Chapter 41. One-Dimensional Quantum
Mechanics

Quantum effects are
Important in nanostructures
such as this tiny sign built by
scientists at IBM’s research
laboratory by moving xenon
atoms around on a metal
surface.

Chapter Goal: To understand
and apply the essential ideas
of quantum mechanics.




Chapter 41. One-Dimensional
Quantum Mechanics

Topics:
*Schrodinger’s Equation: The Law of Psi
*Solving the Schrodinger Equation

*A Particle in a Rigid Box: Energies and Wave
Functions

*A Particle in a Rigid Box: Interpreting the Solution
*The Correspondence Principle
*Finite Potential Wells
*Wave-Function Shapes
*The Quantum Harmonic Oscillator
*More Quantum Models
*Quantum-Mechanical Tunneling



The Schrodinger Equation

Consider an atomic particle with mass m and mechanical
energy E in an environment characterized by a potential
energy function U(x).

The Schrodinger equation for the particle’s wave function
is

d*y 2m - +
12 = —?[E — U(x) Jir(x) (the Schrodinger equation)

Conditions the wave function must obey are
1. ¥(x) and ’(x) are continuous functions.
2. Y(x)=0ifxisinaregion where it is physically
impossible for the particle to be.
3. Y(x) > 0asx > +ocand x - —oo,
4. (x)is a normalized function.




Solving the Schrodinger Equation

If a second order differential equation has two
independent solutions ,(x) and ¢,(x), then a general
solution of the equation can be written as

U(x) = A (x) + By (x)

where A and B are constants whose values are determined
by the boundary conditions.



d*ys 2m

e —?[E — U(x) i (x) (the Schrodinger equation)

There is a more general form of the Schrodinger equation which includes
time dependence and x,y,z coordinates;

We will limit discussion to 1-D solutions

Must know U(x), the potential energy function the particle experiences as it
moves.

Objective is to solve for y(x) and the total energy E=KE + U of the particle.

In ‘bound state’ problems where the particle is trapped (localized in space),
the energies will be found to be quantized upon solving the Schrodinger
equation.

In ‘unbound states’ where the particle is not trapped, the particle will travel
as a traveling wave with an amplitude given by y(x)



E, KE, and PE

FIGURE 41.1 The de Broglie wavelength changes as a particle’s kinetic energy changes.
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E, KE, and PE

FIGURE 41.2 Interpreting an energy diagram.
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The Schrodinger Equation with Constant potential
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A Particle in a Rigid Box

FIGURE 41.4 The energy diagram of a
particle in a rigid box of length L.

The potential energy becomes
infinitely large at this point.
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A Particle in a Rigid Box

Consider a particle of mass m confined in a rigid, one-
dimensional box. The boundaries of the box are at x=0
and x = L.

1. The particle can move freely between 0 and L at
constant speed and thus with constant kinetic
energy.

2. No matter how much kinetic energy the particle has,
its turning points are at x=0 and x = L.

3. The regions x < 0 and x > L are forbidden. The particle
cannot leave the box.

A potential-energy function that describes the particle in

this situation i 0 O=ry=1
brrigiLI box (X) = {

© x<0 or x>L
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FIGURE 41.7 Wave functions and probability densities for a particle in a rigid box of length L.
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FIGURE 41.8 An alternative way to show E ) }ka < L
the potential-energy diagram, the n - T E v
energies, and the wave functions.
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The Correspondence Principle

When wavelength becomes small compared to the size of the box (that is, when either

L becomes large or when the energy of the particle becomes large), the particle must
behave classically.

For particle in a box:

Pquant(-x} —

Classically:

Prob,.(in dx at x) = fraction of time spent in ox =

Prob . (in éx at x) =

Prob,, . (in éx at x) = P, (x)dx

Pulaz;s(*t) —

P».:laﬁs (,I) -

(2LIvy)v, L

2

[Yr,(x)|* = —sin”

L

ox/v(x)

=T

2
Tv(x)
2 1

 Tw(x)

3

(a) Uniform speed

b |—
b

Particle in an empty box

L —

Motion diagram

Ox — g [—
)
The probability of finding the particle

in &x is the fraction of time the particle
spends 1n ox.




The Correspondence Principle

When wavelength becomes small compared to the size of the box (that is, when either
L becomes large or when the energy of the particle becomes large), the particle must

behave classically.

For particle in a box: Classically:

2 1
Pclass(x) - -

2 ., —
(2LIvy)v, L

Puanc(x) = |, (x)|* = Esm‘

nmwx

L

FIGURE 41.12 The guantum and classical probability densities for a particle in a box.
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Finite Potential well:

(@) & = 0 inside the well,

U(x) U, is the depth of the 1. Solve Schrodinger’s equation in the

Iy potential-energy well. three regions (we already did this!)
{?J{,A - ._3?(,,[ A ! o 2. ‘Connect’ the three regions by using the
T ¢/ The particle’s following boundary conditions:

/'.rf ﬂiﬁ:rﬁ}’ s E < UEI‘ /LG ()‘70\ _ 461 (X,TO\

: A . . Ay (e=1)=Yig ¢

Classically /: Classically qf ()(\ 0\ = @i Z%:D\
T\ LU

forbidden

.- :iﬁn;m‘; ) YL (x=L) - e =)

f “f, the box. }r’ 1. This will give quantized k’s and E’s
2. Normalize wave function

} i
! _ Turning points

ﬁ'b{/i(f , b, N 5;}1‘?5- i %igﬂ‘q@%
D
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Finite Potential well:

FIGURE 41.14 Energy levels and wave functions for a finite potential well. For comparison,
the energies and wave functions are shown for a rigid box of equal width.

(a) Finite potential well (b) Particle in a rigid box
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Classically forbidden region — penetration depth
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Finite Potential well example — Quantum well lasers

FIGURE 41.16 A semiconductor diode
laser with a single quantum well.

{a) Quantum-well laser
GaAlAs  GaAs

Current

Laser light Metal contact
(b)
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Finite Potential well example — 1-D model of nucleus

FIGURE 41.17 There are four allowed
energy levels for a neutron in this
nuclear potential well.

A radioactive decay has left the neutron
in the n = 3 excited state. The neutron
jumps to the n = 1 ground state, emitting
d gamma-ray phﬂtDﬂ,

Energy levels of a '

neutron in the nucleus

\ i —— O0MeV
n=4 # —13.4 MeV

n=73 —28.5 MeV

- f\;\.x/\//_\\_/T
n=>2 f ¢ —40.4 MeV
n=1 —47.6 MeV
“_\‘——5[].{] MeV

The diameter of the
nucleus is 8.0 fm.
Gamma-ray
emission



Qualitative wave function shapes

Exponential decay if U>E, oscillatory if E>U i.e. positive KE, KE~p? ~1/A?,
Amplitude~1/v~1/Sqrt[KE] (particle moving slower means more likely to be in that place)

FIGURE 41.19 The n = 1 and n = 4 wave functions.
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Energy

Harmonic Oscillator

1. Solve Schrodinger’s equation in the
three regions (we already did this!)

2. ‘Connect’ the three regions by using the
following boundary conditions:

/LFI (%=X = g (X"yc\

1
\

!
J
_:—"'-H-

U (¥ =%g) = %1( fz&\
r |
L (o) = W [=X)

bt b=y = b

Clasiﬂical | Clﬂﬂﬁsically 3. This will give quantized k’s and E’s
turning points  forbidden 4. Normalize wave function

Classically
forbidden

region



FIGURE 41.22 The quantum and classical

Energy probability densities for the n = 11 state
UG = 1 Sheo - of a quantum harmonic oscillator.
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Molecular vibrations - Harmonic Oscillator

FIGURE 41.23 The potential energy of a
molecular bond and a few of the allowed
energies.
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Particle in a capacitor

FIGURE 41.25 An electron in a capacitor.
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Particle in a capacitor

FIGURE 41.26 Energy levels, wave functions, and probability densities for an electron in a
5.0-nm-wide capacitor with a 0.80 V potential difference.

(a) (b)

i(x) ()|
=] o e 4] =4
U (eV) UieVn

el | NVAVA\RR:

0.8 ﬁuﬂv s 08l 0.8 5

AN /

s 4 068 M 4
3055 JAN 3

(R ]

0.41 0.4 2

NS /
0.4 )
—
Forbidden
region
1023 1
las sical turning point
for E = 0.41 eV electron
0.0+ ! X (nm) ﬂ_r:J

x (nm)



Covalent Bond: H2+ (single electron)

FIGURE 41.27 A molecule can be

modeled as two closely spaced potential
wells, one representing each atom.

(a) Simple one-dimensional mode]
of a hydrogen atom

OeV

0.10 nm = 2a,
—_—

VA

—242eV

(b) An H; molecule modeled as an electron
with two protons separated by 00,12 nm

@,,;-—- Froton

0.10nm 0.10 nm

eV —

—242eV

® @

0.12 nm

FIGURE 41.28 The wave functions and probability densities of the electron in H,".
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Covalent Bond: H2+ (single electron)

FIGURE 41.28 The wave functions and probability densities of the electron in H,".

{a) Bonding orbital {b) Antibonding orbital

t(x) th(x)
- - OeV -

—9.0eV ny/\
e . \

eV

—175eV
—242eV —242eV
|¢‘|H)|: The electron 1s H’:Lﬂ ’ ,-""Tl_m t.]mﬂm_" 1
shared between ~\ _~with one proton
the protons. ,,"' or the other.
teV o DeV .
L
I n=2
—9.0eV
n=1

—175eV —""/ \"—
—242eV —2432 eV

To learn the consequences of these wave functions we need to calculate the total
energy of the molecule: £, = E, , + E,.. The n = 1 and n = 2 energies shown in
Figure 41.28 are the energies E,.. of the electron. At the same time, the protons repel
each other and have electric potential energy E, . It's not hard to calculate that

E,, = 12.0 eV for two protons separated by 0.12 nm. Thus

120eV-175eV = —55eV n =1

E . =E  +E.,. =
mol - Tpp T Telec {lzﬂe:V— 9.0eV = +3.0eV n =2



Quantum Tunneling

FIGURE 41.29 A hill is an energy barrier to a rolling ball.

(a) (b)
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Quantum Tunneling

FIGURE 41.30 A quantum particle can
penetrate through the energy barrier.
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FIGURE 41.31 Tunneling through an ideal-

Quantum Tunneling

ized energy barrier.
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Quantum Tunneling — Resonant tunneling

FIGURE 41.34 Electron potential energy in a resonant tunneling diode.
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(b) A potential difference causes (c)
the potential energy to increase
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\.\ — Electrons
o
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The quantum-well energy matches the electron
energy, allowing the electrons to tunnel through.

FIGURE 41.35 Experimental measurement
of the current-voltage characteristics of a
resonant tunneling diode.
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