4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.

Chapter 4
Numerical methods for ODEs

Numerical methods for solution of IVP for ODEs. Basic concepts
Euler method

Convergence, approximation, and stability

Methods of higher orders of approximation

Runge-Kutta methods

Numerical solution of IVP for systems of ODEs

Explicit, implicit and predictor-corrector methods

Linear multistep methods (LMMs). Adams family of LMMs (optional)

Reading:
Kreyszig, Advanced Engineering Mathematics, 10th Ed., 2011
Selection from chapter 21

Prerequisites:
Kreyszig, Advanced Engineering Mathematics, 10th Ed., 2011
Interpolation: Section 19.3

Topics for self-studying: 4.7

ME 501, Mechanical Engineering Analysis, Alexey Volkov

4.1. Numerical methods for solution of IVPs for ODEs. Basic concepts

Let’s consider a 15t ODE in the explicit form
y'=fxy) (4.1.1)

Assume that we are not able to solve this equation algebraically, i.e. we cannot find a function
y = g(x,c) or G(y,x,c) = 0 that represents the general solution of Eq. (4.1.1).

On the other hand, virtually any Eq. (4.1.1) can be solved numerically with the help of a
computer that performs basic algebraic operations (+,%,+) with integer and real numbers.

In order to solve Eq. (4.1.1) numerically, we need to develop an algorithm that allows us to
calculate approximate values of the unknown function in this equation with a finite number of
algebraic operations. Such algorithms for solving different mathematical problems are called
numerical methods or numerical schemes.

Basic concepts of the numerical methods for IVPs

1. Numerically we can look only for a particular solution of an ODE or a system of ODEs, i.e. we
can solve only initial or boundary value problems. For Eq. (4.1.1), we can solve numerically
only the Cauchy problem with the initial condition

y' =f(xy), y(a) = o, a<x<bh (4.1.2)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 2

4.1. Numerical methods for solution of IVPs for ODEs. Basic concepts

2. We cannot find numerically the function y = y(x). We are looking for the numerical values
of this function at some prescribed values xq, x4, ..., etc. of x, where x,,.1 > x,. In other
words, we are looking for a solution represented in the tabulated form:

x x| .| ay=b

y Yo Y1 Vi YN

This table is called the numerical solution of problem (4.1.2).

(4.1.3)

3. In general, the numerical solution is approximate in a sense that y(x;) # y; (Here y(x) is
the presumed accurate solution of the Cauchy problem (4.1.2)). The difference

& = y(x;) — v (4.1.4)

is called the numerical (or global truncation) error of the numerical solution in point x;.

y

Vi O
Numerical solution /
\/

/ & =yx)—yi
o

y(xl) - - /
~
(T~ Accurate solution y(x)
Xo =a Xi—2 Xi—1 X X

ME 501, Mechanical Engineering Analysis, Alexey Volkov 3

4.2. Euler method

The initial value problem (IVP)
% =f(x,y), yl@ =y, a<x<bh (4.2.1)

The Euler method of numerical integration for the IVP

1. Let'sintroduce a mesh of nodes x,, with the spacing Ax: x;,1 = x; + Ax.
2. Let's approximate ODE in the IVP (4.2.1) in node x; with forward difference of the first order
of approximation
Yit1 —
Ax
3. We start from the point x = x5 = a and y = y, given by the initial condition and apply Eq.
(4.2.2) in order to find y;:

Yi _ £ v:) (4.2.2)

X1 = Xo + Ax, Y1 = Yo+ f (X0, Y0)Ax

3. Now we can repeat step 2 recursively

Xi+1 = X; + Ax, Yier = Yi + f(x, yi)Ax (4.2.3)

until ;4,1 = x¢ + (i + 1)Ax > b.

The numerical method given by Egs. (4.2.3) is called the (explicit) Euler method

ME 501, Mechanical Engineering Analysis, Alexey Volkov 4

4.2. Euler method

Graphically, the one integration step of the Vi1
numerical algorithm according to the Euler
method can be shown as follows: Axf (x;, ;i)
We follow to the tangent in point (x;, y;) Y;
in order to obtain y;, 1. tan 6 = f(x;, y;)
X
Xi

Xi+1
Eqg. (4.2.2)

Yi+1 — Vi
= f(x, 50 = fi
resembles the initial ODE in (4.2.1), since according to the definition of the derivative,

- y(x; + Ax) — y(x;))
Ax—0 Ax Y l

The value Ay(x;) = y(x; + Ax) — y(x;) is called the finite difference (as an antipode of the
infinitesimal difference dy = y'dx) and algebraic equations formulated in terms of finite
differences are called the finite difference equations.

» Finite differences are used to approximate individual derivatives.

» Finite difference equation replaces a differential equation with an algebraic equation.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 5

4.2. Euler method

» The whole process of numerical solution looks like a sequence of individual integration steps

Initial Integration step i: y; = V11

s < Exact solution
condition

y

’__~

Yo

tan 6 = f(x;, ;)

—
~—__

X

Xg=a X1) X3 X4
» Value Ax,,= x,, — x,_1 (increment of the independent variable during one integration step)

is called the integration step size. In our case Ax;= Ax = const, but in general the
integration step does not need to be constant at every n.

» Any numerical method (finite difference equation) is an algebraic equation (formulated in
terms of numbers) and, thus, its properties are different from the properties of the original
differential equation (formulated in terms of functions).

» Numerical solution is the solution of the finite difference equation and depends on the
numerical parameter(s), the integration step size, which is absent in the original IVP.

A\

The integration step size controls the numerical error ¢;.

» Our obvious goal is to chose such numerical parameter that allows us to obtain a numerical
solution that approximates the accurate solution of the problem with sufficient accuracy.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 6

4.2. Euler method

Implementation of the typical IVP solver

y,=f(x»Y); y(xO):yO; x0=aSXSb

RHS (Problem) Integrator (Method) Solver (Integration loop)
Solution in the whole
Calculation of the One integration step interval [a, b] for given initial

RHS function conditions y(xy) = yo with
Xir1 = X; + Ax given integration step Ax

f(x,y) Vit1 = Yi + f(x;, yi)Ax Plotting solution, etc.

Alternative solution (if
known), Error analysis, etc.

» The RHS, Integrator, and Solver are usually implemented in the form of separate functions.

» It allows one to use the same Integrator and Solver to solve different IVPs or use different
Integrators to solve the same IVP.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 7

4.2. Euler method

Flowchart of a typical numerical solver for IVP

Flowchart

Set initial conditions

>

One integration step

Integration Loop

Is the
final point
reached?

Save/plot solution

Euler method

RHS = f(x;, y1)
Xiy1 = X; + Ax,
Yi+1 = Yi + AXRHS
i=i+1

Xp>b?

MATLAB Code

X(1) =A;
Y(1) = YA;
i=0;

while

[X(i+1),Y(i+1)] = Int(X(i),Y(i),DX,RHS);
i=i+1;

if (X(i)>B)
break;
end

end

plot (X, Y);

ME 501, Mechanical Engineering Analysis, Alexey Volkov

4.2. Euler method

Example: Solve the IVP for the radioactive decay problem with the Euler method
y'=—-y, y(0)=1, 0<x<20.
File ODESolverl.m
function [X, Y] = ODESolver1 (Integrator, RHS, A, B, YA, DX)
NI=inte4 (((B-A)/DX)+1); % Number of integration steps
X =zeros (NI, 1);

Y =zeros (NI, 1);
% Initial condition
X(1) = A;
Y(1) = YA;
fori=1:NI-1 % Now we can perform NI integration steps
[X(i+1), Y(i+1)] = Integrator (X(i), Y(i), DX, RHS);
end
end
File DecayProblem_ Euler.m:

[X, Y] = ODESolverl (@Euler, @RHSDecay, 0, 10, 2, 0.1);
plot (X, Y);

File RHSDecay.m File Euler.m
function F = RHSDecay (X, Y) function [X,Y] = Euler (X0, YO, DX, RHS)
F= Y F =RHS (X0, YO);
end Y=YO+DX*F;
X = X0 + DX;
end

20

25

ME 501, Mechanical Engineering Analysis, Alexey Volkov

4.2. Euler method

This script allows us to compare the numerical and exact solutions and calculate the global truncation error

File DecayProblem_Euler_Err.m
[X, Y]=ODESolverl (@Euler, @RHSDecay, 0.0, 10.0, 2.0, 0.1);
Yexact = SolDecay (X, 0.0, 2.0);

E =abs ((Yexact-Y) ./ Yexact); % Error Relative numerical error
figure (1); % First figure is the solution 5 y(x) —y;

1! 5. 1) . i -
plot (X, Y, 'r-', X, Yexact, 'g--') ;)’(xi)

title ('"Numerical (red) and accurate (green) solutions');
figure (2); % Second figure is the numerical error
loglog (X, E);

title ('Relative error of the numerical solution');

File SolDecay.m

function Y = SolDecay (X, A, YA)
Y=YA*exp(A-X);

end

ME 501, Mechanical Engineering Analysis, Alexey Volkov

10

4.2. Euler method
Problem:y' = —y, y(0) =1, 0 < x < 20. Accurate solution: y(x) = exp(—x).

1 Numerical solution at the xy-plane Relative numerical error |&; /y(x;)| vs. x;
Ax=107 3
Ax=10 :
10 gl |y () — il
i] =
0.5r 100 y(x;) y(x;)
~ 10°
g
Z Of Ax=1 = 10"+
CHE|
107
L Ax =
051 102+)
Ax=10"
Ag=2 | 10° - Ax = 107
= . Ll o Ll MR | 1 | Lol \ Ll I |
lo® 107 10" 10° 10’ 10° 10° 107 107 10’
Independent variable x Independent variable x
Conclusions:

1. The smaller the integration step, the better the accuracy of the numerical solution.
2. |&;/y(x;)]| increases with i, so that eventually the error becomes unacceptably large.
3. For the Euler method, the numerical error at given x is proportional to Ax.

4. There is a some “critical value” Ax .. if Ax = Ax.it, then the numerical solution has no

physical sense and useless.
Questions:
1. Why is the numerical error proportional to Ax?
2. Why does the “critical value” Ax,.;+ exist?

ME 501, Mechanical Engineering Analysis, Alexey Volkov

11

4.3. Convergence, approximation, and stability

Local and global truncation errors
The answers on the questions formulated in the end of section 4.2. can be obtained by studying
the convergence, approximation, and stability of solutions of finite-difference equations.

» We say that the numerical solution y; converges to the solution y(x) of the original ODE if
the numerical (global truncation) error &; = y(x;) —y; = 0as Ax — 0.

» Local truncation error of the numerical method is the error
Ty = y(x) — Y
calculated assuming that all previous numerical values are accurate, i.e. y; = y(x;) for j <.
» Local truncation error characterizes the error we make at one integration step. Total

numerical error &; usually increases with the number of the integration steps i and can be
much larger than ;.

y
Yi - - ,
Y Numerical solution Numerical solution N £;
Vi ? /
g A (x) o
y(x;) Y, yXi == /
Vi1 = Y(Xi-1) - /
« v « o NS
xb Xi—1 Xi X X0 Xi—1 Xi X

ME 501, Mechanical Engineering Analysis, Alexey Volkov 12

4.3. Convergence, approximation, and stability

Order of approximation

» We say that the numerical method (finite difference equation) approximates ODE if 7; — 0 as
Ax - 0.If7; = O(Axk+1) then we say that the method has k" order of approximation.

> Why we say that a method has k" order of approximation if ; = 0(Ax**1)?
Let’s estimate the global error at the end of the interval, i.e. after N = [(b — a)/Ax]
integration steps. At every step we introduce error 7; = 0(Ax**1), then after N steps

ey~NT; = —— 0(Ax¥*1)~0(8x")

Thus, the method of k" order has the global error O(Axk).

» The order of approximation is the simple measure of accuracy (the larger order of
approximation, the better accuracy).

» The general approach to study the approximation is to take the Taylor series of y(x;,1) in the
point x = x;. Euler method has 1%t order of approximation :

1
y(xi41) = y(x; + Ax) = y(x;) + y'(x;)Ax + Ey”(xi)sz + 0(Ax3)
Vig1 = }1’i + f(x;, yi)Ax
Tit1 = Y(Xi41) — Vig1 = Ey”(xi)AxZ + 0(Ax?) = 0(Ax?)

The approximation is not sufficient for the convergence.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 13

4.3. Convergence, approximation, and stability
Stability

Now let’s consider how the error evolves with n — oo if previous data are also erroneous.
Let's consider the model equation
y' = -2y, A = const >0
For f(x,y) = —Ay, the Euler method results in
Yier = ¥i — Ayibx = (1 = AAx)y; = (1 — AAx)%y;_; = (1 — 2Ax) 1y,
We see that y; » 0 at n — o (only such solutions have physical meaning) if |1 — AAx| < 1 or

0 < AAx < 2.

If y; = 0 at i = oo for our model equation, then we say that the numerical method (scheme) is
stable, otherwise unstable. Unstable methods are practically useless.

» The Euler method is conditionally stable, i.e. it is stable only in the finite stability range
0 < AAx < 2. This is in agreement with results of our numerical experiments.

» The stability a numerical method depends on properties of the ODE (A in our case), so that
Ax available for numerical integration depends on the problem under consideration.

There is a theorem that roughly reads that

If a numerical method approximates the initial ODE and the method is stable, then the
numerical solution converges, so that the approximation and stability imply convergence.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 14

4.4. Methods of higher orders of approximation

» The Euler method is not suitable for practical calculations, since the numerical error increases
fast with the number of integration steps.

» In practical calculations, methods of al least 2" order of approximation are used, but
methods of the 4t are applied in the majority of applications.

» Some applications, e.g., molecular dynamics (MD) simulations, require methods with
increased accuracy, typically, methods of 6t"-8th order of approximation.

Question: How can we improve the accuracy (increase order of approximation)?

Let's consider again the Euler method (see slide 11) Vi+1
Py (x) \
Yiv1 = Vi + fidx = y; + fi(x; —1xi—1)
y(xis1) = y(x) + y' (x)Ax + 5 y" (x)Ax* + 0(Ax?) _
;2 Vi y(x)
Tiv1 = Y(Xi+1) — Vit1 = Ey”(xi)sz + 0(Ax®) = 0(Ax?) X
Xi Xi+1

» Euler method means that we approximate solution at
an integration step by a linear function — linear interpolation polynomial
y(x) = y; + fi (x — x;)
» If solution is a linear function (first-order polynomial)
y(x) =a+b(x —x;) =P(x)
then the method is accurate (all derivatives of order 2 and higher are equal to zero).

ME 501, Mechanical Engineering Analysis, Alexey Volkov 15

4.4. Methods of higher orders of approximation

The general approach for development of numerical methods with higher order of
approximation is to approximate y(x) within the integration step size with the interpolation
polynomial P,(x) of degree n. One can show then that

» The obtained numerical method has nt" order of approximation.
» The method is accurate (zero numerical error) if the solution is a polynomial of degree n.

There are many ways how the interpolation polynomial of degree n can be introduced. Two
most important practical approaches are

» To use information about solution at previous integration steps,
Yi—1, fi—1, Vi—2, fi—2, ...(Linear multistep methods, LMM).
» To define additional values of y and/or f within the integration step (Runge-Kutta methods,
RK).
Linear multistep methods Runge-Kutta methods
Extrapolatio\n

fn+2/3

Yi+1 i Yi+1

Yi+2/3
V; . fn+1/3
Interpolation Yi+1/3 \
. . In Interpdlation
| y °
Vi-1 rpolation l olynomial
polynomial P, (x) « Ax/3= PO
Xj_3 Xi_o Xj_1 Xi Xi+1 Xi Xi+1/3 Xi+2/3 Xi41

ME 501, Mechanical Engineering Analysis, Alexey Volkov 16

4.5. Runge-Kutta methods

We are going to develop numerical methods for a 1%t order ODE in the explicit form

vy =f(xy)

(4.5.1)

The idea of the Runge-Kutta methods is to use additional values of the RHS at the interval
Xn < X < Xp41 in order to increase the order of approximation. Let’s consider how in can be
done in the case of the 2" order method.

Yi+1

Vi

15t order Euler method

Axf (x;,y;)

Xi

Xi+1

Yi+1
Vi

2"d order Runge-Kutta

1/

L I .

—— 3

Xi

X; + A.X'/Z Xit+1

The Runge-Kutta method of the 2"¥ order (RK2) (improved Euler method) can be formulated as:

ky = Axf(x;, y;)

k, = Axf(x; + 0.5Ax,y; + 0.5k,)

YVit1 = Yi t ko xjp1=x; + Ax

(4.5.2)

ME 501, Mechanical Engineering Analysis, Alexey Volkov

17

4.5. Runge-Kutta methods

Note: The order of approximation of the method given by Eqgs. (4.5.2) can be found by taking the
Taylor expansions of both accurate and numerical solutions.

Implementation of the RK2 method in the MATLAB

Integrator: File RK2.m

function [X,Y] = RK2 (X0, YO, DX, RHS)
K1=DX™ RHS (X0, YO);
K2=DX®RHS(X0+0.5* DX YO +0.5%K1)
X = X0 + DX;
Y=Y0 + K2;

end

In the MATLAB Command window:
ODESolverl (@RK2, @RHSDecay, 0.0, 10.0, 2.0, 0.1);

ME 501, Mechanical Engineering Analysis, Alexey Volkov 18

4.5. Runge-Kutta methods

The development of the RK methods of higher orders requires complex algebra.

Popular Runge-Kutta method of the 4" order (RK4) can be formulated as follows:
ki = Axf(x;, yi)

ko= Axf(x; + 0.5Ax,y; + 0.5k,)
ks= Axf(x; + 0.5Ax, y; + 0.5k,)
ko= Axf(x; + Ax,y; + k3) (4.5.3)

1
Yi+1= Vi + g(kz + 2k + 2k3 + ky)

Xiy1= X; + Ax

Notes:

1. RK methods do not require any information about the numerical solution in previous points.
Value of y;, 4 is completely defined by y;. This is convenient for programming and use.

2. Every individual integration step, i = i + 1, can be performed with the individual integration
step size Ax;. The integration step size is easy to change in the course of integration. It can
be used for the adaptive step size control, when Ax; is chosen based on the analysis of
error of then numerical integration.

3. RK4 method require 4 calculations of the RHS per time step while the Adams-Moulton
method (Sect. 4.6) of the same order require only 2 calculations of the RHS. On the other
hand, RK4 has larger stability range, and allows to solve the same problem with more than
twice large Ax, so it can be more computationally effective than the Adams-Moulton LMM.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 19

4.5. Runge-Kutta methods

Build-in MATLAB functions for numerical solutions of the IVP for first-order ODEs
» MATLAB has a lot of build-in solvers (integrators) for IVPs for first-order ODEs that
implements numerical methods with the adaptive step size control.
» These solvers implements different numerical methods, but have the same syntax.

Syntax:
[X, y]=Solver (@Fun, xspan, ya)
» Solver is the name of the solver (see the next slide).
» Fun in the (user-defined) function that implements calculation of the RHS f(x,y) .

» xspan is 1D array that should contain at least two real values. The first and last elements of
xspan are used as limits of the integration interval [a, b].

» vyais the initial condition at x = a.

» X and y are the column vectors with nodes values of x and y obtained as a result of
integration. Values of x depend on xspan.
Example:

[X,Y]=o0ded5 (@RHSDecay, [0.0,10.0], 2.0);
Yexact = SolDecay (X, 0,1);

E=abs ((Yexact-Y) ./ Yexact);

loglog (x, E);

4.5. Runge-Kutta methods

The following solvers are available in the MATLAB:

ODE Solver Name

Description

odedb

RK4-RK5 with the adaptive
step size control

For nonstiff problems, one-step solver, best to apply
as a first try for most problems. Based on explicit
Runge-Kutta method.

ode23

RK2-RK3 with the adaptive
step size control

For nonstiff problems, one-step solver. Based on
explicit Runge-Kutta method. Often quicker but less
accurate than ode45.

odell3 For nonstiff problems, multistep solver.

odelbs For stiff problems, multistep solver. Use if ode45
failed. Uses a variable order method.

ode23s For stiff problems, one-step solver. Can solve some
problems that ode15s cannot.

ode23t For moderately stiff problems.

ode23tb For stiff problems. Often more efficient than

odelb5s.

This should be the first
solver you try.

4.5. Runge-Kutta methods
Comparison of numerical accuracy of the RK2
with fixed integration step size and ode45 with adaptive step size control

Relative numerical error in the "exponential decay problem" (slide 9)

Relative error of the numerical solution

107

RK2 with Ax = 0.01 ode45 with adaptive step size control

107k

[yacc-y)yace
=]

1|:|' Ll Ll Lol L m"; . L4 e . W | . I | . L
10 10 10° 10’ 10" W i o = N
H

» Adaptive step size control algorithm is not absolutely universal and sometimes leads to
unsatisfactory results.

» Constant step size integration often results in a linear increase of the numerical error. The
integration step size appropriate for a particular problem can be chosen by means of
experimentation (obtaining a series of numerical solutions with gradually decreasing Ax).

4.6. Numerical solution of IVP for systems of ODEs

Any numerical method developed for single 1%t order ODE can be applied for the n-dimensional
fundamental system

yi — fl(x' Y1 Y250 Yj—1, Vjr Yi+1s- Yn)

Yn = (6 Y1, Y20 Yim1, Yis Vit1rr Yn)
Let’s rewrite this system using the vector notation:

V1 fi
Y =F(xY Y= () F= () = F(x,Y), (4.6.1)

Yn fn
Then any numerical method designed for a single ODE in the explicit form can be reformulated
for the system by changing scalar quantities to vector ones. For instance, the Runge-Kutta

method of 4th order

, _ For system (4.6.1):
For single equation (4.5.1):

kl = Axf(xl-, yl) Kl = AxF(Xi, Yl)

k2 — AXf(Xi + O.SAX, Vi + OSkl) KZ = AXF(XL' + O.SAX, Yi + OSKl)

k3 — AXf(Xi + O.SAX, Vi + OSkz) K3 = AXF(XL' + O.SAX, Yi + OSKZ)

ky, = Axf (x; + Ax,y; + k3) K, = AxF(xi1+ Ax,Y; + K3)

Yorn = 91+ Gy + 2k + 2ks + ky) Vie = Vi + 2 (K + 2K, + 2K5 + K,)
Xiy1 = X; + Ax Xiy1 = X; + Ax

ME 501, Mechanical Engineering Analysis, Alexey Volkov 23

4.6. Numerical solution of IVP for systems of ODEs

MATLAB implementation of a solver for a fundamental system of ODEs

Y1 f1
Y =F(x,Y) Y = (), F = () =F(x,Y)
Yn fn

» In the development of such a solver, we assume that Y(x) and F are represented by row
vectors F and y:

v=1[vl,vy2,..,yn], F=[fl1,f2,..,fn]

» The whole numerical solution is represented by a two-dimensional array Y, where individual
columns contain individual functions y;, in other words Y (i, j) = y;(x;+1)

» Array Y has N rows (number of integration steps + 1) and n columns (number of unknown
functions in the system). Y(:,j) is the column containing values of the unknown function

(%)
" ---_-

y1 (%) V2 (xo) Vn(Xo)
X1 y1(x1) y2(xq1) Yn(X1)
x; i) yal) yalc) | AT
XN y1(xXy) V2 (xy) Yn(Xy)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 24

4.6. Numerical solution of IVP for systems of ODEs

Implementation of the RK2 method for a fundamental system in the MATLAB

File ODESolverN.m
function [X, Y] = ODESolverN (Integrator, RHS, A, B, YA, DX)
[M, N]=size (YA); % N is the dimension of the system if YA is the row vector
Nl=int64 (((B-A)/DX)+1);
X =zeros (NI, 1);
Y =zeros (NI, N);
% Initial conditions
X(1)=A; Y(1,:) =YA;

fori=1:NI-1
[X(i+1), Y(i+1,:)] = Integrator (X(i), Y(i,:), DX, RHS);
end
end
nepdt T R Precisely the same integrator RK2 can be used

function [X,Y] = Euler (X0, YO, DX, Equation)
K1 = DX * Equation (X0, YO);
K2 = DX * Equation (X0+ 0.5 * DX, YO+ 0.5 * K1);
X = X0 + DX; This is power of MATLAB.
Y=Y0+K2;

end

for both individual equation and system!

ME 501, Mechanical Engineering Analysis, Alexey Volkov 25

4.6. Numerical solution of IVP for systems of ODEs

Example 1: Mechanical mass-spring system
Mechanical mass-spring system

Second-order ODE

my' +cy' + ky =r(t)

?: :,. : Harmonic driving force

= : > r(t) = F, cos wt
- = > Equivalent two-dimensional system
e Qo 121, e "=y

o 1 - fé (y = 0)-0-- / 0 V> :y’

TS
System at okl mys, + cy, + ky, = r(t)
rest O ‘
System in p

y = y(t): Displacement motion , Y1 =Y2
y' =dy/dt: Velocity y yo = (r(t) —cy, — ky1)/m

Two-dimensional system in vector notation
Y =F(Y)

v=|]
V2
F = l (Fgcoswt —cy, — ky,)/m

MATLAB implementation:
RHS: File RHSMassSpring.m

function [F] = RHSMassSpring (X, Y)

M=20;K=2.0; C=0.1; Omega=1.0; FO=1.0;

F(1) = Y(2);

F(2)=(FO *cos (Omega *X)-C*Y(2)-K*Y(1))/ M;
end
In the MATLAB Command window:

ODESolverN (@RK2, @Equation2,2,0,300,[1,1],0.1)

ME 501, Mechanical Engineering Analysis, Alexey Volkov

26

4.6. Numerical solution of IVP for systems of ODEs

In the case of forced oscillations (F, # 0), the behavior of the solution drastically depends on
the relation between the input angular frequency (angular frequency of the driving force) w

and natural angular frequency of the mass-spring system wg, = /k/m.

Resonance, beats, and practical resonance
Resonance in the undamped system (¢ = 0): Excitation of large-magnitude oscillations by
matching input and natural frequencies, wy, = w.
Beats in the undamped system (c = 0): Strong temporal modulation of the magnitude of
oscillation at wy # w, but |wy — w| K w.
Practical resonance in the damped system (¢ # 0): Maximum amplification of oscillations by the
driving force with w? = w35, = We? — c?/(2m?)

Resonance Beats Practical resonance
30 — 10 T T T T T T T T T T
k=2,m=2,y(0)=1y'(0) =1 Lol O W [T T '
] L T e : e 4 -
Gifsit LA R R D it I8 | mmp——— i
I RIS — L et T e a1 VA ey - s
R | - H
A0 L e A = IR AR AUV A1 .S . gl .
N T T A I 11t 11 111 AL AER
| | | w = 1 o I I I Ia)] 9-95 5 o= Cc = 0.1,(1) — wmax |
oy Z I 0 G 100 T = e L M zall o 1 &0 00 e T SR 0
Linear increase of magnitude with time Temporal modulation of magnitude Strong amplification to a finite level

ME 501, Mechanical Engineering Analysis, Alexey Volkov 27

4.6. Numerical solution of IVP for systems of ODEs
Summary on numerical integration of systems of ODEs with MATLAB function ode45

The MATLAB build-in function ode45 allows one to solve an initial value problem:

dy; dy,
—— =@y,):E = f206,¥1,¥2), ¥1(X0) = Y10, ¥2(X0) = Y20, X0 =a <x<b

dx
Name of a function - RHS f(x, y)

[x,y]=o0de4d5 (@fun,[a,b], [y10,y20])

Tables: 1D array of x and 2D array of y

Example:
dy dy
d—xl=xy1—yz, d—xz=—2y1, »1(0)=2 y,(00=-2 0<x<4
function [f]=fun(x,y) [%,y]=o0ded5 (@fun, [0.0,4.0], [2.0,-2.0]);
f(1) = x * y(1) - y(2); plot (x, y(:,1), x, y(:,2)) % y1(x) and y2(x)
f(2) =-2.0 * y(1); figure (2);

i fl’ fmust be a pIOt (y(:ll)l y(lz)) % Phase pOrtrait: y2 (Vl)
end column vector !!!!

ME 501, Mechanical Engineering Analysis, Alexey Volkov 28

4.6. Numerical solution of IVP for systems of ODEs

Example 2: Double pendulum

Rigid massless strings Equations of motion for the double pendulum reduces
to the fundamental systems (see Eq. (3.7.3)):
y . :
Z1 = 91, Zy = 91, Z3 = 92, Zy = 02
X
L, Z1 = 74
5 = AyyBy — A13B;
% M ! 27 A Ay — ApAy
& e Z3 = Z4
0, 5 = —Ay1B1 + A11B,
P Ay — Apdy

Bobs

(A11 A12)

Az1 Ax
(Bl) _ (—gsinz; — uyL, sin(zy — z3) 7
B, —gsinz; + Ly sin(z; — z3) z5

(L4 pzL, cos(zy — Zs))
L, cos(z; — z3) L,

ME 501, Mechanical Engineering Analysis, Alexey Volkov 29

4.6. Numerical solution of IVP for systems of ODEs
Double pendulum: MATLAB function for RHS

File RHSPendulum2.m
function [F] = Pendulum2RHS (t, Z)

g=9.81;

L1=0.1; (A11 A12) _ (Ly Uy Ly cos(zy — Zs))
201 Ay1 Azy) \Ljcos(z; — z3) L,

M1=1.0;

M2 = 10} (Bl) _ —Jg sin Z1 — ‘Ll.zLZ Sin(Z1 — Zg) Zz

Mu2 = M2 /(M1+M2); B, —gsinzs + Ly sin(z; — z3) z2

C13 =cos (Z(1) - Z(3));

S13 =sin (Z(1) - Z(3));

A=[L1,(Mu2*L2*C13);(L1*C13),L2];

B=[(-g*sin(Z(1))-Mu2*L2*513 *Z(4)*2);(-g*sin(Z(3))+L1*S13 *7(2)A2)];
FF=inv(A)*B;

F(1) = 2(2); B

F(2) = FF(1); Zy =274

F(3) = 2(4)1 AZZBl - Alsz
i(i)F':’ FF(Z); ° A11A22 o A12A21
end Z3 = Z4

ME 501, Mechanical Engineering Analysis, Alexey Volkov 30

4.6. Numerical solution of IVP for systems of ODEs

Double pendulum: MATLAB script
File Problem_4 7 3.m

% Here we set lengths of strings Initial conditions:
i 6,(0) = 6,(0) = 90°,6,(0) = 6,(0) =0
% Here we use ode45 solver to obtain angles ‘.'

[t,Z] = oded5 (@RHSPendulum2, [0:0.01:201], [(degtorad (90.0)), O, (degtorad (90.0)),01]);

% Now we have Z solution of equations of motions:
% Z(1) =Theta 1

% Z(2)=dTheta 1/dt

% Z(3) = Theta 2

% Z(4)=dTheta 3/dt

% Here we convert angles into Cartesian coordinates of bob 1

X1 =L1*sin (2Z(:1)); Eqg. (7)-1(10):

Yi=11+12-11%*cos(Z(:1)); X4 =L1 sin91
% Here we convert angles into Cartesian coordinates of bob 2 ‘ V1 = Lz + L1 — L1 COoS 91

X2=L11*sin(2Z(:1))+L2 *sin(Z(:,3)); X, = L1 sin 01 + L2 sin 02

= = * . i * . .
Y2=L1+1L12-L1*cos(Z(:1))-L2*cos(Z(:3)); y, = LZ + L1 . Ll COS 91 _ _LZ COS 92
% Now we can choose one of two ways to visualize solutions

% Script Pendulum2Plots prepare plots
%Pendulum2Plots

% Script Pendulum2Animation animates the motion of pendulum on the plane (X,Y)
Pendulum2Animation

ME 501, Mechanical Engineering Analysis, Alexey Volkov 31

4.6. Numerical solution of IVP for systems of ODEs

Double pendulum: Numerical solution

Ly + L,
©
3

0

m1=m2=1kg,

Initial conditions:

L1=L2=10CIn

0,(0) = 6,(0) = 90°
91(0) — éz(o) =0

Theta1 : Theta2 (degree)

1000

800

o

-500

-1000

15800

0.

1 1 I I 1 I 1 I 1 L
0 2 4 B g 10 12 14 16 18 20

Angles Theta, (red) and Theta, (green) vs. time

\Nw\/\; WWWM

tirme [s)

Trajectoty of bob 2 on the plane §{Y)
T T T T T

2

=
N iy) e

/
)@

Ny

ME 501, Mechanical Engineering Analysis, Alexey Volkov

32

4.7. Explicit, implicit, and predictor-corrector methods (optional)

Question: How can we improve the stability (enlarge the stability range)?

Let's consider the IVP (4.2.1) and use forward finite difference in order to approximate the
derivative in the equation:
Yi+1 — Vi
= e Vi)

or

Xiy1 = X; + Ax, Vir1 = Yi T+ [(Xiz1, Yir1)Ax (4.7.1)

The method given by Eq. (4.7.1) is called the implicit Euler method.

One can show (by taking the Taylor expansion) that the implicit Euler method has the 15t order
of approximation.

Let’s study the stability of the implicit Euler method. For f(x,y) = —Ay, the implicit Euler
method results in

Vi _ Yo
(1+ AAx) (1 + AAx)i+?

We see that y; » 0ati — oif |1 + AAx| < 1,0orif A > 0 or AAx < —2. Thus, we see that

Vit1r = Vi = AVip1Ax = (1 + AAx)Yi41 = Vi = Yit1 =

The implicit Euler method is stable at positive A for any Ax!

ME 501, Mechanical Engineering Analysis, Alexey Volkov 33

4.7. Explicit, implicit and predictor-corrector methods

Let’s compare explicit and implicit Euler methods:
Explicit: x;4, = x; + Ax, Vie1 = ¥; + f(x;, y,)Ax
Implicit: ~ x;49 = x; + Ax, Vivr = Yi + [(Xi41, Vir1)Ax
» Both methods have the same order of approximation and, thus provide roughly the same
level of accuracy.

» The explicit method is stable only if 0 < AAx < 2, while the implicit method is stable at
arbitrary Ax, and this is the great advantage of the implicit method.

» On the other hand, y;,; can be immediately found with the explicit method, while for the
implicit method we must solve the equation (4.7.1) with respect to y;, 4. If the original ODE is
non-linear, the equation with respect to y;, 4 can be solved only iteratively.

We call a numerical method explicit, if finite difference equation with respect to y;,4 is explicit,
i.e. does not contain f(x;41, Vi+1). Otherwise, we call the method implicit.

General properties of the explicit and implicit methods are the same as for the Euler methods:

» Explicit methods have a limit range of stability for the model problem.

» Implicit methods are unconditionally stable, but require more calculations per integration
step.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 34

4.7. Explicit, implicit and predictor-corrector methods
Predictor-corrector methods

We combine positive sides of both explicit and implicit methods in one approach using the so-
called predictor-corrector methods which are composed of two successive steps:

Predictor step: We use some explicit method in order to roughly predict the value of y,,, ¢, €.8.
Predictor: y;y10) = ¥i + f(x;, yi)Ax (4.7.2a)

Corrector step: We use some implicit method in order to correct prediction y; (., but
f(xie1, Yier) is calculated as f(Xpe1, Yisi(n), €8

Corrector: x;,1 = x; + Ax, Vi1 = Vi + f(Xis1, Yir10))Ax (4.7.2b)
The method given by Egs. (4.7.2) is called the predictor-corrector Euler method.

Predictor-corrector methods remain conditionally stable (i.e. they have a limited range of
stability), but

» Using the corrector step, we are able to enlarge the stability range with respect to the purely
explicit predictor method.

» Using the predictor we avoid iterations which required for the purely implicit corrector
method.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 35

4.8. Linear multistep methods (LMMs). Adams family of LMMs

We are going to develop numerical methods for a 1%t order ODE in the explicit form

Yy =fxy) (4.8.1)
The Euler method, e.g., the explicit Euler method of approximation of Eq. (4.8.1)
Yit1 — Y
l A = =[x, y;) (4.8.2)

has the 1%t order of approximation. In order increase the order of approximation, we must
increase the accuracy of approximation of the derivative in the original ODE. Eq. (4.8.2) implies
thatatx; < x < x;41:
Xi+1 — X X = Xj
y() =yi—p Vit1 37
flx,y) =y = f(x;,y:) = const

since we know that Eq. (4.8.2) is accurate for any solution in the form of a polynomial of the 15t
degree. From this point, we see that in order to obtain methods of higher orders, we need to

represent either y(x) or f(x,y) (or both of them) at the interval x; < x < x;,4 in the form of
polynomials of higher degrees

k
y(x) = Z b;x! (4.8.3)
1=0 .
flx,y(x)) = z a;xt (4.8.4)
i=0

ME 501, Mechanical Engineering Analysis, Alexey Volkov 36

4.8. Linear multistep methods (LMMs). Adams family of LMMs

Question: How can we determine coefficients in Eq. (4.8.2) or (4.8.3)?
We need additional information about the numerical solution in some additional points.

Various high-order numerical methods for ODEs are different mostly by the approach that is
used in order to determine these coefficients.

Linear multistep methods (LMMs) are methods, where coefficients in Eq. (4.8.3) and (4.8.4) are
determined based on the values of y; and f; = (x;, y;) in previous integration points, i < n.

fy) Interpolation

fi+1 \ ¢
fi = f(xiyi) \\b A

fi-2 ?/Tf Extrapolation

X
Xi-3 Xi-2 Xi-1 Xi

Xi+1
LMMs are introduced for the constant integration step, Ax = x; — x;_; = const for any i.

In particular, in the Adams family of LMMs, it is assumed that f(x) is an interpolation
polynomial of degree k following through points (x,,, fi,), Where

For explicit methodssm=1i,i—1,..,i — k
For implicit methodssm =i+ 1,i,...,i — (k — 1)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 37

4.8. Linear multistep methods (LMMs). Adams family of LMMs

Let's first consider how we can introduce an explicit LMM of the second order:

fxy) Interpolation
fi+1 r = X~ X
fi = f (i yi) 3 \ X = X; +Azx r
l
fi-1 T/ Extrapolation
xi—l xl xi+1 X
Let's introduce the linear polynomial going through points (x;_1, fi—1) and (x;, f;)
X —Xi—1 Xi — X
xX,y(x)) = J; + fi-
Fay) =i+ fiay = —
and integrate this polynomial in the interval x; < x < x;44
Xit+1 Xit+1 Xi+1 Xit+1
, X —Xi—1 Xi— X
v =vi= [vax=| flye)ax=1 | de+fin | S —dx
Xi — Xi-1 Xi — Xi-1
Xi Xi Xi Xi
Xit+1 1 Xi+1 1
X —Xj_q 3 X;i— X 1
dx = Ax | (r + 1)dr = = Ax, ————dx =Ax | (-r)dr = —=Ax
Xi — Xi—1 2 Xi — Xji—1 2
Xi 0 Xj 0
Ax (4.8.5)
Yisr =Yi T > Bfi — fi-1) o

Eq. (4.8.5) is the explicit Adams-Bashforth method of 2"9 order.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 38

4.8. Linear multistep methods (LMMs). Adams family of LMMs

Comparison of the 1%t order Euler and 2" order Adams-Bashforth methods:
Example:y' = —y, y(0) =1, 0 < x < 20. Accurate solution: y(x) = exp(—x).
Relative numerical error |&; /y(x;)| vs. x;

10°

6
10 Adams-Bashforth method, 2nd order
104 | e explicit Euler method, 1st order

10°F
10°
10
10"
10°
10° /

Independent variable x

i
y(x;)

y(x;) — yi‘
y(x;)

Relative error

» Method of the 2" order provides superior accuracy with respect to the 1t order method.

» Method of the 2" order is less stable than the 15t order method.
» Implementation of the Adams-Bashforth method: see ODE1_AdamsBashforth2.cpp.

ME 501, Mechanical Engineering Analysis, Alexey Volkov

39

4.8. Linear multistep methods (LMMs). Adams family of LMMs

Now let's consider how this approach can be used to introduce the explicit LMM of k™ order:
f(x,y) Interpolation Extrapolation for an explicit method

fis1 | \

f = Foy) SN

Interpolation polynomial
for an explicit method ﬁ

~. Interpolation polynomial
for an implicit method

X

Xi+1

Let’s first consider explicit methods and represent the interpolation polynomial for f(x,y) in
the form of the Lagrange interpolation polynomial:

K
FOYE) =) frmbiom () (486
m=0
where
Cox —x
Mg 1 Il=m
Li_m(x) | 1_[Xi — xi—j’ Li—mCxiy) {O | +m
]=0,]¢m

Now we can substitute Eq. (4.8.6) into the RHS of the differential equation and integrate from
X=x;tox = Xx;41

ME 501, Mechanical Engineering Analysis, Alexey Volkov 40

4.8. Linear multistep methods (LMMs). Adams family of LMMs

Xi+1 k Xi+1
Yi+1 —Yi = f y'dx = Z fi—m j Li_m(x)dx (4.8.7)
If we introduce the notation
1 Xi+1
Ay, = Ef Li_m(x)dx (4.8.8)
X

then Eq. (4.8.6) reduces to an explicit finite-difference equation with respect to y;, :
k

YVig1 = Yi T Ax 2 A fi-m = Ax(aof; + a1 fi—q + -+ arfi—k) (4.8.9)

m=0

Egs. (4.8.7) and (4.8.8) give the explicit Adams or Adams-Bashforth method of k" order.

Let’s calculate coefficients a; for the popular Adams-Bashforth method of the 4t order (k = 3):

" Xit+1 1
Qo = 3~ j L;(x)dx = JLi(xi + Ax r)dr
Xi 0

where the new integration variable r = (x — x;)/Ax is introduced and

ME 501, Mechanical Engineering Analysis, Alexey Volkov 41

4.8. Linear multistep methods (LMMs). Adams family of LMMs

2

‘ _ X —Xi—j _ (x—2x_1)(x — x;-2)(x — x;_3)
Lt = j=1jj¢o xp —xi—j (g = x-1) 0 — xi-2) (% — xp_3)
((r+ DAx)((r + 2)Ax)((r +3)Ax) (r+ D+ 2)(r + 3)
(Ax)(2Ax) (3Ax) B 6
1

L) =Li(x; +Axr) =
1

- 1 3) 55
a0=an(r)dr=gj(r + 671 +11r+6)dr=ﬁ
0 0

All other coefficients can be calculated in the same way. It finally gives the following equation
for the Adams-Bashforth method of the 4" order:

Ax
Vier = Y; + B (55f; —59f;_1 +37fi_, —9fi_3) (4.8.10)

For the implicit Adams methods, the interpolation polynomial includes the point (x;41, fi+1) :

k—1
FON =) frmbiom@)
m=-1
(compare with Eq. (4.8.5): Only limits for m are changed!). Now, by inserting (4.8.10) into (4.8.1)
and integrating, one can obtain

k-1
Yiv1 — Vi = Ax 2 A fi-m = Ax(a_1f (Xi41,Yiv1) T Qofi Y a1fic1 + -+ A fick+1)
m=—1 (4.8.11)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 42

4.8. Linear multistep methods (LMMs). Adams family of LMMs

All coefficients can be calculated in the same way as it is done for the explicit method. if kK = 3,
It gives the following equation for the implicit Adams-Moulton method of the 4t" order:

Ax
Vier = Yi+ 55 (Ofisr +19f = 5fica + fiz2) (4.8.12)

Adams-Moulton predictor-corrector method of the 4t order:

Predictor: y;41(5= Vi + (55ﬁ 59fi_1 +37fi_, — 9fi_3)
A (4.8.13)
Corrector: y; 1 = y; + (9f(xl + Ax, yl+1(*)) + 19f; — 5f;_1 + fl-_z)

Notes:

1. When we start numerical integration, the Adams-Moulton PC method can be applied only
after 3 successive steps, i.e. only for calculation of y,. Values y;,y,, and y3 should be
obtained with other methods: either LMM of smaller order of approximation, or Runge-
Kutta methods considered in the next section.

2. LMMs in the classical formulation can be used only for constant value of the integration step
size Ax. Thus, adaptive changing Ax for the error control is problematic for classic LMMs.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 43

