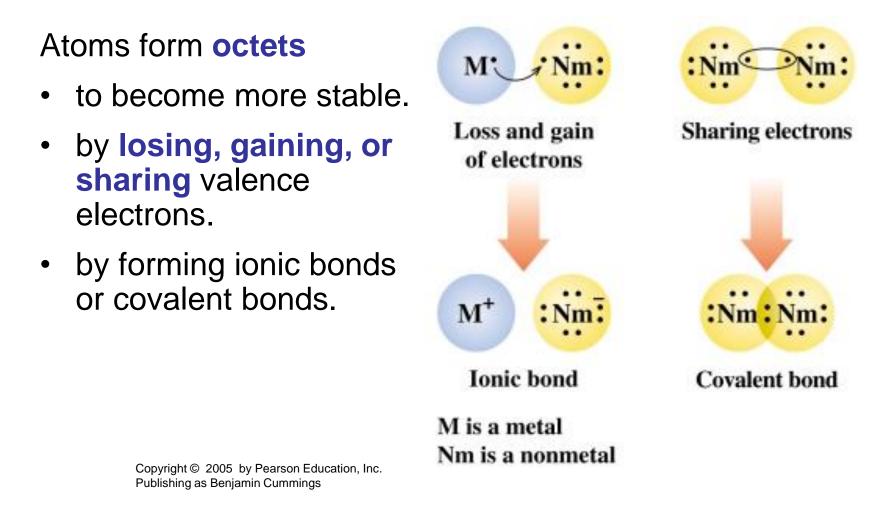
Chapter 4 Octet Rule and Ions

Octet Rule

An octet

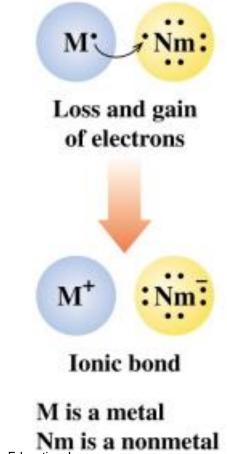

- means 8 valence electrons.
- is associated with the stability of the noble gases.

Exception:

Helium (He) is stable with 2 valence electrons.

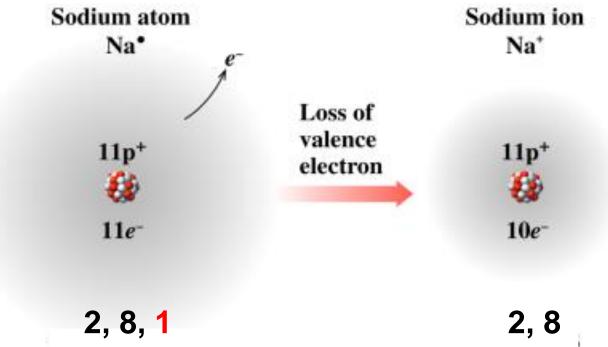
Electron level arra	ngement valence electrons
He 2	2
Ne 2, 8	8
Ar 2, 8, 8	8
Kr 2, 8, 18, 8	8

Ionic and Covalent Bonds



Metals Form Positive Ions

Metals form positive ions


- by a loss of their valence electrons.
- with the electron configuration of the nearest noble gas.
- that have fewer electrons than protons.

Group 1A metals \longrightarrow ion ¹⁺ Group 2A metals \longrightarrow ion ²⁺ Group 3A metals \longrightarrow ion ³⁺

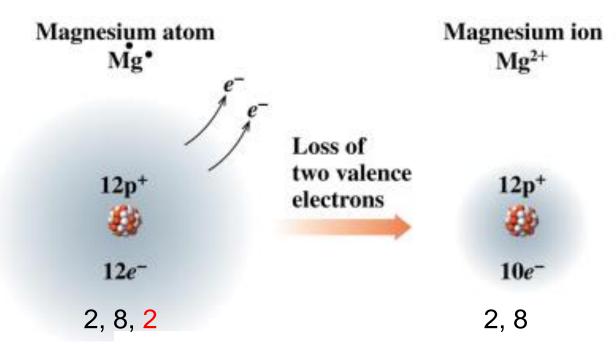
Formation of a Sodium Ion, Na⁺

Sodium achieves an octet by losing its one valence electron.

Charge of Sodium Ion, Na+

With the loss of its valence electron, the sodium ion has a +1 charge.

Sodium ion Na⁺


Sodium atom	
11p+	
<u>11e⁻</u>	
0	

Sodium ion 11p⁺ <u>10e⁻</u> 1+

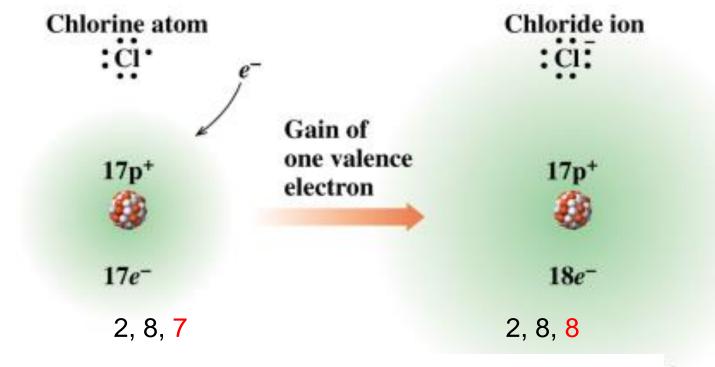
Formation of Mg²⁺

Magnesium achieves an octet by losing its two valence electrons.

Learning Check

- A. The number of valence electrons in aluminum is
 - 1) 1e⁻. 2) 2e⁻. 3) 3e⁻.
- B. The change in electrons for octet requires a
 1) loss of 3e⁻.
 2) gain of 3e⁻.
 3) a gain of 5e⁻.
- C. The ionic charge of aluminum is 1) 3-. 2) 5-.

D. The symbol for the aluminum ion is
1) Al³⁺.
2) Al³⁻.
3) Al⁺.


Formation of Negative Ions

In ionic compounds, nonmetals

- achieve an octet arrangement.
- gain electrons.
- form negatively charged ions with 3-, 2-, or 1charges.

Formation of a Chloride, Cl⁻

Chlorine achieves an octet by adding an electron to its valence electrons.

Charge of a Chloride Ion, Cl-

By gaining one electron, the chloride ion has a -1 charge.

Chlorine atomChloride ion $17p^+$ $17p^+$ $17e^ 117p^+$ $17e^ 18e^-$ 0 1^-

Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings

Some Ionic Charges

Group Number	Number of Valence Electrons	Electron Change to Give an Octet	Ionic Charge	Examples
Metals				
1A (1)	1	Lose 1	1+	Li ⁺ , Na ⁺ , K ⁺
2A (2)	2	Lose 2	2+	Mg ²⁺ , Ca ²⁺
3A (13)	3	Lose 3	3+	Al ³⁺
Nonmetals				
5A (15)	5	Gain 3	3-	N ³⁻ , P ³⁻
6A (16)	6	Gain 2	2-	N ³⁻ , P ³⁻ O ²⁻ , S ²⁻
7A (17)	7	Gain 1	1-	F ⁻ , Cl ⁻ , Br ⁻ ,

Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings

I-

Ionic Compounds

Ionic Compounds

Ionic compounds

- consist of positive and negative ions.
- have attractions called ionic bonds between positively and negatively charged ions.
- have high melting and boiling points.
- are solid at room temperature.

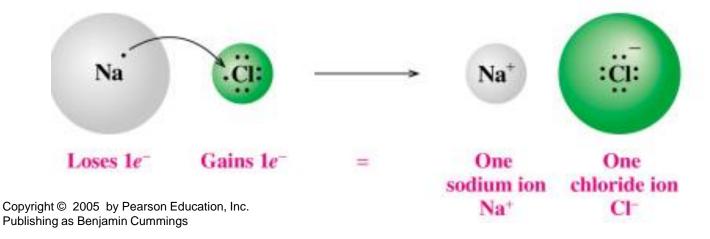
Salt is An Ionic Compound

Sodium chloride or "table salt" is an example of an ionic compound.

Ionic Formulas

An ionic formula

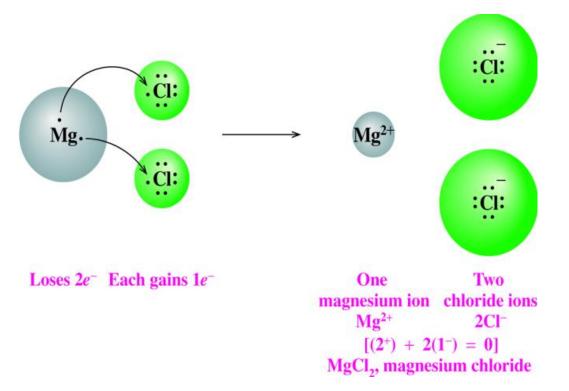
- consists of positively and negatively charged ions.
- is neutral.
- has charge balance.


total positive charge = total negative charge

The symbol of the metal is written first followed by the symbol of the nonmetal, e.g. NaCl.

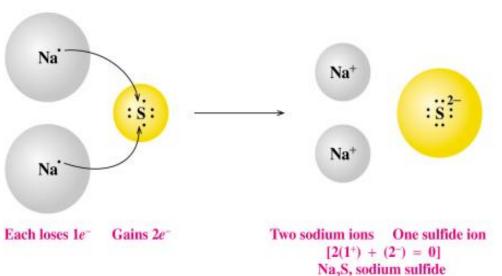
Charge Balance for NaCl, "Salt"

In NaCl,


- a Na atom loses its valence electron.
- a CI atom gains an electron.
- the symbol of the metal is written first followed by the symbol of the nonmetal.

Charge Balance In MgCl2

In MgCl₂,


- a Mg atom loses two valence electrons.
- two CI atoms each gain one electron.
- subscripts indicate the number of ions needed to give charge balance.

Charge Balance in Na₂S

In Na_2S .

- two Na atoms lose one valence electron each.
- one S atom gains two electrons.
- subscripts show the number of ions needed to give charge balance.

Formula from Ionic Charges

Write the ionic formula of the compound with Ba²⁺ and Cl⁻.

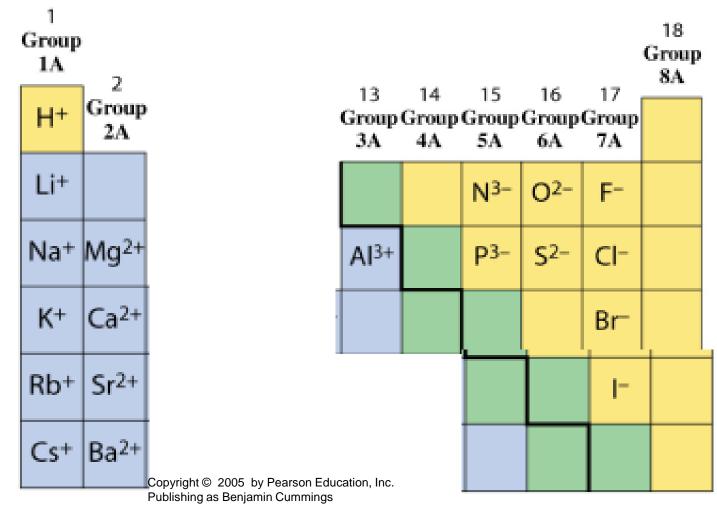
• Write the symbols of the ions.

Ba²⁺ Cl⁻

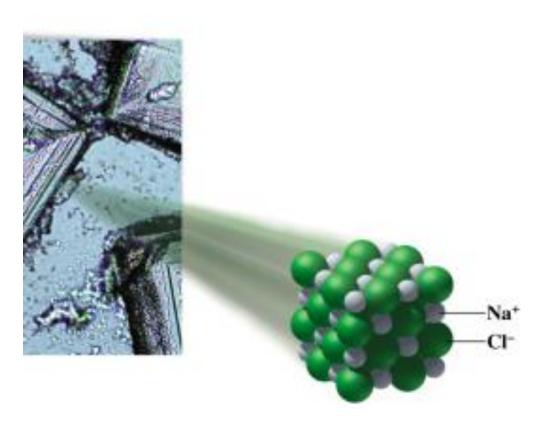
• Balance the charges.

Ba²⁺ Cl⁻ two Cl⁻ needed Cl⁻

• Write the ionic formula using a **subscript 2** for two chloride ions that give charge balance.


Lets try it out!

Select the correct formula for each of the following ionic compounds.

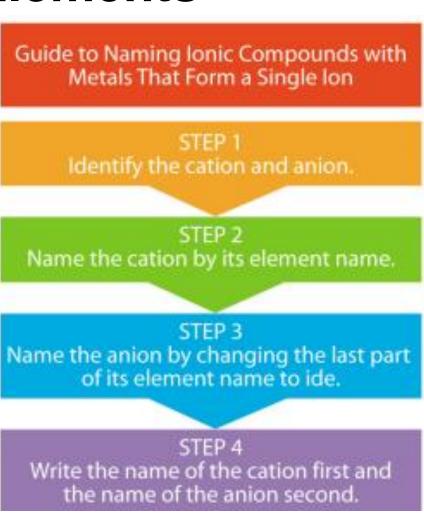

A. Na⁺ and S²⁻ 1) NaS 2) Na₂S 3) NaS₂ B. Al³⁺ and Cl⁻ 1) AlCl₃ 2) AlCl 3) Al₃Cl

C. Mg²⁺ and N³⁻ 1) MgN 2) Mg₂N₃ 3) Mg₃N₂

Charges of Representative Elements

Naming and Writing Ionic Formulas

An Ion is a charged particle


- A cation is positively charged
- (the giver, the metal)

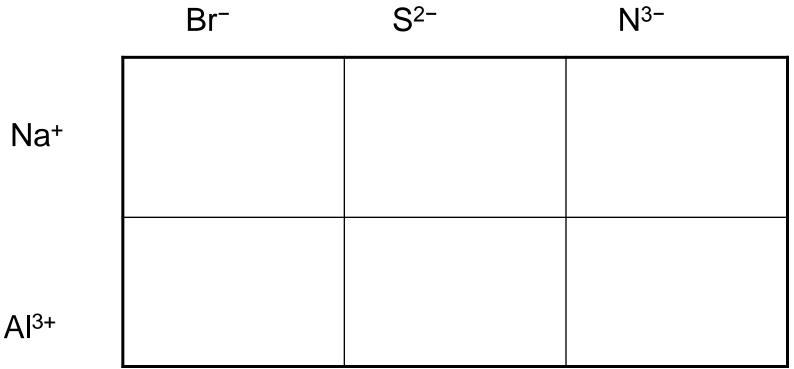
- An Anion is the negatively charged particle
- (The taker or the nonmetal)

Naming Ionic Compounds with Two Elements

To name a compound that contains two elements,

- identify the cation and anion.
- name the cation first followed by the name of the anion.

Examples of Ionic Compounds with Two Elements


Formula	-	ons	Name
	catior	anion	
NaCl	Na+	Cl-	sodium chloride
K_2S	K+	S ²⁻	potassium sulfide
MgO	Mg ²⁺	O ²⁻	magnesium oxide
Cal ₂	Ca ²⁺	ŀ	calcium iodide
AI_2O_3	Al ³⁺	O ²⁻	aluminum oxide

Names of Some Common Ions

Group Number	Formula of Ion	Name of lon	Group Number	Formula of Ion	Name of lon
	Metals			Nonmetals	
1 A (1)	Li ⁺	Lithium	5A (15)	N^{3-}	Nitride
	Na ⁺	Sodium		P ³⁻	Phosphide
	K ⁺	Potassium	6A (16)	O^{2-}	Oxide
2A (2)	Mg^{2+}	Magnesium		S^{2-}	Sulfide
	Ca ²⁺	Calcium	7A (17)	\mathbf{F}^{-}	Fluoride
	Ba ²⁺	Barium		Cl ⁻	Chloride
3A (3)	Al ³⁺	Aluminum		Br ⁻	Bromide
				I-	Iodide

Learning Check

Write the formulas and names for compounds of the following ions:

Solution

	Br⁻	S ²⁻	N ³⁻
Na+	NaBr sodium bromide	Na ₂ S sodium sulfide	Na ₃ N sodium nitride
Al ³⁺	AlBr ₃ aluminum bromide	Al ₂ S ₃ aluminum sulfide	AIN aluminum nitride

29

Naming Variable Charge Metals

Transition metals with two different ions use a **Roman numeral** after the name of the metal to indicate ionic charge.

FeCl₂ FeCl₃ Cu₂S CuCl₂ SnCl₂ PbBr₄ iron(II) chloride
iron(III) chloride
copper(I) sulfide
copper(II) chloride
tin(II) chloride
lead(IV) bromide

Guide to Writing Formulas from the Name

Guide to Writing Formulas from the Name of an Ionic Compound

STEP 2 Balance the charges.

STEP 3 Write the formula, cation first, using subscripts from charge balance.

Writing Formulas from names

Write a formula for potassium sulfide.

- 1. Identify the cation and anion. potassium = K^+ sulfide = S^{2-}
- 2. Balance the charges.

K⁺ S²⁻ K⁺ 2(1+) + 1(2-) = 0

3. 2 K⁺ and 1 S²⁻ = K_2S

Orbitals

- Electron Configurations can be done in several ways
 - Drawing shells that show the 2-8-8-18 pattern (like I have done on the board)
 - Using Lewis Dot Diagrams to show valence electrons
 - Showing orbital configurations

Orbital configuration pattern

- The electron cloud is made up of orbitals or shells.
- Each orbital can only hold so many electrons before you have to move into another shell
- You can tell which orbital you are in by where you are on the periodic table.

How they work

- Orbitals are labeled as S, P, or D
- S can hold 2
- P can hold 6
- D can hold 10
- You cannot move to the next orbital until you have filled the one you are on.

The order it is in goes like this:

- 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s (that is as far as we will go....)
- So if an element had 6 electrons (Carbon), it's configuration would be
- 1s² 2s² 2p²
- Each S orbital had to be filled before moving to the next. There are only 2 in the P orbital because there were only 2 left
- If it was Nitrogen, what would it look like?

Polyatomic Ions

Window cleaner NH₄OH

Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings

NH4⁺ OH⁻ Ammonium ion Hydroxide ion

Polyatomic Ions

A polyatomic ion

- is a group of atoms.
- has an overall ionic charge.

Some examples of polyatomic ions are

NH_4^+	ammonium	OH⁻	hydroxide
----------	----------	-----	-----------

- NO_3^- nitrate NO_2^- nitrite
- CO_3^{2-} carbonate PO_4^{3-} phosphate
- HCO₃⁻ hydrogen carbonate (bicarbonate)

Names and Formulas of Common Polyatomic Ions

Nonmetal	Formula of Ion ^a	Name of Ion
Hydrogen	OH-	Hydroxide
Nitrogen	NH_4^+	Ammonium
0	NO ₃	Nitrate
	NO ₂ ⁻	Nitrite
Chlorine		
	ClO ₃ ⁻	Chlorate
	ClO ₂ -	Chlorite
Carbon	CO_3^{2-}	Carbonate
	HCO ₃ ⁻	Hydrogen carbonate (or bicarbonate)
	CN ⁻	Cyanide
	$C_2H_3O_2^{-}(CH_3COO^{-})$	Acetate
		Convright © 2005 by Pearson Education

Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings

Names and Formulas of Common Polyatomic Ions

Nonmetal	Formula of Ion ^a	Name of Ion
Sulfur	SO_4^{2-}	Sulfate
	HSO ₄ -	Hydrogen sulfate (or bisulfate)
	SO_3^{2-}	Sulfite
	HSO ₃ ⁻	Hydrogen sulfite (or bisulfite)
Phosphorus	PO ₄ ³⁻	Phosphate
	HPO_4^{2-}	Hydrogen phosphate
	H ₂ PO ₄ ⁻	Dihydrogen phosphate
	PO ₃ ³⁻	Phosphite
Chromium	CrO_4^2	Chromate
	$Cr_2O_7^{2-}$	Dichromate
Manganese	MnO_4^-	Permanganate Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings

Naming Compounds with Polyatomic Ions

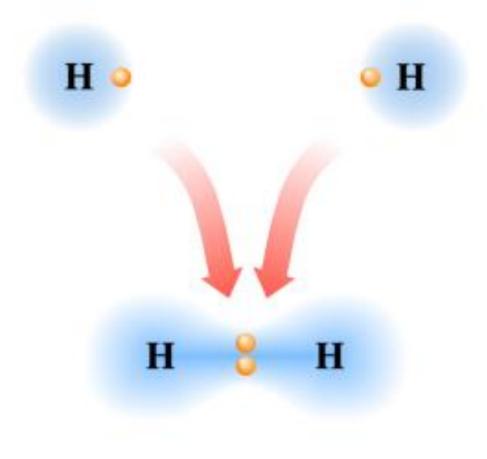
• The positive ion is named first followed by the name of the polyatomic ion.

NaNO3sodium nitrate K_2SO_4 potassium sulfate $Fe(HCO_3)_3$ iron(III) bicarbonateor iron(III) hydrogen carbonate $(NH_4)_3PO_3$ ammonium phosphite

Writing Formulas with Polyatomic Ions

The formula of an ionic compound

 containing a polyatomic ion must have a charge balance that equals zero (0).


Na⁺ and $NO_3^- \rightarrow NaNO_3$

 with two or more polyatomic ions has the polyatomic ions in parentheses.

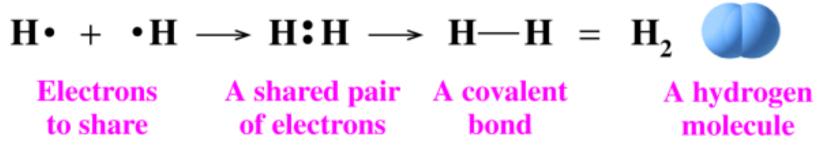
 Mg^{2+} and $2NO_3^- \rightarrow Mg(NO_3)_2$

subscript 2 for charge balance

Covalent Compounds

Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings

Covalent Bonds


Covalent bonds form

- when atoms share electrons to complete octets.
- between two nonmetal atoms.
- between nonmetal atoms from Groups 4A(14), 5A(15), 6A(16), and 7A(17).

Hydrogen Molecule

A hydrogen molecule

- is stable with two electrons (like helium).
- has a shared pair of electrons.



Copyright © 2005 Pearson Education, Inc., publishing as Benjamin Cummings

Forming Octets in Molecules

In a fluorine, F₂, molecule, each F atom

- shares one electron.
- attains an octet.

Copyright © 2005 Pearson Education, Inc., publishing as Benjamin Cummings

Naming Covalent Compounds

To name covalent compounds Table4.12

- **STEP 1:** Name the first nonmetal as an element.
- STEP 2: Name the second nonmetal with an *ide* ending.
- **STEP 3:** Use **prefixes** to indicate the number of atoms (subscript) of each element.

Covalent Compounds	
Number of Atoms	Prefix
1	Mono
2	Di
3	Tri
4	Tetra
5	Penta
6	Hexa
7	Hepta
8	Octa
9	Nona
10	Deca

Prefixes Used in Naming

Copyright © 2005 Pearson Education, Inc., publishing as Benjamin Cummings

Naming Covalent Compounds

What is the name of SO_3 ?

- 1. The first nonmetal is S sulfur.
- 2. The second nonmetal is O named oxide.
- 3. The subscript 3 of O is shown as the prefix tri.

 $SO_3 \rightarrow sulfur trioxide$

The subscript 1 (for S) or mono is understood.

Formulas and Names of Some Covalent Compounds

Formula	Name	Commercial Uses
CS ₂	carbon disulfide	Manufacture of rayon
CO ₂	carbon dioxide	Carbonation of beverages, fire extinguishers propellant in aerosols, dry ice
SiO ₂	silicon dioxide	Manufacture of glass, computer parts
NCl ₃	nitrogen trichloride	Bleaching of flour in some countries (prohibited in U.S.)
SO ₂	sulfur dioxide	Preserving fruits, vegetables; disinfectant in breweries; bleaching textiles
SO ₃	sulfur trioxide	Manufacture of explosives
SF ₆	sulfur hexafluoride	Electrical circuits (insulation)
ClO ₂	chlorine dioxide	Bleaching pulp (for making paper), flour, leather
CIF ₃	chlorine trifluoride	Rocket propellant

Copyright $\ensuremath{\mathbb{C}}$ 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings

Learning Check

Select the correct name for each compound.

- A. SiCl₄
 1) silicon chloride
 2) tetrasilicon chloride
 3) silicon tetrachloride
- B. P_2O_5 1) phosphorus oxide
 - 2) phosphorus pentoxide
 - 3) diphosphorus pentoxide
- C. Cl_2O_7 1) dichlor
 - 1) dichlorine heptoxide
 - 2) dichlorine oxide
 - 3) chlorine heptoxide

Name the following compounds

- A. $Ca_3(PO_4)_2$ ionic $Ca^{2+} PO_4^{3-}$ calcium phosphate
- B. FeBr₃

ionic Fe³⁺ Br⁻ iron(III) bromide

C. SCI_2

covalent 1S 2 CI sulfur dichloride

D. Cl_2O

covalent 2 Cl 1 O dichlorine monoxide

Write the formulas for the following:

- A. calcium nitrate Ca²⁺, NO₃⁻ Ca(NO₃)₂
- B. boron trifluoride
 - 1 B, 3 F BF₃
- C. aluminum carbonate

Al³⁺, CO_3^{2-} Al₂(CO_3)₃

D. dinitrogen tetroxide

2 N, 4 O N₂O₄

Practice questions

Hydrates

- An ionic compound with water molecules attached to it.
- An example:
 - $-CaSO_4 \cdot 2H_2O$
 - This is called calcium sulfate dihydrate
 - Notice the prefix is added to the word *hydrate* but nothing else.

Removing hydrates

 If enough heat is applied, the water molecule can be broken off the compound. This makes the compound <u>anhydrous</u>

 Sometimes that changes the color of the compound

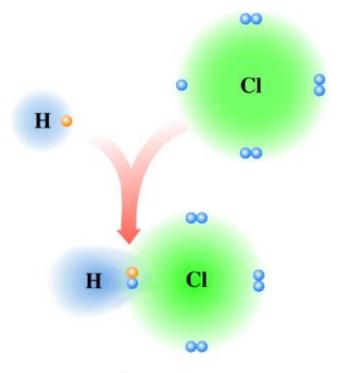
Hygroscopic

- An ionic compound that can easily absorb water molecules from water vapor in the air
- It then becomes a hydrate
- If you have substances that change if the lid is left off, they are probably hygroscopic.

deliquescent

 Compounds that are SOOO hygroscopic they go from a solid to a liquid because they absorb so much water vapor

Organic vs. inorganic


- If a compound has carbon it is an organic compound
- It can be either ionic or covalent

allotropes

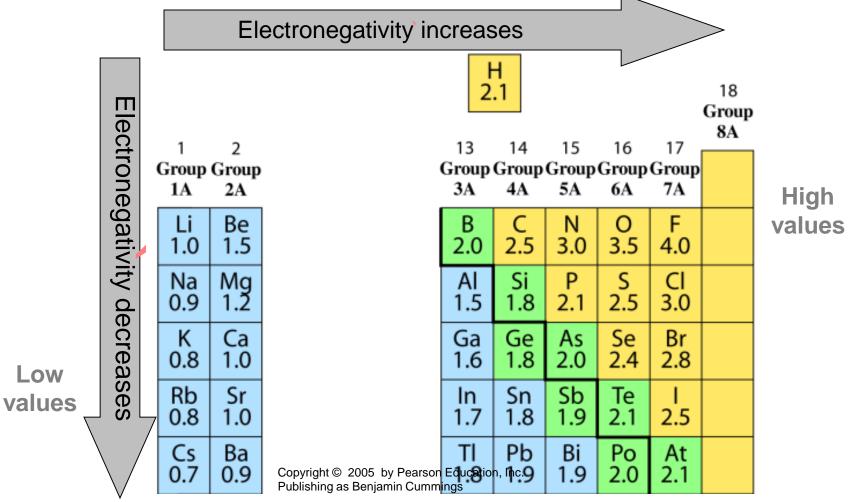
 Molecules of a single element that have more than one structure are called allotropes

• Oxygen (O₂) and Ozone (O₃) are allotropes

Electronegativity and Bond Polarity

 $\mathbf{H}^{\mathbf{d}^+} \mathbf{Cl}^{\mathbf{d}^-}$

Unequal sharing of electrons in a polar covalent bond


Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings

Electronegativity

The electronegativity value

- indicates the attraction of an atom for shared electrons.
- increases from left to right going across a period on the periodic table.
- is high for the nonmetals with fluorine as the highest.
- is low for the metals.

Some Electronegativity Values for Group A Elements

Nonpolar Covalent Bonds

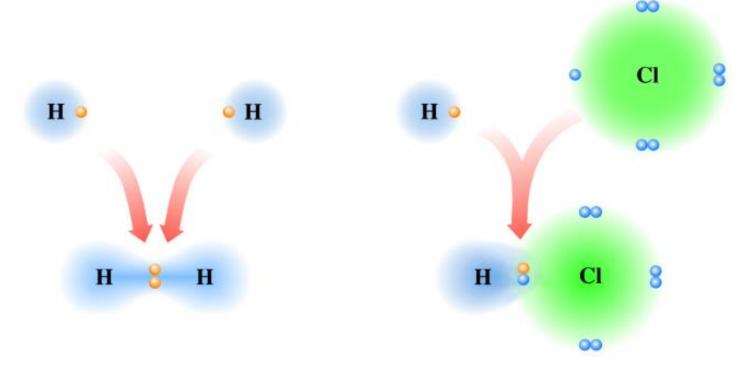
A nonpolar covalent bond

- occurs between nonmetals.
- is an equal or almost equal sharing of electrons.
- has almost no electronegativity difference (0.0 to 0.4).

Examples:

	Licononeganity	
Atoms	Difference	Type of Bond
N-N	3.0 - 3.0 = 0.0	Nonpolar covalent
CI-Br	3.0 - 2.8 = 0.2	Nonpolar covalent
H-Si	2.1 - 1.8 = 0.3	Nonpolar covalent

Electronegativity


Polar Covalent Bonds

A polar covalent bond

- occurs between nonmetal atoms.
- is an unequal sharing of electrons.
- has a moderate electronegativity difference (0.5 to 1.7).

Examples	:	
-	Electronegativity	
Atoms	Difference	Type of Bond
O-CI	3.5 - 3.0 = 0.5	Polar covalent
CI-C	3.0 - 2.5 = 0.5	Polar covalent
O-S	3.5 - 2.5 = 1.0	Polar covalent

Comparing Nonpolar and Polar Covalent Bonds

Н—Н

Equal sharing of electrons in a nonpolar covalent bond

 $\mathbf{H}^{\mathbf{d}^+} \mathbf{Cl}^{\mathbf{d}^-}$

Unequal sharing of electrons in a polar covalent bond

Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings

Ionic Bonds

An ionic bond

- occurs between metal and nonmetal ions.
- is a result of electron transfer.
- has a large electronegativity difference (1.8 or more).

Examples:

Electronegativity			
Atoms	Difference		Type of Bond
CI-K	3.0 - 0.8	= 2.2	Ionic
N-Na	3.0 - 0.9	= 2.1	Ionic
S-Cs	2.5 - 0.7	= 1.8	Ionic

Use the electronegativity (see Figure 4.6) difference (Δ) to identify the type of bond between the following as nonpolar covalent (NP), polar covalent (P), or ionic (I).

- A. K-N $\Delta EN = 2.2$ ionic (I) EN: K=0.8, N=3.0
- B. N-O $\Delta EN = 0.5$ polar covalent (P) C. CI-CI
 - $\Delta EN = 0.0$ nonpolar covalent (NP)
- D. H-CI
 - $\Delta EN = 0.9$ polar covalent (P)