
Chapter 4

Learning Theory

When we have built a classifier, one question people always ask is how good the classifier
is. They want to evaluate the classifier. They want to see whether the classifier is able to
predict what it is supposed to predict. Often times, the “gold standard” is to report the
classification accuracy: Give me a testing dataset, and I will tell you how many times the
classifier has done correctly. This is one way of evaluating the classifier. However, does
this evaluation method really tells us how good the classifier is? Not clear. All it says is
that for this classifier trained on a particular training dataset and tested on a particular
testing dataset, the classifier performs such and such. Will it perform well if we train the
classifier using another training set, maybe containing more data points? Will it perform
well if we test it on a different testing dataset? It seems that we lack a way to quantify the
generalization ability of our classifier.

There is another difficulty. When we train the classifier, we can only access the training
data but not the testing data. This is like taking an exam. We can never see the exam
questions when we study, for otherwise we will defeat the purpose of the exam! Since we
only have the training set when we design our classifier, how do we tell whether we have
trained a good classifier? Should we choose a more complex model? How many samples do
we need? Remember, we cannot use any testing data and so all the evaluation has to be
done internally using the training data. How to do that? Again, we are missing a way to
quantify the performance of the classifier.

The objective of this chapter is to answer a few theoretical (and also practical) questions
in learning: (i) Is learning feasible? (ii) How much can a classifier generalize? (iii) What
is the relationship between number of training samples and the complexity of the classifier?
(iv) How do we tell whether we have obtained a good classifier during the training?

4.1 Introduction

Let us start by recalling (refreshing) our notations. The vector x ∈ Rd is called the input
vector. There is an unknown target function f : X → Y which maps x to a label y = f(x).

1

The set X contains all the input vectors, and we call X the input space. The set Y contains
the corresponding labels, and we call Y the output space.

In any supervised learning scenario, there is always a training set D. The training set
contains N input-output pairs (x1, y1), . . . , (xN , yN), where xn and yn are related via yn =
f(xn), for n = 1, . . . , N . These input-output pairs are called the data points or samples.
Since D is a finite collection of data points, there are many x ∈ X that do not live in the
training set D. A data point xn that is inside D is called an in-sample, and a data point
x that is outside D is called an out-sample.

When we say that we use a machine learning algorithm to learn a classifier, we mean that
we have an algorithmic procedure A which uses the training set D to select a hypothesis
function g : X → Y . The hypothesis function is again a mapping from X to Y , because it tells
what a sample x is being classified. However, a hypothesis function g is not the same as the
target function f . We never know f because f is simply unknown. No matter how much we
learn, the hypothesis function g is at best an approximation of f . The approximation error
can be zero in some hand-craved toy examples, but in general g 6= f . All hypothesis functions
are contained in the hypothesis set H. If the hypothesis set is finite, then H = {h1, . . . , hM},
and g will be one of these hm’s. A hypothesis set can be infinite, for example we can perturb
a perceptron decision boundary by an infinitesimal step to an infinite hypothesis set. An
infinite hypothesis set is denoted by H = {hσ}, where σ denotes a continuous parameter.

The drawings in Figure ?? illustrate a few key concepts we just mentioned. On the left
hand side there is an input space X , which contains a small subset D. The subset D is
the training set, which includes a finite number of training samples or in-samples. There
is an unknown target function f . The target function f maps an xn to produce an output
yn = f(xn), hence giving a colored dots in the middle of the figure. The objective of learning
is to learn a classifier which can classify the red from the blue. The space containing all the
possible hypothesis is the hypothesis set H, which contains h1, . . . , hM . The final hypothesis
function returned by the learning algorithm is g.

Figure 4.1: [Left] Treat the cloud as the entire input space X and correspondingly the output space Y. The
dots are the in-samples x1, . . . ,xN . The target function is a mapping f which takes xn and send it to yn.
The red and blue colors indicate the class label. [Right] A learning algorithm picks a hypothesis function g
from the hypothesis set H = {h1, . . . , hM}. Note that some hypotheses are good, and some are bad. A good
learning algorithm will pick a good hypothesis, and a bad learning algorithm can pick a bad hypothesis.

c© 2018 Stanley Chan. All Rights Reserved. 2

Figure ?? illustrates what we called a probabilistic learning model. It is called a proba-
bilistic learning model because there is an unknown distribution p(x). The training samples
{x1, . . . ,xN} are generated according to p(x). The same p(x) also generates the testing
samples x. It is possible to lift the probabilistic assumption so that the training samples
are drawn deterministically. In this case, the samples are simply fixed set of data points
{x1, . . . ,xN}. The deterministic assumption will make learning infeasible, as we will see
shortly. Therefore, we shall mainly focus on the probabilistic assumption.

Figure 4.2: All essential components of a machine learning model.

4.2 Is Learning Feasible?

The first question we ask is: Suppose we have a training set D, can we learn the target
function f? If the answer is YES, then we are all in business, because it means that we will
be able to predict the data we have not seen. If the answer is NO, then machine learning
is a lair and we should all go home, because it means that we can only memorize what we
have seen but we will not be able to predict what we have not seen.

c© 2018 Stanley Chan. All Rights Reserved. 3

Interestingly, the answer to this question depends on how we define the training samples
xn’s. If xn’s are deterministically defined, then the answer is NO because D can contain no
information about the out-samples. Thus, there is no way to learn outside D. If xn’s are
drawn from a probabilistic distribution, then the answer is YES because the distribution will
tell us something about the out-samples. Let us look at these two situations one by one.

Learning outside D
Let us look at the deterministic case. Consider a 3-dimensional input space X = {0, 1}3.
Each vector x ∈ X is a binary vector containing three elements, e.g., x = [0, 0, 1]T or
x = [1, 0, 1]T . Since there are 3 elements and each element take a binary state, there are
totally 23 = 8 input vectors in X .

How about the number of possible target functions f can we have? Remember, a target
function f is a mapping which converts an input vector x to a label y. For simplicity let us
assume that f maps x to a binary output y ∈ {+1,−1}. Since there are 8 input vectors, we
can think of f as a 8-bit vector, e.g., f = [−1, +1, −1, −1, −1, +1, +1, +1], where each
entry represents the output. If we do the calculation, we can show that there are totally
28 = 256 possible target functions.

Here is the learning problem. Can we learn f from D? To ensure that f is unknown, we
will not disclose what f is. Instead, we assume that there is a training set D containing 6
training samples {x1, . . . ,x6}. Corresponding to each xn is the label yn. The relationship
between xn and yn is shown in the table below. So our task is to pick a target function from
the 256 possible choices.

xn yn
0 0 0 ◦
0 0 1 •
0 1 0 •
0 1 1 ◦
1 0 0 •
1 0 1 ◦

xn yn g f1 f2 f3 f4
0 0 0 ◦ ◦ ◦ ◦ ◦ ◦
0 0 1 • • • • • •
0 1 0 • • • • • •
0 1 1 ◦ ◦ ◦ ◦ ◦ ◦
1 0 0 • • • • • •
1 0 1 ◦ ◦ ◦ ◦ ◦ ◦
1 1 0 ◦/• ◦ • ◦ •
1 1 1 ◦/• ◦ ◦ • •

Since we have seen 6 out of 8 input vectors in D, there remains two input vectors we
have not seen and need to predict. Thus, we can quickly reduce the number of possible
target functions to 22 = 4. Let us call these target functions f1, f2, f3 and f4. The boolean
structure of these target functions are shown on the right hand side of the table above. Note
that the first 6 entries of each fi is fixed because they are already observed in D.

In the table above we write down the final hypothesis function g. The last two entries
of g is to be determined by the learning algorithm. If the learning algorithm decides “◦”,
then we will have both “◦”. If the learning algorithm decides a “◦” followed by a “•”, then

c© 2018 Stanley Chan. All Rights Reserved. 4

we will have a “◦” followed by a “•”. So the final hypothesis function g can be one of the 4
possible choices, same number of choices of the target functions.

Since we assert that f is unknown, by only observing the first 6 entries we will have
4 equally good hypothesis functions. They are equally good, because no matter which
hypothesis function we choose, the last 2 entries will agree or disagree with the target
depending on which one is the true target function. For example, on the left hand side of
the table below, the true target function is f1 and so our g is correct. But if the true target
function is f3, e.g., the right hand side of the table, then our g is wrong. We can repeat the
experiment by choosing another g, and we can prove that not matter which g we choose, we
only have 25% chance of picking the correct one. This is the same as drawing a lottery from
4 numbers. The information we learned from the training set D does not allow us to infer
anything outside D.

xn yn g f1 f2 f3 f4
0 0 0 ◦ ◦ ◦ ◦ ◦ ◦
0 0 1 • • • • • •
0 1 0 • • • • • •
0 1 1 ◦ ◦ ◦ ◦ ◦ ◦
1 0 0 • • • • • •
1 0 1 ◦ ◦ ◦ ◦ ◦ ◦
1 1 0 ◦ ◦ • ◦ •
1 1 1 ◦ ◦ ◦ • •

xn yn g f1 f2 f3 f4
0 0 0 ◦ ◦ ◦ ◦ ◦ ◦
0 0 1 • • • • • •
0 1 0 • • • • • •
0 1 1 ◦ ◦ ◦ ◦ ◦ ◦
1 0 0 • • • • • •
1 0 1 ◦ ◦ ◦ ◦ ◦ ◦
1 1 0 ◦ ◦ • ◦ •
1 1 1 ◦ ◦ ◦ • •

The above analysis shows that learning is infeasible if we have a deterministic generator
generating the training samples. The argument holds regardless which learning algorithm A
we use, and what hypothesis set H we choose. Whether H contains the correct hypothesis
function, and whether A can pick the correct hypothesis, there is no difference in terms
of predicting outside D. We can also extend the analysis from binary function to general
learning problem. As long as f remains unknown, it is impossible to predict outside D.

Probabilistic Analysis

The deterministic analysis gives us a pessimistic result. Now, let us look at a probabilistic
analysis. On top of the training set D, we pose an assumption. We assume that all x ∈ X
is drawn from a distribution pX(x). This includes all the in-samples xn ∈ D and the out-
samples x ∈ X . At a first glance, putting a distributional assumption pX(x) does not seem
any different from the deterministic case: We still have a training set D = {x1, . . . ,xN},
and f is still unknown. How can we learn the unknown f using just the training samples?

Suppose that we pick a hypothesis function h from the hypothesis set H. For every in-
sample xn, we check whether the output returned by h is the same as the output returned
by f , i.e., {h(xn) = f(xn)}, for n = 1, . . . , N . If {h(xn) = f(xn)}, then we say that the
in-sample xn is correctly classified in the training. If {h(xn) 6= f(xn)}, then we say that xn

c© 2018 Stanley Chan. All Rights Reserved. 5

is incorrectly classified. Averaging over all the N samples, we obtain a quantity called the
in-sample error, or the training error.

Definition 1 (In-sample Error). Consider a training set D = {x1, . . . ,xN}, and a target
function f . The in-sample error (or the training error) of a hypothesis function h ∈ H
is the empirical average of {h(xn) 6= f(xn)}:

Ein(h)
def
=

1

N

N∑
n=1

[[h(xn) 6= f(xn)]], (4.1)

where [[·]] = 1 if the statement inside the bracket is true, and = 0 if the statement is false.

Training error is the amount of error we have during the training process. A good learning
algorithm A should pick a hypothesis h that gives low training error. Training error is
sometimes called the cost function (or the loss function) when we post the learning problem
as an optimization. Thus, picking a good hypothesis is equivalent to minimizing the training
error.

How about the out-samples? Since we assume that x is drawn from a distribution pX(x),
we can define the out-sample error as the probability that {h(x) 6= f(x)}, for all x ∼ pX(x).

Definition 2 (Out-sample Error). Consider an input space X containing elements x drawn
from a distribution pX(x), and a target function f . The out-sample error (or the testing
error) of a hypothesis function h ∈ H is

Eout(h)
def
= P[h(x) 6= f(x)], (4.2)

where P[·] measures the probability of the statement based on the distribution pX(x).

Since [[·]] is a binary function, the out-sample error is the expected value of a sample being
misclassified over the entire distribution:

Eout(h) = P[h(x) 6= f(x)]

= [[h(xn) 6= f(xn)]]︸ ︷︷ ︸
=1

P
{
h(xn) 6= f(xn)

}
+ [[h(xn) = f(xn)]]︸ ︷︷ ︸

=0

(
1− P

{
h(xn) 6= f(xn)

})
= E

{
[[h(xn) 6= f(xn)]]

}
. (4.3)

Therefore, the relationship between the in-sample error Ein(h) and out-sample error Eout(h)
is equivalent to the relationship between the empirical average and the population mean of
a random variable. Figure ?? shows how an in-sample error is computed.

c© 2018 Stanley Chan. All Rights Reserved. 6

Figure 4.3: Ein is evaluated using the training data, whereas Eout is evaluated using the testing sample.

We now need a mathematical tool to analyze Ein(h) and Eout(h). The tool we use is remi-
niscent to the Weak Law of Large Number. However, instead of using the simple Chebyshev
inequality, we use a much more powerful inequality called the Hoeffding inequality.

Theorem 1 (Hoeffding Inequality). Let X1, . . . , XN be a sequence of i.i.d. random vari-
ables such that 0 ≤ Xn ≤ 1 and E[Xn] = µ. Then, for any ε > 0,

P

[∣∣∣∣∣ 1

N

N∑
n=1

Xn − µ

∣∣∣∣∣ > ε

]
≤ 2e−2ε

2N . (4.4)

The proof of the Hoeffding inequality can be found in many graduate probability textbooks.
We refer the readers to http://cs229.stanford.edu/extra-notes/hoeffding.pdf. The
essential implication of Hoeffding inequality is that the empirical average 1

N

∑N
n=1Xn con-

verges exponentially to the population mean µ as N →∞.
Let us take a quick comparison between the Hoeffding inequality and the Chebyshev

inequality. Chebyshev inequality states that

P

[∣∣∣∣∣ 1

N

N∑
n=1

Xn − µ

∣∣∣∣∣ > ε

]
≤ σ2

ε2N
. (4.5)

If we let 2e−2ε
2N ≤ δ for some δ in Hoeffding inequality, and σ2

ε2N
for some δ in Chebyshev

inequality, we can easily see that the two inequalities imply

N ≥ − 1

2ε2
log

δ

2
, and N ≥ σ2

ε2δ
.

For simplicity let us assume that σ = 1, ε = 0.1 and δ = 0.01. Then the above calculation
will give N ≥ 265 for Hoeffding whereas N ≥ 10000 for Chebyshev. That means, Hoeffding

c© 2018 Stanley Chan. All Rights Reserved. 7

Figure 4.4: Comparing Hoeffding inequality and Chebyshev inequality to predict the actual probability
bound.

inequality has a much lower prediction of how many samples we need to achieve an error of
δ ≤ 0.01.

The Hoeffding inequality implies the following result in learning. Substituting the in-
sample error Ein(h) and out-sample error Eout(h) into the inequality, we can show that

P [|Ein(h)− Eout(h)| > ε] ≤ 2e−2ε
2N . (4.6)

As the number of training samplesN grows, the in-sample error Ein(h) (which is the training
error) converges to the out-sample error Eout(h) (which is the testing error). The in-
sample error Ein(h) is something we can compute numerically using the training set. The
out-sample error is an unknown quantity because we do not know the target function f .
Hoeffding inequality says even though we do not know Eout(h), for large enough N the in-
sample error Ein(h) will be sufficiently close to Eout(h). Therefore, we will be able to tell
how good the hypothesis function is without accessing the unknown target function.

PAC Framework

The probabilistic analysis is called a probably approximately correct (PAC) framework.
The word P-A-C comes from three principles of the Hoeffding inequality:

• Probably: We use the probability P
[
|Ein(h)− Eout(h)| > ε

]
≤ 2e−2ε

2N as a measure to
quantify the error.

• Approximately: The in-sample error is an approximation of the out-sample error, as
given by P [|Ein(h)− Eout(h)| > ε] ≤ 2e−2ε

2N . The approximation error is controlled by ε.

• Correct: The error is bounded by the right hand side of the Hoeffding inequality:
P [|Ein(h)− Eout(h)| > ε]≤ 2e−2ε

2N . The accuracy is controlled by N for a fixed ε.

Now, there is one last problem we need to resolve. The above Hoeffding inequality holds
for a fixed hypothesis function h. This means that h is already chosen before we generate
the dataset. If we allow h to change after we have generated the dataset, then the Hoeffding

c© 2018 Stanley Chan. All Rights Reserved. 8

inequality is no longer valid. What do we mean by after generating the dataset? In any
learning scenario, we are given a training dataset D. Based on this dataset, we have to choose
a hypothesis function g from the hypothesis set H. The hypothesis g we choose depends on
what samples are inside D and which learning algorithm A we use. So g changes after the
dataset is generated.

Why is Hoeffding inequality invalid if we use g instead of h? Suppose that H contains M
hypothesis functions h1, . . . , hM . The final hypothesis g is one of these potential hypotheses.
To have |Ein(g)− Eout(g)| > ε, we need to ensure that at least one of the M potential
hypotheses can satisfy the inequality. This implies that

|Ein(g)− Eout(g)| > ε =⇒ |Ein(h1)− Eout(h1)| > ε

or |Ein(h2)− Eout(h2)| > ε

. . .

or |Ein(hM)− Eout(hM)| > ε.

As a result, we can show that

P
{
|Ein(g)− Eout(g)| > ε

} (a)

≤ P
{
|Ein(h1)− Eout(h1)| > ε

or |Ein(h2)− Eout(h2)| > ε

. . .

or |Ein(hM)− Eout(hM)| > ε
}

(b)

≤
M∑
m=1

P
{
|Ein(hm)− Eout(hm)| > ε

}
,

where (a) holds because P[A] ≤ P[B] if A ⇒ B, and (b) is the Union bound which says
P[A or B] ≤ P[A] + P[B]. Therefore, if we bound each hm using the Hoeffding inequality

P
{
|Ein(hm)− Eout(hm)| > ε

}
≤ 2e−2ε

2N ,

then the overall bound on g is the sum of the M terms.

Theorem 2. Consider a learning problem where we have a dataset D = {x1, . . . ,xN}, and
a hypothesis set H = {h1, . . . , hM}. Suppose g is the final hypothesis picked by the learning
algorithm. Then, for any ε > 0,

P
{
|Ein(g)− Eout(g)| > ε

}
≤ 2Me−2ε

2N . (4.7)

c© 2018 Stanley Chan. All Rights Reserved. 9

Feasibility from the Two View Points

The deterministic analysis shows that learning is infeasible, whereas the probabilistic analysis
shows that learning is feasible. Are they contradictory? If we look at them closely, we realize
that there is in fact no contradiction. Here are the reasons.

1. Guarantee and Possibility. If we want a deterministic answer, then the question we
ask is “Can D tell us something certain about f outside D?” In this case the answer
is no because if we have not seen the example, there is always uncertainty about the
true f . If we want a probabilistic answer, then the question we ask is “Can D tell us
something possibly about f outside D?” In this case the answer is yes.

2. Role of the distribution. There is one common distribution pX(x) which generates
both the in-samples and the out-samples. Thus, whatever pX we use to generate D, we
must use it to generate the testing samples. The testing samples are not inside D, but
they come from the same distribution. Also, all samples are generated independently,
so that we have i.i.d. when using the Hoeffding inequality.

3. Learning goal. The ultimate goal of learning is to make Eout(g) ≈ 0. However, in
order establish this result, we need two levels of approximation:

Eout(g) ≈x
Hoeffding Inequality

Ein(g) ≈x
Training Error

0 (4.8)

The first approximation is made by the Hoeffding inequality, which ensures that for
sufficiently large N , we can approximate the out-sample error by the examples in D.
The second approximation is to make the in-sample error, i.e., the training error, small.
This requires a good hypothesis and a good learning algorithm.

The result in Equation (??) tells us something about the complexity of the hypothesis set
H and the target function f .

• More complex H ? If H is complex with a large M , then the approximation by the
Hoeffding inequality becomes loose. Remember, Hoeffing inequality states that

P
{
|Ein(g)− Eout(g)| > ε

}
≤ 2Me2ε

2N .

As M grows, the upper bound on the right hand side becomes loose, and so we will
run into risk where Ein(g) can deviate from Eout(g). However, if M is large, we have
more candidate hypotheses to choose from and so the second approximation about the
training error will go down. This gives the following relationship.

Eout(g) ≈x
worse if H complex

Ein(g) ≈x
good if H complex

0

Where is the optimal trade-off? This requires more investigation.

c© 2018 Stanley Chan. All Rights Reserved. 10

• More complex f? If the target function f is complex, we will suffer from being not
able to push the training error down. This makes Ein(g) ≈ 0 difficult. However, since
the complexity of f has no influence to the Hoeffding inequality, the first approximation
Ein(g) ≈ Eout(g) is unaffected. This gives us

Eout(g) ≈x
no effect by f

Ein(g) ≈x
worse if f complex

0

Trying to improve the approximation Ein(g) ≈ 0 by increasing the complexity of H
needs to pay a price. If H becomes complex, then the approximation Ein(g) ≈ Eout(g)
will be hurt.

4.3 VC Analysis

The objective of this section is go further into the analysis of the Hoeffding inequality to
derive something called the generalization bound. There are two parts of our discussion.
The first part is easy, which is to rewrite the Hoeffding inequality into a form of “confidence
interval” or “error bar”. This will allow us interpret the result better.

The second part is to replace the constant M in the Hoeffding inequality by something
smaller. This will allow us derive something more meaningful. Why do we want to do that?
What could go wrong with M? Remember that M is the number of hypotheses in H. If H is
a finite set, then everything is fine because the exponential decaying function of the Hoeffding
inequality will override the constant M . However, for any practical H, M is infinite. Think
of a perceptron algorithm. If we slightly perturb the decision boundary by an infinitesimal
translation, we will get an infinite number of hypotheses, although these hypotheses could
be very similar to each other. If M is infinite, then the probability bound offered by the
Hoeffding inequality can potentially be bigger than 1 which is valid but meaningless. To
address this issue we need to learn a concept called the VC dimension.

Generalization Bound

Let us start with the Hoeffding inequality:

P
{
|Ein(g)− Eout(g)| > ε

}
≤ 2Me−2ε

2N .

Notice that this inequality is written in terms of ε. We want to rewrite the inequality. The
inequality can be viewed as P[B] ≤ δ for some event B (the Bad event), which is equivalent
to say that with probability 1− δ, the event B does not happen. Putting into our equation,
we have that for probability 1− δ,

Ein(g)− ε ≤ Eout(g) ≤ Ein(g) + ε.

c© 2018 Stanley Chan. All Rights Reserved. 11

If we can express ε in terms of δ, then we will arrive our goal of rewriting the Hoeffding
inequality. How about we substitute δ = 2Me−2ε

2N , which is the upper bound on the right

hand side. By rearrange the terms, we can show that ε =
√

1
2N

log 2M
δ

. Therefore, we arrive

at the following inequality.

Theorem 3. Consider a learning problem where we have a dataset D = {x1, . . . ,xN}, and
a hypothesis set H = {h1, . . . , hM}. Suppose g is the final hypothesis picked by the learning
algorithm. Then, with probability at least 1− δ,

Ein(g)−
√

1

2N
log

2M

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2M

δ
. (4.9)

The inequality given by Equation (??) is called the generalization bound, which we can
consider it as an “error bar”. There are two sides of the generalization bound:

• Eout(g) ≤ Ein(g) + ε (Upper Bound). The upper bound gives us a safe-guard of how
worse Eout(g) can be compared to Ein(g). It says that the unknown quantity Eout(g)
will not be significantly higher than Ein(g). The amount is specified by ε.

• Eout(g) ≥ Ein(g) + ε (Lower Bound). The lower bound tells us what to expect. It says
that the unknown quantity Eout(g) cannot be better than Ein(g)− ε.

To make sense of the generalization bound, we need to ensure that ε → 0 as N → ∞.
In doing so, we need to assume that M does not grow exponentially fast, for otherwise
term log 2M will cancel out the effect of 1/N . However, if H is an infinite set, then M is
unavoidably infinite.

The Growth Function

To resolve the issue of having an infinite M , we realize that there is a serious slack caused
by the union bound when deriving the Hoeffding inequality. If we look at the union bound,
we notice that for every hypothesis h ∈ H there is an event B = {|Ein(h)− Eout(h)| > ε}. If
we have M of these hypotheses, the union bound tells us that

P[B1 or . . . or BM] ≤ P[B1] + . . .+ P[BM].

The union bound is tight (“≤” is replaced by “=”) when all the events B1, . . . ,BM are not
overlapping. But if the events B1, . . . ,BM are overlapping, then the union bound is loose, in
fact, very loose. Having a loose bound does not mean that the bound is wrong. The bound is
still correct, but the right hand side of the inequality will be a severe overestimate of the left
hand side. Will this happen in practice? Unfortunately many hypotheses are indeed very
similar to each other and so the events B1, . . . ,BM are overlapping. For example, if we move

c© 2018 Stanley Chan. All Rights Reserved. 12

the decision boundary returned by a perceptron algorithm by an infinitesimal step then we
will have infinitely many hypotheses, and everyone is highly dependent on each other.

We need some tools to handle the overlapping situation. To do so we introduce two
concepts. The first concept is called the dichotomy, and the second concept is called the
growth function. Dichotomies will define a growth function, and the growth function will
allow us replace M by a much smaller quantity that takes care of the overlapping issue.

Consider a dataset containing N data points x1, . . . ,xN . Pick a hypothesis h from the
hypothesis set H, and for simplicity assume that the hypothesis is binary: {+1,−1}. If we
apply h to (x1, . . . ,xN), we will get a N -tuple (h(x1), . . . , h(xN)) of ±1’s. Each N -tuple is
called a dichotomy. The collection of all possible N -tuples (by picking all h ∈ H) is defined
as H(x1, . . . ,xN). For example, if H contains two hypotheses hα and hβ such that hα turns
all training samples xn to +1 and hβ turns all training samples xn to −1, then we have two
dichotomies and H(x1, . . . ,xN) is defined as

H(x1, . . . ,xN) =
{(
hα(x1), . . . , hα(xN)

)
,
(
hβ(x1), . . . , hβ(xN)

)}
=
{(

+ 1, . . . ,+1
)
,
(
− 1, . . . ,−1

)}
.

More generally, the definition of H(x1, . . . ,xN) is as follows.

Definition 3. Let x1, . . . ,xN ∈ X . The dichotomies generated by H on these points are

H(x1, . . . ,xN) = {(h(x1), . . . , h(xN)) | h ∈ H} . (4.10)

The above definition suggests that H(x1, . . . ,xN) is a function depending on the train-
ing samples x1, . . . ,xN . Therefore, a different set of {x1, . . . ,xN} will give a different
H(x1, . . . ,xN). However, since H(x1, . . . ,xN) is a binary N -tuple, there will be identical
sequences of ±1’s in H(x1, . . . ,xN). Let us look at one example.

Suppose there are N = 3 data points in X so that we have x1,x2,x3. Use any method
to build a linear classifier (could be a linear regression of a perceptron algorithm). Since
there are infinitely many lines we can draw in the 2D plane, the hypothesis set H contains
infinitely many hypotheses. Now, let us assume that the training data x1,x2,x3 are located
at position A, B, C respectively, as illustrated in Figure ??. These locations are fixed,
and the 3 data points x1,x2,x3 must stay at these three locations. For this particular
configuration of the locations, we can make as many as 23 = 8 dichotomies. Notice that
one dichotomy can still have infinitely many hypotheses. For example in the top left case of
Figure ??, we can move the yellow decision boundary up and low slightly, and we will still
get the same dichotomy of [−1, −1, −1]. However, as we move the decision boundary away
by changing the slope and intercept, we will eventually land on a different dichotomy, e.g.,
[−1, +1, −1] as shown in the bottom left of Figure ??. As we move around the decision
boundary, we can construct at most 8 dichotomies for x1,x2,x3 located at A, B and C.

c© 2018 Stanley Chan. All Rights Reserved. 13

What if we move x1,x2,x3 to somewhere else, for example the locations specified by the
red part of Figure ??? In this case some dichotomies are not allowed, e.g., the cases of
[+1, −1, +1] and [−1, +1, −1] are not allowed because our hypothesis set contains only
linear models and a linear model is not able to cut through 3 data points of alternating
classes with a straight line. We can still get the remaining six configurations, but the total
will be less than 8. The total number of dichotomies here is 6.

Figure 4.5: For a fixed configuration of x1,x2,x3, we can obtain different numbers of dichotomies. Suppose
the hypothesis set contains linear models. [Left] There are 8 dichotomies for three data points located not
on a line. [Right] When the three data points are located on a line, the number of dichotomies becomes 6.

Now we want to define a quantity that measures the number of dichotomies. This quantity
should be universal for any configuration of x1, . . . ,xN , and should only be a function of H
and N . If we can obtain such quantity, then we will have a way to make a better estimate
than M . To eliminate the dependency on x1, . . . ,xN , we realize that among all the possible
configurations of x1, . . . ,xN , there exists one that can maximize the size of H(x1, . . . ,xN).
Define this maximum as the growth function.

Definition 4. The growth function for a hypothesis set H is

mH(N) = max
x1,...,xN∈X

|H(x1, . . . ,xN)|, (4.11)

where | · | denotes the cardinality of a set.

For example, mH(3) of a linear model is 8, because if we configure x1,x2,x3 like the ones in
the green part of Figure ??, we will get 8 dichotomies. Of course, if we land on the red case
we will get 6 dichotomies only, but the definition of mH(3) asks for the maximum which is
8. How about mH(N) when N = 4? It turns out that there are at most 14 dichotomies no
matter where we put the four data points x1,x2,x3,x4.

So what is the difference between mH(N) and M? Both are measures of the number of
hypotheses. However, mH(N) is measured from the N training samples in X whereas M is
the number of hypotheses we have in H. The latter could be infinite, the former is upper
bounded (at most) 2N . Why 2N? Suppose we have N data points and the hypothesis is

c© 2018 Stanley Chan. All Rights Reserved. 14

binary. Then the set of all dichotomies H(x1, . . . ,xN) must be a subset in {+1,−1}N , and
hence there are at most 2N dichotomies:

mH(N) ≤ 2N .

If a hypothesis set H is able to generate all 2N dichotomies, then we say that H shatter
x1, . . . ,xN . For example, a 2D perceptron algorithm is able to shatter 3 data points because
mH(3) = 23. However, the same 2D perceptron algorithm is not able to shatter 4 data points
because mH(4) = 14 < 24.

VC Dimension

We are now at the last step of our analysis. Let us start by looking at what we can do with
the growth function. The most straight forward step is to replace M by mH(N):

Ein(g)−
√

1

2N
log

2mH(N)

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2mH(N)

δ
.

Since we know that mH(N) ≤ 2N , a natural attempt is to upper bound mH(N) by 2N .
However, this will not help us because√

1

2N
log

2mH(N)

δ
≤
√

1

2N
log

2(2N)

δ
=

√
1

2N
log

2N+1

δ
.

For large N we can approximate 2N+1 ≈ 2N , and so

1

2N
log

2N

δ
≈ N log 2− log δ

2N
=

log 2

2
− log δ

2N
→ (log 2)/2.

Therefore, as N →∞, the error bar will never approach zero but to a constant. This makes
the generalization fail.

Can we find a better upper bound on mH(N) so that we can send the error bar to zero
as N grows? Here we introduce a parameter allows us to characterize the growth function.

Definition 5 (VC Dimension). The Vapnik-Chervonenkis dimension of a hypothesis set
H, denoted by dVC, is the largest value of N for which mH(N) = 2N .

For example, consider the 2D perceptron algorithm. We can start with N = 3, and gradual
increase N until we hit a critical point.

Suppose N = 3. Recall that mH(3) is the maximum number of dichotomies that can be
generated by a hypothesis set under N = 3 data points. As we have shown earlier, as long
as the 3 data points are not on a straight line, it is possible to draw 8 different dichotomies.
If the 3 data points are on a straight line, we can only generate 6 dichotomies. However,

c© 2018 Stanley Chan. All Rights Reserved. 15

since mH(3) picks the maximum, we have that mH(3) = 23. Therefore, a 2D percetpron can
shatter 3 data points.

Suppose N = 4. As we have discussed earlier, if we have N = 4 data points, there are
always 2 dichotomies that cannot be generated by the perceptron algorithm. This implies
that the growth function is mH(4) = 14 < 24. Since the perceptron algorithm can shatter
N = 3 data points but not N = 4 data points, the VC dimension is dVC = 3.

In genreal, if we have a high-dimensional perceptron algorithm, we can show this:

Theorem 4 (VC Dimension of Perceptron). Consider the input space X = Rd ∪ {1}
(x = [x1, . . . , xd, 1]T). The VC dimension of the perceptron algorithm is

dVC = d+ 1. (4.12)

Proof. We shall prove that dVC ≥ d+ 1 and dVC ≤ d+ 1. To prove dVC ≥ d+ 1, we ask:
Can we shatter d+ 1 data points by a d-dimensional perceptron algorithm? Note that here
we are only trying to show that it is possible to shatter d+ 1 data points. Begin “possible”
means that we can guaranteed to be able to shatter up to d + 1 data points. Since dVC is
the next number that the algorithm cannot shatter, by proving this result we can claim that
dVC is at least d+ 1. Whether it can go to d+ 2 is to be determined.

Since our goal is to show dVC ≥ d+1, we just need to pick a configuration (i.e., d+1 data
points) such that the perceptron algorithm can shatter. To this end we choose x1, . . . ,xd+1

by defining xn = [1, 0, . . . , 1, . . . , 0]T , i.e., 1 on the first entry and a standard basis vector
on the rest. Geometrically, if we ignore the bias term (i.e., the first entry of each vector xn),
then the data points live on the vertices of a d-dimensional cube. We want to show that this
configuration can be shattered by the perceptron algorithm.

Recall that a perceptron algorithm makes a decision by checking

sign(xTnw)
?
= yn,

where yn ∈ {+1,−1} is a binary decision. Our question can be formulated as: Is it possible
to find a vector w such that 

sign(xT1w) = y1
...

sign(xTd+1w) = yd+1

If we can find w, then that means we can shatter the d+ 1 data points.

The first thing we realize is that the sign operator does not matter as far as finding a w.
If we solve the above system of equations without the sign, and if we obtain a w that flips
the sign of one of the rows, then the w we found is not able to shatter. But if the w we
found can still fit all the d+ 1 equations, then we can safely remove the sign and prove that

c© 2018 Stanley Chan. All Rights Reserved. 16

the d+ 1 data points are shattered. Therefore, to this end, we consider a simpler problem.


−xT1−
−xT2−

...
−xTd+1−



w0

w1
...
wd

 =


1 0 0 . . . 0
1 1 0 . . . 0
1 0 1 0

. . . 0
1 0 . . . 0 1



w0

w1
...
wd

 =


y1
y2
...

yd+1

 =


±1
±1
...
±1


We ask: Is this system of linear equations solvable? This in turns asks: Is the (d+1)×(d+1)
matrix invertible? And clearly the matrix is invertible. Therefore, we will be able to find w
for any given y, and hence we prove that dVC ≥ d+ 1.

For the other direction to show that dVC ≤ d+ 1, we need to show that we are not able to
shatter any set of d+ 2 data points. Suppose we have d+ 2 data points x1, . . . ,xd+1,xd+2,
we can write

xd+2 =
d+1∑
j=1

αjxj.

Construct a dichotomy with labels

yi =

{
sign(αi), i = 1, . . . , d+ 1,

−1, i = d+ 2.

Assume that all labels correct so that sign(αi) = sign(wTxi) for i = 1, . . . , d + 1. This
implies that αTi w

Txi > 0 for all i = 1, . . . , d + 1. Because of the linear combination, we
also have that wTxd+2 > 0. But yd+2 = sign(wTxd+2) = −1. So there is a contradiction.
Therefore, we cannot shatter d+ 2 data points using a d-dimensional perceptron algorithm.
This completes the proof. �

Bounding the Growth Function

Now that we have the VC dimension, we can bound the growth function. The following
theorem show that mH(N) is indeed upper bounded by a polynomial of order no greater
than dVC.

Theorem 5. Let dVC be the VC dimension of a hypothesis set H, then

mH(N) ≤
dVC∑
i=0

(
N

i

)
. (4.13)

c© 2018 Stanley Chan. All Rights Reserved. 17

We shall skip the proof which can be found in Theorem 2.4 of AML’s Learning from Data
textbook. The polynomial bound comes from the following exercise.

Exercise. Prove by induction that

d∑
i=0

(
N

i

)
≤ Nd + 1.

Using this result, we can show that

mH(N) ≤ NdVC + 1.

If we substitutemH(N) by this upper boundNdVC+1, then the generalization bound becomes

ε =

√
1

2N
log

2mH(N)

δ
≤
√

1

2N
log

2(NdVC + 1)

δ
. (4.14)

How do we interpret the VC dimension? The VC dimension can be informally viewed
as the effective number of parameters of a model. Higher VC dimension is means a
more complex model, and hence a more diverse hypothesis set H. As a result, the growth
function mH(N) will be big. (Think about the number of dichotomies that can be generated
by a complex model versus a simple model, and hence the overlap we encounter in the union
bound.) There are two scenarios of the VC dimension.

• dVC <∞. This implies that the generalization error will go to zero as N grows:

ε =

√
1

2N
log

2(NdVC + 1)

δ
→ 0,

as N → ∞ because (logN)/N → 0. If this is the case, then the final hypothesis g ∈ H
will generalize. Such generalization result holds independent of the learning algorithm A,
independent of the input distribution pX and independent of the target function f . It
only depends on the hypothesis set H and the training examples x1, . . . ,xN .

• dVC = ∞. This means that the hypothesis set His as diverse as it can be, and it is not
possible to generalize. The generalization error will never go to zero.

Are we all set about the generalization bound? It turns out that we need some additional
technical modifications to ensure the validity of the generalization bound. We shall not go
into the details but just state the result.

Theorem 6 (Generalization Bound). For any tolerance δ > 0

Eout(g) ≤ Ein(g) +

√
8

N
log

4mH(2N)

δ
, (4.15)

with probability at least 1− δ.

c© 2018 Stanley Chan. All Rights Reserved. 18

Interpreting the Generalization Bound

The VC generalization bound in Equation (??) is universal in the sense that it applies to
all hypothesis set H, learning algorithm A, input space X , distribution p, and binary target
function f . So can we use the VC generalization bound to predict the exact generalization
error for any learning scenario? Unfortunately the answer is no. The VC generalization
bound we derived is a valid upper bound but also a very loose upper bound. The loose-ness
nature of the generalization bound comes from the following reasons (among others):

• The Hoeffding inequality has a slack. The inequality works for all values of Eout.
However, the behavior of Eout could be very different at different values, e.g., at 0 or
at 0.5. Using one bound to capture both cases will result in some slack.

• The growth function mH(N) gives the worst case scenario of how many dichotomies
are there. If we draw the N data points at random, it is unlikely that we will land on
the worst case, and hence the typical value of mH(N) could be far fewer than 2N even
if mH(N) = 2N .

• Bounding mH(N) by a polynomial introduces further slack.

Therefore, the VC generalization bound can only be used a rough guideline of understanding
how well the learning algorithm generalize.

Sample Complexity

Sample complexity concerns about the number of training samples N we need to achieve the
generalization performance. Recall from the generalization bound:

Eout(g) ≤ Ein(g) +

√
8

N
log

4mH(2N)

δ
.

Fix a δ > 0, if we want the generalization error to be at most ε, we can enforce that√
8

N
log

4mH(2N)

δ
≤ ε.

Rearranging the terms yields N ≥ 8
ε2

log
(

4mH(2N)
δ

)
. If we replace mH(2N) by the VC

dimension, then we obtain a similar bound

N ≥ 8

ε2
log

(
4(2N)dVC + 1

δ

)
.

Example. Suppose dVC = 3, ε = 0.1 and δ = 0.1 (90% confidence). The number of samples
we need satisfies the equation

N ≥ 8

0.12
log

(
4(2N)3 + 4

0.1

)
.

c© 2018 Stanley Chan. All Rights Reserved. 19

If we plug in N = 1000 to the right hand side, we will obtain

N ≥ 8

0.12
log

(
4(2× 1000)3 + 4

0.1

)
≈ 21, 193.

If we repeat the calculation by plugging in N = 21, 193, obtain a new N , and iterate, we will
eventually obtain N ≈ 30, 000. If dVC = 4, we obtain N ≈ 40, 000 samples. This means that
every value of dVC corresponds to 10,000 samples. In practice, we may require significantly
less number of samples. A typical number of samples is approximately 10× dVC.

Model Complexity

The other piece of information that can be obtained from the generalization bound is how
complex the model could be. If we look at the generalization bound, we realize that the
error ε is a function of N , H and δ:

Eout(g) ≤ Ein(g) +

√
8

N
log

4mH(2N)

δ︸ ︷︷ ︸
=ε(N,H,δ)

If we replace mH(2N) by (2N)dVC + 1, then we can write ε(N,H, δ) as

ε(N, dVC, δ) =

√
8

N
log

(
4 ((2N)dVC + 1)

δ

)
The three factors N , dVC and δ have different influence on the error ε:

• dVC: The VC dimension controls the complexity of the model. As dVC grows, the in-
sample error Ein drops because large dVC implies that we have a more complex model to
fit the training data. However, ε grows as dVC grows. If we have a very complex model,
then it would be more difficult to generalize to the out-samples. The trade-off between
model complexity and generalization is shown in Figure ??. The blue curve represents
the in-sample error Ein which drops as dVC increases. The red curve represents the
model complexity which increases as dVC increases. The black curve is the out-sample
error Eout. There exists an optimal model complexity so that Eout is minimized.

• N : A large number of training samples always helps the generalization bound, as
reflected by the fact that ε(N,H, δ)→ 0 as N →∞.

• δ: The confidence level tells us how harsh we want the generalization to be. If we want
a very high confidence interval, e.g., 99.99%, then we need a very small δ = 0.0001.
This will in turn affect the number of training samples N required to achieve the
confidence level and the desired error bound.

c© 2018 Stanley Chan. All Rights Reserved. 20

Figure 4.6: The VC generalization bound suggests a trade-off between model complexity and generalization.
If we use a more complex model, the in-sample error drops but the out-sample error increases. The optimal
model complexity is determined when the out-sample error is minimized.

Testing Data

The VC analysis provides us a good guideline to train a model. However, the estimate
provided by the VC analysis is often too loose to provide any accurate prediction of Eout.
In practice, no one really uses VC analysis to inform a training process. What is more often
used is a testing dataset. The testing dataset

Dtest = {x1, . . . ,xL}

contains L samples drawn from the distribution pX(x). No testing data xm can be in the
training dataset Dtraining.

Since in the testing phase the final hypothesis g is already determined, we will not run
into the same trouble in the training phase where we need to use the Union bound to account
for the M candidate hypotheses in H. As a result, the Hoeffding inequality simplifies to

P
{
|Ein(g)− Eout(g)| > ε

}
≤ 2e−2ε

2L,

and the generalization bound becomes

Eout(g) ≤ Ein(g) +

√
1

2L
log

2

δ
.

Therefore, as the number of testing samples increases, we can certify the out-sample error
by evaluating E∈ using the testing samples.

There are a few reminders about using the testing data:

c© 2018 Stanley Chan. All Rights Reserved. 21

• The common notion of testing accuracy is Ein(g), calculated based on the L testing
samples. Therefore, having Ein(g) does not imply that we will generalize well. If we
change another testing dataset, Ein(g) will change because it is a numerical value based
on empirical sum. What is guaranteed by the generalization bound is that as long as L
is sufficiently large, Eout(g) will stay close to Ein(g) no matter which particular testing
dataset we use. There is a variance associated with Ein(g), and this variance is reflected

by
√

1
2L

log 2
δ
.

• The testing data has to be used after the hypothesis is determined. If we ever use the
testing data as a feedback to re-select the hypothesis, then it is cheating. For example,
we cannot train a SVM, submit to a competition website, and mark the misclassified
samples to re-design the SVM.

• In principle the generalization bound is improved when we have more testing samples.
However, most practical datasets only have training data points and no testing data
points. We can partition the training set into training and validation. The proportion
of training and validation needs to be carefully chosen. If we allocate too many samples
for validation purpose, then we will loose our ability to training a good classifier.

4.4 Bias and Variance Analysis

The bias-variance analysis is an alternative way of analyzing the out-sample error. Instead
of defining the out-sample error as the probability Eout(g) = P[g(x) 6= f(x)], bias-variance
analysis defines the out-sample error using the squared error:

Eout(g
(D)) = Ex

[
(g(D)(x)− f(x))2

]
. (4.16)

One thing to note is that we make the dependency on the training dataset D explicit. The
reason will be clear later. What this means is that if we use a different training set D, we will
get a different Eout(g

(D)). This will give us many Eout(g
(D)), depending on how the training

sets D’s are generated. To account for all the possible D’s, we can compute the expectation
and define the expected out-sample error:

ED
[
Eout(g

(D))
]

= ED
[
Ex

[
(g(D)(x)− f(x))2

]]
= Ex

[
ED
[
(g(D)(x)− f(x))2

]]
= Ex

ED[g(D)(x)2
]
− 2ED[g(D)(x)]︸ ︷︷ ︸

g(x)

f(x) + f(x)2

 .
c© 2018 Stanley Chan. All Rights Reserved. 22

Here, we define g(x) = ED[g(D)(x)], which can be considered as the asymptotic limit of
the estimate g(x) ≈ 1

K

∑K
k=1 gk(x) as K → ∞. The hypotheses g1, . . . , gK are the final

hypothesis returned by using the training sets D1, . . . ,DK . Therefore, for any fixed x, gk(x)
is a random variable over the training set Dk. However, one should be careful that even if
g1, . . . , gK are inside the hypothesis set, the mean g is not necessarily inside too.

Let us do some additional calculation:

ED
[
Eout(g

(D))
]

= Ex

[
ED
[
g(D)(x)2

]
− 2ED[g(D)(x)]f(x) + f(x)2

]
= Ex

[
ED
[
g(D)(x)2

]
− g(x)2︸ ︷︷ ︸

ED[(g(D)(x)−g(x))2]

+ g(x)2 − 2ED[g(D)(x)]f(x) + f(x)2︸ ︷︷ ︸
(g(x)−f(x))2

]
.

Based on this decomposition, we can define two terms:

bias(x)
def
= (g(x)− f(x))2,

var(x)
def
= ED[(g(D)(x)− g(x))2].

The first term is called the bias, as it measures the deviation between the average function
g(x) and the target function f(x). Thus, regardless of how we pick the particular training
set, there is an intrinsic gap between the what we would expect (g(x)) and the ideal target
f(x). The second term is called the variance. It measures the variance of the random
variable g(D)(x) with respect to its mean g(x). Using the bias and variance decomposition,
we can show that

ED
[
Eout(g

(D))
]

= Ex[bias(x) + var(x)]

= bias + var,

where bias = Ex[bias(x)] is the average bias over the distribution p(x), and var = Ex[var(x)]
is the average variance over p(x).

What can we say about the bias-variance decomposition when analyzing the model com-
plexity? We can consider two extreme cases. In the first case, we have a very simple model
and so H is small. Since there are not many choices of the hypothesis, the deviation between
the target f and the average of these hypotheses g is large. Thus, the bias is large. On the
other hand, the variance is limited because we only have very few hypotheses in H.

The second case is when we have a complex model. By selecting different training sets
D’s, we will be able to select hypothesis functions g1, . . . , gK that agree with f . In this case,
the deviation between the target f and the average of these hypotheses g is very small. The
bias is thus bias ≈ 0. The variance, however, is large because there are many training sets
under consideration.

c© 2018 Stanley Chan. All Rights Reserved. 23

Figure 4.7: [Left] Large bias but small variance. [Right] Small bias but large variance.

Demonstration

Consider a target function f(x) = sin(πx) and a dataset of size N = 2. We sample uniformly
in the interval [−1, 1] to generate a data set containing two data points (x1, y1) and (x2, y2).
We want to use these two data points to determine which of the following two models are
better:

• M0 = Set of all lines of the form h(x) = b;

• M1 = Set of all lines of the form h(x) = ax+ b.

Figure ?? illustrates an example of how the models would yield the lines. Given two data
points, M0 seeks a horizontal line h(x) = b that matches the two data points. This line
must be the one that passes through the mid-point of the two data points. The modelM1 is
allowed to find an arbitrary straight line that matches the two data points. Since there are
only two data points, the best straight must be the one that passes through both of them.
More specifically, the line returned by M0 is

h(x) =
y1 + y2

2
,

and the line returned by M1 is

h(x) =

(
y2 − y1
x2 − x1

)
x+ (y1x2 − y2x1) .

As we change (x1, y1) and (x2, y2), we will obtain different straight lines.

Figure 4.8: [Left] Fitting two data points using M0. [Right] Fitting two data points using M1.

c© 2018 Stanley Chan. All Rights Reserved. 24

If we keep drawing two random samples from the sine function, we will eventually get
a set of straight lines for both cases. However, since M0 restricts ourselves to horizontal
lines, the set of straight lines are all horizontal. In contrast, the set of straight lines for M1

contains lines of different slopes and y-intercepts.

Figure 4.9: [Left] Possible lines generated by M0. [Right] Possible lines generated by M1.

As we increase the number of experiments, the set of straight lines will form a distribution
of the model. Since now we have a distribution, we can determine is mean, which is a
function, as g. Similarly, we can determine the variance of the function var(x). For example,
in Figure ?? we draw the possible lines that are within one standard deviation from the
mean function, i.e., g ±

√
var(x).

Figure 4.10: Average hypothesis function g(x) and the variance var(x).

So which model is better in terms of bias-variance? If we compute the bias and variance,
we can show that

biasM0 = 0.5, biasM1 = 0.21,
varM0 = 0.25, varM1 = 1.69.

Therefore, as far as generalization is concerned, a simple model using a horizontal line is
actually more preferred in the bias-variance sense. This is counter-intuitive because how can
a horizontal line with only one degree of freedom be better than a line with two degrees
of freedom when approximating the sine function? However, the objective here is not to
use a line to approximate a sine function because we are not supposed to observe the entire
sine function. Remember, we are only allowed to see two data points and our goal is to

c© 2018 Stanley Chan. All Rights Reserved. 25

construct a line based on these two data points. The approximation error in the usual sense
is captured by the bias, as g is the best possible line within the class. The generalization,
however, should also take into account of the variance. While M1 has a lower bias, its
variance is actually much larger than that of M0. The implication is that while on average
M1 performs well, chances are we pick a bad line inM1 that end up causing very undesirable
out-sample performance.

One thing to pay attention to is that the above analysis is based on N = 2 data points.
If we increase the number of data points, the variance of M1 will drop. As N → ∞, the
variance of bothM0 andM1 will eventually drop to zero and so only the bias term matters.
Therefore, if we have infinitely many training data, a complex model will of course provide
a better generalization.

Bias-Variance and VC Dimension

There is a subtle but important difference between the bias-variance analysis and the VC
analysis. Bias-variance depends on the learning algorithm A whereas the VC analysis is
independent of A. With the same hypothesis set H, VC will always return the same general-
ization bound. This is a uniform performance guarantee over all possible choices of dataset
D. For bias-variance, the same H can lead to different g(D), depending of which D is being
used. This is reflected in the bias and variance term Eout(g

(D)). Of course, the overall bias-
variance is independent of D because we take expectation ED

[
Eout(g

(D))
]
. VC analysis does

not have this issue.

In practice, bias and variance cannot be computed because we never have the target
function. (If we know the target function there is nothing to learn!) Therefore, bias-variance
can only be served as a conceptual tool to guide the design of a learning algorithm. For
example, one can try to reduce the bias but maintaining the variance (e.g., via regularization
and prior), or reduce the variance but maintaining the bias.

Learning Curve

Both bias-variance and VC analysis provide a trade-off between model complexity and sample
complexity. Figure ?? shows a typical scenario. Suppose that we have learned an final
hypothesis g(D) using dataset D of size N . This final hypothesis will give us an in-sample
error Ein(g(D)) and out-sample error Eout(g

(D)). These two errors are functions of the dataset
D. If we take the expectation over D, we will obtain the expected error ED

[
Ein(g(D))

]
and

ED
[
Eout(g

(D))
]
. These expected error will give us two curves, as shown in Figure ??.

If we have a simple model, the in-sample error ED
[
Ein(g(D))

]
is a good approximate of

the out-sample error ED
[
Eout(g

(D))
]
. This implies a small gap between the two. However,

the overall expected error could still be large because our model is simple. This is reflected
in the high off-set in the learning curve.

c© 2018 Stanley Chan. All Rights Reserved. 26

If we have a complex model. the in-sample error ED
[
Ein(g(D))

]
would be small because

we are able to fit the training data. However, the out-sample error is large ED
[
Eout(g

(D))
]

because the generalization using a complex model is difficult. The two curves will eventually
meet as N grows, since the variance of the out-sample will drop. The convergence rate is
slower than a simple model, because it take many more samples for a complex model to
generalize well.

Figure 4.11: Learning curves of a simple and a complex model.

The VC analysis and the bias-variance analysis provide two different view of decomposing
the error. VC analysis decompose Eout as the in-sample error Ein(g) and the generalization
error ε. This ε is the gap between Ein and Eout. The bias-variance analysis decompose Eout

as bias and variance. The bias is the residue caused by the average hypothesis g. The bias
is a fixed quantity and does not change over N . The gap between Eout and the bias is the
variance. The variance drops as N increases.

Figure 4.12: [Left] VC analysis. [Right] Bias-variance analysis

c© 2018 Stanley Chan. All Rights Reserved. 27

4.5 Validation

4.6 Practical Considerations

c© 2018 Stanley Chan. All Rights Reserved. 28

