Geometry

Unit 4
 Congruent Triangles

Name:

Geometry
 Chapter 4 - Congruent Triangles

***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. ***

1. \qquad (4-1) Classifying Triangles -Day 1 Page 180-181 \# 1-4, 7-10, 22-29, 32, 33
2. \qquad (4-2) Angles of Triangles -Day 1 Page 189 \# 11-38, 47
3. \qquad (4-2) Angles of Triangles - Day 2 4-2 Practice Worksheet
4. \qquad (4-6) Isosceles Triangles - Day 1 Page 219-220 \# 9-28, 35-37
\qquad (4-6) Isosceles Triangles - Day 2 4-6 Practice Worksheet
5. \qquad 4-1, 4-2, 4-6 Test
6. \qquad (4-3) Congruent Triangles - Day 1 Page 195\#9-20, 22-25, 29-32
7. \qquad (4-3) Congruent Triangles - Day 2 4-3 Practice Worksheet
8. \qquad (4-4) Proving Congruence - SSS, SAS - Day 1 Page 204-205 \# 10, 11, 14-25
9. \qquad (4-4) Proving Congruence - SSS, SAS - Day 2 4-4 Practice Worksheet
10. \qquad (4-5) Proving Congruence - ASA, AAS - Day 1 Page 211 \# 9-20, 25-28
11. \qquad (4-5) Proving Congruence - ASA, AAS - Day 2 4-5 Practice Worksheet
12. \qquad Chapter 4 Review WS

Section 4-1: Classifying Triangles Notes

Parts of a Triangle:

Triangle - a three-sided polygon
Name -

Sides -

Vertices -

Angles -

Classifying Triangles by Angles:
Acute Δ
Obtuse Δ
Right Δ

Equiangular Δ -

Classifying Triangles by Sides:

Scalene Δ
Isosceles Δ

Equilateral Δ

Example \#1: Identify the indicated type of triangle in the figure.
a.) isosceles triangles
b.) scalene triangles

Example \#2: Find x and the measure of each side of equilateral triangle RST.

Example \#3: Find $x, J M, M N$, and $J N$ if $\triangle J M N$ is an isosceles triangle with $\overline{J M} \cong \overline{M N}$.

CRITICAL THINKING

1) $\overline{K L}$ is a segment representing one side of isosceles right triangle $K L M$, with $\kappa(2,6)$, and $L(4,2) . \angle K L M$ is a right angle, and $\overline{K L} \cong \overline{L M}$. Describe how to find the coordinates of vertex M and name these coordinates.

Angles of Triangles Section 4-2
 Angle Sum Activity

Draw a large triangle on your paper. (Use half the sheet of $8 \frac{1}{2} \times 11$ paper)

STEP 1

Write a, b and c in the interiors of the three angles of the triangle.

STEP 2

Carefully cut out the triangle.

STEP 3

Tear off the three angles.

Arrange the three angles in such a way as to show their sum.

CONJECTURE: Sum of the angles of any triangle is

\qquad

Exterior Angle Activity

Draw a large triangle on your paper. (Use half the sheet of $81 / 2 \times 11$ paper). Extend one side of the triangle to form an exterior angle. (See diagram in step 1)

STEP 1

Write a, b, and c in the interiors of the three angles, and d in the exterior angle formed.

STEP 2

Carefully cut out the triangle and extended side as shown in the diagram.

STEP 3

Tear off angles a and c only. Arrange angles a and c in such a way as to show their relationship to angle d.

CONJECTURE: The measure of the exterior angle of any triangle is

Section 4-2: Angles of Triangles Notes

Angle Sum Theorem:

- The sum of the measures of the angles of a
\qquad is \qquad .

Example \#1: Find the missing angle measures.
a.)

b.)

Third Angle Theorem:

- If two angles of one triangle are \qquad to two angles of a second triangle, then the third angles of the triangles are \qquad .

Exterior Angle Theorem:

- An exterior angle is formed by one side of a \qquad and the extension of another \qquad .
- Remote interior angles are the angles of a triangle that are not \qquad to a given \qquad angle.
- The measure of an exterior angle of a triangle is \qquad to the sum of the measures of the two \qquad interior angles.

Example \#2: Find the measure of each of the following angles.
a.)

b.)

$m \angle A=$

$$
m \angle D C B=
$$

CRITICAL THINKING

1) Find the Error: Najee and Kara are discussing the Exterior Angle Theorem.

Who is correct? Explain your reasoning.
2) $\overrightarrow{B A}$ and $\overrightarrow{B C}$ are opposite rays. The measures of $\angle 1, \angle 2$, and $\angle 3$ are in a 4:5:6 ratio. Find the measure of each angle.

Date: \qquad

Section 4-6: Isosceles Triangles
 Notes

Isosceles Triangle: A triangle with at least \qquad sides congruent.

Isosceles Triangle Theorem: If two sides of a triangle are \qquad , then the angles opposite those sides are \qquad .

Ex:

Example \#1: If $\overline{D E} \cong \overline{C D}, \overline{B C} \cong \overline{A C}$, and $m \angle C D E=120$, what is the measure of $\angle B A C$?

Theorem 4.10: If two angles of a are congruent, then the sides opposite those angles are
\qquad -.
Ex:

Example \#2:

a.) Name all of the congruent angles.
b.) Name all of the congruent segments.

Corollary 4.3: A triangle is \qquad if and only if it is \qquad .

Corollary 4.4: Each angle of an equilateral triangle measures
\qquad .

Example \#3: $\triangle E F G$ is equilateral, and $\overline{E H}$ bisects $\angle E$.

a.) Find $m \angle 1$ and $m \angle 2$.
b.) Find x.

CRITICAL THINKING "-

1) In the figure, $\triangle A B C$ is isosceles, $\triangle D C E$ is equilateral, and $\triangle F C G$ is isosceles. Find the measure of the five numbered angles at vertex C.

\qquad

Section 4-3: Congruent Triangles
 Notes

Congruent Triangles: triangles that are the same \qquad and \qquad

- Each triangle has three \qquad and three \qquad .
- If all of the corresponding parts of two triangles are
\qquad then the triangles are \qquad .

Congruent Triangles:

Corresponding Congruent Angles:

Corresponding Congruent Sides:

Definition of Congruent Triangles (CPCTC):

- Two triangles are congruent if and only if their corresponding parts are
\qquad .
- CPCTC - Corresponding parts of congruent triangles are congruent

Example \#1: In the following figure, $Q R=12, R S=23, Q S=24, R T=12$, $T V=24$, and $R V=23$.

Properties of Triangle Congruence:

Reflexive	Symmetric	Transitive

Example \#2: If $\Delta W X Z \cong \Delta S T J$, name the congruent angles and congruent sides. Angles -

Sides -

1) Is the following always, sometimes, or never true? Give a counterexample if you answer sometimes or never:

Two triangles with corresponding congruent angles are congruent.
2) The vertices of $\triangle W X Z$ are $W(-5,7), X(-8,6)$, and $Z(-3,3)$. The vertices of $\triangle A B C$ are $A(5,7), B(8,6)$, and $C(3,3)$. Graph the two triangles and verify that $\triangle W X Z \cong \triangle A B C$

Date: \qquad

Section 4-4: Proving Congruence - SSS, SAS Notes

Side-Side-Side Congruence: If the \qquad of one triangle are congruent to the sides of a second triangle, then the triangles are \qquad .

Abbreviation:

Side-Angle-Side Congruence: If two sides and the included \qquad of one triangle are congruent to two \qquad and the included angle of another triangle, then the triangles are \qquad .

Abbreviation:

Example \#1: Write a proof.
Given: $\overline{E I} \cong \overline{F H}, \overline{F E} \cong \overline{H I}$, and G is the midpoint of both $\overline{E I}$ and $\overline{F H}$.
Prove: $\triangle F E G \cong \triangle H I G$

Example \#2: Write a proof.

Given: $\overline{D E}$ and $\overline{B C}$ bisect each other.
Prove: $\triangle D G B \cong \triangle E G C$

Example \#3: Write a proof.
Given: $\overline{A B} \cong \overline{A C}$ and $\overline{B Y} \cong \overline{C Y}$
Prove: $\triangle B Y A \cong \triangle C Y A$

CRITICAL THINKING

1) Graph triangles $\triangle D G B$ and $\triangle E F C$. Determine whether they are congruent. $D(2,5), G(1,1), B(5,2), E(-3,0), F(-7,1), C(-4,4)$.

Date: \qquad

Section 4-5: Proving Congruence - ASA, AAS
 Notes

Angle-Side-Angle Congruence: If two
\qquad and the included \qquad of one triangle are congruent to two angles and the included side of another triangle, then the triangles are \qquad .

Abbreviation:

Angle-Angle-Side Congruence: If two angles and a non-included side of one triangle are congruent to the corresponding two \qquad and a side of a second triangle, then the two triangles are

\qquad .

Abbreviation:

Example \#1: Write a two-column proof.
Given: $\overline{A B}$ bisects $\angle C A D$
$\angle 1 \cong \angle 2$
Prove: $\triangle C A B \cong \triangle D A B$

Example \#2: Write a two-column proof.

Given: $\overline{A D} \| \overline{C B}$
$\angle A \cong \angle C$
Prove: $\triangle D G B \cong \triangle E G C$

Example \#3: Write a two-column proof.
Given: $\angle V \cong \angle S$

$$
\overline{T V} \cong \overline{Q S}
$$

Prove: $\overline{V R} \cong \overline{S R}$

1) Explain the difference between the AAS Postulate and the ASA Postulate.
2) Is there an ASS Postulate? Give an example or counterexample.
