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Chapter 4 
 
 

Open Channel Flows 
 
 

4.1. Introduction 
 
When the surface of flow is open to atmosphere, in other terms when there is only 
atmospheric pressure on the surface, the flow is named as open channel flow. The 
governing force for the open channel flow is the gravitational force component along the 
channel slope. Water flow in rivers and streams are obvious examples of open channel 
flow in natural channels. Other occurrences of open channel flow are flow in irrigation 
canals, sewer systems that flow partially full, storm drains, and street gutters. 
 
4.2. Classification of Open Channel Flows 
 
A channel in which the cross-sectional shape and size and also the bottom slope are 
constant is termed as a prismatic channel. Most of the man made (artificial) channels are 
prismatic channels over long stretches. The rectangle, trapezoid, triangle and circle are 
some of the commonly used shapes in made channels. All natural channels generally 
have varying cross-sections and consequently are non-prismatic. 
 

a) Steady and Unsteady Open Channel Flow: If the flow depth or discharge at a 
cross-section of an open channel flow is not changing with time, then the flow is 
steady flow, otherwise it is called as unsteady flow. 
Flood flows in rivers and rapidly varying surges in canals are some examples of 
unsteady flows. Unsteady flows are considerably more difficult to analyze than 
steady flows. 

b) Uniform and Non-Uniform Open Channel Flow: If the flow depth along the 
channel is not changing at every cross-section for a taken time, then the flow is 
uniform flow. If the flow depth changes at every cross-section along the flow 
direction for a taken time, then it is non-uniform flow. A prismatic channel 
carrying a certain discharge with a constant velocity is an example of uniform 
flow.  

c) Uniform Steady Flow: The flow depth does not change with time at every cross 
section and at the same time is constant along the flow direction. The depth of 
flow will be constant along the channel length and hence the free surface will be 
parallel to the bed. (Figure 4.1). 
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Figure 4.1 

 
Mathematical definition of the Uniform Steady Flow is, 
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y0 = Normal depth 
 
 

d) Non-Uniform Steady Flows: The water depth changes along the channel cross-
sections but does not change with time at each every cross section with time. A 
typical example of this kind of flow is the backwater water surface profile at the 
upstream of a dam. 

 
 

 
 

Figure 4.2. Non-Uniform steady Flow 
 
 

Mathematical definition of the non-uniform steady flow is; 
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If the flow depth varies along the channel, these kinds of flows are called as varied flows. 
If the depth variation is abrupt then the flow is called abrupt varied flow (flow under a 
sluice gate), or if the depth variation is gradual it is called gradually varied flow (flow at 
the upstream of a dam). Varied flows can be steady or unsteady.  
 
Flood flows and waves are unsteady varied flows since the water depths vary at every 
cross-section and also at each cross-section it changes with time. 
 
If the water depth in a flow varies at every cross-section along the channel but does not 
vary with time at each cross-section, it is steady varied flow. 
 
4.3. Types of Flow 
 
The flow types are determined by relative magnitudes of the governing forces of the 
motion which are inertia, viscosity, and gravity forces. 
 
 

a) Viscosity Force Effect: 
 
Viscosity effect in a fluid flow is examined by Reynolds number. As it was given in 
Chapter 1, Reynolds number was the ratio of the inertia force to the viscosity force.  
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For the pressured pipe flows, 
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Since D=4R, Reynolds number can be derived in open channel flows as, 
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R is the Hydraulic Radius of the open channel flow cross-section which can be taken 
as the flow depth y for wide channels.  

 
Moody Charts can be used to find out the f friction coefficient by taking D=4R. 
Universal head loss equation for open channel flows can be derived as, 
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Since Friction Velocity is, 
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b) Gravity Force Effect: 
 
The ratio of inertia force to gravity force is Froude Number. 
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Figure 4.3. 
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Where , 
A = Wetted area 

L= Free surface width 
 

For rectangular channels, 
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4.4. Energy Line Slope for Uniform Open Channel Flows 
 

 
Figure 4.4 
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The head (energy) loss between cross-sections 1 and 2, 
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The head loss for unit length of channel length is energy line (hydraulic) slope, 
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Since in open channel flows the channel slope is generally a small value, 
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0SSener =                 (4.9) 

 
Conclusion: Hydraulic grade line coincides with water surface slope in every kind of 
open channel flows. Since the velocity will remain constant in every cross section at 
uniform flows, energy line slope, hydraulic grade line slope (water surface slope) and 
channel bottom slope are equal to each other and will be parallel as well.  
 
 

enerSSS == 0              (4.10) 
 

Where S is the water surface slope. 
 
4.5. Pressure Distribution 
 
The intensity of pressure for a liquid at its free surface is equal to that of the surrounding 
atmosphere. Since the atmospheric pressure is commonly taken as a reference and of 
equal to zero, the free surface of the liquid is thus a surface of zero pressure. The pressure 
distribution in an open channel flow is governed by the acceleration of gravity g and 
other accelerations and is given by the Euler’s equation as below: 
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In any arbitrary direction s, 
 

( )
sa

s
zp ργ
=

∂
+∂

−           (4.11) 

 
and in the direction normal to s direction, i.e. in the n direction, 
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in which p = pressure, as = acceleration component in the s direction, an = acceleration in 
the n direction and z = geometric elevation measured above a datum. 
 
Consider the s direction along the streamline and the n direction normal to it. The 
direction of the normal towards the centre of curvature is considered as positive. We are 
interested in studying the pressure distribution in the n-direction. The normal acceleration 
of any streamline at a cross-section is given by, 
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where v = velocity of flow along the streamline of radius of curvature r. 
 
4.5.1. Hydrostatic Pressure Distribution 
 
The normal acceleration an will be zero, 
 

1. if v = 0, i.e. when there is no motion, or 
2. if r →∞, i.e. when the streamlines are straight lines. 

 
Consider the case of no motion, i.e. the still water case, Fig.( 4.5). From Equ. (4.12), 
since an = 0, taking n in the z direction and integrating, 
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Figure. 4.4.  Pressure distribution in still water 
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At the free surface [point 1 in Fig (4.5)] p1/ γ = 0 and z = z1, giving C = z1. At any point 
A at a depth y below the free surface, 
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This linear variation of pressure with depth with the constant of proportionality equal to 
the specific weight of the liquid is known as hydrostatic pressure distribution. 
 
4.5.2. Channels with Small Slope 
 
Let us consider a channel with a very small value of the longitudinal slope θ. Let θ ≈ sinθ 
≈1/1000. For such channels the vertical section is practically the same as the normal 
section. If a flow takes place in this channel with the water surface parallel to the bed, the 
streamlines will be straight lines and as such in a vertical direction [section 0 – 1 in Fig. 
(4.6)] the normal acceleration an = 0. The pressure distribution at the section 0 – 1 will be 
hydrostatic. At any point A at a depth y below the water surface,  
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Figure 4. 6.   Pressure distribution in a channel with small slope 

 
Thus the piezometric head at any point in the channel will be equal to the water surface 
elevation. The hydraulic grade line will therefore lie (coincide) on the water surface. 
 
4.5.3. Channels with Large Slope 
 
Fig. (4.7) shows a uniform free surface flow in a channel with a large value of inclination 
θ. The flow is uniform, i.e. the water surface is parallel to the bed. An element of length 
ΔL is considered at the cross-section 0 – 1. 
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Figure 4.7.  Pressure distribution in a channel with large slope 
 

At any point A at a depth y measured normal to the water surface, the weight of column 
A11’A’ = γΔLy and acts vertically downwards. The pressure at AA’ supports the normal 
component of the column A11’A’. Thus, 
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The pressure pA varies linearly with the depth y but the constant of proportionality 
is θγ cos . If h = normal depth of flow, the pressure on the bed at point O, θγ cos0 hp = . 
If d = vertical depth to water surface measured at point O, then θcosdh =  and the 
pressure head at point O, on the bed is given by, 
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γ
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The piezometric head at any point A, θθ coscos hzyzp OA +=+= . Thus for channels 
with large values of the slope, the conventionally defined hydraulic gradient line does not 
lie on the water surface. 
 
Channels of large slopes are encountered rather rarely in practice except, typically, in 
spillways and chutes. On the other hand, most of the canals, streams and rivers with 
which a hydraulic engineer is commonly associated will have slopes (sin θ) smaller than 
1/100. For such cases cos θ ≈ 1.0. As such, the term cosθ in the expression for the 
pressure will be omitted assuming that the pressure distribution is hydrostatic. 
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4.5.4. Pressure Distribution in Curvilinear Flows. 
 
Figure (4.8) shows a curvilinear flow in a vertical plane on an upward convex surface. 
For simplicity consider a section 01A2 in which the r direction and Z direction coincide. 
Replacing the n direction in Equ. (4.12) by (-r) direction, 
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Figure 4.8.   Convex curvilinear flow 
 

Let us assume a simple case in which an = constant. Then the integration of Equ. (4.18) 
yields, 
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in which C = constant. With the boundary conditions that at point 2 which lies on the 
surface, r = r2 and p/γ = 0 and z = z2. 
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Let ==− yzz2 depth of flow the free surface of any point A in the section 01A2. Then 
for point A, 
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Equ. (4.21) shows that the pressure is less than the pressure obtained by the hydrostatic 
distribution. Fig. (4.8). 
 
For any normal direction OBC in Fig. (4.9), at point C, ( ) 0=Cp γ , 2rrC = , and for any 
point at a radial distance r from the origin O, 
 

( ) ( )

( ) θ
γ

cos2

2

rrzz

rr
g
azzp

C

n
C

−=−

−−−=
 

 

( ) ( )rr
g
arrp n −−−= 22 cosθ

γ
            (4.22) 

 
If the curvature is convex downwards, (i.e. r direction is opposite to z direction) 
following the argument above, for constant an the pressure at any point A at a depth y 
below the free surface in a vertical section O1A2 [ Fig. (4.9)] can be shown to be, 
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The pressure distribution in vertical section is as shown in Fig. (4.9) 
 

 
 

Figure 4.8.  Concave curvilinear flow 
 

Thus it is seen that for a curvilinear flow in a vertical plane, an additional pressure will be 
imposed on the hydrostatic pressure distribution. The extra pressure will be additive if the 
curvature is convex downwards and subtractive if it is convex upwards. 
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4.5.5. Normal Acceleration 
 
In the previous section on curvilinear flows, the normal acceleration an was assumed to 
be constant. However, it is known that at any point in a curvilinear flow, an = v2 / r , 
where v = velocity and r = radius of curvature of the streamline at that point. 
 
In general, one can write v = f (r) and the pressure distribution can then be expressed by, 
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This expression can be evaluated if v = f (r) is known. For simple analysis, the following 
functional forms are used in appropriate circumstances; 
 

1. v = constant = V = mean velocity of flow 
2. v = c / r, (free vortex) 
3. v = cr, (forced vortex) 
4. an = constant = V2/R, where R = radius of curvature at mid depth. 

 
Example 4.1: A spillway bucket has a radius of curvature R as shown in the Figure.  
 

a) Obtain an expression for the pressure distribution at a radial section of inclination 
θ to the vertical. Assume the velocity at any radial section to be uniform and the 
depth of flow h to be constant, 

b) What is the effective piezometric head for the above pressure distribution? 
 
 

 
Solution:  
 

a) Consider the section 012. Velocity = V = constant across 12. Depth of flow = h. 
From Equ. (4.24), since the curvature is convex downwards, 
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At point 1, p/γ = 0, z = z1, r = R –h 
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At any point A, at radial distance r from 0, 
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Equ. (C) represents the pressure distribution at any point (r, θ). At point 2, r = R, p = p2. 
 

b) Effective piezometric head, hep: 
 
From Equ. (B), the piezometric head hp at A is, 
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Noting that θcos21 hzz += and expressing hp in the form of Equ. (4.17), 
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The effective piezometric head hep from Equ. (4.17), 
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It may be noted that when R → ∞ and h/R → 0, hep → θcos2 hz +  
 
 
4.6. Uniform Open Channel Flow Velocity Equations 
 

 

 
 

Figure 4.10. 
 
 

The fundamental equation for uniform flow may be derived by applying the Impuls-
Momentum equation to the control volume ABCD, 
 

MaF =  
 

The external forces acting on the control volume are, 
 

1) The forces of static pressure, F1 and F2 acting on the ends of the body, 
 

→= 21 FF
sr

 Uniform flow, flow depths are constant 
 

2) The weight, W, which has a component WSinθ in the direction of motion, 
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3) Change of momentum, 
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4) The force of resistance exerted by the bottom and sides of the channel cross-
section, 

PLT 0τ=
w

 
Where P is wetted perimeter of the cross-section. 
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Using Equ. (4.5) and friction velocity equation, 
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If we define, 
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This cross-sectional mean velocity equation for open channel flows is known as Chezy 
equation. The dimension of Chezy coefficient C, 
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C Chezy coefficient has a dimension and there it is not a constant value. When using the 
Chezy equation to calculate the mean velocity, one should be careful since it takes 
different values for different unit systems.  
 
The simplest relation and the most widely used equation for the mean velocity calculation 
is the Manning equation which has been derived by Robert Manning (1890) by analyzing 
the experimental data obtained from his own experiments and from those of others. His 
equation is, 

21
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321 SR
n

V =             (4.28) 

Where n is the Manning’s roughness coefficient. 
 
Equating Equs. (4.27) and (4.28), 
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n
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61

=                        (4.29) 

 
Equ. (4.28) was derived from metric data; hence, the unit of length is meter. Although n 
is often supposed to be a characteristic of channel roughness, it is convenient to consider 
n to be a dimensionless. Then, the values of n are the same in any measurement 
system.Some typical values of n are given in Table. (4.1) 
 

Table 4.1. Typical values of the Manning’s roughness coefficient n 
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4.6.1. Determination of Manning’s Roughness Coefficient 

 
In applying the Manning equation, the greatest difficulty lies in the determination of the 
roughness coefficient, n; there is no exact method of selecting the n value. Selecting a 
value of n actually means to estimate the resistance to flow in a given channel, which is 
really a matter of intangibles. (Chow, 1959) .To experienced engineers, this means the 
exercise of engineering judgment and experience; for a new engineer, it can be no more 
than a guess and different individuals will obtain different results. 

 
4.6.2. Factors Affecting Manning’s Roughness Coefficient  

 
It is not uncommon for engineers to think of a channel as having a single value of n for 
all occasions. Actually, the value of n is highly variable and depends on a number of 
factors. The factors that exert the greatest influence upon the roughness coefficient in 
both artificial and natural channels are described below. 
 

a) Surface Roughness: The surface roughness is represented by the size and 
shape of the grains of the material forming the wetted perimeter. This usually 
considered the only factor in selecting the roughness coefficient, but it is 
usually just one of the several factors. Generally, fine grains result in a 
relatively low value of n and coarse grains in a high value of n. 

b) Vegetation: Vegetation may be regarded as a kind of surface roughness, but it 
also reduces the capacity of the channel. This effect depends mainly on height, 
density, and type of vegetation.  

c) Channel Irregularity: Channel irregularity comprises irregularities in wetted 
perimeter and variations in cross-section, size, and shape along the channel 
length. 

d) Channel Alignment: Smooth curvature with large radius will give a 
relatively low value of n, whereas sharp curvature with severe meandering 
will increase n. 

e) Silting and Scouring: Generally speaking, silting may change a very 
irregular channel into a comparatively uniform one and decrease n, whereas 
scouring may do the reverse and increase n. 

f) Obstruction: The presence of logjams, bridge piers, and the like tends to 
increase n. 

g) Size and Shape of the Channel: There is no definite evidence about the size 
and shape of the channel as an important factor affecting the value of n. 

h) Stage and Discharge: The n value in most streams decreases with increase in 
stage and discharge. 

i) Seasonal Change: Owing to the seasonal growth of aquatic plants, the value 
of n may change from one season to another season. 
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     4.6.3. Cowan Method 
 

Taking into account primary factors affecting the roughness coefficient, Cowan (1956) 
developed a method for estimating the value of n. The value of n may be computed by, 
 

( ) mnnnnnn ×++++= 43210              (4.30) 
 

Where n0 is a basic value for straight, uniform, smooth channel in the natural materials 
involved, n1 is a value added to n0 to correct for the effect of surface irregularities, n2 is a 
value for variations in shape and size of the channel cross-section, n3 is a value of 
obstructions, n4 is a value for vegetation and flow conditions, and m is a correction factor 
for meandering of channel. These coefficients are given in Table (4.2) depending on the 
channel characteristics. (French, 1994). 
 
Example 4.2: A trapezoidal channel with width B=4 m, side slope m=2, bed slope 
S0=0.0004, and water depth y=1 m is taken. This artificial channel has been excavated in 
soil. Velocity and discharge values will be estimated with the vegetation cover change in 
the channel. For newly excavated channel, n0 value is taken as 0.02 from the Table (4.2). 

 
Only n0 and n4 values will be taken in using Equ. (4.30), the effects of the other factors 
will be neglected.  

 
40 nnn +=     (A) 

Table 4.2. Values for the Computation of the Roughness Coefficient 
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The calculated velocity and discharge values corresponding to the n values found by Equ. 
(A) have been given in Table. As can be seen from the Table, as the vegetation covers 
increases in the channel perimeter so the velocity and discharge decreases drastically. 
The discharge for the high vegetation cover is found to be 6 times less than the low 
vegetation cover. Vegetation cover also corresponds to the maintenance of the channel 
cross-section along the channel. High vegetation cover correspond low maintenance of 
the channel. It is obvious that the discharge decrease would be higher if we had taken the 
variations in other factors. 
 

Table . Velocity and Discharge Variation with n 

n Velocity (m/sec) Discharge (m3/sec) 
0.020 
0.030 
0.045 
.070 
0.120 

0.79 
0.53 
0.35 
0.23 
0.13 

4.77 
3.17 
2.12 
1.36 
0.79 

 
 
The calculated velocity and discharge values corresponding to the n values found by Equ. 
(A) have been given in Table. As can be seen from the Table, as the vegetation covers 
increases in the channel perimeter so the velocity and discharge decreases drastically. 
The discharge for the high vegetation cover is found to be 6 times less than the low 
vegetation cover. Vegetation cover also corresponds to the maintenance of the channel 
cross-section along the channel. High vegetation cover correspond low maintenance of 
the channel. It is obvious that the discharge decrease would be higher if we had taken the 
variations in other factors. 
 
     4.6.4. Empirical Formulae for n 
 
Many empirical formulae have been presented for estimating manning’s coefficient n in 
natural streams. These relate n to the bed-particle size. (Subramanya, 1997). The most 
popular one under this type is the Strickler formula, 
 

1.21

61
50dn =             (4.31) 

 
Where d50 is in meters and represents the particle size in which 50 per cent of the bed 
material is finer. For mixtures of bed materials with considerable coarse-grained sizes, 
 

26

61
90dn =              (4.32) 

 
Where d90 = size in meters in which 90 per cent of the particles are finer than d90. This 
equation is reported to be useful in predicting n in mountain streams paved with coarse 
gravel and cobbles. 
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4.7. Equivalent Roughness 
 
In some channels different parts of the channel perimeter may have different 
roughnesses. Canals in which only the sides are lined, laboratory flumes with glass walls 
and rough beds, rivers with sand bed in deepwater portion and flood plains covered with 
vegetation, are some typical examples. For such channels it is necessary to determine an 
equivalent roughness coefficient that can be applied to the entire cross-sectional 
perimeter in using the Manning’s formula. This equivalent roughness, also called the 
composite roughness, represents a weighted average value for the roughness coefficient, 
n.  

 
 

Figure 4.5. Multi-roughness type perimeter 
 

Consider a channel having its perimeter composed of N types rough nesses. P1, P2,…., PN 
are the lengths of these N parts and n1, n2,…….., nN are the respective roughness 
coefficients (Fig. 4.5). Let each part Pi be associated with a partial area Ai such that, 
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i
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−

...............21
1
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It is assumed that the mean velocity in each partial area is the mean velocity V for the 
entire area of flow, 
 

VVVVV Ni ====== ...............21  
 

By the Manning’s equation, 
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Where n = Equivalent roughness. 
 
From Equ. (4.33), 
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This equation gives a means of estimating the equivalent roughness of a channel having 
multiple roughness types in its perimeters. 
 
Example 4.3: An earthen trapezoidal channel (n = 0.025) has a bottom width of 5.0 m, 
side slopes of 1.5 horizontal: 1 vertical and a uniform flow depth of 1.10 m. In an 
economic study to remedy excessive seepage from the canal two proposals, a) to line the 
sides only and, b) to line the bed only are considered. If the lining is of smooth concrete 
(n = 0.012), calculate the equivalent roughness in the above two cases. 
 
 

 
Solution: 
 
Case a): Lining on the sides only, 
 
For the bed  →    n1 = 0.025 and P1 = 5.0 m. 
 
For the sides  →  n2 = 0.012 and mP 97.35.1110.12 2

2 =+××=  
 

mPPP 97.897.30.521 =+=+=  
 

Equivalent roughness, by Equ. (4.36), 
 

[ ] 020.0
97.8

012.097.3025.00.5
32

325.15.1

=
×+×

=n  

Case b): Lining on the bottom only, 
 

P1 = 5.0 m   →     n1 = 0.012 
P2 = 3.97 m  →   n2 = 0.025 →P = 8.97 m 

 
( ) 018.0

97.8
025.097.3012.00.5

32

325.15.1

=
×+×

=n  

1.5 

1 

1.1m 

5m 
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4.8. Hydraulic Radius  
 
Hydraulic radius plays a prominent role in the equations of open-channel flow and 
therefore, the variation of hydraulic radius with depth and width of the channel becomes 
an important consideration. This is mainly a problem of section geometry. 
 
Consider first the variation of hydraulic radius with depth in a rectangular channel of 
width B. (Fig. 4.11.a).  
 

 
 

Figure 4.11.  
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Therefore the variation of R with y is as shown in Fig (4.11.a). From this comes a useful 
engineering approximation: for narrow deep cross-sections R≈ B/2. Since any 
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(nonrectangular) section when deep and narrow approaches a rectangle, when a channel 
is deep and narrow, the hydraulic radius may be taken to be half of mean width for 
practical applications. 
 
Consider the variation of hydraulic radius with width in a rectangular channel of with a 
constant water depth y. (Fig. 4.11.b).  
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2+
=  

yB

yR
21+
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yRB
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,
00

       (4.37) 

 
From this it may be concluded that for wide shallow rectangular cross-sections R≈y ; for 
rectangular sections the approximation is also valid if the section is wide and shallow, 
here the hydraulic radius approaches the mean depth.  
 
4.9. Uniform Flow Depth 
 
The equations that are used in uniform flow calculations are, 
 
 

a) Continuity equation, 
VAQ =  

 
b) Manning velocity equation, 

 

21
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==
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The water depth in a channel for a given discharge Q and n= Manning coefficient, 
S0= Channel slope, B= Channel width, is called as Uniform Water Depth. 
 

The basic variables in uniform flow problems can be the discharge Q, velocity of flow V, 
normal depth y0, roughness coefficient n, channel slope S0 and the geometric elements 
(e.g. B and side slope m for a trapezoidal channel). There can be many other derived 
variables accompanied by corresponding relationships. From among the above, the 
following five types of basic problems are recognized. 
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Problem Type Given Required 

1 y0, n, S0, Geometric elements Q and V 
2 Q, y0, n, Geometric elements  S0 
3 Q, y0, S0, Geometric elements n 
4 Q, n, S0, Geometric elements y0
5 Q, y0, n, S0, Geometry Geometric elements 

 
 

Problems of the types 1, 2 and 3 normally have explicit solutions and hence do not 
represent any difficulty in their calculations. Problems of the types 4 and 5 usually do not 
have explicit solutions an as such may involve trial-and-error solution procedures.  
 
Example 4.4: Calculate the uniform water depth of an open channel flow to convey 
Q=10 m3/sec discharge with manning coefficient n=0.014, channel slope S0=0.0004, and 
channel width B=4 m. 
 

a) Rectangular cross-section 
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The uniform water depth for this rectangular channel is y0 = 1.81 m. 
 
There is no implicit solution for calculation of water depths. Trial and error must be used 
in calculations. 

b) Trapezoidal Cross-Section 
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Trial and error method will be used to find the uniform water depth. 
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The uniform water depth for this trapezoidal channel is y0 =1.23 m. 
 
Example 4.5: A triangular channel with an apex angle of 750 carries a flow of 1.20 
m3/sec at a depth of 0.80 m. If the bed slope is S0 = 0.009, find the roughness coefficient 
n of the channel. 
 

 
 
Solution:  

y0 = Normal depth = 0.80 m 
Referring to Figure, 

Area                                         2491.0
2
75tan80.0280.0

2
1 mA =⎟

⎠
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Wetted perimeter                     mP 02.25.37sec80.02 0 =××=  
 

m
P
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32

=
××

==
Q
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4.10. Best Hydraulic Cross-Section 
 

a) The best hydraulic (the most efficient) cross-section for a given Q, n, and S0 is the 
one with a minimum excavation and minimum lining cross-section. A = Amin and 
P = Pmin. The minimum cross-sectional area and the minimum lining area will 
reduce construction expenses and therefore that cross-section is economically the 
most efficient one. 

max
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b) The best hydraulic cross-section for a given A, n, and S0 is the cross-section that 

conveys maximum discharge. 
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The cross-section with the minimum wetted perimeter is the best hydraulic cross-
section within the cross-sections with the same area since lining and maintenance 
expenses will reduce substantially. 

 
4.10.1. Rectangular Cross-Sections 
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Since P=Pmin for the best hydraulic cross-section, taking derivative of P with respect 
to y, 
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    (4.38) 

 
The best rectangular hydraulic cross-section for a constant area is the one with B = 
2y. The hydraulic radius of this cross-section is, 
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For all best hydraulic cross-sections, the hydraulic radius should always be R = y/2 
regardless of their shapes. 

 
Example 4.6: Calculate the best hydraulic rectangular cross-section to convey Q=10 
m3/sec discharge with n= 0.02 and S0= 0.0009 canal characteristics. 
 
Solution: For the best rectangular hydraulic cross-section, 
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Implicit solutions are possible to calculate the water depths for the best hydraulic cross-
sections. 
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4.10.2. Trapezoidal Cross-Sections 
 
 

 
 

Figure 4.12. 
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As can be seen from equation, wetted perimeter is a function of side slope m and water 
depth y of the cross-section. 
 

a) For a given side slope m, what will be the water depth y for best hydraulic 
trapezoidal cross-section? 

 
For a given area A,  minPP = , 
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( ) 2212 ymmA −+=          (4.40) 
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( )mmyP −+= 2122            (4.41) 

 
 

The hydraulic radius R, channel bottom width B, and free surface width L may be 
found as, 
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b)  For a given water depth y, what will be the side slope m for best hydraulic 

trapezoidal cross-section? 
minPP =  
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32yP =               (4.46) 
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The channel bottom width is equal one third of the wetted perimeter and therefore sides 
and channel width B are equal to each other at the best trapezoidal hydraulic cross-
section. Since α = 600, the cross-section is half of the hexagon. 
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Example 4.7: Design the trapezoidal channel as best hydraulic cross-section with Q= 10 
m3/sec, n= 0.014, S0= 0.0004, and m= 3/2. 
 

 
Solution:  
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Example 4.8: A slightly rough brick-lined trapezoidal channel (n = 0.017) carrying a 
discharge of Q = 25 m3/sec is to have a longitudinal slope of S0 = 0.0004. Analyze the 
proportions of, 
 
a) An efficient trapezoidal channel section having a side of 1.5 horizontal: 1 vertical, 
 
b) the most efficient-channel section of trapezoidal shape. 
 
Solution:  
 
Case a):   m = 1.5 
 
For an efficient trapezoidal channel section, by Equ. (4.40), 
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Case b): For the most-efficient trapezoidal channel section, 
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4.10.3. Half a Circular Conduit 

 
Figure 4.13. 

 
Wetted area A, and wetted perimeter of the half a circular conduit, 
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Half a circular conduit itself is a best hydraulic cross-section. 

r

y=r
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Example 4.9:  
 

a) What are the best dimensions y and B for a rectangular brick channel designed to 
carry 5 m3/sec of water in uniform flow with S0 = 0.001, and n = 0.015? 

b) Compare results with a half-hexagon and semi circle. 
 
Solution: 

a) For best rectangular cross-sections, the dimensions are, 
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The proper area and width of the best rectangular cross-section are, 
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b) It is constructive to see what discharge a half-hexagon and semi circle would 
carry for the same area of A = 3.23 m2. 

 

 

B=2.54m

y=1.27

B

y

L=B+2my

600

1 

m



Prof. Dr. Atıl BULU 36

577.0
3

160cotcot 0 ==== αm  

 
( ) ( )

( )yyBA

ymyBymyBBA

577.0
2

2

+=

+=
++

=
       (A) 

 

yByBP

myBP

31.2577.012

12
2

2

+=++=

++=
          (B) 

 
Using Equs. (A) and (B), 
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The discharge conveyed in this half a hexagon cross-section is, 
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Half of a hexagon cross-section with the same area of the rectangular cross-section will 
convey 5.4 per cent more discharge. 
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For a semicircle cross-section, 
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Semicircle carries more discharge comparing with the rectangular and trapezoidal cross-
sections by 9 and 3 per cent respectively. 
 

Table 4.3.  Proportions of some most efficient sections 
 

Channel Shape A P B R L 
Rectangle (half square) 2y2 4y 2y 

2
y  

2y 

Trapezoidal 
(half regular hexagon) 

y3  y32 y
3

2
2
y  y

3
4  

 Circular (semicircle) 2

2
yπ  

 
yπ  

 
- 2

y  
2y 

Triangle 
(vertex angle = 900) 

y2 y32 - 
22

y

 

2y 

 
(A = Area, P = Wetted perimeter, B = Base width,  

R = Hydraulic radius, L = Water surface width) 
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4.10.4. Circular Conduit with a Free Surface 
 

 
 

Figure 4.14. 
 

A circular pipe with radius r is conveying water with depth y. The angle of the free water 
surface with the center of the circle is θ. Wetted area and wetted perimeter of the flow is, 
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For θ radian, the area and the perimeter of the sector are, 
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Wetted area of the flow with the flow depth y is, 
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Substituting AAOB into the Equ. (4.51) give the wetted area of the flow, 
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a) What will be the θ angle for the maximum discharge? 
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Derivative of the discharge equation will be taken with respect to θ. 
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Derivatives of the wetted area and the wetted perimeter are, 
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Substituting the derivates to the Equ. (4.53), 
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0253 =+− θθθθ SinCos        (4.54) 

 
Solution of the Equ. (4.54) give the θ angle as, 
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The wetted area, wetted perimeter, and hydraulic radius of the flow are, 
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The water depth in the circular conduit is, 
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b) What will be the θ angle for the maximum velocity? 
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Figure 4.15. 

 
4.11. Compound Sections 
 
Some channel sections may be formed as a combination of elementary sections. 
Typically natural channels, such as rivers, have flood plains which are wide and shallow 
compared to the main channel. Fig. (4.16) represents a simplified section of a stream with 
flood banks.  
 
Consider the compound section to be divided into subsections by arbitrary lines. These 
can be extensions of the deep channel boundaries as in Fig. (4.16). Assuming the 
longitudinal slope to be same for all subsections, it is easy to see that the subsections will 
have different mean velocities depending upon the depth and roughness of the 
boundaries. Generally, overbanks have larger size roughness than the deeper main 
channel. If the mean velocities Vi in the various subsections are known then the total 
discharge is ∑ViAi. 
 

 
Figure 4.16. Compound section 

 
If the depth of flow is confined to the deep channel only (y < h), calculation of discharge 
by using Manning’s equation is very simple. However, when the flow spills over the 
flood plain (y > h), the problem of discharge calculation is complicated as the calculation 
may give a smaller hydraulic radius for the whole stream section and hence the discharge 
may be underestimated. The following method of discharge estimation can be used. In 
this method, while calculating the wetted perimeter for the sub-areas, the imaginary 
divisions (FJ and CK in the Figure) are considered as boundaries for the deeper portion 
only and neglected completely in the calculation relating to the shallower portion.  
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1. The discharge is calculated as the sum of the partial discharges in the sub-areas; 

for e.g. units 1, 2 and 3 in Fig. (4.16) 
 
∑∑ == iiip AVQQ       (4.55) 

 
2. The discharge is also calculated by considering the whole section as one unit, 

(ABCDEFGH area in Fig.4.16), say Qw. 
 
 

3. The larger of the above discharges, Qp and Qw, is adopted as the discharge at the 
depth y. 

 
 
Example 4.10: For the compound channel shown in the Figure, determine the discharge 
for a depth of flow 1.20 m. n = 0.02, S0 = 0.0002. 
 

 
 

Solution: 
 
a):   y = 1.20 m 
 
Partial area discharge; Sub-area 1 and 3: 
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Sub-area 2: 
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Total discharge, 
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b): By the total-section method: 
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Since Qp > Qw, the discharge in the channel is, 
 

sec396.3 3mQQ p ==  
 

4.10   Design of Irrigation Channels 
 
For a uniform flow in a canal, 

5.0
0

321 SAR
n

Q =  

 
Where A and R are in general, functions of the geometric elements of the canal. If the 
canal is of trapezoidal cross-section, 
 

( )mBSynfQ ,,,, 00=             (4.56) 
 
Equ. (4.56) has six variables out of which one is a dependent variable and the rest five are 
independent ones. Similarly, for other channel shapes, the number of variables depends 
upon the channel geometry. In a channel design problem, the independent variables are 
known either explicitly or implicitly, or as inequalities, mostly in terms of empirical 
relationships. The canal-design practice given below is meant only for rigid-boundary 
channels, i.e. for lined an unlined non-erodible channels. 
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4.12.1.  Canal Section 
 
Normally a trapezoidal section is adopted. Rectangular cross-sections are also used in 
special situations, such as in rock cuts, steep chutes and in cross-drainage works. 
 
The side slope, expressed as m horizontal: 1 vertical, depends on the type pf canal, i.e. 
lined or unlined, nature and type of soil through which the canal is laid. The slopes are 
designed to withstand seepage forces under critical conditions, such as; 
 

1. A canal running full with banks saturated due to rainfall, 
2. The sudden drawdown of canal supply. 

 
Usually the slopes are steeper in cutting than in filling. For lined canals, the slopes 
roughly correspond to the angle of repose of the natural soil and the values of m range 
from 1.0 to 1.5 and rarely up to 2.0. The slopes recommended for unlined canals in 
cutting are given in Table (4.4). 

 
 

Table 4.3.  Side slopes for unlined canals in cutting 
 

Type of soil m 
Very light loose sand to average sandy soil 1.5 – 2.0 

Sandy loam, black cotton soil 1.0 – 1.5 
Sandy to gravel soil 1.0 – 2.0 
Murom, hard soil 0.75 – 1.5 

Rock 0.25 – 0.5 
 

 
4.12.2. Longitudinal Slope 

 
The longitudinal slope is fixed on the basis of topography to command as much area as 
possible with the limiting velocities acting as constraints. Usually the slopes are of the 
order of 0.0001. For lined canals a velocity of about 2 m/sec is usually recommended. 
 

4.12.3. Roughness coefficient n 
 
Procedures for selecting n are discussed in Section (4.6.1). Values of n can be taken from 
Table (4.2). 
 

4.12.4. Permissible Velocities 
 
Since the cost for a given length of canal depends upon its size, if the available slope 
permits, it is economical to use highest safe velocities. High velocities may cause scour 
and erosion of the boundaries. As such, in unlined channels the maximum permissible 
velocities refer to the velocities that can be safely allowed in the channel without causing 
scour or erosion of the channel material. 
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In lined canals, where the material of lining can withstand very high velocities, the 
maximum permissible velocity is determined by the stability and durability of the lining 
and also on the erosive action of any abrasive material that may be carried in the stream. 
The permissible maximum velocities normally adopted for a few soil types and lining 
materials are given in Table (4.5). 
 

Table 4.4.  Permissible Maximum velocities 
 

Nature of boundary Permissible maximum 
velocity (m/sec) 

Sandy soil 0.30 – 0.60 
Black cotton soil 0.60 – 0.90 

Hard soil 0.90 – 1.10 
Firm clay and loam 0.90 – 1.15 

Gravel 1.20 
Disintegrated rock 1.50 

Hard rock 4.00 
Brick masonry with cement pointing 2.50 
Brick masonry with cement plaster 4.00 

Concrete 6.00 
Steel lining 10.00 

 
In addition to the maximum velocities, a minimum velocity in the channel is also an 
important constraint in the canal design. Too low velocity would cause deposition of 
suspended material, like silt, which cannot only impair the carrying capacity but also 
increase the maintenance costs. Also, in unlined canals, too low a velocity may encourage 
weed growth. The minimum velocity in irrigation channels is of the order of 0.30 m/sec. 
 

4.12.5. Free Board 
 
Free board for lined canals is the vertical distance between the full supply level to the top 
of lining (Fig. 4.17). For unlined canals, it is the vertical distance from the full supply 
level to the top of the bank. 
 

 
 

Figure 4.10.  Typical cross-section of a lined canal 
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This distance should be sufficient to prevent overtopping of the canal lining or banks due 
to waves. The amount of free board provided depends on the canal size, location, velocity 
and depth of flow. Table (4.5) gives free board heights with respect to the maximum 
discharge of the canal. 
 

Table 4.6. 
 

Discharge 
(m3/sec) 

 

Free board (m) 
Unlined Lined 

Q < 10.0 0.50 0.60 
Q ≥ 10.0 0.75 0.75 

 
 

 
4.10.6. Width to Depth Ratio 

 
The relationship between width and depth varies widely depending upon the design 
practice. If the hydraulically most-efficient channel cross-section is adopted, 
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If any other value of m is use, the corresponding value of B/y0 for the efficient section 
would be from Equ. (4.18), 
 

( )mm
y
B

−+= 2

0

122            (4.57) 

 
In large channels it is necessary to limit the depth to avoid dangers of bank failure. 
Usually depths higher than about 4.0 m are applied only when it is absolutely necessary. 
 
For selection of width and depth, the usual procedure is to adopt a recommended value  
 
 
Example 4.11: A trapezoidal channel is to carry a discharge of 40 m3/sec. The maximum 
slope that can be used is 0.0004. The soil is hard. Design the channel as, a) a lined canal 
with concrete lining, b) an unlined non-erodible channel. 
 
Solution: 

a) Lined canal 
 
Choose side slope of 1 : 1, i.e., m = 1.0 (from Table 4.4) 
 
n for concrete, n = 0.013 (from Table 4.2) 
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From Equ. (4.57), 
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This velocity value is greater than the minimum velocity of 0.30 m/sec, and further is less 
than the maximum permissible velocity of 6.0 m/sec for concrete. Hence the selection of 
B and y0 are all right. The recommended geometric parameters of the canal are therefore: 
 

B = 13.58 m,    m = 1.0,     S0 = 0.0004 
 

Adopt a free board of 0.75 m. The normal depth for n = 0.013 will be 3.70 m. 
 
 

b) Lined canal 
 
From Table (4.), a side slope of 1 : 1 is chosen. From Table (4.2), take n for hard soil 
surface as n = 0.020. 
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From Equ. (4.57), 
 

( )
( )

67.3

11122

122

0

2

0

2

0

=

−+×=

−+=

y
B
y
B

mm
y
B

 

 
Since,  

( ) 67.4167.3
00

00 =+=+=→+= m
y
B

y
AymyBA  

 

For the most-efficient hydraulic cross-sections, 0
0 5.0

2
yyR ==  

( )

myy

yy

79.460.13

0004.05.067.4
020.0
140

0
35

0

5.032
00

=→=

×××=
 

 
Since y0 = 4.79 m > 4.0 m, y0 = 4.0 m is chosen, 
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But this velocity is larger than the permissible velocity of 0.90 – 1.10 m/sec for hard soil 
(Table 4.5). In this case, therefore the maximum permissible velocity will control the 
channel dimensions.  
 
Adopt V = 1.10 m/sec, 
 

0.4

36.36
10.1

40

0

2

=

==

y

mA
 

 



Prof. Dr. Atıl BULU 50

( )

sec40sec82.61

0004.0
40.16
36.3636.36

020.0
1

40.160.411209.5

12

09.50.41
0.4
36.36

33

5.0
32

0
2

0
0

00

mmQ

Q

mP

ymBP

mmy
y
AB

ymyBA

〉=

×⎟
⎠
⎞

⎜
⎝
⎛××=

=×++=

++=

=×−=−=

+=

 

 
The slope of the channel will be smoother, 
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Hence the recommended parameters pf the canal are B = 5.09 m, m = 1, and S0 = 
0.000167. Adopt a free board of 0.75 m. The normal depth for n = 0.02 will be y0 = 4.0 
m. 


