P at time ov i
t,. Thus, the vertical distance from point P’ to point A’ at time t, is dy +—dydt I Linea ov
oy : a—dxdt
ov 1 X
— dxdt \
Pl 3) \i a}&
Similarly, point B !s Iocategl at distance dy_vertically zflbove poi.nt P at. time ; / p.;‘: \
t;, and thus the horizontal distance from point P’ to point B’ at time t, is ——udydt dx+a—udxdt
ou oy ox
——dydt (4)
2 FIGURE 1
and A close-up view of the distorted fluid element
at time t,.
. . . . . ov
Vertical distance from point P“to point B “at time t;: dy + —dydt (5)
oy

We mark the horizontal and vertical distances between point A’ and point P’ and between point B’ and point P’ at time t in
Fig. 1. From the figure we see that

N iyt N iyt NN
Angle a in terms of velocity components:  a, =tant| —X = ~tant| X |—tan! (— dtj ~—dt  (6)
s ot ox ) ox

The first approximation in Eq. 6 is due to the fact that as the size of the fluid element shrinks to a point, dx — 0, and at the
same time dt — 0. Thus, the second term in the denominator is second-order compared to the first-order term dx and can be
neglected. The second approximation in Eq. 6 is because as dt — 0 angle «; is very small, and tana, — «,. Similarly, angle
oy is written in terms of velocity components as
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—2—udydt ~ M Gyt ; ;
@, = tan | —%—— |~ tan| —L— :tanl(——udth——udt )
dy+a—dydt dy 2 %
y

Finally then, the average rotation angle (Eq. 2) becomes

Average angle of rotation: Pt _ 1 @dt _a_udt = E v _du @)
2 2\ ox oy 2 {ox oy
and the average rate of rotation (angular velocity) of the fluid element about point P in the x-y plane becomes
a):a)zzi M :l ﬂ_a_u (9)
dt 2 2{ox oy

Discussion Eqg. 9 can be extended to three dimensions by performing a similar analysis in the x-z and y-z planes.
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4-70
Solution We are to prove the given expression.
Assumptions 1 The flow is incompressible and two-dimensional. v .
— s Fluid element
, . \ 7\ attimet
Analysis We are to prove the following: \ / 2
. . . N ou
Linear strain rate in x-direction: E = v (1)
X

By definition, the rate of linear strain is the rate of increase in length of a
line segment in a given direction divided by the original length of the line
segment in that direction. During time increment dt, point P moves a
distance udt to the right and vdt up (to first order, assuming dt is very

small). Similarly, point A moves a distance [u +Z—udxj dt to the right and
X

(v+%dxjdt up. Since point A is initially at distance dx to the right of

dx + a_u dxdt
OX

point P, its position to the right of point P’ at the later time t, is

dx+a—udxdt (2 FIGURE 1
2 A close-up view of the distorted fluid element
On the other hand, point A is at the same vertical level as point P at time ~ attime &z
t;. Thus, the vertical distance from point P’ to point A’ at time t; is
Vertical distance from point P’to point A’at time t,: ?dxdt 3)
X

We mark the horizontal and vertical distances between point A’ and point P’ at time t, in Fig. 1. From the figure we see that

Linear strain rate in the x direction as line PA changesto P/A”:

Length of P’A"in x direction
—— Length of PA in x direction
—

ou
d dx+&dxdt - dX _i(a_udtj_a_u (4)
o dt dx dt | ox ox

——
Length of PA in x direction
Thus Eq. 1 is verified.

Discussion  The distortion of the fluid element is exaggerated in Fig. 1. As time increment dt and fluid element length
dx approach zero, the first-order approximations become exact.
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Solution We are to prove the given expression.
Assumptions 1 The flow is incompressible and two-dimensional. ‘\4/\\ Olapy
\ 1 4 \
. . Vs

Analysis We are to prove the following: \ a,_hb L/ \

Vol Lineb Y

. . ine
Shear strain rate in xy-plane: £y L a—u+ﬂ (1) Vol \ ’
2 ay OX B’ :.L:/ \ ,//
1k .

By definition, the shear strain rate at a point is half of the rate of decrease A ,-:-,_{'

1
1
1
1
of the angle between two initially perpendicular lines that intersect at the q ov dvdt ! .
point. In Fig. P4-63, Line a (PA) and Line b (PB) are initially y+5 y I Line a ov
perpendicular, and intersect at point P. Line a rotates by angle «,, and '
1
1

Line b rotates by angle a;,. The angle between these two lines changes \r“a
from /2 at time t; to ., at time t, as sketched in Fig. 1. The shear strain - AN SRS F——
rate at point P for initially perpendicular lines in the x and y directions is / pr \
thus _u dydt dx + M dxdt
1d oX
Ey = _Eaaa-b (2)
FIGURE 1

During time increment dt, point P moves a distance udt to the right and vdt A close-up view of the distorted fluid element
up (to first order, assuming dt is very small). Similarly, point A moves a  at time t,.

distance (u +2—udxjdt to the right and (v+?dxjdt up, and point B
X X

moves a distance (u +%udy]dt to the right and (v+%dyj dt up. Since point A is initially at distance dx to the right of

point P, its position to the right of point P’ at the later time t, is

Horizontal distance from point P “to point A”at time t,: dx+g—udxdt 3)
X

On the other hand, point A is at the same vertical level as point P at time t;. Thus, the vertical distance from point P’ to
point A’ at time t; is

Vertical distance from point P “to point A”at time t,: ;ﬂdxdt 3)
X

Similarly, point B is located at distance dy vertically above point P at time t;, and thus we write

Horizontal distance from point P “to point B “at time t;: _%u dydt (4)
and
Vertical distance from point P“to point B “at time t;: dy +%dydt (5)

We mark the horizontal and vertical distances between point A’ and point P’ and between point B’ and point P’ at time t in
Fig. 1. From the figure we see that

Angle «; in terms of velocity components:

@dxdt @dxdt ov v 6
a, =tant| —X __|stant| X =tan‘1(—dtjz—dt ©)
dx+ Y et d ox ) o
OX
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Chapter 4 Fluid Kinematics
The first approximation in Eq. 6 is due to the fact that as the size of the fluid element shrinks to a point, dx — 0, and at the
same time dt — 0. Thus, the second term in the denominator is second-order compared to the first-order term dx and can be
neglected. The second approximation in Eq. 6 is because as dt — 0 angle «, is very small, and tanc, — «,. Similarly,

Angle o, in terms of velocity components:

a,=tan| —2——— |~ tan™"

~ M Gyt ~ M Gyt
0 1
dy =tan (
dy + — dydt
oy

_a_udt] PG
oy

Angle o, at time t;, is calculated from Fig. 1 as

Angle o, at time t; in terms of velocity components:

a,, :£+ab -a, :z—a—udt—ﬂdt
2 2 oy OX

®)

where we have used Egs. 6 and 7. Finally then, the shear strain rate (Eq. 2) becomes

Shear strain rate, initially perpendicular lines in the x and y directions:

Gy att, G Y
— e ~—
gxy:_liaa_bz_ll T My Ny |_ifou v (9)
2 dt 2dt| 2 oy ox 2 | 2lay  ox

which agrees with Eq. 1. Thus, Eq. 1 is proven.

Discussion Eqg. 9 can be easily extended to three dimensions by performing a similar analysis in the x-z plane and in the
y-z plane.
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Solution For a given linear strain rate in the x-direction, we are to calculate the linear strain rate in the y-direction.
Analysis Since the flow is incompressible, the volumetric strain rate must be zero. In two dimensions,

Volumetric strain rate in the x-y plane: 1oV EqtEy = a—u+ﬂ =0 (1)
V Dt ox oy

Thus, the linear strain rate in the y-direction is the negative of that in the x-direction,

Linear strain rate in y-direction: &y = ﬂ = _a_u =-251/s 2

Yooy ox

Discussion The fluid element stretches in the x-direction since g is positive. Because the flow is incompressible, the
fluid element must shrink in the y-direction, yielding a value of &, that is negative.

4-73
Solution We are to calculate the vorticity of fluid particles in a tank rotating in solid body rotation about its vertical
axis.

Assumptions 1 The flow is steady. 2 The z-axis is in the vertical direction.

Analysis Vorticity ¢ is twice the angular velocity @ . Here,
Angular velocity: &=175"% (1m|nj[ 2r r""djﬁ =18.326k rad/s 1)
min\ 60s rot

where K is the unit vector in the vertical (2) direction. The vorticity is thus

Vorticity: & =2 =2x18.326k rad/s = 36.652K rad/s = 36.7k rad/s )

Discussion Because the water rotates as a solid body, the vorticity is constant throughout the tank, and points vertically
upward.

4-74
Solution We are to calculate the angular speed of a tank rotating about its vertical axis.

Assumptions 1 The flow is steady. 2 The z-axis is in the vertical direction.

Analysis Vorticity £ is twice the angular velocity @ . Thus,
Angular velocity: o= % = M =—22.7K rad/s (1)

where k is the unit vector in the vertical (z) direction. The angular velocity is negative, which by definition is in the
clockwise direction about the vertical axis. We express the rate of rotation in units of rpm,

Rate of rotation: = —22.7124[ 808 3 1O 1 516769 = 217 rpm @)
s \1min J\ 2r rad min

Discussion Because the vorticity is constant throughout the tank, the water rotates as a solid body.
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4-75
Solution For a tank of given rim radius and speed, we are to calculate the magnitude of the component of vorticity in
the vertical direction.

Assumptions 1 The flow is steady. 2 The z-axis is in the vertical direction.

Analysis The linear speed at the rim is equal to rjma,. Thus,

- N \ .
Component of angular velocity in z-direction: w, =—"" = 361 m/s =10.19774 rad/s

“oor, 0354m @)

Vorticity ¢ is twice the angular velocity @ . Thus,

z-component of vorticity: ¢, =2, = 2(10.19774 rad/s) = 20.39548 rad/s = 20.4 rad/s 2

Discussion Radian is a non-dimensional unit, so we can insert it into Eq. 1. The final answer is given to three
significant digits for consistency with the given information.

4-76
Solution For a given deformation of a fluid particle in one direction, we are to calculate its deformation in the other
direction.

Assumptions 1 The flow is incompressible. 2 The flow is two-dimensional in the x-y plane.

Analysis Since the flow is incompressible and two-dimensional, the area of the fluid element must remain constant
(volumetric strain rate must be zero in an incompressible flow). The area of the original fluid particle is a’. Hence, the
vertical dimension of the fluid particle at the later time must be a*/2a = a/2.

Discussion Since the particle stretches by a factor of two in the x-direction, it shrinks by a factor of two in the y-
direction.

4-77
Solution We are to calculate the percentage change in fluid density for a fluid particle undergoing two-dimensional
deformation.

Assumptions 1 The flow is two-dimensional in the x-y plane.

Analysis The area of the original fluid particle is a®>. Assuming that the mass of the fluid particle is m and its
dimension in the z-direction is also a, the initial density is p = m/V = m/a®. As the particle moves and deforms, its mass
must remain constant. If its dimension in the z-direction remains equal to a, the density at the later time is

. . m m m
Density at the later time: =—= =1.025—

y P=V T (1.08a)(0.903a)(a) a3 ©
Compared to the original density, the density has increased by about 2.5%.

Discussion  The fluid particle has stretched in the x-direction and shrunk in the y-direction, but there is nevertheless a
net decrease in volume, corresponding to a net increase in density.
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Solution For a given velocity field we are to calculate the vorticity.
Analysis The velocity field is

V =(u,v,w)=(3.0+2.0x-y)i +(2.0x-2.0y) j+(0.5xy)k (1)

In Cartesian coordinates, the vorticity vector is

Vorticity vector in Cartesian coordinates: C= w_v T+(8—u—%jj+ y_ A K 2
oy oz 0z oX ox oy

We substitute the velocity components u = 3.0 + 2.0x —y, v = 2.0x — 2.0y, and w = 0.5xy from Eq. 1 into Eq. 2 to obtain

Vorticity vector: £ =(0.5x—0)i +(0-0.5y) j+(2.0—(-1))k =(0.5x)i —(0.5y) j +(3.0)k (3)

Discussion The vorticity is non-zero implying that this flow field is rotational.

4-79
Solution We are to determine if the flow is rotational, and if so calculate the z-component of vorticity.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The velocity field is given by
Velocity field, Couette flow: V =(u,v) =(V %)T+O] (1)

If the vorticity is non-zero, the flow is rotational. So, we calculate the z-component of vorticity,

z-component of vorticity: {=——-—=0-—=—— )

Since vorticity is non-zero, yes this flow is rotational. Furthermore, the vorticity is negative, implying that particles
rotate in the clockwise direction.

Discussion  The vorticity is constant at every location in this flow.
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4-80
Solution For the given velocity field for Couette flow, we are to calculate the two-dimensional linear strain rates and
the shear strain rate.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The linear strain rates in the x direction and in the y direction are
Linear strain rates: Ey = u_ 0 £y = X 0 (1)
OX oy
The shear strain rate in the x-y plane is
. 1fou ov) 1(V \%
Shear strain rate: Ey =" ML N —(—+ 0|=— (2
2loy ox) 2\h 2h

Fluid particles in this flow have non-zero shear strain rate.

Discussion Since the linear strain rates are zero, fluid particles deform (shear), but do not stretch in either the horizontal
or vertical directions.

4-81
Solution For the Couette flow velocity field we are to form the 2-D strain rate tensor and determine if the x and y
axes are principal axes.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The two-dimensional strain rate tensor, g;, is
. gxx gxy
2-D strain rate tensor: & = (1)
gyx gyy
We use the linear strain rates and the shear strain rate from the previous problem to generate the tensor,
\Y
& &
2-D strain rate tensor: &; =( * ij = 2h )
Eyx &y i 0
2h

Note that by symmetry s, = &,. If the x and y axes were principal axes, the diagonals of &; would be non-zero, and the off-
diagonals would be zero. Here we have the opposite case, so the x and y axes are not principal axes.

Discussion  The principal axes can be calculated using tensor algebra.
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4-82
Solution For a given velocity field we are to calculate the vorticity.
Analysis The velocity field is

V = (u,v,w)=(2.49+1.36x—0.867y)i +(1.95x-1.36y) j +(-0.458xy)k (1)

In Cartesian coordinates, the vorticity vector is

Vorticity vector in Cartesian coordinates: C= w_v i+ u_ow i+ y_ A K 2
0z oX ox oy
We substitute velocity components u =2.49+1.36x—0.867y, v=1.95x-1.36y , and w=—0.458xy to obtain

Vorticity vector:
¢ =(-0.458x—0)7 +(0—(~0.458y)) j +(1.95—(~0.867))k = (~0.458x)T +(0.458y) j +(2.817)k |

Discussion The vorticity is non-zero implying that this flow field is rotational.

4-83
Solution For a given velocity field we are to calculate the constant ¢ such that the flow field is irrotational.
Analysis The velocity field is

V =(u,v) = (2.85+1.26x — 0.896 )i + (3.45+cx —1.26Y)] (1)

In Cartesian coordinates, the vorticity vector is
Vorticity vector in Cartesian coordinates: l= w_ i, (a—u - @]] ALY )
oy oz oz  oX ox oy

We substitute velocity components u=2.85+1.26x —0.896y, v=3.45+cx-1.26y, and w =0 to obtain
Vorticity vector: & =(0)i +(0)] +(c—(-0.896))k = (c +0.896)k

For irrotational flow, the vorticity is set to zero, yielding ¢ = -0.896.

Discussion For any other value of c the vorticity would be non-zero implying that the flow field would be rotational.

4-84
Solution For a given velocity field we are to calculate the constants b and c such that the flow field is irrotational.
Analysis The velocity field is

V =(1.35+2.78x+0.754y + 4.217) i +(3.45+cx—2.78y +bz) j +(-4.21x~1.89y) ] (1)

In Cartesian coordinates, the vorticity vector is

Vorticity vector in Cartesian coordinates: | h(@_u_@ o _Mg )
oy ot oz oX ox oy

We substitute velocity components u=1.35+2.78x+0.754y+4.21z, v=3.45+cx—2.78y+bz, and w=-4.21x-1.89y
from Eq. 1 into Eqg. 2 to obtain

Vorticity vector: £ =(-1.89-b)i +(4.21-(-4.21)) f+(c-0.754)k = (~1.89—b)i +(0) j +(c—0.754)k

For irrotational flow, each component of vorticity must be zero, yielding b = -1.89 and ¢ = 0.754.
Discussion  Any other values of b and/or ¢ would make the vorticity non-zero implying a rotational flow field.
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4-85
Solution For a given velocity field we are to calculate the constants a, b, and ¢ such that the flow field is irrotational.
Analysis The velocity field is

V =(0.657 +1.73x +0.948y +az)i +(2.61+cx+1.91y +bz) j +(-2.73x— 3.66y —3.64z) (1)

In Cartesian coordinates, the vorticity vector is

Vorticity vector in Cartesian coordinates: C= w_v T+(a—u—@]j+ y_ K 2
oy oz oL  0ox ox oy

We substitute components u=0.657+1.73x+0.948y+az, v=2.61+cx+191y+bz, and w=-2.73x—-3.66y —3.64z
from Eqg. 1 into Eq. 2 to obtain

Vorticity vector: £ =(-3.66-b)i +(a—(-2.73))j +(c-0.948)k
For irrotational flow, each component of vorticity must be zero, yielding a = -2.73, b = -3.66 and ¢ = 0.948.

Discussion  Any other values of b and/or ¢ would make the vorticity non-zero implying a rotational flow field.

Solution For a given velocity field and an initially square fluid particle, we are to calculate and plot its location and
shape after a given time period.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the

x-y plane. 3 1 ‘

Analysis Using the results of Problems 4-51 and 4-54, we can 2 l

calculate the location of any point on the fluid particle after the elapsed ] Timet=0

time. We pick 6 points along each edge of the fluid particle, and plot their x ] Timet=0.2s
and y locations at t = 0 and at t = 0.2 s. For example, the point at the lower 11 ‘

left corner of the particle is initially at x = 0.25 ftand y = 0.75 ftat t = 0. At ]

t=0.2s, y
x-location of lower left corner of the fluid particle at timet = 0.2 s:

1 (46 15)(025) B
16 15 [(5-0 ft/s+(4.6 1/5)(0.25 ft))e 5.0 ft/s} ~2.268 ft

and

y-location of lower left corner of the fluid particle at timet= 0.2 s:
y =(0.75 ft)e ** 2% = 0.29809 ft

We repeat the above calculations at all the points along the edges of the

fluid particle, and plot both their initial and final positions in Fig. 1 as dots. FIGURE 1

Finally, we connect the dots to draw the fluid particle shape. It is clear Movement and distortion of an initially
from the results that the fluid particle shrinks in the y direction and square fluid particle in a converging duct; x
stretches in the x direction. However, it does not shear or rotate. and y are in units of ft. Streamlines (solid

. . .. . . . . blue curves) are also shown for reference.
Discussion  The flow is irrotational since fluid particles do not rotate.
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4-87E
Solution By analyzing the shape of a fluid particle, we are to verify that the given flow field is incompressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis Since the flow is two-dimensional, we assume unit depth (1 ft) in the z direction (into the page in the
figure). In the previous problem, we calculated the initial and final locations of several points on the perimeter of an
initially square fluid particle. Att =0, the particle volume is

Fluid particle volume att=0s: Vv =(0.50 ft)(0.50 ft)(1.0 ft) = 0.25 ft* @

Att=0.2s, the lower left corner of the fluid particle has moved to x = 2.2679 ft, y = 0.29889 ft, and the upper right corner
has moved to x = 3.5225 ft, y = 0.49815 ft. Since the fluid particle remains rectangular, we can calculate the fluid particle
volume from these two corner locations,

Fluid particle volume att = 0.2 s:
V =(3.5225 ft—2.2679 ft)(0.49815 ft —0.29889 ft)(1.0 ft) = 0.2500 ft* @

Thus, to at least four significant digits, the fluid particle volume has not changed, and the flow is therefore
incompressible.

Discussion  The fluid particle stretches in the horizontal direction and shrinks in the vertical direction, but the net
volume of the fluid particle does not change.
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Reynolds Transport Theorem

4-88C
Solution We are to explain the similarities and differences between the material derivative and the RTT.
Analysis The main similarity is that both of them transform from a Lagrangian or system viewpoint to an

Eulerian or control volume viewpoint. Other similarities include that both the material derivative and the RTT contain
two terms on the right side — an unsteady term that is nonzero only when the flow is changing in time, and an advective
part, which accounts for the fluid particle or system moving to a new part of the flow field. The main difference between
the two is that the material derivative applies to infinitesimal fluid particles, while the RTT applies to finite systems and
control volumes.

Discussion It turns out that if we let the system shrink to a point, the RTT reduces directly to the material derivative.

4-89C
Solution We are to explain the purpose of the Reynolds transport theorem, and write the RTT for intensive property
b as a “word equation.”

Analysis The purpose of the RTT is to convert conservation equations from their fundamental form for a system
(closed system) to a form that can be applied to a control volume (open system). In other words, the RTT provides a
link between the system approach and the control volume approach to a fluid flow problem. We can also explain the

RTT as a transformation from the Lagrangian to the Eulerian frame of reference. The RTT (Eq. 4-41) is
dB d -
sys 1
" ) _,PbdV + jcs PbV -fidA 1)

In word form, Eqg. 1 may be stated something like this: The time rate of change of property B of the system is equal to
the time rate of change of B of the control volume due to unsteadiness plus the net flux of B across the control
surface due to fluid flow.

Discussion Students should write the RTT in their own words.

4-90C

Solution

(a) False: The statement is backwards, since the conservation laws are naturally occurring in the system form.

(b) False: The RTT can be applied to any control volume, fixed, moving, or deforming.

(c) True: The RTT has an unsteady term and can be applied to unsteady problems.

(d) True: The extensive property B (or its intensive form b) in the RTT can be any property of the fluid — scalar, vector, or
even tensor.
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4-91
Solution We are to solve an integral two ways — straightforward and using the Leibniz theorem.
Analysis (a) We integrate first and then take the time derivative,

d ez d{ 4 Zt} d 1 1| dj1 1
— | xdx=—{| —x =—|——+4=|=—| = |=——
dt 7t dt [ l dt 2t+t dt| 2t 2t? 1)

(b) We use the 1-D Leibniz theorem,

L) boG ,db da
— G(xt)dx=| —dx+—G(b,t)——G(a,t 2
dt x=a(t) ( ) J‘a at d ( ) d ( ) ( )
Here, G =x? a=t,b =2t 6G/ot = 0, db/dt = 2, and da/dt = 1. Thus, Eq. 2 becomes
d r2t 2 -2 2 1
— | xFdx=0+2(2t) -1t =——+ 3
il (2) e ®

Thus, the integral reduces to -2t and we get the same answer using either technique.

Discussion In this problem, we could integrate before taking the time derivative, but the real usefulness of Leibniz
theorem is in situations where this cannot be done.

4-92
Solution We are to solve an integral.
Analysis There does not appear to be a simple straightforward solution, so we use the 1-D Leibniz theorem,
d x:b(t) da
g BCICRI L _j —G (b)-4 G(at) (1)

Here, G=x*, a=t,b =2t 6G/ot = 0, db/dt = 2, and da/dt = 1. Thus, the integral becomes

%f‘ x“dx = 0+2(2t)" —1t' =2(2t)" -t 3)

Thus, the integral reduces to 2(2t)2t -

Discussion  The present author does not know how to solve this integral without using Leibniz theorem.

4-93
Solution For the case in which By is the mass m of a system, we are to use the RTT to derive the equation of
conservation of mass for a control volume.

Analysis The general form of the Reynolds transport theorem is given by
General form of the RTT: dBﬂ d I bdV +I bV, -fidA @)
' dt  dtde” P

Setting Bsys = m means that b = m/m = 1. Plugging these and dm/dt = 0 into Eq. 1 yields

: ) _d T
Conservation of mass for a CV: 0= EJ'CV pdVv +ICS PV, -ndA (2)

Discussion Eq. 2 is general and applies to any control volume — fixed, moving, or even deforming.
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4-94
Solution For the case in which B is the linear momentum mV of a system, we are to use the RTT to derive the
equation of conservation of linear momentum for a control volume.

AnalysisNewton’s second law is
v d

Newton’s second law for a system: F=ma=m—-=—(mV 1
y z dt dt( )sys @

Setting Bgys = mV means that b = m\7/m =V . Plugging these and Eq. 1 into the equation of the previous problem yields

B d - (=
Y F=(mV) = [, oVav [ oV (V) dA
or simply

Conservation of linear momentum for a CV:

SF =gl [ o (0 njon @

Discussion Eq. 2 is general and applies to any control volume — fixed, moving, or even deforming.

4-95
Solution For the case in which By is the angular momentum H ofa system, we are to use the RTT to derive the
equation of conservation of angular momentum for a control volume.

Analysis The conservation of angular momentum is expressed as

Conservation of angular momentum for a system: > M = % Hsys 1)

Setting Bgys = H means that b = (Fx m\7)/m =FxV , noting that m = constant for a system. Plugging these and Eq. 1 into
the equation of Problem 4-78 yields
- d - d . - G\ =
3 N T (e R W ) (A I
or simply

Conservation of angular momentum for a CV:

T R R

Discussion Eq. 2 is general and applies to any control volume — fixed, moving, or even deforming.
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4-96
Solution F(t) is to be evaluated from the given expression.
Analysis The integral is

d px=Bt _ox?

F (t) = E oAt e (1)

We could try integrating first, and then differentiating, but we can instead use the 1-D Leibnitz theorem. Here,
G(x,t) e (G is not a function of time in this simple example). The limits of integration are a(t) = At and b(t) = Bt.
Thus,

b G db da
F (t) = Ia gdxﬁ‘ae(b,t)—ae(a,t)

= 0 +Be?® _—pAe®

@

or

F(t)=Be™® —Ae™™| (3)

Discussion You are welcome to try to obtain the same solution without using the Leibnitz theorem.
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Chapter 4 Fluid Kinematics

Review Problems

4-97
Solution For a given expression for u, we are to find an expression for v such that the flow field is incompressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The x-component of velocity is given as
x-component of velocity: u= a+b(x—c)2 1)

In order for the flow field to be incompressible, the volumetric strain rate must be zero,

. . 1 DV ou ov
Volumetric strain rate: ——— =& tE, +E, =—+—+ =0
V Dt v ox oy Joz 2
Two-D
This gives us a necessary condition for v,
Necessary condition for v: ﬂ = _a_u ()
oy OX
We substitute Eqg. 1 into Eq. 3 and integrate to solve for v,
N___ -2b(x—c)
oy OX

Expression for v:
v=j%dy = [(~2b(x~c))dy+ f (%)

Note that we must add an arbitrary function of x rather than a simple constant of integration since this is a partial integration
with respect to y. v is a function of both x and y. The result of the integration is

Expression for v: ‘v =-2b(x-c)y+f(x) ‘ (4)

Discussion  We verify by plugging Egs. 1 and 4 into Eq. 2,

1DV _au ov

Volumetric strain rate: ———=—+—=2b(x-c)-2b(x—-c)=0
VDt ax oy~ 2(xme)=2(x-c) )

Since the volumetric strain rate is zero for any function f(x), Egs. 1 and 4 represent an incompressible flow field.
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Solution For a given expression for u, we are to find an expression for v such that the flow field is incompressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The x-component of velocity is given as
x-component of velocity: u = ax+by +cx’ 1)

In order for the flow field to be incompressible, the volumetric strain rate must be zero,

. . . 1DV ou ov
Volumetric strain rate: ——— =& tE, +E, =—+—+ =0
V Dt v ox oy Joz 2
Two-D
This gives us a necessary condition for v,
Necessary condition for v: ﬂ = _a_u ()
oy OX
We substitute Eqg. 1 into Eq. 3 and integrate to solve for v,
N__u_ —(a+2cx)
oy oX

Expression for v: ov
v=|—dy=—|ady— | 2cxdy + f (X)

Note that we must add an arbitrary function of x rather than a simple constant of integration since this is a partial integration
with respect to y. v is a function of both x and y. The result of the integration is

Expression for v: ‘v =—ay—2cxy + f(x) ‘ 4

Discussion  We verify by plugging Egs. 1 and 4 into Eq. 2,

Volumetric strain rate: iﬂ:a_quﬂ: a+2cx—a-2cx=0 (5)
V Dt ox oy

Since the volumetric strain rate is zero for any function f(x), Egs. 1 and 4 represent an incompressible flow field.
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Solution We are to determine if the flow is rotational, and if so calculate the z-component of vorticity.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The velocity components are given by
. L ) 1 dP, ,
Velocity components, 2-D Poiseuille flow: u=————(y*-hy) v=0 (1)
2u dx

If the vorticity is non-zero, the flow is rotational. So, we calculate the z-component of vorticity,

z-component of vorticity:

ov ou 1 dP 1 dP (2)
=—-—=0-——(2y-h)=———(2y-h
foox oy Z,udx(y ) Zydx(y )

Since vorticity is non-zero, this flow is rotational. Furthermore, in the lower half of the flow (y < h/2) the vorticity is
negative (note that dP/dx is negative). Thus, particles rotate in the clockwise direction in the lower half of the flow.
Similarly, particles rotate in the counterclockwise direction in the upper half of the flow.

Discussion  The vorticity varies linearly across the channel.

4-100
Solution For the given velocity field for 2-D Poiseuille flow, we are to calculate the two-dimensional linear strain
rates and the shear strain rate.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The linear strain rates in the x direction and in the y direction are
Linear strain rates: Ey = a_ 0 &y = & 0 (1)
OX oy

The shear strain rate in the x-y plane is

Shear strain rate:

1ou ov) 1( 1 dp 1 dp @
S v L Py hyso]=t T (2yn
By 2(6y+6x] 2(2;4 ax (2 )+] T

Fluid particles in this flow have non-zero shear strain rate.

Discussion Since the linear strain rates are zero, fluid particles deform (shear), but do not stretch in either the horizontal
or vertical directions.
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Solution For the 2-D Poiseuille flow velocity field we are to form the 2-D strain rate tensor and determine if the x
and y axes are principal axes.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Analysis The two-dimensional strain rate tensor, &;, in the x-y plane,
. gXX 8)(
2-D strain rate tensor: &; :[ y] ()
& &
yX yy
We use the linear strain rates and the shear strain rate from the previous problem to generate the tensor,
0 id_P(zy _ h)
Exx gxy 4/1 dx
R A 1 dP @)
e ——(2y -h) 0
4 dx

Note that by symmetry &, = &. If the x and y axes were principal axes, the diagonals of &; would be non-zero, and the off-
diagonals would be zero. Here we have the opposite case, so the x and y axes are not principal axes.

Discussion  The principal axes can be calculated using tensor algebra.

Solution For a given velocity field we are to plot several pathlines
for fluid particles released from various locations and over a specified time
period. 15 ] ;
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The ] |
flow is two-dimensional in the x-y plane. :
Properties For water at 40°C, = 6.53x10 kg/m:s. 17 ;
y 1
Analysis Since the flow is steady, pathlines, streamlines, and (mm) A ;
streaklines are all straight horizontal lines. We simply need to integrate ;
velocity component u with respect to time over the specified time period. 0.5 7 1
The horizontal velocity component is - :
1 dp ]
u:__z_h -||||:|||||||||
2u dx ( y) 1) 0
0 05 1 15
We integrate as follows: X (m)
teng os( 1 dP/ , FIGURE 1
X = Xan +Lm udt =0+ J.o [Z&(y - hy)jdt Pathlines for the given velocity field at t =
d (2 12 s. Note that the vertical scale is greatly
X = L_P(yz — hy)(lO 5) expanded for clarity (x is in m, buty is in
24 dx mm).

We substitute the given values of y and the values of x and dP/dx into Eq. 2 to calculate the ending x position of each
pathline. We plot the pathlines in Fig. 1.

Discussion Streaklines introduced at the same locations and developed over the same time period would look identical
to the pathlines of Fig. 1.
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Chapter 4 Fluid Kinematics

Solution For a given velocity field we are to plot several streaklines at a given time for dye released from various

locations over a specified time period.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.

Properties For water at 40°C, 2= 6.53x10™ kg/m:s.

Analysis Since the flow is steady, pathlines, streamlines, and
streaklines are all straight horizontal lines. We simply need to integrate
velocity component u with respect to time over the specified time period.
The horizontal velocity component is

1 dpP
= 2—h
"o (v*~hy) @

We integrate as follows to obtain the final x location of the first dye
particle released:

We substitute the given values of y and the values of & and dP/dx into Eq.
2 to calculate the ending x position of the first released dye particle of each
streakline. The last released dye particle is at X = Xga¢ = 0, because it hasn’t
had a chance to go anywhere. We connect the beginning and ending points
to plot the streaklines (Fig. 1).

Discussion These streaklines are introduced at the same locations and

0+ 7T T 7T+

0 05 1 15
x (m)

FIGURE 1

Streaklines for the given velocity field at t =
10 s. Note that the vertical scale is greatly
expanded for clarity (x is in m, buty is in
mm).

are developed over the same time period as the pathlines of the previous problem. They are identical since the flow is

steady.
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Chapter 4 Fluid Kinematics

Solution For a given velocity field we are to plot several streaklines at a given time for dye released from various
locations over a specified time period.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The
flow is two-dimensional in the x-y plane.

15 4 - - ——— - ; 777777777777777
Properties For water at 40°C, 2= 6.53x10™ kg/m:s. ] l
Analysis Since the flow is steady, pathlines, streamlines, and ] ;
streaklines are all straight horizontal lines. The horizontal velocity 11-- ‘ -
component is y !
mm) 1 l
1 dP 2 ( T T
u=——y“-h I (R
2 V) ) 05 - :
In the previous problem we generated streaklines at t = 10 s. Imagine the 11—
dye at the source being suddenly cut off at that time, but the streaklines are o —
observed 2 seconds later, at t = 12 s. The dye streaks will not stretch any 0 05 1 15
further, but will simply move at the same horizontal speed for 2 more ' X (m) '
seconds. At each y location, the x locations of the first and last dye particle
are thus FIGURE 1
1 dp Streaklines for the given velocity field at t =
first dye particle of streakline:  x = ——(y2 — hy)(12 5) 2) 12 s. Note that the vertical scale is greatly
2p dx expanded for clarity (x is in m, buty is in
and mm).
last dye particle of streakline:  x = id—P(y2 ~hy)(25) ©)
2u dx

We substitute the given values of y and the values of 4 and dP/dx into Egs. 2 and 3 to calculate the ending and beginning x
positions of the first released dye particle and the last released dye particle of each streakline. We connect the beginning
and ending points to plot the streaklines (Fig. 1).

Discussion Both the left and right ends of each dye streak have moved by the same amount compared to those of the
previous problem.

Solution For a given velocity field we are to compare streaklines at two different times and comment about linear
strain rate in the x direction.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is two-dimensional in the x-y plane.
Properties For water at 40°C, x = 6.53x10™ kg/m:s.

Analysis Comparing the results of the previous two problems we see that the streaklines have not stretched at all —
they have simply convected downstream. Thus, based on the fundamental definition of linear strain rate, it is zero:

Linear strain rate in the x direction: &y =0 Q)

Discussion Our result agrees with that of Problem 4-83.
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Chapter 4 Fluid Kinematics

Solution For a given velocity field we are to plot several timelines
at a specified time. The timelines are created by hydrogen bubbles
released from a vertical wire at x = 0.

=
ol

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The
flow is two-dimensional in the x-y plane.

Properties For water at 40°C, = 6.53x10™ kg/m:s. 1
ts ty t3 t t

Analysis Since the flow is steady, pathlines, streamlines, and (mm)
streaklines are all straight horizontal lines, but timelines are completely ]
different from any of the others. To simulate a timeline, we integrate 05 1
velocity component u with respect to time over the specified time period -
fromt =0 to t = t,ng. We introduce the bubbles at x = 0 and at many values .
of y (we used 50 in our simulation). By connecting these x locations with i

a line, we simulate a timeline. The horizontal velocity component is 0
0 0.5 1 15
X (m
x-velocity component: u= %Z—P(yz —hy) 1) (m)
e FIGURE 1
We integrate as follows to find the x position on the timeline at teg: Timelines for the given velocity field at t =
12.5 s, generated by a simulated hydrogen
B toa tu[ 1 dP/ , bubble wire at x = 0. Timelines created at ts
X=X +Lm udt = 0+.[0 (Zd_(y B hy)] dt =10.0s,t,=75s,t3=5.0s,t,=2.55, and
1 dp t; = 0 s. Note that the vertical scale is greatly
X= __( z_ hy)tend expanded for clarity (x is in m, buty is in
2p dx mm).

We substitute the values of y and the values of x and dP/dx into the above equation to calculate the ending x position of
each point in the timeline. We repeat for the five values of t.,q. We plot the timelines in Fig. 1.

Discussion Each timeline has the exact shape of the velocity profile.
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Solution For a given velocity field we are to calculate the normal acceleration of a particle.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The streamlines for a two-dimensional flow are governed by j_y — Y Therefore
X u

ﬂ__ 2kxy 2xy

dx k(xz—yz) _Xz_yz
or

2xydx+ (x? —y?)dy =0.
This is a 2nd order homogenous differential equation. To solve this ODE we set y=pXx, where p=p(x).
Differentiating we get

dy _dp, .
dx dx

The differential equation is then

p

2xy +(x% - yz)d—y: 0
dx

or
2 2.2\ dp
2XpX + (X“ — pX )(—x+ pjzo
dx
or
3
2—p2+%x+p:0 , xd—p+3p;2:0
1-p° dx dx 1-p

Rearranging the DE we get

2
1-p 3dp+%=0
3p-p X
Since ! p3= pz 1 =A+B'2JrC
3p-p® p(p?-3) P p°-3
p? -1=Ap?-3A+Bp?+Cp,
or
A+B=1, C=0
A-L , B=2
3 3

Therefore the differential equation becomes,

2120 |y g
3p 3p?-3 X

Integrating both sides of the equation, we get
1 1 2
—Inp+=In(p°-3)+Inx=C
3 p 3 (p ) 1
or
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Chapter 4 Fluid Kinematics
Inp+In(p®>-3)+Inx* =InC,
In(p(p* -3)x*) =InC,,
Recalling that

y = pX or p:l
X

y*-3x%y=C,

is the streamline function. For the givenpoint (x,y)=(1,2)
C,=2%-3x1*x2=8-6=2

Therefore the streamline passing through position (1,2) is
y?-3x%y =2
3y%y +3(2xy+x%y) =0 (x,y)=(1,2)
3x2%y +3(2x1x2+1%y) =0
12y +1243y =0, 15y =-12

y' = —E = —i = —0.8
15 5

Differentiating one more time, we get
32yyy +y2y ) +3Qy+2xy +2xy +x2y)=0
For the given point (x,y)=(1,2)

2
P, s +22y +2x2+2x g T +12y" =0
5 5 5

256+4y +4-1x6x2+Yy =0

5y =-3.36 , y =-0.672
Since

o Ly)™ e cosf” 3.125
M |-0.672|
At the given position
u=k(x?-y?) =k(@?-2%)=-3k
v =-2kxy = -2k (1x 2) = -4k
The absolute velocity of the particle at that point
V2 =u? +v? = (=3k)? + (—4k)? = 25k ?
Normal acceleration is then

2 2
=B gy
R 3.125
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4-108

Solution For a given velocity field we are to determine whether the flow is steady and calculate the velocity and
acceleration of a particle.

Assumptions 1 The flow is incompressible. 2 The flow is three-dimensional in the x-y-z plane.
Analysis The components of the velocity field are

u=5x2,v=-20xy,w =100t
For the steady flow of an incompressible fluid,;

ou ou ow

—+—+—=0

ox oy oz

M _qox, M _p0x, Mo,

OX oy oz
Therefore

10x—-20x+0=0

and the flow is unsteady flow. For point P(i' y2§) the velocity components are
u=5-1%=5,vy=—20(2x1) =— 40
w=100x0.2=20

and therefore
T/P(l,z,s) =5i—40]+ 20K

The components of the acceleration

= 5x%10x+20xy(~20x)+100t X0+ 0
a, =50x° +400x%y , at point P,
a, =50x13 +400x1° x2
P(1,2,3) > a, =850
st Dy N N
ox oy oz ét
u=5x2,v=—20xy,w =100t
a, =5x%(~20y)—(20xy) x(—20x)+100t x0+0
= —100x2y+400x%y=300x%y
at point P(1,2,3),
a, =300x1? =600

oW oW  OW Ow
a, =U—+V—+W—+—
oX oy 0z oz

= 5x2 x0+(~20xy) x0+100t x0+100=100
Therefore the acceleration at P (1, 2, 3) whent=0.2 s
a=850i +600 ] +60k
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Solution We are to determine if the flow is rotational, and if so calculate the &-component of vorticity.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is axisymmetric about the x axis.

Analysis The velocity components are given by
Uu=——(r"-R u =0 u, =0
4u dx ( ) ' ¢ @)

If the vorticity is non-zero, the flow is rotational. So, we calculate the 8-component of vorticity,

— aur au — O_Ld_PZr — _Ld_P (2)

6-component of vorticity: ==
P y S oz or 4u dx 24 dx

Since the vorticity is non-zero, this flow is rotational. The vorticity is positive since dP/dx is negative. In this coordinate
system, positive vorticity is counterclockwise with respect to the positive @direction. This agrees with our intuition since in
the top half of the flow, @ points out of the page, and the rotation is counterclockwise. Similarly, in the bottom half of the
flow, @points into the page, and the rotation is clockwise.

Discussion  The vorticity varies linearly across the pipe from zero at the centerline to a maximum at the pipe wall.

4-110
Solution For the given velocity field for axisymmetric Poiseuille flow, we are to calculate the linear strain rates and
the shear strain rate.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is axisymmetric about the x axis.

Analysis The linear strain rates in the x direction and in the r direction are
Linear strain rates: E = u_ 0 &y = u, _ 0 (1)
X or

Thus there is no linear strain rate in either the x or the r direction. The shear strain rate in the x-r plane is

. 1(0 1 1 dP dP
Shear strain rate: £y =— i+a_u St P TS L 2
2 ox or) 2 4 dx 4 dx

Fluid particles in this flow have non-zero shear strain rate.

Discussion Since the linear strain rates are zero, fluid particles deform (shear), but do not stretch in either the horizontal
or radial directions.
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Solution For the axisymmetric Poiseuille flow velocity field we are to form the axisymmetric strain rate tensor and
determine if the x and r axes are principal axes.
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is axisymmetric about the x axis.

Analysis The axisymmetric strain rate tensor, &, is

- . . grr ng
Axisymmetric strain rate tensor: & :[ J (1)

We use the linear strain rates and the shear strain rate from the previous problem to generate the tensor,

0 r dP

Axisymmetric strain rate tensor: & = =l ogp 2
— 0

4;1&

Note that by symmetry &, = &. If the x and r axes were principal axes, the diagonals of &; would be non-zero, and the off-
diagonals would be zero. Here we have the opposite case, so the x and r axes are not principal axes.

Discussion  The principal axes can be calculated using tensor algebra.

4-112
Solution We are to determine the location of stagnation point(s) in a given velocity field.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The velocity components are
) -V x X2 +y? +b’
x-component of velocity: u= 1
P y L x* +2x%y? +2x°b° + y* - 2y’b® +b* @)
and
\/ 2 2 _p2
y-component of velocity: V= vy X+y b 2

L X' +2x%y? +2x°b* + y* —2y%b® +b*

Both u and v must be zero at a stagnation point. From Eq. 1, u can be zero only when x = 0. From Eq. 2, v can be zero either
when y = 0 or when x? + y? —-b? = 0. Combining the former with the result from Eq. 1, we see that there is a stagnation
point at (x,y) = (0,0), i.e. at the origin,

Stagnation point: u=0andv=0at(x,y)=(0,0) ‘ 3)

Combining the latter with the result from Eq. 1, there appears to be another stagnation point at (x,y) = (0,b). However, at
that location, Eq. 2 becomes

Vb 0 0
V= =— 4
7L b* —20%0% +b* 0 @

y-component of velocity:

This point turns out to be a singularity point in the flow. Thus, the location (0,b) is not a stagnation point after all.

Discussion  There is only one stagnation point in this flow, and it is at the origin.
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Solution We are to draw a velocity vector plot for a given velocity field.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.
Analysis We generate an array of x and y values in the given range and calculate u and v from Eqgs. 1 and 2

respectively at each location. We choose an appropriate scale factor for the vectors and then draw arrows to form the
velocity vector plot (Fig. 1).

Scale: 10 m/s

FIGURE 1 . i
Velocity vector plot for the ] v
vacuum cleaner; the scale 0.023 N F
factor for the velocity vectors .
is shown on the Iege%d. x and y I~ - T __— P
y values are in meters. The ]
vacuum cleaner inlet is at the 0.01 +—= — — —
pointx =0,y =0.02 m. .

E—» — — r ~ ~ ~—]

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
X

It is clear from the velocity vector plot how the air gets sucked into the vacuum cleaner from all directions. We also see that
there is no flow through the floor.

Discussion ~ We discuss this problem in more detail in Chap. 10.

4-114
Solution We are to calculate the speed of air along the floor due to a vacuum cleaner, and find the location of
maximum speed.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis At the floor, y = 0. Setting y = 0 in Eq. 2 of Problem 4-93 shows that v = 0, as expected — no flow through
the floor. Setting y = 0 in Eq. 1 of Problem 4-93 results in the speed along the floor,
Speed on the floor:
S Vx o xXP+b? Vx xE+b? VX )
7L x*+2x°h* +b*  zL (XZ +b2)2 7rL(x2 +b2)

We find the maximum speed be differentiating Eq. 1 and setting the result to zero,

du V| -2x 1
- = +
dx ~zL (x2+b2)2 x* +b?

Maximum speed on the floor:

-0 @

After some algebraic manipulation, we find that Eq. 2 has solutions at x = b and x = -b. It is at x = b and x = -b where we
expect the best performance. At the origin, directly below the vacuum cleaner inlet, the flow is stagnant. Thus, despite our
intuition, the vacuum cleaner will work poorly directly below the inlet.

Discussion  Try some experiments at home to verify these results!
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Solution For a given expression for u, we are to find an expression for v such that the flow field is incompressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the x-y plane.

Analysis The x-component of velocity is given as
x-component of velocity: U = ax + by +cx? —dxy Q)
In order for the flow field to be incompressible, the volumetric strain rate must be zero,

. . 1DV ou  ov
Volumetric strain rate: =g, e, e, = —+——+ =0
V Dt x oy Sz 2
i

Two-D

This gives us a necessary condition for v,

Necessary condition for v: ﬂ = _8_u ©)
oy OX
We substitute Eq. 1 into Eq. 3 and integrate to solve for v,
n__u
oy OX

v:I%dy=—jady—IZdey+Idydy+ f(X)

=—(a+2cx—dy)
Expression for v:

Note that we must add an arbitrary function of x rather than a simple constant of integration since this is a partial integration
with respect to y. v is a function of both x and y. The result of the integration is

2
Expression for v: v=-ay-2cxy+d y7+ f(x) @)

Discussion  We verify by plugging Egs. 1 and 4 into Eq. 2,

Volumetric strain rate: 1oV = a—u+ﬂ =a+2cx—dy—a—-2cx+dy=0 (5)
vV Dt ox oy

Since the volumetric strain rate is zero for any function f(x), Egs. 1 and 4 represent an incompressible flow field.
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Chapter 4 Fluid Kinematics
4-116
Solution For a given velocity field we are to determine if the flow is rotational or irrotational.
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis The velocity components for flow over a circular cylinder of radius r are
a’ a’
u, =V cose(l—r—zj u, =-Vsin 9(1+r—2j (1)

Since the flow is assumed to be two-dimensional in the r-@ plane, the only non-zero component of vorticity is in the z
direction. In cylindrical coordinates,

o(ru
Vorticity component in the z direction: g, = 1 M—% 2
ri or oo

We plug in the velocity components of Eg. 1 into Eq. 2 to solve for &,

2 2 2 2
¢, = llﬁ[w sin H[r +""—D+v sin 9[1—5‘—2}] - 3{—v sing+V 2 _sing+Vsing—v Lsin e} =0 (3
rior r r r r r

Hence, since the vorticity is everywhere zero, this flow is irrotational.

Discussion Fluid particles distort as they flow around the cylinder, but their net rotation is zero.

4-117
Solution For a given velocity field we are to find the location of the stagnation point.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis The stagnation point occurs when both components of
velocity are zero. We set u, = 0 and uy = 0 in Eg. 1 of the previous \Yj
problem, ——» Stagnation
—> point
a’ ) >
u, =V cose[l——z}o Either cos@ =0 orr* =a’ —>
r -
_ 2 _ _ o @) -
u, =-V sm6'(1+r—2j:0 Either sin@=0orr° =-a FIGURE 1

The stagnation point on the upstream half of
The second part of the u, condition in Eq. 1 is obviously impossible since  the flow field is located at the nose of the
cylinder radius a is a real number. Thus sin@ = 0, which means that 9= 0°  cylinder at r = a and 6= 180°.
or 180°. We are restricted to the left half of the flow (x < 0); therefore we
choose &= 180°. Now we look at the u, condition in Eq. 1. At &= 180° cosd= -1, and thus we conclude that r must equal
a. Summarizing,

Stagnation point: ‘r =a 6 =-180° 2
Or, in Cartesian coordinates,
Stagnation point: x=-a y=0 ©))

The stagnation point is located at the nose of the cylinder (Fig. 1).

Discussion  This result agrees with our intuition, since the fluid must divert around the cylinder at the nose.
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Chapter 4 Fluid Kinematics

Solution For a given stream function we are to generate an equation
for streamlines, and then plot several streamlines in the upstream half of

the flow field. 027
Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the 01 _
r-dplane. ]
Analysis y (M) o0 1
(a) The stream function is .
_ > -0.1 1

w=Vsing|r—— (1) ]

r i

O
N

First we multiply both sides of Eqg. 1 by r, and then solve the quadratic 04 03 02 -01 0

equation for r using the quadratic rule. This gives us an equation for r as a

function of 6, with y, a, and V as parameters, X (m)
FIGURE 1
. . E= \/,/,2 +4a®V/?%sin%@ Streamlines corresponding to flow over a
Equation for a streamline: r= N sing 2 circular cylinder. Only the upstream half of

the flow field is plotted.

(b) For the particular case in which V = 1.00 m/s and cylinder radius a = 10.0 cm, we choose various values of win Eq. 2,
and plot streamlines in the upstream half of the flow (Fig. 1). Each value of w corresponds to a unique streamline.

Discussion  The stream function is discussed in greater detail in Chap. 9.

4-119
Solution For a given velocity field we are to calculate the linear strain rates &, and &4 in the r-@plane.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis We substitute the equation of Problem 4-97 into that of Problem 4-91,
. . o au, a’
Linear strain rate in r direction: & = o 2V cos Hr—3 (1)
and
: . . I 1[ ou 1 a’ a’ a’
Linear strain rate in gdirection: Egg = F{a—g+ u,} = ?{—V cos 9[1+r—2j+v cose[l—r—zj:l = -2V cos HF (2

The linear strain rates are non-zero, implying that fluid line segments do stretch (or shrink) as they move about in
the flow field.

Discussion  The linear strain rates decrease rapidly with distance from the cylinder.
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Chapter 4 Fluid Kinematics
4-120
Solution We are to discuss whether the flow field of the previous problem is incompressible or compressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis For two-dimensional flow we know that a flow is incompressible if its volumetric strain rate is zero. In that
case,
Volumetric strain rate, incompressible 2-D flow in the x-y plane: 1oV =&uté, = 8—u+ﬂ =0 (1)
V Dt ox oy
We can extend Eq. 1 to cylindrical coordinates by writing
. . . . . 0 ou
Volumetric strain rate, incompressible 2-D flow in the r-@plane: 1oV Ent+Ep= Y +l —%+u, |=0 2
V Dt or r| o6
Plugging in the results of the previous problem we see that
. . ) . 1 DV a’ a’
Volumetric strain rate for flow over a circular cylinder: vV Dt =2V cosd—-—2V cosd—-=0 3)
r r

Since the volumetric strain rate is zero everywhere, the flow is incompressible.

Discussion In Chap. 9 we show that Eq. 2 can be obtained from the differential equation for conservation of mass.

4-121
Solution For a given velocity field we are to calculate the shear strain rate &

Assumptions 1 The flow is steady. 2 The flow is two-dimensional in the r-&plane.

Analysis We substitute the equation of Problem 4-97 into that of Problem 4-91,

Shear strain rate in r-@plane:

1} o(u,) 1lou
Ep=—|Ir—| = |+—
21 or\lr r 06

. 2 2
S 2 VSO yging® LY vsing[1-2 @
2| or r r r r

2 2 2
- Lvsin 9{1+3a—3—1+a—3} = sing2
2 rr r r r

which reduces to

2
. . -}
Shear strain rate in r-@plane: & =2V sin HF (2

The shear strain rate is non-zero, implying that fluid line segments do deform with shear as they move about in the
flow field.

Discussion  The shear strain rate decreases rapidly (as r*) with distance from the cylinder.
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Chapter 4 Fluid Kinematics

Fundamentals of Engineering (FE) Exam Problems

4-122

A steady, incompressible, two-dimensional velocity field is given by
V = (u,v) = (25-1.6x)i +(0.7+1.6y)]

where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The values of x and y at the stagnation
point, respectively, are

(@) 0.9375m, 0.375m (b) 1.563 m, -0.4375m (c)2.5m,0.7m (d)0.731m, 1.236 m
(e)-1.6m,0.8m

Answer (b) 1.563 m, —-0.4375 m

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).

u=2.5-1.6*x

v=0.7+1.6*y

u=0

v=0

4-123

Water is flowing in a 3-cm-diameter garden hose at a rate of 30 L/min. A 20-cm nozzle is attached to the hose which
decreases the diameter to 1.2 cm. The magnitude of the acceleration of a fluid particle moving down the centerline of the
nozzle is

(@) 9.81m/is>  (b)145m/s®  (c)25.4m/s*  (d)39.1m/is?  (e) 47.6 m/s?

Answer (e) 47.6 m/s’

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).
D1=0.03 [m]

V_dot=30 [L/min]*Convert(L/min, m"3/s)

DELTAx=0.20 [m]

D2=0.012 [m]

Al=pi*D1"2/4

A2=pi*D2"2/4

u_inlet=V_dot/Al

u_outlet=V_dot/A2

a_x=(u_outlet"2-u_inlet"2)/(2*DELTAX)
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Chapter 4 Fluid Kinematics
4-124

A steady, incompressible, two-dimensional velocity field is given by
V =(u,v) =(2.5-16x)i +(0.7+1.6y)]

where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The x-component of the acceleration
vector a, is

(a) 0.8y (b) —1.6x (c) 25x-1.6 (d) 2.56x — 4 (e) 2.56x + 0.8y

Answer (d) 2.56x — 4

"u=2.5-1.6x

v=0.7+1.6y

a_x=u(du/dx)+v(du/dy) = (2.5-1.6x)(-1.6)
a_x=-4+2.56x"

4-125

A steady, incompressible, two-dimensional velocity field is given by
V =(u,v) =(2.5-16X) +(0.7+1.6y)]

where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The x- and y-component of material
acceleration a, and a, at the point (x =1 m, y = 1 m), respectively, in m/s?, are

(a)-1.44,3.68 (b)-16,15  (c)3.1,-1.32  (d)2.56, -4 (€) -0.8, 1.6

Answer (a) —1.44, 3.68

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).

u=2.5-1.6*x

v=0.7+1.6*y

x=1

y=1

a_x=(2.5-1.6*x)*(-1.6) "a_x=u(du/dx)+v(du/dy)"

a_y=(0.7+1.6*y)*(1.6) "a_y=u(dv/dx)+v(dv/dy)"
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Chapter 4 Fluid Kinematics
4-126

A steady, incompressible, two-dimensional velocity field is given by
V =(u,v) =(0.65+1.7X)i +(1.3-1.7y)]

where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The y-component of the acceleration
vector ay is

(a) 1.7y (b) —1.7y (c)2.89y —2.21 (d)3.0x-2.73 (e) 0.84y + 1.42

Answer (c) 2.89y —2.21

"u=0.65+1.7x

v=1.3-1.7y

a_y=u(dv/dx)+v(dv/dy) = (1.3-1.7y)(-1.7)
a_y=-2.21+2.89y"

4-127

A steady, incompressible, two-dimensional velocity field is given by
V =(u,v) =(0.65+1.7X)i + (1.3-1.7y)]

where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The x- and y-component of material
acceleration a, and a, at the point (x =0 m, y = 0 m), respectively, in m/s?, are

() 0.37,-1.85 (b)-1.7,1.7  (c)1.105,-221 (d)1.7,-17  (e)0.65 1.3

Answer (c) 1.105, -2.21

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).

u=0.65+1.7*x

v=1.3-1.7*y

x=0

y=0

a_x=(0.65+1.7*x)*(1.7) "a_x=u(du/dx)+v(du/dy)"

a_y=(1.3-1.7*y)*(-1.7) "a_y=u(dv/dx)+v(dv/dy)"
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Chapter 4 Fluid Kinematics
4-128

A steady, incompressible, two-dimensional velocity field is given by
V =(u,v) =(0.65+1.7X)i +(1.3-1.7y)]

where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The x- and y-component of velocity u
and v at the point (x =1 m, y = 2 m), respectively, in m/s, are

() 0.54,-2.31 (b)-1.9,0.75  (c)0.598, —2.21 (d)2.35,-2.1 () 0.65, 1.3

Answer (d) 2.35, -2.1

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).

u=0.65+1.7*x

v=1.3-1.7*y

x=1

y=2

4-129
The actual path traveled by an individual fluid particle over some period is called a
(a) Pathline (b) Streamtube  (c) Streamline  (d) Streakline  (e) Timeline

Answer (a) Pathline

4-130
The locus of fluid particles that have passed sequentially through a prescribed point in the flow is called a
(a) Pathline (b) Streamtube  (c) Streamline  (d) Streakline () Timeline

Answer (d) Streakline

4-131
A curve that is everywhere tangent to the instantaneous local velocity vector is called a
(a) Pathline (b) Streamtube  (c) Streamline  (d) Streakline  (e) Timeline

Answer (c) Streamline
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Chapter 4 Fluid Kinematics
4-132

An array of arrows indicating the magnitude and direction of a vector property at an instant in time is called a

(a) Profiler plot (b) Vector plot  (c) Contour plot (d) Velocity plot (e) Time plot

Answer (b) Vector plot

4-133

The CFD stands for
(a) Compressible fluid dynamics  (b) Compressed flow domain (c) Circular flow dynamics
(d) Convective fluid dynamics (e) Computational fluid dynamics

Answer (e) Computational fluid dynamics

4-134
Which one is not a fundamental type of motion or deformation an element may undergo in fluid mechanics?

(a) Rotation (b) Converging (c) Translation  (d) Linear strain (e) Shear strain

Answer (b) Converging

4-135
A steady, incompressible, two-dimensional velocity field is given by
V =(u,v) =(2.5-1.6X)i +(0.7+1.6y)]
wherle the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The linear strain rate in the x-direction
ins—is

(@) -1.6 (b) 0.8 () 1.6 (d) 2.5 (e) -0.875

Answer (a) —1.6

"u=2.5-1.6x
v=0.7+1.6y
epsilon_xx=du/dx=-1.6"
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4-136

A steady, incompressible, two-dimensional velocity field is given by
V =(u,v) =(2.5-16x)i +(0.7+1.6y)]

where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The shear strain rate in s™ is
(@-16 (b) 1.6 ()25 (d) 0.7 (e)0

Answer (e) 0

"u=2.5-1.6x
v=0.7+1.6y
epsilon_xy=1/2(du/dy+dv/dx)=1/2(0+0)=0"

4-137

A steady, two-dimensional velocity field is given by
V =(u,v) = (2.5-1.6x)i +(0.7+0.8y)]
where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The volumetric strain rate in s is

(@) 0 (b) 3.2 (c) -0.8 (d) 0.8 () -1.6

Answer (c) -0.8

"u=2.5-1.6x

v=0.7+0.8y

Volumetric strain rate = epsilon_xx+epsilon_yy
epsilon_xx=du/dx=-1.6

epsilon_yy=dv/dy=0.8

Volumetric strain rate =-1.6 + 0.8 = -0.8"

4-138
If the vorticity in a region of the flow is zero, the flow is

(a) Motionless  (b) Incompressible (c) Compressible (d) Irrotational  (e) Rotational

Answer (d) Irrotational

4-139
The angular velocity of a fluid particle is 20 rad/s. The vorticity of this fluid particle is
(a) 20 rad/s (b) 40 rad/s (c) 80 rad/s (d) 10 rad/s (e) 5 rad/s

Answer (b) 40 rad/s
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4-140

A steady, incompressible, two-dimensional velocity field is given by
V = (u,v) = (0.75+1.2x)i +(2.25-1.2y)]
where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The vorticity of this flow is

(@) 0 (b) 1.2yk (c) —1.2yk (d) yk (e) —1.2xyk

Answer (a) 0

"u=0.75+1.2x
v=2.25-1.2y
zeta=(dv/dx-du/dy)k=(0-0)k=0"

4-141

A steady, incompressible, two-dimensional velocity field is given by
V=(u,v) = @2xy+Di +(-y>-0.6)]
where the x- and y-coordinates are in meters and the magnitude of velocity is in m/s. The angular velocity of this flow is

(@) 0 (b) —2yk (c) 2yk (d) - 2xk (e) —xk

Answer (e) — xk

"u=2xy+1

v=-y"2-0.6
zeta=(dv/dx-du/dy)k=(0-2x)k=-2xk
omega=zeta/2=-xk"

4-142
A cart is moving at a constant absolute velocity \7Cart =5km/h to the right. A high-speed jet of water at an absolute velocity

of \7jet =15km/h to the right strikes the back of the car. The relative velocity of the water is

(a) 0 km/h (b) 5 km/h (c) 10 km/h (d) 15 km/h () 20 km/h

Answer (c) 10 km/h

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values).

V_cart=5 [km/h]

V_jet=15 [km/h]

V_r=V_jet-V_cart

R>adaS4
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