
ME 380 Chapter 4 HW February 27, 2012

Chapter 4 HW Solution

Review Questions.

1. Name the performance specification for first order systems. Time constant τ .

2. What does the performance specification for a first order system tell us? How fast the system responds.

5. The imaginary part of a pole generates what part of the response? The un-decaying sinusoidal part.

6. The real part of a pole generates what part of the response? The decay envelope.

8. If a pole is moved with a constant imaginary part, what will the responses have in common?
Oscillation frequency.

9. If a pole is moved with a constant real part, what will the responses have in common? Decay envelope.

10. If a pole is moved along a radial line extending from the origin, what will the responses have in
common? Damping ratio (and % overshoot).

13. What pole locations characterize (1) the underdamped system, (2) the overdamped system, and
(3) the critically damped system?

1. Complex conjugate pole locations.

2. Real (and separate) pole locations.

3. Real identical pole locations.

14. Name two conditions under which the response generated by a pole can be neglected.

1. The pole is “far” to the left in the s-plane compared with the other poles.

2. There is a zero very near to the pole.

Problems.

Problem 2(a). This is a 1st order system with a time constant of 1/5 second (or 0.2 second). It also has a DC gain
of 1 (just let s = 0 in the transfer function).

The input shown is a unit step; if we let the transfer function be called G(s), the output is input × transfer function.
The resulting response function C(s) is #9 in my Laplace transform table, or you can expand the result in partial
fractions,

C(s) =
1

s
G(s) =

5

s(s+ 5)
=

1

s
− 1

s+ 5
(1)

Either way, the resulting response c(t) is

c(t) = 1− e−5t (2)

The time constant, rise time, and 2% settling time are:

τ = 1/5 sec

Tr = 2.2τ = 0.44 sec

2% Ts = 4τ = 0.8 sec

(3)
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Figure 1: Step response
of first-order system with
τ = 0.2 sec.

Problem 3(a). Same system as above, but use MATLAB step

function to find step response. I did something like:

>> numG = [0 5]; % Define TF numerator

>> denG = [1 5]; % Define TF denominator

>> G = tf(num,den); % Define transfer function

>> [y,t] = step(G); % Find step response

>> plot(t,y); % Plot step response

The step response is shown in Figure 1 at right. At 0.2 seconds
the response is 63% of the way to the final value. Hopefully
the rise time and settling time are also about right.

Problem 8. (b) The TF is

T (s) =
5

(s+ 3)(s+ 6)
=⇒ poles at s = −3, −6

and the poles are shown below.

The general form of the step response will be

y(t) = A+Be−3t + Ce−6t (4)

and it will be OVERDAMPED.

(d) This TF is

T (s) =
20

s2 + 6s+ 144
=⇒ poles at s = −3± j11.619

and the poles are shown below.

The general form of the step response will be

y(t) = A+Be−3t cos(11.619t+ φ) (5)

and it will be UNDERDAMPED.

Problem 9. To find the poles of

T (s) =
s2 + 2s+ 2

s4 + 6s3 + 4s2 + 7s+ 2
(6)

one way is to use the MATLAB “roots” function:
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>> roots([1 6 4 7 2])

ans = -5.4917

-0.0955 + 1.0671i

-0.0955 - 1.0671i

-0.3173

So the poles of the given transfer function are:

s = −0.0955± j1.0671, −0.3173, −5.4917 (7)

Note that poles (roots) always occur as real numbers or complex conjugates. This is why all systems are “made up”
of first and second-order subsystems.
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Problem 18. The standard form of a second-order transfer function denominator is

s2 + 2ζωns+ ω2
n

By equating coefficients and solving for damping ratio ζ and (undamped) natural frequency ωn, we get:

(b) (s+ 3)(s+ 6) = s2 + 9s+ 18 from which we find ωn =
√

18 = 4.24 rad/s, ζ = 1.06 (overdamped)

(d) s2 + 6s+ 144 from which we find ωn =
√

144 = 12 rad/s, ζ = 0.25 (underdamped)

Problem 20(c). Similar approach to the previous problem. The transfer function now is

T (s) =
1.05× 107

s2 + 1.6× 103s+ 1.05× 107
=

K

s2 + 2ζωns+ ω2
n

(8)

The natural frequency is

ωn =
√

1.05× 107 = 3, 240 rad/s (516 Hz) (9)

The damping ratio is

2ζωn = 1.6× 103 =⇒ ζ =
1.6× 103

2ωn
= 0.247 (10)

Settling time, peak time, rise time, and % overshoot: these are all functions of ζ and ωn.

Settling time Ts =
4

ζωn
= 0.005 sec

Peak time Tp =
π

ωd
=

π

ωn

√
1− ζ2

= 0.001 sec

Rise time Tr ≈
1.27

ωn
(Fig. 4.16) = 0.00039 sec

% Overshoot = exp

(
−ζπ√
1− ζ2

)
× 100 = 45%

(11)

(12)

(13)

(14)

Problem 21(c). The unit step response for the system of Problem 20(c) is shown in Figure 2 on the next page,
with the response characteristics indicated. I got them all from the response data rather than the expressions of
Problem 20(c).

4



ME 380 Chapter 4 HW February 27, 2012

0 1 2 3 4 5 6 7
x 10 3

0

0.5

1

1.5

Time (sec)

R
es

po
ns

e

0.1

0.9

rise time 0.00039 sec

peak time 0.001 sec

44.9% overshoot

settling time 0.005 sec

Figure 2: Unit step response of Problem 21(c) using MATLAB. All
response characteristics obtained from data, not analytical expres-
sions. They seem to agree quite well.

Problem 23. For the following second-order response specs, find the corresponding pole locations.

(a) Overshoot of 12% means ζ = 0.55, and Ts =
4

ζωn
= 0.6 sec means ζωn = 6.67, so ωn = 12.1 rad/s. So the pole

location is

s = −ζωn ± jωn

√
1− ζ2 ≈ −6.65 + j10.1

(b) Overshoot of 10% means ζ = 0.6, and Tp =
π

ωd
= 5 sec means ωd = 0.628 sec, and ωn = ωd/

√
1− ζ2 = 0.78. So

the pole location is

s = −ζωn ± jωd ≈ −0.47± j0.628 (15)

(c) Settling time Ts =
4

ζωn
= 7 sec means ζωn = 0.57. Peak time Tp =

π

ωd
= 3 sec means ωd ≈ 1.05 rad/s. So like

part (b), the pole location is

s = −ζωn ± jωd ≈ −0.57± j1.05 (16)

Problem 29(c). From Figure P4.9(c), the step response has 40% overshoot, hence the damping ratio ζ ≈ 0.3.
The peak time Tp is about 4 sec, so the damped frequency ωd ≈ 0.78 rad/s. Then the undamped natural frequency

ωn = ωd/
√

1− ζ2 ≈ 0.82 rad/s. Finally, the DC gain is 1. So the transfer function is

ω2
n

s2 + 2ζωns+ ω2
n

=
0.67

s2 + 0.49s+ 0.67

5



ME 380 Chapter 4 HW February 27, 2012

Problem 30. This is on pole-zero cancellation. As I indicated, this problem was poorly posed!! To change the
“response functions” into “transfer functions,” simply remove the “s” from the denominator of each function (this is
removing the unit step input). Then the C(s) becomes G(s) (a better letter to use for a transfer function).

I decided I just wanted for you to plot the unit step response of each original system plus that of the “cancelled” system
on the same plot (four plots: two responses on each plot). Adjust the numerator coefficient of the “cancelled” system
so the “DC Gain” of the “cancelled” system is the same as the original. The four TFs (original on left; cancelled on
right) are:

(a) G(s) =
s+ 3

(s+ 2)(s2 + 3s+ 10)
=

s+ 3

(s+ 2)(s+ 1.5± j2.8)
, Gc(s) =

1.5

s2 + 3s+ 10

(b) G(s) =
s+ 2.5

(s+ 2)(s2 + 4s+ 20)
=

s+ 3

(s+ 2)(s+ 2± j4)
, Gc(s) =

1.25

s2 + 4s+ 20

(c) G(s) =
s+ 2.1

(s+ 2)(s2 + 2s+ 5)
=

s+ 3

(s+ 2)(s+ 0.5± j2.2)
, Gc(s) =

1.05

s2 + 2s+ 5

(d) G(s) =
s+ 2.01

(s+ 2)(s2 + 5s+ 20)
=

s+ 3

(s+ 2)(s+ 2.5± j3.7)
, Gc(s) =

1.005

s2 + 5s+ 20

Note that I showed the complex pole locations for the quadratic polynomial in the “second” version of the original
transfer function.
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(a) Difference in response; probably shouldn’t cancel.
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(b) A little less difference, but still some.
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(c) Can definitely cancel here; almost no difference.
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(d) Pole & zero completely cancel (almost).

Figure 3: The four step responses for Problem 30, showing situa-
tions where the pole and zero don’t cancel, and when they do.
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DC Motor Problem. Use the system of part (c) in the Chapter 3 HW assignment, and find transfer function G(s),
where

G(s) =
θL(s)

Ea(s)

rad

V

Plot the response of θL (rad) to a 10V step input in motor voltage ea. Use MATLAB, and plot for 0.1 second.

Solution. From my notes, the transfer function from motor armature voltage ea(t) to load angular position θL(t) is:

θL(s)

Ea(s)
=

Kt

nRaJt

s

(
s+

bt
Jt

) (17)

where

n = gear ratio; in denominator of numerator to convert to θL

Jt = Jm +
JL
n2

(total inertia “seen” by motor)

bt = beq +
bL
n2

(and beq = bm +
KtKb

Ra
)

The response to a 10V step input is shown below in Figure 3. Note that in 0.1 second the load moves about 0.8 rad
(45◦), which is the same as we saw in the Chapter 3 HW state-space model.
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Figure 4: Response of motor to 10V step input. Note that in 0.1
second the load moves about 0.8 rad (45◦), the same as in the
state-space model of Chapter 3.
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