Chapter 4:
 Solving Literal
 Equations

A-REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Warm-Up

The solution of the equation $5-2 x=-4 x-7$ is
(1) 1
(3) -2
(2) 2
(4) -6

What is a literal equation?

A literal equation is an equation with two or more variables. Instead of solving for a numerical value, we solve for one variable in terms of another. A formula is one type of literal equation that has special applications in math or science.

Observe the similarities between the linear equation (left) and the literal equation (right):
One-Step Linear Equation:
One-Step Literal Equation:

1) $y+10=55$	2) $y+x=55$ solve for y
3) $s-40=85$ solve for s	4) $s-x=85$ solve for s

Two-Step Linear Equation:

Two-Step Literal Equation:
6) $2 a-b=c$ solve for a

Solving for a variable using division:

$7 x=45$	$8) \quad 3 x=y$ solve for x

Quick Check for Understanding

9) $2 x+y=9$ solve for $y \quad$ 10) $-3 b-c=d$ solve for b 11) $\quad P=m v \quad$ solve for m

Application

12) The formula $d=r t$ relates the distance an object travels, d, to its average rate of speed r, and amount of time t that it travels.
a) Solve the formula $d=r t$ for t.
b) How many hours would it take for a car to travel 150 miles at an average rate of 50 miles per hour?

Independent Practice Solve for the variable indicated.

1) $d=r t$ Solve for r	2) $P=a+b$ Solve for b

9) $s=r \theta$ Solve for r	10) $E=I R$ Solve for R

17) The volume of a prism is $V=l w h$.
a) Solve this formula for h.
b) If the volume of a prism is 64 , its length 4 , and its width 2 , what is its height?

Summary

Homework
Chapter 4- Day 1 -Textbook pp. 109-110 \#2, 5, 8, 9, 10, 11, 14, 20, 23, 26, 36-37

Day 2: Solving Literal Equations with Proportions
A-REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Warm-Up
If $3 a x+b=c$, then x equals
$1 c-b+3 a$
$2 c+b-3 a$
$3 \frac{c-b}{3 a}$
$4 \quad \frac{b-c}{3 a}$

Model Problems Solving Proportions
Solve for x in each equation.
Linear Equations:

Literal Equation:

| 1$) \frac{x}{3}=9$ | $2) \frac{x}{3}=y$ |
| :--- | :--- | :--- |
| | |

5) $10=\frac{2}{3}(\mathrm{x}-4)$	6) $D=\frac{11}{5}(x-15)$

Application

7) The formula to convert Celsius to Fahrenheit is given by $C=\frac{5}{9}(F-32)$.
a) Solve this formula for F.
b) The boiling point of water is $100^{\circ} \mathrm{F}$. What is the Fahrenheit equivalent of this temperature?
8) Check for Understanding Solve for the given variable.

a) $\quad d=\frac{c}{n}$ solve for n	$A=\frac{a+b}{2}$ solve for b	

d) The formula for the mean (average) A of two numbers y and z is one-half their sum, or $A=\frac{1}{2}(y+z)$. If the average of two numbers is 7 and one of the numbers is 4 , find the other number.

Cumulative Independent Practice Days 1-2 Solve for the value of the variable.

1) $\frac{m}{k}=x$ for k	2) $V=\frac{1}{3}$ Ah for A

3) $s=\frac{1}{2} g t^{2}$ for g	4) $s=\frac{w-10 e}{m}$ for w

9) $\frac{x-y}{7}=t$ for y	10) $P=R-C$ for C
11) $R=\frac{C-S}{t}$ for C	12) $2 x+7 y=14$ for y
13) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ for y_{2}	14) $\quad V=\frac{2}{3}(x+2 y)$ for x

15) The formula $V=\frac{1}{3} \pi r^{2} h$ is the formula for the volume of a cylinder. To the nearest tenth, what is the height of a cylinder with volume $100 \mathrm{~cm}^{3}$ and radius 2 cm ?

A-REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Warm-Up

The formula $P=2(L+W)$ is the formula for the perimeter of a rectangle. Solve this formula for L. What is the length of a rectangle whose perimeter is 48 and whose width is 6 ?

Distribution and Reverse distribution

1) When there is a common factor in all terms of an expression, we can use the distributive property in reverse to write it in factored form.

Simplest form	Factored Form
a) $2 L+2 W$	$2(L+W)$
b) $3 a-3 b$	
c) $2 l w+2 l$	
d) $\quad f b+f a$	
e) $2 \pi r h+2 \pi r^{2}$	

2) Model Problem Using the Distributive Property in Reverse

Solve for c in terms of a and $b: a c+b c=a b$

a)If $a+a r=b+r$, the value of a in terms of b and r can be expressed as	b) If $k=a m+3 m x$, the value of m in terms of a, k, and x can be expressed as

Using Rational Equations

4) Model Problem

The formula $\frac{1}{a}+\frac{1}{b}=\frac{1}{f}$ relates an object's distance, a, and its image's distance, b, to the focal length of the lens, f. Solve this formula for f.
5) Practice

The total resistance in a circuit is given by the formula $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$. Solve this formula for R_{1}.

Unit Summary So Far:

Look for STRUCTURE in equations:	
One- or Two-Step Equations	Proportions
$A x+B=C$	$x+b=c$
Reverse Distribution (Common Factor)	$D=\frac{M}{V} \quad K=\frac{1}{2} m v^{2} \quad \bar{x}=\frac{x_{1}+x_{2}}{2}$
$S=2 \pi r^{2}+2 \pi r h$	Rational Equations (Sums and Differences)
	$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$

Cumulative Practice/Homework Chapter 4 - Day 3 Solve for the requested variable.

1) $r=p n$ for n	2) $V=\frac{1}{3}$ Bh for B

5) $J=m v_{f}-m v_{i}$ for m	6) $E=I R$ for I

11) $U=\frac{1}{2} Q V$ for V	12) $z+y=x+x y^{2}$ for x

Multiple Choice Practice.

17$)$	$18)$

The formula $V=\frac{B h}{3}$ shows how to find the volume of a pyramid. Solve for B.
F $B=\frac{3 V}{h} \quad H B=3 V h$
G $B=3 V-h \quad J B=3 V+h$
The cost of operating an electrical device is given by the formula $C=\frac{W t c}{1000}$ where W is the power in watts, t is the time in hours, and c is the cost in cents per kilowatt-hour. Solve for W.
F W = $1000 C-t c$
G $W=\frac{C t c}{1000}$
$H W=1000 C+t c$
$\mathrm{J} W=\frac{1000 C}{t c}$

Real-World Application.

19) The cost to mail a letter in the United States in 2008 was $\$ 0.41$ for the first ounce and $\$ 0.26$ for each additional ounce. Solve
$C=0.41+0.26(z-1)$ for z.

If Patty paid 0.93 to mail her letter, how many
ounces was it? $(C=$ cost, $z=$ ounces $)$

A-REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Warm-Up

The formula for the volume of a pyramid is
$V=\frac{1}{3} B h$. What is h expressed in terms of B and
V ?
$1 \quad h=\frac{1}{3} V B$
$2 h=\frac{V}{3 B}$
$3 h=\frac{3 V}{B}$
$4 h=3 V B$

Mini-Lesson: Using Square Roots

To solve for a squared variable, take its square root.

Linear Equation: $\quad 64=16 x^{2}$	Literal Equation: $A=\pi r^{2}$ solve for r	

Check for Understanding \quad Solve for the indicated variable.

1) The formula for kinetic energy is $K=\frac{1}{2} m v^{2}$. Write an expression for v in terms of K and m.
2) The gravitational force F that two planetary bodies exert on one another is given by $F=\frac{G m_{1} m_{2}}{r^{2}}$. Solve this formula for r.

Cumulative Practice/Homework Solve for the value of the indicated variable.

1) $V=l w h$	2) $s=\frac{1}{2}$ at ${ }^{2}$ solve for t
Solve for h	
3) $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$	4) Solve for $r: \frac{p+r}{3}=m+5$
5) Solve $R=\frac{l+3 w}{2}$ for w	

7) $A=2 \pi r h+2 \pi r^{2}$ Solve for π	Rewrite $K=\frac{3}{2} k T$ solved for T in terms of k and T.
9) $q-3 r=2$ Solve for r	

Regents Practice.

13) The formula for the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$. The radius, r, of the cone may be expressed as $1 \sqrt{\frac{3 V}{\pi h}}$ $2 \sqrt{\frac{V}{3 \pi h}}$ $33 \sqrt{\frac{V}{\pi h}}$ $4 \quad \frac{1}{3} \sqrt{\frac{V}{\pi h}}$	14) The distance a free falling object has traveled can be modeled by the equation $d=\frac{1}{2} a t^{2}$, where a is acceleration due to gravity and t is the amount of time the object has fallen. What is t in terms of a and d ? $1 t=\sqrt{\frac{d a}{2}}$ $2 t=\sqrt{\frac{2 d}{a}}$ $3 t=\left(\frac{d a}{d}\right)^{2}$ $4 \quad t=\left(\frac{2 d}{a}\right)^{2}$
15) The volume of a large can of tuna fish can be calculated using the formula $V=\pi r^{2} h$. Write an equation to find the radius, r, in terms of V and h. Determine the diameter, to the nearest inch, of a large can of tuna fish that has a volume of 66 cubic inches and a height of 3.3 inches.	16) The formula for the area of a trapezoid is $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$. Express b_{1} in terms of A, h, and b_{2}. The area of a trapezoid is 60 square feet, its height is 6 ft , and one base is 12 ft . Find the number of feet in the other base.

A-REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Look for STRUCTURE in equations:

One-Step Equations	
1) $I=$ prt Solve for r.	2) $T=M-N$ Solve for M.
Two-Step Equations	
3) $5 t-2 r=25$ Solve for t.	4) $v t-16 t^{2}$ Solve for v.

Proportions	
5) $F=\frac{l}{d}$ Solve for l.	6) $P=\frac{144 p}{y}$ Solve for p.

| Reverse Distribution | |
| :--- | :--- | :--- |
| 9) $S=R-r R \quad$ Solve for R. | 10) $a x=b x+c \quad$ Solve for x. |

Applications. The surface area of a sphere is given by the formula $S=4 \pi r^{2}$. Solve this formula for r. What is the radius of a sphere whose surface area is $201 \mathrm{~cm}^{2}$?

