
Chapter 4. SAMPLING DISTRIBUTIONS 
 
 In agricultural research, we commonly take a number of plots or animals for experimental use.  
In effect we are working with a number of individuals drawn from a large population.  Usually we don't 
know the exact characteristics of the parent population from which the plots or animals are drawn.  
Hopefully the samples we draw and the statistics we compute from them are close approximations of the 
parameters of the parent populations.  To ensure a representative sample we use the principle of 
randomization.  A random sample is one drawn so that each individual in the population has the same 
chance of being included. 
 
 The parameters of a population are based on all of its variates and are therefore fixed.  The 
statistics vary from sample to sample.  Therefore the possible values of a statistic constitute a new 
population, a distribution of the sample statistic. 
 
4.1 Distribution of Sample Means 
 
 Consider a population of N variates with mean μ and standard deviation σ, and draw all possible 
samples of r variates.  Assume that the samples have been replaced before each drawing, so that the total 
number of different samples which can be drawn is the combination of N things taken r at a time, that is  

M = ( ).  The mean of all these sample means N
r ( , ,....., )Y Y YM1 2  is denoted by μy  and their standard 

deviation by σy , also known as the standard error of a mean.  The mean of the sample means is the 
same as the mean of the parent population, μ , e.g. 
 
 μ μy i iY M Y N= = =Σ Σ/ /  

The variance of the sample means (σ 2
y)  equals the variance of the parent (σ2) population divided by the 

sample size (r) and multiplied by a factor f. 
 

 σ μ σ2 2 2
y Y M ri y= − = •Σ( ) / ( / ) f  

 where f = (N - r) / (N - 1) 
 
Note that the standard error of a mean approaches the standard deviation of the parent population 
divided by the square root of the sample size, σ σy r= / for a large population (i.e., f approaches 
unity).  The larger the size of a sample, the smaller the variance of the sample mean. 
 
 Consider samples taken from a normal population.  Figure 4-1 illustrates the relationship of the 
parent population (r = 1) with the sampling distributions of the means of samples of size r = 8 and r = 
16. 

 



 
Figure 4-1 

 
 
 
 

 
 

Figure 4-2. The relation of the frequencies of means for r = 3 from the population 1,2,3,4,5,6,7 and 
the normal distribution. 

 
 
 Even when the variates of the parent population are not normally distributed, the means 
generated by samples tend to be normally distributed.  This can be illustrated by considering samples of 
size 3 from a simple non-normal population with variates 1,2,3,4,5,6, and 7.  Table 4-1 presents all 
possible sample means, and Figure 4-2 shows the frequency distribution of the means which approaches 
the normal frequency curve. 
 
   
 



Table 4-1.  All possible different samples of size 3 from the population 1, 2, 3, 4, 5, 
  6, 7 with μ = 4 and σ = 2. 
 

Sample No. Sample Y Sample No. Sample  
 

 1 1 2 3 2 19 2 3 7 4 

 2 1 2 4 2 1/3 20 2 4 5 3 2/3 

 3 1 2 5 2 2/3 21 2 4 6 4 

 4 1 2 6 3 22 2 4 7 4 1/3 

 5 1 2 7 3 1/3 23 2 5 6 4 1/3 

 6 1 3 4 2 2/3 24 2 5 7 4 2/3 
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 8 1 3 6 3 1/3 26 3 4 5 4 

 9 1 3 7 3 2/3 27 3 4 6 4 1/3 

10 1 4 5 3 1/3 28 3 4 7 4 2/3 

11 1 4 6 3 2/3 29 3 5 6 4 2/3 

12 1 4 7 4 30 3 5 7 5 

13 1 5 6 4 31 3 6 7 5 1/3 
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15 1 6 7 4 2/3 33 4 5 7 5 1/3 

16 2 3 4 3 34 4 6 7 5 2/3 

17 2 3 5 3 1/3 35 5 6 7 6 

18 2 3 6 3 2/3      

 
 The mean and standard deviation of the distribution of the sample means are: 
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 Note that in this particular case, we have used a simple population with only seven elements.  
Sample means from samples with increasing size, from a large population will more closely approach 
the normal curve.  This tendency of sample means to approach a normal distribution with increasing 
sample size is called the central limit theorem. 
 
 



4.2 The Distribution of Sample Mean Differences 
 
 In section 4.1 we mentioned that the means of all possible samples of a given size (r1) drawn 

from a large population of Y's are approximately  normally distributed with μ μ σ σy y and y y r= =2 2
1/ . 

Now consider drawing samples of size r2 from another large population, X's.  The parameters of these 

sample means are also approximately normally distributed with μ μ σ σx x and x x r= =2 2
2/ .   An 

additional approximately normal population is generated by taking differences between all possible 

means, Y X d− = , with the parameters μ σd and d
2  

  
μ μ μ μ μ

σ σ σ σ σ

d y x y x

and

d y x y r x r

= − = −

= + = +2 2 2 2 2
1 2/ /

 

 
When the variances of the parent populations are equal, 
 

σ σ σ2 2 2
y x= =( )  and sample sizes are the same, r = r1 = r2 then σ σ2 2 2

d r= / .  

 
The square root of the variance of mean differences, σd , is usually called the standard error of the 
difference between sample means.  Figure 4-3 diagrams the generation of a population of mean 
differences by repeated sampling from two populations of individual variates and indicates relationships 
among the parameters. 
 
 The relationships among the population parameters developed in Sections 4-1 and 4-2 are 
important in statistical evaluation.  With information about the parent population one can estimate 
parameters associated with a sample mean or the difference between two sample means.  This will be 
discussed further in later chapters.   
 
 
 



 
Figure 4-3. Relationships between parameters of a population of sample mean differences and parent 

populations. 
 
 
4.3 Normal Approximation to Binomial 
 
 Although a formula is given in Chapter 3 to calculate probabilities for binomial events, if the 
number of trials (n) is large the calculations become tedious.  Since many practical problems involve 
large samples of repeated trials, it is important to have a more rapid method of finding binomial 
probabilities. 
 
 It was also pointed out in Chapter 3 that the normal distribution is useful as a close 
approximation to many discrete distributions when the sample size is large.  When n > 30, the sample is 
usually considered large.  In this section we will show how the normal distribution is used to 
approximate a binomial distribution for ease in the calculation of probabilities. 
 
 Since the normal frequency curve is always symmetric, whereas the binomial histogram is 
symmetric only when p = q = 1/2, it is clear that the normal curve is a better approximation of the 
binomial histogram if both p and q are equal to or nearly equal to 1/2.  The more p and q differ from 1/2, 
the greater the number of trials are required for a close approximation.  Figure 4-4 shows how closely a 



normal curve can approximate a binomial distribution with n = 10 and p = q = 1/2.  Figure 4-5 illustrates 
a case where the normal distribution closely approximates the binomial when p is small but the sample 
size is large. 
 

 
 
 

Figure 4-4.  Binomial distribution for p = 0.5 and n = 10. 
 
 

 
 

Figure 4-5.  Binomial distribution for p = 0.08 and n = 100. 
 
 To use the normal curve to approximate discrete binomial probabilities, the area under the curve 
must include the area of the block of the histogram at any value of r, the number of occurrences under 
consideration.  To include the block centered at r, the value of Y to be used in the normal curve equation 
for the normal deviate must be adjusted by adding 1/2 to, or subtracting 1/2 from the value of r.  The 
calculation can be described by the following steps: 
 
 Step 1. Compute the mean and the standard deviation 



 
   μ  = np,     σ = npq  
 
 Step 2. In order to find the corresponding normal deviate (Y) for a given r, 1/2 must be either 

added to or subtracted from r to include the block centered at r. 
 
   Y = r - 1/2    or Y = r + 1/2 
 
 Step 3. Standardize the normal deviate Y, by computing Z. 
 
   Z = (Y -  ) /   = (Y - np) / npq  
 
 Step 4. From Appendix Table A-4, find the probability of the occurrence of a random standard 

normal deviate that is equal to or greater than, or equal to or smaller than Z. 
 
 Step 5. Compute the required probability.  This depends on the nature of the problem and is 

illustrated by the four cases below. 
 
Example 4-1.  If 8% of a particular canned product is known to be underweight, what is the probability 
that a random sample of 100 cans will contain (a) 14 or more underweight cans (b) 4 or fewer 
underweight cans, (c) 5 or more underweight cans, (d) more than 4 but less than 15 underweight cans? 
 
 Step 1.  μ  = np = 100 (0.08) = 8.0 
   σ = = =npq 100 0 08 0 92 2 71( . ) ( . ) .  
 
(a) To find the probability of 14 or more underweight cans see Figure 4-6. 
 
 

 
 
 

Figure 4-6. 
 
 Step 2. Y = 5 - 1/2 = 14 - 1/2 = 13.5 
 
 Step 3. Z = (13.5 - 8.0) / 2.71 = 2.03 



 
 Step 4. P (Z > 2.03) = 0.0212 from Appendix Table A-4. 
 
 Step 5. The required probability in this case is the one obtained from Step 4, 0.0212. 
 
(b) To find the probability of 4 or fewer underweight cans, see Figure 4-7. 
 

 
 
 

Figure 4-7. 
 
 Step 2. Y = r + 1/2 = 4 + 0.5 = 4.5 
 
 Step 3. Z = (4.5 - 8.0) /  2.71 = 1.29 
 Step 4. Appendix Table A-4 gives only positive values for Z, i.e., for Z > 0.  since the 

distribution is symmetrical about Z = 0, probabilities for negative values of Z are 
determined by ignoring the sign.  Therefore, P (Z < -1.29) = P(Z > 1.29) = 0.0985. 

 
 Step 5. The required probability in this case is the one obtained from Step 4, 0.0985, or about 

10%. 
 
(c) To find the probability of 5 or more underweight cans, see Figure 4-8. 
 

 
Figure 4-8. 



 
 Step 2. Y = r - 1/2 = 5 - 1/2 = 4.5 
 
 Step 3. Z = (4.5 - 8.0) / 2.71 = -1.29 
 
 Step 4. From Appendix Table A-4, P(Z < -1.29) = P(Z > 1.29) = 0.0985. 
 
 Step 5. The problem is to find the probability that P(Z < -1.29) = 1 - 0.0985 = 0.9015. 
 
(d) To find the probability that more than 4 but less than 15 cans are underweight, we must find the 

probability of 5 more and 14 or less underweight cans as in Figure 4-9. 
 
 

 
 
 

Figure 4-9. 
 
 Step 2. Note in this case that we need to find the probability between two r values, r 1 and r2. 
  
   Y1 = r1 - 1/2 = 5 - 1/2 = 4.5 
 
   Y2 = r2 + 1/2 = 14 + 1/2 = 14.5 
 
 Step 3. Now we have to calculate two standardized Z values, Z1 and Z2. 
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 Step 4. From Appendix Table A-4, we find the two probabilities: 
 
   P (Z < -1.29) = (P (Z > 1.29) = 0.0985 
 
   P (Z > 2.40) = 0.0082 
 



 Step 5. The required probability is the area between the two Z values, which is equal to: 
 
   1 - P (Z < -1.29) - P (Z > 2.40) 
   = 1 - 0.0985 - 0.0082 
   = 1 - 0.1067 = 0.8933 
 
4.4 Chi-Square Distribution 
 
 We now introduce a distribution called chi-square.  This distribution is related to S2, the 
variance of a sample.  We have shown that Z = (Y - μ )/σ, is a standard normal deviate.  The square of a 
single standard normal deviate is called chi-square with 1 degree of freedom.  The sum of squares of r 
independent standard normal deviates is called the chi-square with r degrees of freedom, i.e., 
 

 χ
μ

σ
2 2= =

−r Z r Y
Σ Σ ( )2  

In sampling from a normal distribution, the sample variance is: 
 

 S Y Y
r

2
2

1
=

−
−

Σ( )
 

It can be shown mathematically that S2 relates to χ2 in the following way: 
 
  χ2 = [(r - 1) S2] / σ2, with r - 1 degrees of freedom. 
 
Obviously, χ2 cannot have negative values. 
 
 The disturbance of  χ2 depends on the degrees of freedom of the sample variance.  For each 
degree of freedom, there is a  χ2 distribution.  Figure 4-10 gives  2 distributions for several selected 
degrees of freedom. 
 
 

 
 
 

Figure 4-10.  Some  X2 distribution curves. 



 
 Note that the  χ2 curve becomes more symmetrical as the degrees of freedom increase.  
Appendix Table A-5 gives the  χ2 values which have certain specific cumulative probabilities for 
various degrees of freedom.  Since the  χ2 distribution is related to a measure of dispersion from a 
sample, it has many applications to problems of the significance of an estimated dispersion, an 
association between two classification and the closeness of fitting observations to a theoretical model.  
These applications are discussed in Chapter 11. 
 
 
4.5. Student t-Distributions 
 
 In section 4.1, it was pointed out that a population of sample means of size r is approximately 

normally distributed with mean μ μ σ σ μ σy and y r where and= =2 2 / , 2  are the mean and variance of 

the parent population.  This population can also be standardized (section 3.4) to become the standard 
normal distribution, 
 

  Z Y

y

=
− μ
σ

 

 Seldom, if ever, do we know the population parameters, μ and  σy .  When the standard error,  
σy , is unknown, it is estimated from the sample by Sy , the sample standard error. 
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 If σy is replaced in the above Z formula by its estimator, S y , the distribution is no longer normal 
but has a similar distribution called Student's t. 
 
 t Y Sy= −( ) /μ  with r - 1 degrees of freedom. 
 
There is a t-distribution for every sample size, since the standard error depends on the number of 
variates in the sample.  This distribution is named after its discover, W. S. Gosset (1876-1937), a 
statistician at Guinness Brewery in Dublin, Ireland, who wrote under the pseudonym "Student."  Student 
t-distributions are tabulated in Appendix Table A-6.  These distributions are symmetrical, bell-shaped 
curves that look normal but are flatter.  The mean of a t-distribution is zero and its variance is r/(r - 2) 
for r > 2.  This is always greater than 1, the variance of Z.  However, as sample size increases, the 
variance approaches 1.  Therefore, the t-distribution approaches the standard normal.  This can be seen 
from the last line of Appendix Table A-6 where the d.f. becomes infinite, since the values entered are 
the same as the Z-scores (appendix Table A-4) for any specific probability listed at the top of Appendix 
Table A-6.  Figure 4-11 illustrates how the t-distribution relates to the standard normal distribution as 
sample size increases. 
 
 
 
 
 
 



 

 
 

Figure 4-11.  t-distribution curves. 
 
With sample sizes greater than 30, the t-distribution is indistinguishable from the normal for all practical 
purposes. 
 
 The numerator of the t-formula, Y − μ , gives the magnitude of the difference between a sample 
mean Y and the population mean μ.  The likelihood that Y is not different from μ, taking into account 
chance variation, is evaluated by the t-distribution.  Since μ is not known, it is usually replaced by a 
hypothetical value for calculations.  This hypothetical value can either be a guessed population constant 
or an important practical threshold value.  One of the uses of the t-distribution is to compare the 
observed Y to a hypothetical value.  Another use is to calculate two values, based on the t-formula, 
within which   will fall with a specific probability.  These uses relate to the concept of testing 
hypotheses and confidence intervals to be discussed in Chapter 5. 
 
4.6 Fi Distributions 
 
 Another important sampling distribution is the F distribution, named in honor of R. A. Fisher 
(1890-1962), who first developed and described it.  This distribution relates to a random variable which 
is defined as the ratio of the unbiased estimates of two population variances, that is 
 F S S= 1

2
2
2/  

 This ratio has several applications, two of which are widely used:  the test of equality between 
two variances and the test of equality of two or more means.  For comparing two means (numerator df = 
1), the F value is the square of the Student's t, i.e., F = t2 for any given probability.   Mathematically, the 
F distribution is derived from the ratio of two positive quantities, the range of the F values is from zero 
to infinity.  The shape of the F curve depends on two parameters, the degrees of freedom associated with 
the sample of variance of the numerator and the degrees of freedom associated with the sample variance 
of the denominator.  Generally, it is skewed to the right.  However, when one or both degrees of 
freedom increase, it tends to be more symmetrical.  Some specific F curves are shown in Figure 4-12. 
 
 
 



 
 

Figure 4-12 
 
The F distribution is tabulated in Appendix Table A-7.  Note that the distribution is identified by 
degrees of freedom for a numerator and denominator and thus a single table only permits the listing of a 
few possibilities.  That is, the table entry F value at the joint point of the values of df1 , the degrees of 
freedom associated with the numerator in the upper row of the table, and df2, the degrees of freedom 
associated with the denominator in the first column, will cut off the right hand 10%, 5%, or 1% of the 
distribution. 
 
 The mean and variance of an F distribution are 
 
 μF = df2 / (df2 - 2) 
 
and 
 
  σF df df df df df df2

2
2

1 2 1 2
2

22 2 2= • + − • − • −( ) ( ) / ( ) ( 4)
  
For df2 < 2, the mean cannot be estimated, and for df2 < 4 the variance cannot be estimated from the 
above formulas. 
 

SUMMARY 
 

1. For any population with mean μ, and variance σ2, the mean of all sample means of size r also 
equals μ and the variance equals σ2/r.  The standard error of a sample is σ / .r  

 
2. The distribution of sample means tends to the normal as the sample size increases, regardless of 

the shape of the parent population from which the samples are drawn.  This tendency is known 
as the Central Limit theorem. 

 



3. The difference between the means of two samples (d Y X= − )

,2
 of sizes r1 and r2 that are 

independently drawn from two populations with parameters  respectively, 

has a mean equal to 

μ σ μ σy xy and x, , ,2

μd  and variance σ 2
d  where, 

  μ μ μd y x= −  
 and 

  σ σ σ2 2 2
1 2d y r x r= +/ /  

 
4. the standard normal curve can be used to approximate probabilities of many types of discrete 

events.  For example, the probability of r occurrences from n binomial trials (n > 30), can be 
approximated by applying the following formula: 

 
   Z = (y - np) - npq  
 
5. Chi-square distribution is widely used for inference about a measure of dispersion, i.e., it is used 

to determine whether the variance of a sample is equal to its population variance.  Chi-square 
can also be used to test hypotheses and to test fitness of observations to a theoretical model.  
Appendix Table A-5 lists some critical values with selected degrees of freedom and 
probabilities.  The mean and variance of a 2 are (r - 1) and 2 (r - 1) respectively, where (r - 1) is 
the degrees of freedom. 

  
6. A Student t-distribution is used for inferences about a population mean, where the sample size is 

small (r < 30), and the population variance is unknown.  Student-4 related to a sample mean is 
expressed as, 

 
  t Y Sy= −( ) /μ  
 

The t distribution depends on the degrees of freedom of the sample (r - 1).  Student t-
distributions are tabulated in Appendix Table A-6.  The mean of a 1 distribution is 0 and the 
variance is r/(r - 2) for r > 2. 

 
7. The F distribution is widely used to test the equality of two variances and the equality among 

several means.  The mathematical expression of the F distribution is very complicated and 
depends on two degrees of freedom:  df1, the degrees of freedom associated with the numerator 
and df2, the degrees of freedom associated with the denominator.  The mean and variance of an 
F variable are, 

  μF = df2 / (df2 - 2)   for df2 > 2 

  σ 2 2 2
2 4

42
2

1 2

1 2
2

2
2F

df df df
df df df

for df=
+ −

− −
>

( ) ( )
( ) ( )

 

 
 Some tabular F values are shown in Appendix Table A-7. 
 
 



EXERCISES 
 
1. Suppose samples are taken from a population of heifers with known mean and variance of 

weight gains of 188 lbs. and 2200 square lbs., respectively. 
 
 a) What are the mean and the variance of an average weight gain estimated from a sample of 

20 heifers? (188,110) 
 
 b) What are the mean and variance from a sample of 30 heifers? (188, 73.3) 
 
 c) How many heifers should be in a sample in order for the variance of sample means to equal 

50? (44) 
 
2. Suppose the yield (lb/acre) of corn from 2 types of soil is studied for years and the means and 

variances are known to be 
 
      mean  variance
 
    Type A 4500  455,625 
    Type B  3900  152,100 
 
 a) What is the mean and variance of the differences between the sample means from the two 

types of soil with 10 and 15 observations, respectively?  What is the standard error of the 
differences? (600; 55, 702.5; 236.01) 

 
 b) Calculate the mean and standard error of the difference assuming the above sample sizes 

were 40 and 60, respectively. (600, 118.01) 
 
3. Assume that the mean weight of fried chicken dinners from a food store is 12 ounces and the 

standard deviation is 0.6 ounces. 
 
 a) What is the probability that in a random sample of 5 of these dinners, the average weight 

will be less than 11.5?  More than 11.9?   Between 11.5 and 11.9? 
(0.0314, 0.6443, 0.3243) 

 
 b) Answer the above question for a sample size of 10. (0.0043, 0.7019, 0.2938) 
 
4. Assume that the heights of men are normally distributed with a standard deviation of 2.5 inches.  

How large a sample should be taken in order to be 90% certain that the sample mean will not 
differ from the population mean by more than 0.5 inches? (68) 

 
5. In a manufacturing process it is known that 5% of the items are defective.  What is the 

probability that a lot of 100 items will contain fewer than 3 defective items? (0.125) 
 
6. It is known that only 60% of the seeds of a rare plant germinate.  What is the probability that out 

of 100 seeds planted: 
 
 a) 70 or more germinate: (0.0262) 
 b) fewer than 45 germinate; (0.0008) 
 c) more than 50 and fewer than 80 will germinate? (0.9838) 



 d) between 65 and 70 will germinate? (0.1052) 
 
7. Suppose that in the past, 20% of all graduating students were in the College of Agricultural and 

Environmental Sciences at UCD.  Among the 2,500 freshmen in 1979, what is your estimate of 
the probability that, 

 
 a) There are less than 480 students who will graduate from the College of AES in 1983? 

(0.1515) 
 
 b) Between 480 and 530 students will graduate from the College of AES in 1983? 

(0.6730) 
 
 c) Suppose that the University administrators must be 95% certain that at least 750 students 

will graduate from the College of AES in 1983.  How many freshmen should be admitted 
in 1979? (3748) 

 
8. From Appendix Table A-5, plot the approximate probability curves of chi-square distributions 

with 3 and 9 degrees of freedom.  What are the means and standard deviations of these two 
distributions? (3, 6), (9, 18) 

 
9. Find the chi-square values that will cut off 50% of the right-hand tail probabilities for 1, 8, 18, 

and 100 degrees of freedom.  Subtract these values from the mean and divide them by the 
standard deviation of their corresponding distributions.  Explain how these values change. 

 
10. A sample of 7 observations, 14, 12, 11, 10, 13, 15, 13, was taken from a population with a mean 

of 12.  What is the probability of obtaining a mean from another sample of size 7 which is 
greater than the observed mean? 

(0.2 < p < 0.25) 
 
 


