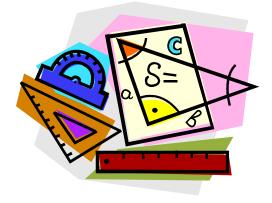
Geometry Unit 4 Congruent Triangles



Name:____

Geometry Chapter 4 – Congruent Triangles

***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. ***

- 1.____ (4-1) Classifying Triangles Day 1 Page 180-181 # 1-4, 7-10, 22-29, 32, 33
- 2. ____ (4-2) Angles of Triangles –Day 1 Page 189 # 11-38, 47
- 3. ____ (4-2) Angles of Triangles Day 2 4-2 Practice Worksheet
- 4. (4-6) Isosceles Triangles Day 1 Page 219 220 # 9 28, 35 37
- 5. (4-6) Isosceles Triangles Day 2 4-6 Practice Worksheet
- 6. _____**4-1, 4-2, 4-6 Test**
- 7. (4-3) Congruent Triangles Day 1 Page 195 # 9 20, 22 25, 29 32
- 8. ____ (4-3) Congruent Triangles Day 2 4-3 Practice Worksheet
- 9. (4-4) Proving Congruence SSS, SAS Day 1 Page 204 205 # 10, 11, 14 25
- 10. ____ (4-4) Proving Congruence SSS, SAS Day 2 4-4 Practice Worksheet
- **11.** (4-5) Proving Congruence ASA, AAS Day 1 Page 211 # 9 20, 25 28
- 12. ____ (4-5) Proving Congruence ASA, AAS Day 2 4-5 Practice Worksheet
- 13. ____ Chapter 4 Review WS

Section 4 – 1: Classifying Triangles Notes

Parts of a Triangle:

Triangle – a three-sided polygon

Name –

Sides –

Vertices –

Angles –

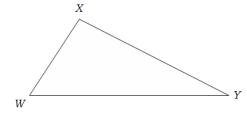
<u>Classifying Triangles by Angles</u>:

Acute Δ

Obtuse Δ

 $\textbf{Right}\,\Delta$

Equiangular Δ -



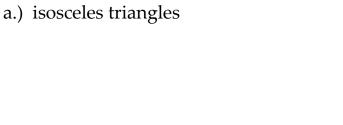
Classifying Triangles by Sides:

Scalene Δ

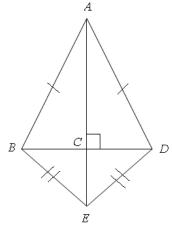
Isosceles Δ

Equilateral Δ

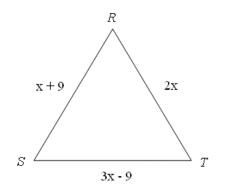
Example #1: Identify the indicated type of triangle in the figure.



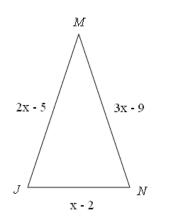
b.) scalene triangles



Example #2: Find *x* and the measure of each side of equilateral triangle *RST*.



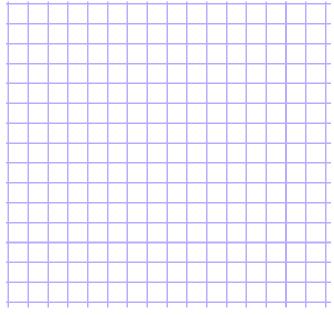
Example #3: Find *x*, *JM*, *MN*, and *JN* if ΔJMN is an isosceles triangle



with $\overline{JM} \cong \overline{MN}$.

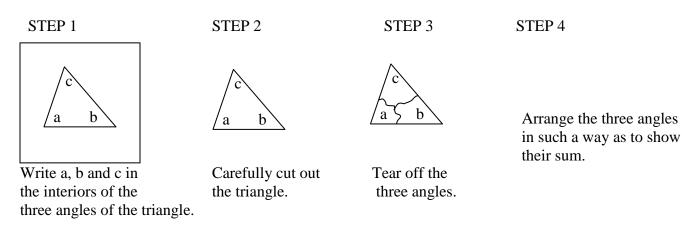
CRITICAL THINKING

1) \overline{KL} is a segment representing one side of isosceles right triangle *KLM*, with $\kappa(2, 6)$, and L(4, 2). $\angle KLM$ is a right angle, and $\overline{KL} \cong \overline{LM}$. Describe how to find the coordinates of vertex *M* and name these coordinates.



Angles of Triangles Section 4-2 Angle Sum Activity

Draw a large triangle on your paper. (Use half the sheet of 8 ½ x 11 paper)

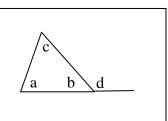


CONJECTURE: Sum of the angles of any triangle is _____

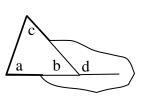
Exterior Angle Activity

Draw a large triangle on your paper. (Use half the sheet of $8\frac{1}{2} \times 11$ paper). Extend one side of the triangle to form an exterior angle. (See diagram in step 1)

STEP 1

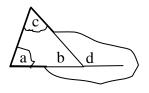


Write a, b, and c in the interiors of the three angles, and d in the exterior angle formed. STEP 2



Carefully cut out the triangle and extended side as shown in the diagram.

STEP 3



Tear off angles a and c only. Arrange angles a and c in such a way as to show their relationship to angle d.

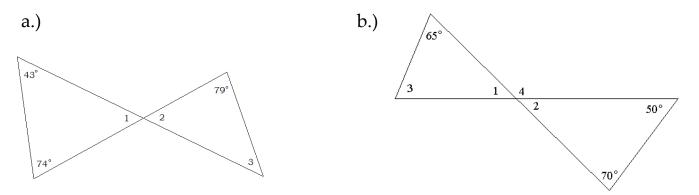
CONJECTURE: The measure of the exterior angle of any triangle is

Date: _____

Section 4 – 2: Angles of Triangles Notes

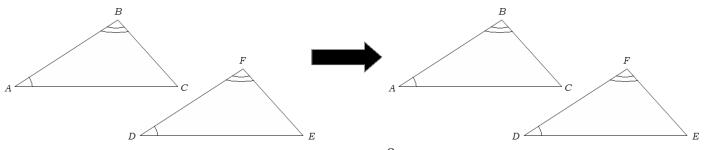


Example #1: Find the missing angle measures.



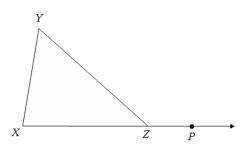
Third Angle Theorem:

If two angles of one triangle are ______ to two angles of a second triangle, then the third angles of the triangles are ______.

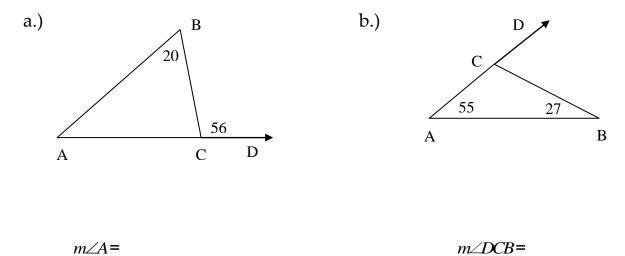


Exterior Angle Theorem:

- An exterior angle is formed by one side of a ______ and the extension of another _____.
- Remote interior angles are the angles of a triangle that are not _________
 to a given ________ angle.
- The measure of an exterior angle of a triangle is ______ to the sum of the measures of the two ______ interior angles.



Example #2: Find the measure of each of the following angles.



<u>CRITICAL THINKING</u>

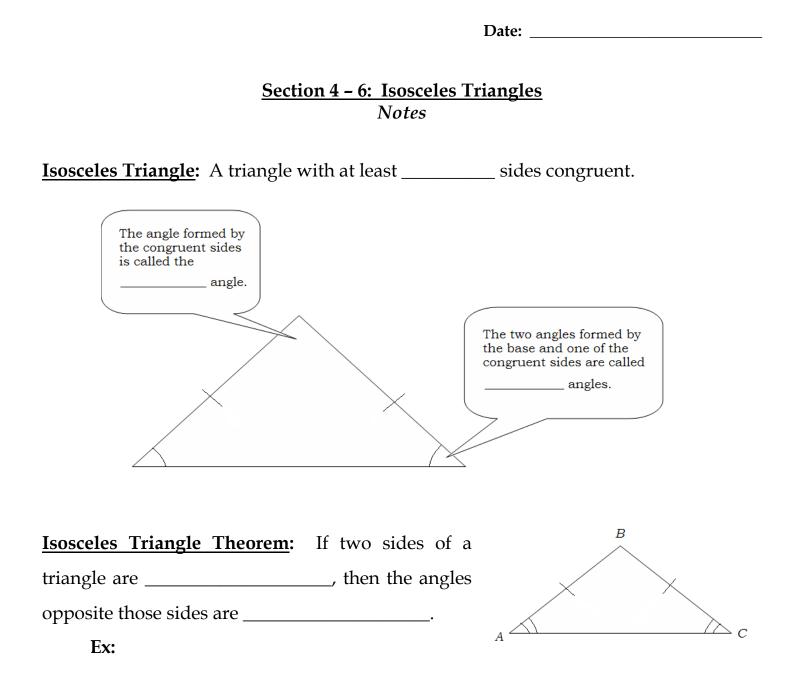
1) Find the Error: Najee and Kara are discussing the Exterior Angle Theorem.

2 3 4	Najee	Kara
	m∠1 + m∠2 = m∠4	m∠1 + m∠2 + m∠4 = 180

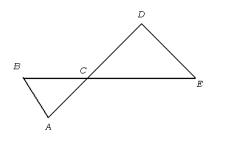
Who is correct? Explain your reasoning.

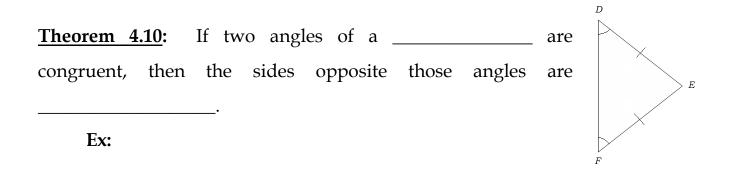
2) \overrightarrow{BA} and \overrightarrow{BC} are opposite rays. The measures of $\angle 1$, $\angle 2$, and $\angle 3$ are in a 4:5:6 ratio. Find the measure of each angle.

1 2 3

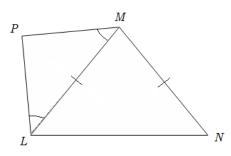


Example #1: If $\overline{DE} \cong \overline{CD}$, $\overline{BC} \cong \overline{AC}$, and $m\angle CDE = 120$, what is the measure of $\angle BAC$?

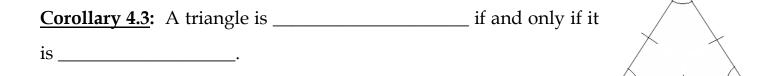




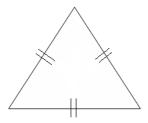
Example #2:



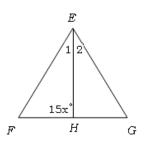
- a.) Name all of the congruent angles.
- b.) Name all of the congruent segments.



Corollary 4.4: Each angle of an equilateral triangle measures



Example #3: $\triangle EFG$ is equilateral, and \overline{EH} bisects $\angle E$.



- a.) Find $m \angle 1$ and $m \angle 2$.
- b.) Find x.

1) In the figure, $\triangle ABC$ is isosceles, $\triangle DCE$ is equilateral, and $\triangle FCG$ is isosceles. Find the measure of the five numbered angles at vertex *C*.

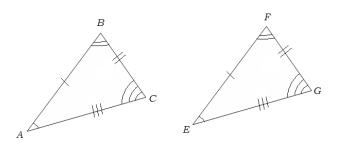
2/3 4 \5 π.

Date: _____

Section 4 – 3: Congruent Triangles Notes

<u>Congruent Triangles</u>: triangles that are the same _____ and _____

- Each triangle has three _____ and three _____.
- If all ______ of the corresponding parts of two triangles are ______, then the triangles are ______.



Congruent Triangles:

Corresponding Congruent Angles:

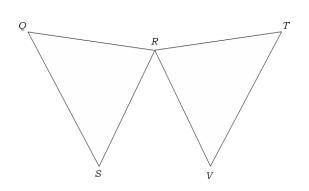
Corresponding Congruent Sides:

Definition of Congruent Triangles (CPCTC):

• Two triangles are congruent if and only if their corresponding parts are

[•] *CPCTC* – Corresponding parts of congruent triangles are congruent

Example #1: In the following figure, *QR* = 12, *RS* = 23, *QS* = 24, *RT* = 12, *TV* = 24, and *RV* = 23.



Name the corresponding congruent angles and sides.

Name the congruent triangles.

Properties of Triangle Congruence:

<u>Reflexive</u>	<u>Symmetric</u>	<u>Transitive</u>
$ \begin{array}{c} K \\ $	K L Q R Q Q R Q Q R Q	$ \begin{array}{c} K \\ \downarrow \\ J \end{array} $ $ \begin{array}{c} Q \\ P \\ P \end{array} $ $ \begin{array}{c} Y \\ X \\ X \end{array} $ $ \begin{array}{c} Y \\ Y \\ X \end{array} $ $ \begin{array}{c} Z \\ X \end{array} $

Example #2: If $\Delta WXZ \cong \Delta STJ$, name the congruent angles and congruent sides.

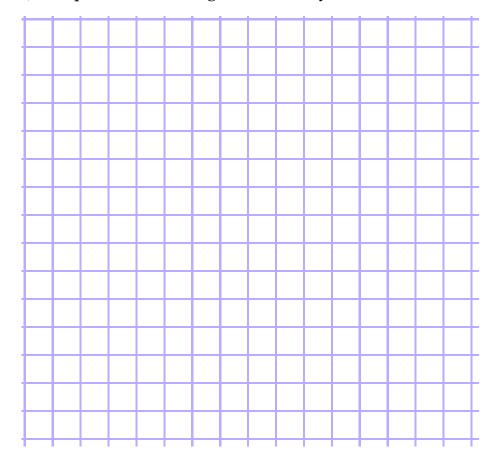
Angles -

Sides –

1) Is the following always, sometimes, or never true? Give a counterexample if you answer sometimes or never:

Two triangles with corresponding congruent angles are congruent.

2) The vertices of ΔWXZ are W(-5, 7), X(-8, 6), and Z(-3, 3). The vertices of ΔABC are A(5, 7), B(8, 6), and C(3, 3). Graph the two triangles and verify that $\Delta WXZ \cong \Delta ABC$

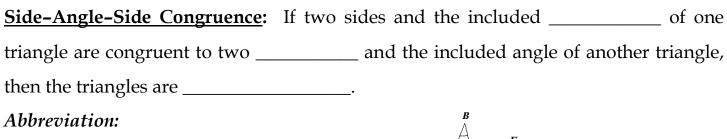


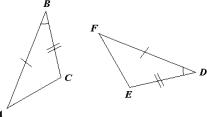
Date: _____

Section 4 – 4: Proving Congruence – SSS, SAS Notes

 Side-Side Congruence:
 If the ______ of one triangle are congruent to the sides of a second triangle, then the triangles are ______.

 Abbreviation:
 z

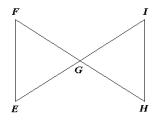




Example #1: Write a proof.

Given: $\overline{EI} \cong \overline{FH}$, $\overline{FE} \cong \overline{HI}$, and *G* is the midpoint of both \overline{EI} and \overline{FH} .

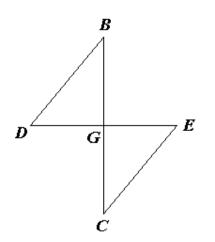
Prove: ∆*FEG*≅∆*HIG*



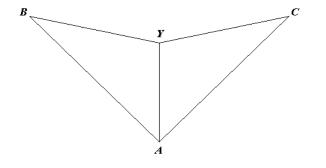
Example #2: Write a proof.

Given: \overline{DE} and \overline{BC} bisect each other.

Prove: $\triangle DGB \cong \triangle EGC$

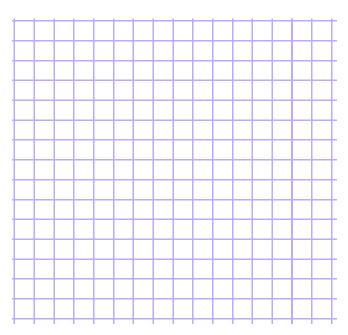


Example #3: Write a proof. *Given:* $\overline{AB} \cong \overline{AC}$ and $\overline{BY} \cong \overline{CY}$ *Prove:* $\Delta BYA \cong \Delta CYA$



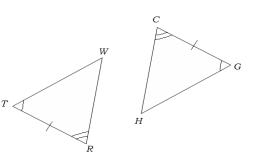
CRITICAL THINKING

1) Graph triangles Δ*DGB* and Δ*EFC*. Determine whether they are congruent. *D* (2, 5), *G* (1, 1), *B* (5, 2), *E* (-3, 0), *F* (-7, 1), *C* (-4, 4).



Section 4 – 5: Proving Congruence – ASA, AAS Notes

Angle-Side-Angle Congruence: If two ______ and the included ______ of one triangle are congruent to two angles and the included side of another triangle, then the triangles are ______.



Abbreviation:

<u>Angle-Angle-Side Congruence</u>: If two angles and a non-included side of one triangle are congruent to the corresponding two ______ and a side of a second triangle, then the two triangles are

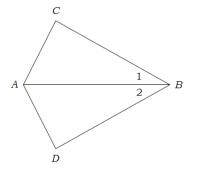


Abbreviation:

Example #1: Write a two-column proof.

Given:
$$\overline{AB}$$
 bisects $\angle CAD$
 $\angle 1 \cong \angle 2$

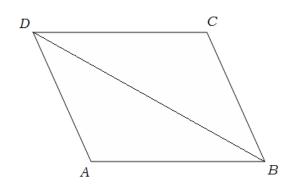
Prove: $\triangle CAB \cong \triangle DAB$



Example #2: Write a two-column proof.

Given: $\overline{AD} \mid\mid \overline{CB}$ $\angle A \cong \angle C$

Prove: $\triangle DGB \cong \triangle EGC$

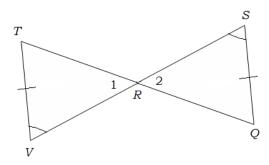


Example #3: Write a two-column proof.

Given:
$$\angle V \cong \angle S$$

 $\overline{TV} \cong \overline{QS}$

Prove: $\overline{VR} \cong \overline{SR}$



1) Explain the difference between the AAS Postulate and the ASA Postulate.

2) Is there an ASS Postulate? Give an example or counterexample.