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47.1 Fundamental Principles

The main purpose of structural analysis is to determine forces and deformations of the structure due to
applied loads. Structural design involves form finding, determination of loadings, and proportioning of
structural members and components in such a way that the assembled structure is capable of supporting
the loads within the design limit states. An analytical model is an idealization of the actual structure.
The structural model should relate the actual behavior to material properties, structural details, loading,
and boundary conditions as accurately as is practicable.

Structures often appear in three-dimensional forms. For structures that have a regular layout and are
rectangular in shape, subject to symmetric loads, it is possible to idealize them into two-dimensional
frames arranged in orthogonal directions. A structure is said to be two-dimensional or planar if all the
members lie in the same plane. Joints in a structure are those points where two or more members are
connected. Beams are members subjected to loading acting transversely to their longitudinal axis and
creating flexural bending only. Ties are members that are subjected to axial tension only, while struts
(columns or posts) are members subjected to axial compression only. A truss is a structural system
consisting of members that are designed to resist only axial forces. A structural system in which joints
are capable of transferring end moments is called a frame. Members in this system are assumed to be
capable of resisting bending moments, axial force, and shear force.

Boundary Conditions

A hinge or pinned joint does not allow translational movements (Fig. 47.1a). It is assumed to be frictionless
and to allow rotation of a member with respect to the others. A roller permits the attached structural
part to rotate freely with respect to the rigid surface and to translate freely in the direction parallel to
the surface (Fig. 47.1b). Translational movement in any other direction is not allowed. A fixed support
(Fig. 47.1c) does not allow rotation or translation in any direction. A rotational spring provides some
© 2003 by CRC Press LLC
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rotational restraint but does not provide any translational restraint (Fig. 47.1d). A translational spring
can provide partial restraints along the direction of deformation (Fig. 47.1e).

Loads and Reactions

Loads that are of constant magnitude and remain in the original position are called permanent loads.
They are also referred to as dead loads, which may include the self weight of the structure and other
loads, such as walls, floors, roof, plumbing, and fixtures that are permanently attached to the structure.
Loads that may change in position and magnitude are called variable loads. They are commonly referred
to as live or imposed loads, which may include those caused by construction operations, wind, rain,
earthquakes, snow, blasts, and temperature changes, in addition to those that are movable, such as
furniture and warehouse materials.

Ponding loads are due to water or snow on a flat roof that accumulates faster than it runs off. Wind
loads act as pressures on windward surfaces and pressures or suctions on leeward surfaces. Impact loads
are caused by suddenly applied loads or by the vibration of moving or movable loads. They are usually
taken as a fraction of the live loads. Earthquake loads are those forces caused by the acceleration of the
ground surface during an earthquake.

A structure that is initially at rest and remains at rest when acted upon by applied loads is said to be
in a state of equilibrium. The resultant of the external loads on the body and the supporting forces or
reactions is zero. If a structure is to be in equilibrium under the action of a system of loads, it must
satisfy the six static equilibrium equations:

(47.1)

The summation in these equations is for all the components of the forces (F) and of the moments
(M) about each of the three axes x, y, and z. If a structure is subjected to forces that lie in one plane, say
x-y, the above equations are reduced to:

(47.2)

Consider a beam under the action of the applied loads, as shown in Fig. 47.2a. The reaction at support
B must act perpendicular to the surface on which the rollers are constrained to roll upon. The support

FIGURE 47.1 Various boundary conditions.
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reactions and the applied loads, which are resolved in vertical and horizontal directions, are shown in
Fig. 47.2b.

From geometry, it can be calculated that By = Bx 1. Equation (47.2) can be used to determine the
magnitude of the support reactions. Taking moment about B gives

10Ay – 346.4 ¥ 5 = 0

from which

Ay = 173.2 kN

Equating the sum of vertical forces, SFy, to zero gives

173.2 + B y – 346.4 = 0

and hence we get

By = 173.2 kN

Therefore

Equilibrium in the horizontal direction, SFx = 0, gives

Ax – 200 – 100 = 0

and hence

Ax = 300 kN

There are three unknown reaction components at a fixed end, two at a hinge, and one at a roller. If,
for a particular structure, the total number of unknown reaction components equal the number of
equations available, the unknowns may be calculated from the equilibrium equations, and the structure
is then said to be statically determinate externally. Should the number of unknowns be greater than the
number of equations available, the structure is statically indeterminate externally; if less, it is unstable
externally. The ability of a structure to support adequately the loads applied to it is dependent not only
on the number of reaction components but also on the arrangement of those components. It is possible
for a structure to have as many or more reaction components than there are equations available and yet
be unstable. This condition is referred to as geometric instability.

FIGURE 47.2 Beam in equilibrium.
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Principle of Superposition

The principle states that if the structural behavior is linearly elastic, the forces acting on a structure may
be separated or divided into any convenient fashion and the structure analyzed for the separate cases.
The final results can be obtained by adding up the individual results. This is applicable to the computation
of structural responses such as moment, shear, deflection, etc.

However, there are two situations where the principle of superposition cannot be applied. The first
case is associated with instances where the geometry of the structure is appreciably altered under load.
The second case is in situations where the structure is composed of a material in which the stress is not
linearly related to the strain.

47.2 Beams

One of the most common structural elements is a beam; it bends when subjected to loads acting
transversely to its centroidal axis or sometimes by loads acting both transversely and parallel to this axis.
The discussions given in the following subsections are limited to straight beams in which the centroidal
axis is a straight line with a shear center coinciding with the centroid of the cross-section. It is also
assumed that all the loads and reactions lie in a simple plane that also contains the centroidal axis of the
flexural member and the principal axis of every cross-section. If these conditions are satisfied, the beam
will simply bend in the plane of loading without twisting.

Relation between Load, Shear Force, and Bending Moment

Shear force at any transverse cross-section of a straight beam is the algebraic sum of the components
acting transverse to the axis of the beam of all the loads and reactions applied to the portion of the beam
on either side of the cross-section. Bending moment at any transverse cross-section of a straight beam is
the algebraic sum of the moments, taken about an axis passing through the centroid of the cross-section.
The axis about which the moments are taken is, of course, normal to the plane of loading.

When a beam is subjected to transverse loads, there exist certain relationships between load, shear
force, and bending moment. Let us consider the beam shown in Fig. 47.3 subjected to some arbitrary
loading, p. Let S and M be the shear and bending moment, respectively, for any point m at a distance x,
which is measured from A, being positive when measured to the right. Corresponding values of the shear
and bending moment at point n at a differential distance dx to the right of m are S + dS and M + dM,
respectively. It can be shown, neglecting the second order quantities, that

(47.3)

and

(47.4)

FIGURE 47.3  Beam under arbitrary loading.

p
dS

dx
=

S
dM

dx
=

××× ×

p/unit length

B
DC

A

L

m n
x dx

xC xD
© 2003 by CRC Press LLC



 

47

 

-6

 

The Civil Engineering Handbook, Second Edition

       
Equation (47.3) shows that the rate of change of shear at any point is equal to the intensity of load
applied to the beam at that point. Therefore, the difference in shear at two cross-sections C and D is

(47.5)

We can write this in the same way for moment as

(47.6)

Shear Force and Bending Moment Diagrams

In order to plot the shear force and bending moment diagrams, it is necessary to adopt a sign convention
for these responses. A shear force is considered to be positive if it produces a clockwise moment about
a point in the free body on which it acts. A negative shear force produces a counterclockwise moment
about the point. The bending moment is taken as positive if it causes compression in the upper fibers
of the beam and tension in the lower fiber. In other words, a sagging moment is positive and a hogging
moment is negative. The construction of these diagrams is explained with an example given in Fig. 47.4.

Section E of the beam is in equilibrium under the action of applied loads and internal forces acting
at E, as shown in Fig. 47.5. There must be an internal vertical force and internal bending moment to
maintain equilibrium at section E. The vertical force or the moment can be obtained as the algebraic
sum of all forces or the algebraic sum of the moment of all forces that lie on either side of section E.

The shear on a cross-section an infinitesimal distance to the right of point A is +55, and therefore the
shear diagram rises abruptly from zero to +55 at this point. In portion AC, since there is no additional
load, the shear remains +55 on any cross-section throughout this interval, and the diagram is a horizontal,
as shown in Fig. 47.4. An infinitesimal distance to the left of C the shear is +55, but an infinitesimal

FIGURE 47.4  Bending moment and shear force diagrams.
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distance to the right of this point the concentrated load of magnitude 30 has caused the shear to be
reduced to +25. Therefore, at point C, there is an abrupt change in the shear force from +55 to +25. In
the same manner, the shear force diagram for portion CD of the beam remains a rectangle. In portion
DE, the shear on any cross-section a distance x from point D is

S = 55 – 30 – 4x = 25 – 4x

which indicates that the shear diagram in this portion is a straight line decreasing from an ordinate of
+25 at D to +1 at E. The remainder of the shear force diagram can easily be verified in the same way. It
should be noted that, in effect, a concentrated load is assumed to be applied at a point, and hence, at
such a point the ordinate to the shear diagram changes abruptly by an amount equal to the load.

In portion AC, the bending moment at a cross-section a distance x from point A is M = 55x. Therefore,
the bending moment diagram starts at zero at A and increases along a straight line to an ordinate of
+165 at point C. In portion CD, the bending moment at any point a distance x from C is M = 55(x +
3) – 30x. Hence, the bending moment diagram in this portion is a straight line increasing from 165 at
C to 265 at D. In portion DE, the bending moment at any point a distance x from D is M = 55(x + 7) –
30(X + 4) – 4x2/22. Hence, the bending moment diagram in this portion is a curve with an ordinate of
265 at D and 343 at E. In an analogous manner, the remainder of the bending moment diagram can
easily be constructed.

Bending moment and shear force diagrams for beams with simple boundary conditions and subject
to some selected load cases are given in Fig. 47.6.

Fixed-End Beams

When the ends of a beam are held so firmly that they are not free to rotate under the action of applied
loads, the beam is known as a built-in or fixed-end beam and it is statically indeterminate. The bending
moment diagram for such a beam can be considered to consist of two parts viz. the free bending moment
diagram obtained by treating the beam as if the ends are simply supported and the fixing moment diagram
resulting from the restraints imposed at the ends of the beam. The solution of a fixed beam is greatly
simplified by considering Mohr’s principles, which state that:

1. The area of the fixing bending moment diagram is equal to that of the free bending moment
diagram.

2. The centers of gravity of the two diagrams lie in the same vertical line, i.e., are equidistant from
a given end of the beam.

The construction of the bending moment diagram for a fixed beam is explained with an example
shown in Fig. 47.7. P Q U T is the free bending moment diagram, Ms, and P Q R S is the fixing moment
diagram, Mi. The net bending moment diagram, M, is shaded. If As is the area of the free bending moment
diagram and Ai the area of the fixing moment diagram, then from the first Mohr’s principle we have
As = Ai and

(47.7)

From the second principle, equating the moment about A of As and Ai, we have

(47.8)
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Solving Eqs. (47.7) and (47.8) for MA and MB we get

FIGURE 47.6  Shear force and bending moment diagrams for beams with simple boundary conditions subjected to
selected loading cases.
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Shear force can be determined once the bending moment is known. The shear force at the ends of the
beam, i.e., at A and B, are

Bending moment and shear force diagrams for fixed-end beams subjected to some typical loading
cases are shown in Fig. 47.8.

FIGURE 47.6 (continued).
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Continuous Beams

Continuous beams like fixed-end beams are statically indeterminate. Bending moments in these beams
are functions of the geometry, moments of inertia, and modulus of elasticity of individual members,
besides the load and span. They may be determined by Clapeyron’s theorem of three moments, the
moment distribution method, or the slope deflection method.

An example of a two-span continuous beam is solved by Clapeyron’s theorem of three moments. The
theorem is applied to two adjacent spans at a time, and the resulting equations in terms of unknown
support moments are solved. The theorem states that

FIGURE 47.6  (continued).

FIGURE 47.7  Fixed-end beam.
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(47.9)

in which MA, MB, and MC are the hogging moment at supports A, B, and C, respectively, of two adjacent
spans of length L1 and L2 (Fig. 47.9); A1 and A2 are the area of bending moment diagrams produced by
the vertical loads on the simple spans AB and BC, respectively; x1 is the centroid of A1 from A; and x2 is
the distance of the centroid of A2 from C. If the beam section is constant within a span but remains
different for each of the spans Eq. (47.9) can be written as

FIGURE 47.8 Shear force and bending moment diagrams for built-up beams subjected to typical loading cases.
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(47.10)

in which I1 and I2 are the moments of inertia of the beam sections in spans L1 and L2, respectively.

Example 47.1

The example in Fig. 47.10 shows the application of this theorem.

For spans AC and BC

Since the support at A is simply supported, MA = 0. Therefore,

4MC + MB = 1250 (47.11)

Considering an imaginary span BD on the right side of B and applying the theorem for spans CB and BD

FIGURE 47.8 (continued).

FIGURE 47.9 Continuous beams.
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(47.12)

Solving Eqs. (47.11) and (47.12) we get

MB = 107.2 kNm

MC = 285.7 kNm

Shear force at A is

Shear force at C is

Shear force at B is

The bending moment and shear force diagrams are shown in Fig. 47.10.

Beam Deflection

There are several methods for determining beam deflections: (1) moment area method, (2) conjugate
beam method, (3) virtual work, and (4) Castigliano’s second theorem, among others.

The elastic curve of a member is the shape the neutral axis takes when the member deflects under
load. The inverse of the radius of curvature at any point of this curve is obtained as

FIGURE 47.10 Example of a continuous beam.
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(47.13)

in which M is the bending moment at the point and EI the flexural rigidity of the beam section. Since
the deflection is small, 1/R is approximately taken as d2y/dx2, and Eq. (47.13) may be rewritten as:

(47.14)

In Eq. (47.14), y is the deflection of the beam at distance x measured from the origin of coordinate.
The change in slope in a distance dx can be expressed as M dx/EI, and hence the slope in a beam is
obtained as

(47.15)

Equation (47.15) may be stated: the change in slope between the tangents to the elastic curve at two
points is equal to the area of the M/EI diagram between the two points.

Once the change in slope between tangents to the elastic curve is determined, the deflection can be
obtained by integrating further the slope equation. In a distance dx the neutral axis changes in direction
by an amount dq. The deflection of one point on the beam with respect to the tangent at another point
due to this angle change is equal to dd = x dq, where x is the distance from the point at which deflection
is desired to the particular differential distance.

To determine the total deflection from the tangent at one point, A, to the tangent at another point,
B, on the beam, it is necessary to obtain a summation of the products of each dq angle (from A to B)
times the distance to the point where deflection is desired, or

(47.16)

The deflection of a tangent to the elastic curve of a beam with respect to a tangent at another point
is equal to the moment of M/EI diagram between the two points, taken about the point at which deflection
is desired.

Moment Area Method

The moment area method is most conveniently used for determining slopes and deflections for beams
in which the direction of the tangent to the elastic curve at one or more points is known, such as cantilever
beams, where the tangent at the fixed end does not change in slope. The method is applied easily to
beams loaded with concentrated loads, because the moment diagrams consist of straight lines. These
diagrams can be broken down into single triangles and rectangles. Beams supporting uniform loads or
uniformly varying loads may be handled by integration. Properties of some of the shapes of M/EI
diagrams that designers usually come across are given in Fig. 47.11.

It should be understood that the slopes and deflections obtained using the moment area theorems are
with respect to tangents to the elastic curve at the points being considered. The theorems do not directly
give the slope or deflection at a point in the beam compared to the horizontal axis (except in one or two
special cases); they give the change in slope of the elastic curve from one point to another or the deflection
of the tangent at one point with respect to the tangent at another point. There are some special cases in
which beams are subjected to several concentrated loads or the combined action of concentrated and
uniformly distributed loads. In such cases it is advisable to separate the concentrated loads and uniformly
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distributed loads, and the moment area method can be applied separately to each of these loads. The
final responses are obtained by the principle of superposition.

For example, consider a simply supported beam subjected to uniformly distributed load q, as shown
in Fig. 47.12. The tangent to the elastic curve at each end of the beam is inclined. The deflection, d1, of
the tangent at the left end from the tangent at the right end is found as ql4/24EI. The distance from the
original chord between the supports and the tangent at the right end, d2, can be computed as ql4/48EI.

FIGURE 47.11 Typical M/EI diagram.

FIGURE 47.12 Deflection — simply supported beam under UDL.
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The deflection of a tangent at the center from a tangent at the right end, d3, is determined as ql4/128EI.
The difference between d2 and d3 gives the centerline deflection as (5/384) x (ql4/EI).

Curved Beams

The beam formulas derived in the previous section are based on the assumption that the member to which
bending moment is applied is initially straight. Many members, however, are curved before a bending
moment is applied to them. Such members are called curved beams. In the following discussion all the
conditions applicable to straight-beam formulas are assumed valid, except that the beam is initially curved.

Let the curved beam DOE shown in Fig. 47.13 be subjected to the load Q. The surface in which the
fibers do not change in length is called the neutral surface. The total deformations of the fibers between
two normal sections, such as AB and A1B1, are assumed to vary proportionally with the distances of the
fibers from the neutral surface. The top fibers are compressed, while those at the bottom are stretched,
i.e., the plane section before bending remains plane after bending.

In Fig. 47.13 the two lines AB and A1B1 are two normal sections of the beam before the loads are
applied. The change in the length of any fiber between these two normal sections after bending is
represented by the distance along the fiber between the lines A1B1 and A¢B¢; the neutral surface is
represented by NN1, and the stretch of fiber PP1 is P1P ¢1 ,  etc. For convenience, it will be assumed that
line AB is a line of symmetry and does not change direction.

The total deformations of the fibers in the curved beam are proportional to the distances of the fibers
from the neutral surface. However, the strains of the fibers are not proportional to these distances because
the fibers are not of equal length. Within the elastic limit the stress on any fiber in the beam is proportional
to the strain of the fiber, and hence the elastic stresses in the fibers of a curved beam are not proportional
to the distances of the fibers from the neutral surface. The resisting moment in a curved beam, therefore,
is not given by the expression sI/c. Hence the neutral axis in a curved beam does not pass through the
centroid of the section. The distribution of stress over the section and the relative position of the neutral
axis are shown in Fig. 47.13b; if the beam were straight, the stress would be zero at the centroidal axis
and would vary proportionally with the distance from the centroidal axis, as indicated by the dot–dash
line in the figure. The stress on a normal section such as AB is called the circumferential stress.

Sign Conventions

The bending moment M is positive when it decreases the radius of curvature and negative when it
increases the radius of curvature; y is positive when measured toward the convex side of the beam and
negative when measured toward the concave side, that is, toward the center of curvature. With these sign
conventions, s is positive when it is a tensile stress.

Circumferential Stresses

Figure 47.14 shows a free-body diagram of the portion of the body on one side of the section; the
equations of equilibrium are applied to the forces acting on this portion. The equations obtained are

FIGURE 47.13 Bending of curved beams.
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(47.17)

(47.18)

Figure 47.15 represents the part ABB1A1 of Fig. 47.13a enlarged; the angle between the two sections
AB and A1B1 is dq. The bending moment causes the plane A1B1 to rotate through an angle Ddq, thereby
changing the angle this plane makes with the plane BAC from dq to (dq + Ddq); the center of curvature
is changed from C to C¢, and the distance of the centroidal axis from the center of curvature is changed
from R to r. It should be noted that y, R, and r at any section are measured from the centroidal axis and
not from the neutral axis.

It can be shown that the bending stress s is given by the relation

(47.19)

FIGURE 47.14 Free-body diagram of curved beam segment.

FIGURE 47.15 Curvature in a curved beam.
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in which

s is the tensile or compressive (circumferential) stress at a point at distance y from the centroidal axis
of a transverse section at which the bending moment is M; R is the distance from the centroidal axis of
the section to the center of curvature of the central axis of the unstressed beam; a is the area of the cross-
section; and Z is a property of the cross-section, the values of which can be obtained from the expressions
for various areas given in Fig. 47.17. Detailed information can be obtained from Seely and Smith (1952).

Example 47.2

The bent bar shown in Fig. 47.16 is subjected to a load P = 1780 N. Calculate the circumferential stress
at A and B, assuming that the elastic strength of the material is not exceeded.
We know from Eq. (47.19)

in which a = the area of rectangular section (40 ¥ 12 = 480 mm2)
R = 40 mm
yA = –20
yB = +20
P = 1780 N

M = –1780 ¥ 120 = –213,600 N mm.

From Table 47.2.1, for rectangular section

Hence,

FIGURE 47.16  Bent bar.
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Therefore

 = 105.4 N/mm2 (tensile)

 = –45 N/mm2 (compressive) 

47.3 Trusses

A structure that is composed of a number of members pin-connected at their ends to form a stable
framework is called a truss. If all the members lie in a plane, it is a planar truss. It is generally assumed
that loads and reactions are applied to the truss only at the joints. The centroidal axis of each member
is straight, coincides with the line connecting the joint centers at each end of the member, and lies in a
plane that also contains the lines of action of all the loads and reactions. Many truss structures are three-
dimensional in nature. However, in many cases, such as bridge structures and simple roof systems, the
three-dimensional framework can be subdivided into planar components for analysis as planar trusses

FIGURE 47.17  Analytical expressions for Z.
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without seriously compromising the accuracy of the results. Figure 47.18 shows some typical idealized
planar truss structures.

There exists a relation between the number of members, m, the number of joints, j, and the reaction
components, r. The expression is

FIGURE 47.17 (continued).
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m = 2j – r (47.20)

which must be satisfied if it is to be statically determinate internally. r is the least number of reaction
components required for external stability. If m exceeds (2j – r), then the excess members are called
redundant members, and the truss is said to be statically indeterminate.

For a statically determinate truss, member forces can be found by using the method of equilibrium.
The process requires repeated use of free-body diagrams from which individual member forces are
determined. The method of joints is a technique of truss analysis in which the member forces are
determined by the sequential isolation of joints — the unknown member forces at one joint are solved
and become known for the subsequent joints. The other method is known as method of sections, in which
equilibrium of a part of the truss is considered.

Method of Joints

An imaginary section may be completely passed around a joint in a truss. The joint has become a free
body in equilibrium under the forces applied to it. The equations SH = 0 and SV = 0 may be applied
to the joint to determine the unknown forces in members meeting there. It is evident that no more than
two unknowns can be determined at a joint with these two equations.

Example 47.3

A truss shown in Fig. 47.19 is symmetrically loaded and is sufficient to solve half the truss by considering
joints 1–5. At joint 1, there are two unknown forces. Summation of the vertical components of all forces
at joint 1 gives

135 – F12 sin45° = 0

which in turn gives the force in members 1 and 2, F12 = 190 kN (compressive). Similarly, summation of
the horizontal components gives

F13 – F12 cos45° = 0

FIGURE 47.18 Typical planar trusses.
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Substituting for F12 gives the force in member 1–3 as

F13 = 135 kN (tensile)

Now, joint 2 is cut completely, and it is found that there are two unknown forces F25 and F23. Summation
of the vertical components gives

F12 cos45° – F23 = 0

Therefore

F23 = 135 kN (tensile)

Summation of the horizontal components gives

F12 sin45°  – F25 = 0

and hence

F25 = 135 kN (compressive)

After solving for joints 1 and 2, one proceeds to take a section around joint 3 at which there are now
two unknown forces viz. F34 and F35. Summation of the vertical components at joint 3 gives

F23 – F35 sin45°  – 90 = 0

Substituting for F23, one obtains F35 = 63.6 kN (compressive). Summing the horizontal components and
substituting for F13 one gets

FIGURE 47.19  Example of the method of joints, planar truss.
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–135 – 45 + F34 = 0

Therefore,

F34 = 180 kN (tensile)

The next joint involving two unknowns is joint 4. When we consider a section around it, the summation
of the vertical components at joint 4 gives

F45 = 90 kN (tensile)

Now, the forces in all the members on the left half of the truss are known, and by symmetry the forces
in the remaining members can be determined. The forces in all the members of a truss can also be
determined by using the method of sections.

Method of Sections

In this method, an imaginary cutting line called section is drawn
through a stable and determinate truss. Thus, a section divides the
truss into two separate parts. Since the entire truss is in equilibrium,
any part of it must also be in equilibrium. Either of the two parts of
the truss can be considered, and the three equations of equilibrium
SFx = 0, SFy = 0, and SM = 0 can be applied to solve for member
forces.

Example 47.3 above (Fig. 47.20) is once again considered. To cal-
culate the force in members 3–5, F35, section AA should be run to
cut members 3–5 as shown in the figure. It is required only to con-
sider the equilibrium of one of the two parts of the truss. In this case,
the portion of the truss on the left of the section is considered. The
left portion of the truss as shown in Fig. 47.20 is in equilibrium under
the action of the forces viz. the external and internal forces. Consid-
ering the equilibrium of forces in the vertical direction, one can
obtain

135 – 90 + F35 sin45˚ = 0

Therefore, F35 is obtained as

The negative sign indicates that the member force is compressive. The other member forces cut by the
section can be obtained by considering the other equilibrium equations viz. SM = 0. More sections can
be taken in the same way to solve for other member forces in the truss. The most important advantage
of this method is that one can obtain the required member force without solving for the other member
forces.

Compound Trusses

A compound truss is formed by interconnecting two or more simple trusses. Examples of compound
trusses are shown in Fig. 47.21. A typical compound roof truss is shown in Fig. 47.21a in which two
simple trusses are interconnected by means of a single member and a common joint. The compound
truss shown in Fig. 47.21b is commonly used in bridge construction, and in this case, three members
are used to interconnect two simple trusses at a common joint. There are three simple trusses intercon-
nected at their common joints, as shown in Fig. 47.21c.

FIGURE 47.20 Example of  the
method of sections, planar truss.
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The method of sections may be used to determine the member forces in the interconnecting members
of compound trusses, similar to those shown in Fig. 47.21a and b. However, in the case of a cantilevered
truss the middle simple truss is isolated as a free-body diagram to find its reactions. These reactions are
reversed and applied to the interconnecting joints of the other two simple trusses. After the intercon-
necting forces between the simple trusses are found, the simple trusses are analyzed by the method of
joints or the method of sections.

47.4 Frames

Frames are statically indeterminate in general; special methods are required for their analysis. Slope
deflection and moment distribution methods are two such methods commonly employed. Slope deflec-
tion is a method that takes into account the flexural displacements such as rotations and deflections and
involves solutions of simultaneous equations. Moment distribution, on the other hand, involves successive
cycles of computation, each cycle drawing closer to the “exact” answers. The method is more labor
intensive but yields accuracy equivalent to that obtained from the “exact” methods.

Slope Deflection Method

This method is a special case of the stiffness method of analysis. It is a convenient method for performing
hand analysis of small structures.

Let us consider a prismatic frame member AB with undeformed position along the x axis deformed into
configuration p, as shown in Fig. 47.22. Moments at the ends of frame members are expressed in terms of
the rotations and deflections of the joints. It is assumed that the joints in a structure may rotate or deflect,
but the angles between the members meeting at a joint remain unchanged. The positive axes, along with
the positive member-end force components and displacement components, are shown in the figure.

FIGURE 47.21 Compound truss.

FIGURE 47.22  Deformed configuration of a beam.

(a) Compound roof truss

(b) Compound bridge truss

(c) Cantilevered construction
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The equations for end moments may be written as

(47.21)

in which MFAB and MFBA are fixed-end moments at supports A and B, respectively, due to the applied
load. yAB is the rotation as a result of the relative displacement between member ends A and B given as

(47.22)

where DAB is the relative deflection of the beam ends. yA and yB are the vertical displacements at ends A
and B. Fixed-end moments for some loading cases may be obtained from Fig. 47.8. The slope deflection
equations in Eq. (47.21) show that the moment at the end of a member is dependent on member
properties EI, length l, and displacement quantities. The fixed-end moments reflect the transverse loading
on the member.

Frame Analysis Using Slope Deflection Method

The slope deflection equations may be applied to statically indeterminate frames with or without side
sway. A frame may be subjected to side sway if the loads, member properties, and dimensions of the
frame are not symmetrical about the centerline. Application of the slope deflection method can be
illustrated with the following example.

Example 47.4

Consider the frame shown in Fig. 47.23 subjected to side sway D to the right of the frame. Equation (47.21)
can be applied to each of the members of the frame as follows:

Member AB:

qA = 0,

FIGURE 47.23  Example of the slope deflection method.
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Hence

(47.23)

(47.24)

in which

Member BC:

Hence

(47.25)

(47.26)

Member CD:

qD = 0,

Hence

 (47.27)

(47.28)
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Considering moment equilibrium at joint B

SMB = MBA + MBC = 0

Substituting for MBA and MBC, one obtains

or

(47.29)

Considering moment equilibrium at joint C

SMC = MCB + MCD = 0

Substituting for MCB and MCD we get

or

(47.30)

For summation of base shears equal to zero, we have

SH = HA + HD = 0

or

Substituting for MAB, MBA, MCD, and MDC and simplifying

(47.31)

Solution of Eqs. (47.29) to (47.31) results in
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and

(47.32)

Substituting for qB, qC, and y from Eq. (47.32) into Eqs. (47.23) to (47.28) we get

MAB = 11.03 kNm

MBA = 125.3 kNm

MBC = –125.3 kNm

MCB = 121 kNm

MCD = –121 kNm

MDC = –83 kNm

Moment Distribution Method

The moment distribution method involves successive cycles of computation, each cycle drawing closer
to the “exact” answers. The calculations may be stopped after two or three cycles, giving a very good
approximate analysis, or they may be carried out to whatever degree of accuracy is desired. Moment
distribution remains the most important hand-calculation method for the analysis of continuous beams
and frames, and it may be solely used for the analysis of small structures. Unlike the slope deflection
method, this method does require the solution to simultaneous equations.

The terms constantly used in moment distribution are fixed-end moments, the unbalanced moment,
distributed moments, and carryover moments. When all of the joints of a structure are clamped to prevent
any joint rotation, the external loads produce certain moments at the ends of the members to which they
are applied. These moments are referred to as fixed-end moments. Initially the joints in a structure are
considered to be clamped. When the joint is released, it rotates if the sum of the fixed-end moments at
the joint is not zero. The difference between zero and the actual sum of the end moments is the unbalanced
moment. The unbalanced moment causes the joint to rotate. The rotation twists the ends of the members
at the joint and changes their moments. In other words, rotation of the joint is resisted by the members,
and resisting moments are built up in the members as they are twisted. Rotation continues until equi-
librium is reached — when the resisting moments equal the unbalanced moment — at which time the
sum of the moments at the joint is equal to zero. The moments developed in the members resisting
rotation are the distributed moments. The distributed moments in the ends of the member cause moments
in the other ends, which are assumed fixed; these are the carryover moments.

Sign Convention

The moments at the end of a member are assumed to be positive when they tend to rotate the member
clockwise about the joint. This implies that the resisting moment of the joint would be counterclockwise.
Accordingly, under a gravity loading condition the fixed-end moment at the left end is assumed as
counterclockwise (–ve) and at the right end as clockwise (+ve).

Fixed-End Moments

Fixed-end moments for several cases of loading may be found in Fig. 47.8. Application of moment
distribution may be explained with reference to a continuous beam example, as shown in Fig. 47.24.
Fixed-end moments are computed for each of the three spans. At joint B the unbalanced moment is
obtained and the clamp is removed. The joint rotates, thus distributing the unbalanced moment to the
B ends of spans BA and BC in proportion to their distribution factors. The values of these distributed
moments are carried over at one half rate to the other ends of the members. When equilibrium is reached,

y = 103 2.

EI
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joint B is clamped in its new rotated position and joint C is released afterwards. Joint C rotates under
its unbalanced moment until it reaches equilibrium, the rotation causing distributed moments in the
C ends of members CB and CD and their resulting carryover moments. Joint C is now clamped and joint B
is released. This procedure is repeated again and again for joints B and C, the amount of unbalanced
moment quickly diminishing, until the release of a joint causes negligible rotation. This process is called
moment distribution.

The stiffness factors and distribution factors are computed as follows:

The fixed-end moments are

When a clockwise couple is applied near the end of a beam, a clockwise couple of half the magnitude
is set up at the far end of the beam. The ratio of the moments at the far and near ends is defined as the
carryover factor, 0.5 in the case of a straight prismatic member. The carryover factor was developed for
carrying over to fixed ends, but it is applicable to simply supported ends, which must have final moments
of zero. It can be shown that the beam simply supported at the far end is only three fourths as stiff as
the one that is fixed. If the stiffness factors for end spans that are simply supported are modified by three
fourths, the simple end is initially balanced to zero and no carryovers are made to the end afterward.
This simplifies the moment distribution process significantly.

FIGURE 47.24  Example of a continuous beam by moment distribution.
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Moment Distribution for Frames

Moment distribution for frames without side sway is similar to that for continuous beams. The example
shown in Fig. 47.25 illustrates the applications of moment distribution for a frame without side sway.

Similarly,

Structural frames are usually subjected to side sway in one direction or the other, due to asymmetry
of the structure and eccentricity of loading. The sway deflections affect the moments, resulting in an
unbalanced moment. These moments could be obtained for the deflections computed and added to the
originally distributed fixed-end moments. The sway moments are distributed to columns. Should a frame
have columns all of the same length and the same stiffness, the side sway moments will be the same for
each column. However, should the columns have differing lengths or stiffnesses, this will not be the case.
The side sway moments should vary from column to column in proportion to their I/l2 values.

The frame in Fig. 47.26 shows a frame subjected to sway. The process of obtaining the final moments
is illustrated for this frame.

The frame sways to the right, and the side sway moment can be assumed in the ratio

FIGURE 47.25 Example of a nonsway frame by moment distribution.

−5
3.

92
− 

 0
.7

9
− 

 3
.1

3

A EI EI

EI

2EI2EI 20

202020

10

10

20

B C
3

FE

D

+15.82

+80.86

−0.39

−25.0

+1.57
−1.57

−100.0
+  12.5

+6.25

+100.0+12.5 0.25

81
.6

4

+
  0

.3
9

+
  6

.2
5

+
25

.0

−5
0.

0

+
50

.0
0.

50

0.
50

0.25 0.25 0.25
− 25.0

− 
25

.0

−   1.56
−   0.39

+0.20
+3.12

−  12.5
+    3.13
−     0.79
+    0.20
−   97.46

− 26.95

− 
  1

.5
7

− 
  0

.4
0

−5
0.

0

−3
4.

17

+
12

.5
+

  3
.1

3
+

  0
.2

0

− 
26

.9
7

DF
EI

BA =
+ +

=20
EI

20

EI

20

2EI

20

0.25

DF DF

M M

M M

BE BC

FBC FCB

FBE FEB

= =
= =
= = -

0 5 0 25

0100 100

50 50

. ; .

;

;

400

20
 :  

300

20
      (or)      1 :  0.75

2 2
© 2003 by CRC Press LLC



Theory and Analysis of Structures 47-31
Final moments are obtained by adding distributed fixed-end moments and 13.06/2.99 times the
distributed assumed side sway moments.

Method of Consistent Deformations

This method makes use of the principle of deformation compatibility to analyze indeterminate structures.
It employs equations that relate the forces acting on the structure to the deformations of the structure.
These relations are formed so that the deformations are expressed in terms of the forces, and the forces
become the unknowns in the analysis.

Let us consider the beam shown in Fig. 47.27a. The first step, in this method, is to determine the
degree of indeterminacy or the number of redundants that the structure possesses. As shown in the figure,
the beam has three unknown reactions, RA, RC, and MA. Since there are only two equations of equilibrium
available for calculating the reactions, the beam is said to be indeterminate to the first degree. Restraints
that can be removed without impairing the load-supporting capacity of the structure are referred to as
redundants.

Once the number of redundants are known, the next step is to decide which reaction is to be removed
in order to form a determinate structure. Any one of the reactions may be chosen to be the redundant,
provided that a stable structure remains after the removal of that reaction. For example, let us take the
reaction RC as the redundant. The determinate structure obtained by removing this restraint is the
cantilever beam shown in Fig. 47.27b. We denote the deflection at end C of this beam, due to P, by DCP.
The first subscript indicates that the deflection is measured at C, and the second subscript indicates that

FIGURE 47.26 Example of a sway frame by moment distribution.
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the deflection is due to the applied load P. Using the moment area method, it can be shown that DCP =
5PL3/48EI. The redundant RC is then applied to the determinate cantilever beam, as shown in Fig. 47.27c.
This gives rise to a deflection DCR at point C, the magnitude of which can be shown to be RCL3/3EI.

FIGURE 47.26 (continued).

FIGURE 47.27 Beam with one redundant reaction.
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In the actual indeterminate structure, which is subjected to the combined effects of the load P and
the redundant RC, the deflection at C is zero. Hence the algebraic sum of the deflection DCP in Fig. 47.27b
and the deflection DCR in Fig. 47.27c must vanish. Assuming downward deflections to be positive, we write

(47.33)

or

from which

Equation (47.33), which is used to solve for the redundant, is referred to as an equation of consistent
deformations.

Once the redundant RC has been evaluated, the remaining reactions can be determined by applying
the equations of equilibrium to the structure in Fig. 47.27a. Thus SFy = 0 leads to

and SM A = 0 gives

A free body of the beam, showing all the forces acting on it, is shown in Fig. 47.27d.
The steps involved in the method of consistent deformations follow:

1. The number of redundants in the structure are determined.
2. Enough redundants to form a determinate structure are removed.
3. The displacements that the applied loads cause in the determinate structure at the points where

the redundants have been removed are calculated.
4. The displacements at these points in the determinate structure, due to the redundants, are

obtained.
5. At each point where a redundant has been removed, the sum of the displacements calculated in

steps 3 and 4 must be equal to the displacement that exists at that point in the actual indeterminate
structure. The redundants are evaluated using these relationships.

6. Once the redundants are known, the remaining reactions are determined using the equations of
equilibrium.

Structures with Several Redundants

The method of consistent deformations can be applied to structures with two or more redundants. For
example, the beam in Fig. 47.28a is indeterminate to the second degree and has two redundant reactions.
If the reactions at B and C are selected to be the redundants, then the determinate structure obtained
by removing these supports is the cantilever beam, shown in Fig. 47.28b. To this determinate structure
we apply separately the given load (Fig. 47.28c) and the redundants RB and RC, one at a time (Fig. 47.28d
and e).

Since the deflections at B and C in the original beam are zero, the algebraic sum of the deflections in
Fig. 47.28c, d, and e at these same points must also vanish. Thus
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(47.34)

It is useful in the case of complex structures to write the equations of consistent deformations in the
form

(47.35)

in which dBC , for example, denotes the deflection at B due to a unit load at C in the direction of RC.
Solution of Eq. (47.35) gives the redundant reactions RB and RC.

Example 47.5

Determine the reactions for the beam shown in Fig. 47.29, and draw its shear force and bending moment
diagrams.

It can be seen from the figure that there are three reactions viz. MA, RA, and RC, one more than that
required for a stable structure. The reaction RC can be removed to make the structure determinate. We
know that the deflection at support C of the beam is zero. One can determine the deflection dCP at C
due to the applied load on the cantilever in Fig. 47.29b. In the same way the deflection dCR at C due to
the redundant reaction on the cantilever (Fig. 47.29c) can be determined. The compatibility equation
gives

FIGURE 47.28 Beam with two redundant reactions.
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By moment area method,

Substituting for dCP and dCR in the compatibility equation, one obtains,

FIGURE 47.29  Example 47.5.
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from which

RC = 23.75 kN≠

By using statical equilibrium equations we get

RA = 6.25 kN≠

and MA = 5 kNm.
The shear force and bending moment diagrams are shown in Fig. 47.29d.

1. Solutions to fix-based portal frames subjected to various loading: Fig. 47.30 shows the bending
moment diagram and reaction forces of fix-based portal frames subjected to loading typically
encountered in practice. Closed-form solutions are provided for moments and end forces to
facilitate a quick solution to the simple frame problem.

2. Solutions to pin-based portal frames subjected to various loading: Fig. 47.31 shows the bending
moment diagram and reaction forces of pin-based portal frames subjected to loading typically
encountered in practice. Closed-form solutions are provided for moments and end forces to
facilitate a quick solution to the simple frame problem.

FIGURE 47.30  Rigid frames with fixed supports.
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47.5 Plates

Bending of Thin Plates

A plate in which its thickness is small compared to the other dimensions is called a thin plate. The plane
parallel to the faces of the plate and bisecting the thickness of the plate, in the undeformed state, is called
the middle plane of the plate. When the deflection of the middle plane is small compared with the
thickness, h, it can be assumed that

1. There is no deformation in the middle plane.
2. The normals of the middle plane before bending are deformed into the normals of the middle

plane after bending.
3. The normal stresses in the direction transverse to the plate can be neglected.

FIGURE 47.30  (continued).
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Based on these assumptions, all stress components can be expressed by deflection w of the plate. w is
a function of the two coordinates (x, y) in the plane of the plate. This function has to satisfy a linear
partial differential equation, which, together with the boundary conditions, completely defines w.

Figure 47.32a shows a plate element cut from a plate whose middle plane coincides with the xy plane.
The middle plane of the plate subjected to a lateral load of intensity, q, is shown in Fig. 47.32b. It can
be shown, by considering the equilibrium of the plate element, that the stress resultants are given as

(47.36)

FIGURE 47.30 (continued).
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(47.37)

(47.38)

(47.39)

(47.40)

where Mx and My = the bending moments per unit length in the x and y directions, respectively
Mxy and Myx = the twisting moments per unit length

Qx and Qy = the shearing forces per unit length in the x and y directions, respectively
Vx and Vy = are the supplementary shear forces in the x and y directions, respectively

R = the corner force
D = Eh3/12(1 – n2), the flexural rigidity of the plate per unit length
E = the modulus of elasticity; and n is Poisson’s ratio

FIGURE 47.31  Rigid frames with pinned supports.
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The governing equation for the plate is obtained as

(47.41)

Any plate problem should satisfy the governing Eq. (47.41) and boundary conditions of the plate.

Boundary Conditions

There are three basic boundary conditions for plates. These are the clamped edge, simply supported edge,
and free edge.

Clamped Edge

For this boundary condition, the edge is restrained such that the deflection and slope are zero along the
edge. If we consider the edge x = a to be clamped, we have

FIGURE 47.31  (continued).
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(47.42)

Simply Supported Edge

If the edge x = a of the plate is simply supported, the deflection w along this edge must be zero. At the
same time this edge can rotate freely with respect to the edge line. This means that

(47.43)

Free Edge

If the edge x = a of the plate is entirely free, there are no bending and twisting moments and also vertical
shearing forces. This can be written in terms of w, the deflection, as

(47.44)

FIGURE 47.31  (continued).
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Bending of Rectangular Plates

The plate bending problem may be solved by referring to the differential Eq. (47.41). The solution,
however, depends on the loading and boundary conditions. Consider a simply supported plate subjected
to a sinusoidal loading, as shown in Fig. 47.33. The differential Eq. (47.41) in this case becomes

(47.45)

FIGURE 47.32 (a) Plate element. (b) Stress resultants.

FIGURE 47.33 Rectangular plate under sinusoidal loading.

Mxy + 
δM

δ
x

x

y
 dx

My + 
δM

δy

y
 dy

Qx + 
δQ

δx

x
 dx

Mx + 
δM
δx

x
 dx

Myx + 
δM

δy

yx
 dy

Qy + 
δQ

δy

y
 dy

dy

dx

(a)

Mx + 
δM

δx

x
 dx

Mxy + 
δM

δx

xy
 dx

Myx + 
δM

δy

yx
 dyMy + 

δM
δy

y
 dy

Mxy

Mx

My

Myx

Qy

Qx

y
z

x

Qx + 
δQ

δx

x
 dx

Qy + 
δQ

δy

y
 dy

(b)

qo Sin 
π
a
x

 Sin 
π
b
y

x

a

qo

b

y
z

4 4

2

4

4
ow

2
w

y

w

y

q

D
sin

x

a
sin

y

b
∂
∂

+ ∂
∂ ∂

+ ∂
∂

=
x x4 2

p p
© 2003 by CRC Press LLC



Theory and Analysis of Structures 47-43
The boundary conditions for the simply supported edges are

(47.46)

The deflection function becomes

(47.47)

which satisfies all the boundary conditions in Eq. (47.46). w0 must be chosen to satisfy Eq. (47.45).
Substitution of Eq. (47.47) into Eq. (47.45) gives

The deflection surface for the plate can, therefore, be found as

(47.48)

Using Eqs. (47.48) and (47.36), we find expression for moments as

(47.49)

Maximum deflection and maximum bending moments that occur at the center of the plate can be written
by substituting x = a/2 and y = b/2 in Eq. (47.49) as

(47.50)
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If the plate is square, then a = b and Eq. (47.50) becomes

(47.51)

If the simply supported rectangular plate is subjected to any kind of loading given by

(47.52)

the function q(x, y) should be represented in the form of a double trigonometric series as

(47.53)

in which qmn is given by

(47.54)

From Eqs. (47.45) and (47.52) to (47.54) we can obtain the expression for deflection as

(47.55)

If the applied load is uniformly distributed of intensity qo, we have

and from Eq. (47.54) we obtain

(47.56)

in which m and n are odd integers. qmn = 0 if m or n or both are even numbers. Finally, the deflection
of a simply supported plate subjected to a uniformly distributed load can be expressed as

(47.57)
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where m = 1, 3, 5, …
n = 1, 3, 5. …

The maximum deflection occurs at the center. Its magnitude can be evaluated by substituting x = a/2
and y = b/2 in Eq. (47.57) as

(47.58)

Equation (47.58) is a rapid converging series. A satisfactory approximation can be obtained by taking
only the first term of the series; for example, in the case of a square plate,

Assuming n = 0.3, the maximum deflection can be calculated as

The expressions for bending and twisting moments can be obtained by substituting Eq. (47.57) into
Eq. (47.36). Figure 47.34 shows some loading cases and the corresponding loading functions.

If the opposite edges at x = 0 and x = a of a rectangular plate are simply supported, the solution taking
the deflection function as

(47.59)

can be adopted. Equation (47.59) satisfies the boundary conditions w = 0 and ∂2w/∂x2 = 0 on the two
simply supported edges. Ym should be determined such that it satisfies the boundary conditions along
the edges y = +b/–2 of the plate shown in Fig. 47.35 and also the equation of the deflection surface

(47.60)

qo being the intensity of the uniformly distributed load.
The solution for Eq. (47.60) can be taken in the form

(47.61)

for a uniformly loaded simply supported plate. w1 can be taken in the form

(47.62)

representing the deflection of a uniformly loaded strip parallel to the x axis. It satisfies Eq. (47.60) and
also the boundary conditions along x = 0 and x = a.

The expression w2 has to satisfy the equation
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FIGURE 47.34  Typical loading on plates and loading functions.
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and must be chosen such that Eq. (47.61) satisfies all boundary conditions of the plate. Taking w2 in the
form of series given in Eq. (47.59), it can be shown that the deflection surface takes the form

(47.64)

Observing that the deflection surface of the plate is symmetrical with respect to the x axis, only even
functions of y are kept in Eq. (47.64); therefore, Cm = Dm = 0. The deflection surface takes the form

(47.65)

Developing the expression in Eq. (47.62) into a trigonometric series, the deflection surface in Eq. (47.65)
is written as

(47.66)

Substituting Eq. (47.5.30) in the boundary conditions

(47.67)

one obtains the constants of integration Am and Bm, and the expression for deflection may be written as

(47.68)

in which am = mpb/2a.
Maximum deflection occurs at the middle of the plate, x = a/2, y = 0, and is given by

(47.69)

FIGURE 47.35  Rectangular plate.
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The solutions of plates with arbitrary boundary conditions are complicated. It is possible to make some
simplifying assumptions for plates with the same boundary conditions along two parallel edges in order
to obtain the desired solution. Alternately, the energy method can be applied more efficiently to solve
plates with complex boundary conditions. However, it should be noted that the accuracy of results
depends on the deflection function chosen. These functions must be chosen so that they satisfy at least
the kinematics boundary conditions.

Figure 47.36 gives formulas for deflection and bending moments of rectangular plates with typical
boundary and loading conditions.

FIGURE 47.36  Typical loading and boundary conditions for rectangular plates.
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Bending of Circular Plates

In the case of a symmetrically loaded circular plate, the loading is distributed symmetrically about the
axis perpendicular to the plate through its center. In such cases, the deflection surface to which the middle
plane of the plate is bent will also be symmetrical. The solution of circular plates can be conveniently
carried out by using polar coordinates.

Stress resultants in a circular plate element are shown in Fig. 47.37. The governing differential equation
is expressed in polar coordinates as

(47.70)

in which q is the intensity of loading.
In the case of a uniformly loaded circular plate, Eq. (47.70) can be integrated successively and the

deflection at any point at a distance r from the center can be expressed as

(47.71)

in which qo is the intensity of loading and a is the radius of the plate. C1, C2, and C3 are constants of
integration to be determined using the boundary conditions.

FIGURE 47.37 (a) Circular plate. (b) Stress resultants.
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For a plate with clamped edges under uniformly distributed load qo, the deflection surface reduces to

(47.72)

The maximum deflection occurs at the center, where r = 0, and is given by

(47.73)

Bending moments in the radial and tangential directions are respectively given by

(47.74)

The method of superposition can be applied in calculating the deflections for circular plates with
simply supported edges. The expressions for deflection and bending moment are given as

(47.75)

(47.76)

This solution can be used to deal with plates with a circular hole at the center and subjected to concentric
moment and shearing forces. Plates subjected to concentric loading and concentrated loading also can
be solved by this method. More rigorous solutions are available to deal with irregular loading on circular
plates. Once again, the energy method can be employed advantageously to solve circular plate problems.
Figure 47.38 gives deflection and bending moment expressions for typical cases of loading and boundary
conditions on circular plates.

Strain Energy of Simple Plates

The strain energy expression for a simple rectangular plate is given by

(47.77)

A suitable deflection function w(x, y) satisfying the boundary conditions of the given plate may be chosen.
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Theory and Analysis of Structures 47-51
can be calculated. The total potential energy is, therefore, given as V = U + W. Minimizing the total
potential energy, the plate problem can be solved.

The term is known as the Gaussian curvature.
If the function w(x, y) = f(x)f(y) (product of a function of x only and a function of y only) and w =

0 at the boundary are assumed, then the integral of the Gaussian curvature over the entire plate equals
zero. Under these conditions

FIGURE 47.38  Typical loading and boundary conditions for circular plates.
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If polar coordinates instead of rectangular coordinates are used and axial symmetry of loading and
deformation are assumed, the equation for strain energy, U, takes the form

(47.78)

and the work done, W, is written as

(47.79)

Detailed treatment of the plate theory can be found in Timoshenko and Woinowsky-Krieger (1959).

FIGURE 47.38  (continued).
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Plates of Various Shapes and Boundary Conditions

Simply Supported Isosceles Triangular Plate Subjected to a Concentrated Load

Plates of shapes other than a circle or rectangle are used in some situations. A rigorous solution of the
deflection for a plate with a more complicated shape is likely to be very difficult. Consider, for example,
the bending of an isosceles triangular plate with simply supported edges under concentrated load P acting
at an arbitrary point (Fig. 47.39). A solution can be obtained for this plate by considering a mirror image
of the plate, as shown in the figure. The deflection of OBC of the square plate is identical with that of a
simply supported triangular plate OBC. The deflection owing to the force P can be written as

(47.80)

Upon substitution of –P for P, (a – y1) for x1, and (a – x1) for y1 in Eq. (47.80), we obtain the deflection
due to the force –P at Ai:

(47.81)

The deflection surface of the triangular plate is then

(47.82)

Equilateral Triangular Plates

The deflection surface of a simply supported plate loaded by uniform moment Mo along its boundary,
and the surface of a uniformly loaded membrane, uniformly stretched over the same triangular boundary,
are identical. The deflection surface for such a case can be obtained as

(47.83)

FIGURE 47.39 Isosceles triangular plate.
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If the simply supported plate is subjected to uniform load po, the deflection surface takes the form

(47.84)

For the equilateral triangular plate (Fig. 47.40) subjected to a uniform load and supported at the corners,
approximate solutions based on the assumption that the total bending moment along each side of the
triangle vanishes were obtained by Vijakkhna et al. (1973), who derived the equation for the deflection
surface as

(47.85)

The errors introduced by the approximate boundary condition, i.e., the assumption that the total bending
moment along each side of the triangle vanishes, are not significant because the boundary condition’s
influence on the maximum deflection and stress resultants is small for practical design purposes. The
value of the twisting moment on the edge at the corner given by this solution is found to be exact.

The details of the mathematical treatment may be found in Vijakkhna et al. (1973, p. 123–128).

Rectangular Plate Supported at Corners

Approximate solutions for rectangular plates supported at the corners and subjected to a uniformly
distributed load were obtained by Lee and Ballesteros (1960). The approximate deflection surface is given
as

(47.86)

The details of the mathematical treatment may be found in Lee and Ballesteros (1960, p. 206–211).

FIGURE 47.40 Equilateral triangular plate with coordinate axes.
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Orthotropic Plates

Plates of anisotropic materials have important applications owing to their exceptionally high bending
stiffness. A nonisotropic or anisotropic material displays direction-dependent properties. Simplest among
them are those in which the material properties differ in two mutually perpendicular directions. A
material so described is orthotropic, e.g., wood. A number of manufactured materials are approximated
as orthotropic. Examples include corrugated and rolled metal sheets, fillers in sandwich plate construc-
tion, plywood, fiber reinforced composites, reinforced concrete, and gridwork. The latter consists of two
systems of equally spaced parallel ribs (beams), mutually perpendicular and attached rigidly at the points
of intersection.

The governing equation for orthotropic plates, similar to that of isotropic plates Eq. (47.86), takes the
form

(47.87)

in which

The expressions for Dx, Dy, Dxy, and Gxy represent the flexural rigidities and the torsional rigidity of an
orthotropic plate, respectively. Ex, Ey, and G are the orthotropic plate moduli. Practical considerations
often lead to assumptions, with regard to material properties, resulting in approximate expressions for
elastic constants. The accuracy of these approximations is generally the most significant factor in the
orthotropic plate problem. Approximate rigidities for some cases that are commonly encountered in
practice are given in Fig. 47.41.

General solution procedures applicable to the case of isotropic plates are equally applicable to ortho-
tropic plates. Deflections and stress resultants can thus be obtained for orthotropic plates of different
shapes with different support and loading conditions. These problems have been researched extensively,
and solutions concerning plates of various shapes under different boundary and loading conditions may
be found in the references viz. Tsai and Cheron (1968), Timoshenko and Woinowsky-Krieger (1959),
Lee et al. (1971), and Shanmugam et al. (1988 and 1989).

47.6 Shells

Stress Resultants in Shell Element

A thin shell is defined as a shell with a relatively small thickness, compared with its other dimensions.
The primary difference between a shell and a plate is that the former has a curvature in the unstressed
state, whereas the latter is assumed to be initially flat. The presence of initial curvature is of little
consequence as far as flexural behavior is concerned. The membrane behavior, however, is affected
significantly by the curvature. Membrane action in a surface is caused by in-plane forces. These forces
may be primary forces caused by applied edge loads or edge deformations, or they may be secondary
forces resulting from flexural deformations.

In the case of the flat plates, secondary in-plane forces do not give rise to appreciable membrane action
unless the bending deformations are large. Membrane action due to secondary forces is, therefore,
neglected in small deflection theory. In the case of a shell which has an initial curvature, membrane
action caused by secondary in-plane forces will be significant regardless of the magnitude of the bending
deformations.
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A plate is likened to a two-dimensional beam and resists transverse loads by two-dimensional bending
and shear. A membrane is likened to a two-dimensional equivalent of the cable and resists loads through
tensile stresses. Imagine a membrane with large deflections (Fig. 47.42a), reverse the load and the mem-
brane, and we have the structural shell (Fig. 47.42b), provided that the shell is stable for the type of load
shown. The membrane resists the load through tensile stresses, but the ideal thin shell must be capable
of developing both tension and compression.

FIGURE 47.41 Various orthotropic plates.
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Consider an infinitely small shell element formed by two pairs of adjacent planes that are normal to
the middle surface of the shell and contain its principal curvatures, as shown in Fig. 47.43a. The thickness
of the shell is denoted as h. Coordinate axes x and y are taken tangent at o to the lines of principal
curvature, and the axis z normal to the middle surface. rx and ry are the principal radii of curvature lying
in the xz and yz planes, respectively. The resultant forces per unit length of the normal sections are given as

(47.88)

The bending and twisting moments per unit length of the normal sections are given by

FIGURE 47.42 

FIGURE 47.43 Shell element.
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(47.89)

It is assumed, in bending of the shell, that linear elements such as AD and BC (Fig. 47.43), which are
normal to the middle surface of the shell, remain straight and become normal to the deformed middle
surface of the shell. If the conditions of a shell are such that bending can be neglected, the problem of
stress analysis is greatly simplified, since the resultant moments (Eq. (47.89)) vanish along with shearing
forces Qx and Qy in Eq. (47.88). Thus the only unknowns are Nx, Ny, and N xy = N yx; these are called
membrane forces.

Shells of Revolution

Shells having the form of surfaces of revolution find extensive application in various kinds of containers,
tanks, and domes. Consider an element of a shell cut by two adjacent meridians and two parallel circles,
as shown in Fig. 47.44. There will be no shearing forces on the sides of the element because of the
symmetry of loading. By considering the equilibrium in the direction of the tangent to the meridian and
z, two equations of equilibrium are written, respectively, as

(47.90)

The forces Nq and Nj can be calculated from Eq. (47.90) if the radii r0 and r1 and the components Y and
Z of the intensity of the external load are given.

FIGURE 47.44  Element from shells of revolution — symmetrical loading.
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Spherical Dome

The spherical shell shown in Fig. 47.45 is assumed to be subjected to its own weight; the intensity of the
self weight is assumed as a constant value, qo, per unit area. Considering an element of the shell at an
angle j, the self weight of the portion of the shell above this element is obtained as

Considering the equilibrium of the portion of the shell above the parallel circle, defined by the angle j,
we can write,

(47.91)

Therefore,

We can write from Eq. (47.90)

(47.92)

substituting for Nj and z = R in Eq. (47.92)

It is seen that the forces Nf are always negative. There is thus a compression along the meridians that
increases as the angle j increases. The forces Nq are also negative for small angles j. The stresses as
calculated above will represent the actual stresses in the shell with great accuracy if the supports are of
such a type that the reactions are tangent to the meridians, as shown in Figure 47.45.

Conical Shells

If a force P is applied in the direction of the axis of the cone, as shown in Fig. 47.46, the stress distribution
is symmetrical and we obtain

FIGURE 47.45 Spherical dome.
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By Eq. (47.92), one obtains Nq = 0.
In the case of a conical surface in which the lateral forces are symmetrically distributed, the membrane

stresses can be obtained by using Eqs. (47.91) and (47.92). The curvature of the meridian in the case of
a cone is zero, and hence r1 = •; Eqs. (47.91) and (47.92) can therefore be written as

and

If the load distribution is given, Nf and Nq can be calculated independently.
For example, a conical tank filled with a liquid of specific weight g is considered in Fig. 47.47. The

pressure at any parallel circle mn is

p = –Z = g(d – y)

For the tank, f = a + (p/2) and r0 = y tana. Therefore,

Nq is maximum when y = d/2 and hence

The term R in the expression for Nf is equal to the weight of the liquid in the conical part mno, and
the cylindrical part must be as shown in Fig. 47.46. Therefore,

FIGURE 47.46 Conical shell. FIGURE 47.47 Inverted conical tank.
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Hence,

Nf is maximum when y = d and

The horizontal component of Nf is taken by the reinforcing ring provided along the upper edge of the
tank. The vertical components constitute the reactions supporting the tank.

Shells of Revolution Subjected to Unsymmetrical Loading

Consider an element cut from a shell by two adjacent meridients and two parallel circles, as shown in
Fig. 47.48. In general cases, shear forces Njq = Nqj and normal forces Nj and Nq will act on the sides of
the element. Projecting the forces on the element in the y direction, we obtain the governing equation:

(47.93)

Similarly the forces in the x direction can be summed up to give

(47.94)

Since the projection of shearing forces on the z axis vanishes, the third equation is the same as Eq. (47.92).
The problem of determining membrane stresses under unsymmetrical loading reduces to solving
Eqs. (47.92) to (47.94) for given values of the components X, Y, and Z of the intensity of the external load.

Cylindrical Shells

It is assumed that the generator of the shell is horizontal and parallel to the x axis. An element is cut
from the shell by two adjacent generators and two cross sections perpendicular to the x axis, and its
position is defined by the coordinate x and the angle j. The forces acting on the sides of the element are
shown in Fig. 47.49b.

FIGURE 47.48 Element from shells of revolution — unsymmetrical loading.
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The components of the distributed load over the surface of the element are denoted as X, Y, and Z.
Considering the equilibrium of the element and summing up the forces in the x direction, we obtain

The corresponding equations of equilibrium in the y and z directions are given, respectively, as

The three equations of equilibrium can be simplified and represented in the following form:

(47.95)

In each particular case we readily find the value of Nj. Substituting this value in the second of the
equations, we then obtain Nxj by integration. Using the value of Nxj thus obtained, we find Nx by
integrating the first equation.

Symmetrically Loaded Circular Cylindrical Shells

To establish the equations required for the solution of a symmetrically loaded circular cylinder shell, we
consider an element, as shown in Figs. 47.49a and 47.50. From symmetry, the membrane shearing forces
Nxj = Njx vanish in this case; forces Nj are constant along the circumference. From symmetry, only the
forces Qz do not vanish. Considering the moments acting on the element in Fig. 47.50, from symmetry
it can be concluded that the twisting moments Mxj = Mjx vanish and that the bending moments Mj are
constant along the circumference. Under such conditions of symmetry, three of the six equations of
equilibrium of the element are identically satisfied. We have to consider only the equations, obtained by

FIGURE 47.49 Membrane forces on a cylindrical shell element.
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projecting the forces on the x and z axes and by taking the moment of the forces about the y axis. For
example, consider a case in which external forces consist only of a pressure normal to the surface. The
three equations of equilibrium are

(47.96)

The first one indicates that the forces Nx are constant, and they are taken equal to zero in the further
discussion. If they are different from zero, the deformation and stress corresponding to such constant
forces can be easily calculated and superposed on stresses and deformations produced by lateral load.
The remaining two equations are written in the simplified form:

(47.97)

These two equations contain three unknown quantities: Nj, Qx, and Mx. We need, therefore, to consider
the displacements of points in the middle surface of the shell.

The component v of the displacement in the circumferential direction vanishes because of symmetry.
Only the components u and w in the x and z directions, respectively, are to be considered. The expressions
for the strain components then become

(47.98)

By Hooke’s law, we obtain

(47.99)

FIGURE 47.50  Stress resultants in a cylindrical shell element.
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From the first of these equation it follows that

and the second equation gives

(47.100)

Considering the bending moments, we conclude from symmetry that there is no change in curvature in
the circumferential direction. The curvature in the x direction is equal to –d2w/dx2. Using the same
equations as the ones for plates, we then obtain

(47.101)

where

is the flexural rigidity per unit length of the shell.
Eliminating Qx from Eq. (47.97), we obtain

from which, by using Eqs. (47.100) and (47.101), we obtain

(47.102)

All problems of symmetrical deformation of circular cylindrical shells thus reduce to the integration of
Eq. (47.102).

The simplest application of this equation is obtained when the thickness of the shell is constant. Under
such conditions Eq. (47.102) becomes

using the notation

(47.103)

Equation (47.103) can be represented in the simplified form

(47.104)
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The general solution of this equation is

(47.105)

Detailed treatment of the shell theory can be obtained from Timoshenko and Woinowsky-Krieger (1959)
and Gould (1988).

47.7 Influence Lines

Bridges, industrial buildings with traveling cranes, and frames supporting conveyer belts are often
subjected to moving loads. Each member of these structures must be designed for the most severe
conditions that can possibly be developed in that member. Live loads should be placed at the positions
where they will produce these severe conditions. The critical positions for placing live loads will not be
the same for every member. On some occasions it is possible by inspection to determine where to place
the loads to give the most critical forces, but on many other occasions it is necessary to resort to certain
criteria to find the locations. The most useful of these methods is the influence lines.

An influence line for a particular response such as reaction, shear force, bending moment, and axial
force is defined as a diagram, the ordinate to which at any point equals the value of that response
attributable to a unit load acting at that point on the structure. Influence lines provide a systematic
procedure for determining how the force in a given part of a structure varies as the applied load moves
about on the structure. Influence lines of responses of statically determinate structures consist only of
straight lines, whereas for statically indeterminate structures they consist of curves. They are primarily
used to determine where to place live loads to cause maximum force and to compute the magnitude of
those forces. The knowledge of influence lines helps to study the structural response under different
moving load conditions.

Influence Lines for Shear in Simple Beams

Figure 47.51 shows influence lines for shear at two sections of a simply supported beam. It is assumed
that positive shear occurs when the sum of the transverse forces to the left of a section is in the upward
direction or when the sum of the forces to the right of the section is downward. A unit force is placed
at various locations, and the shear forces at sections 1-1 and 2-2 are obtained for each position of the
unit load. These values give the ordinate of influence line with which the influence line diagrams for
shear force at sections 1-1 and 2-2 can be constructed. Note that the slope of the influence line for shear

FIGURE 47.51  Influence line for shear force.
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on the left of the section is equal to the slope of the influence line on the right of the section. This
information is useful in drawing shear force influence lines in other cases.

Influence Lines for Bending Moment in Simple Beams

Influence lines for bending moment at the same sections, 1-1 and 2-2, of the simple beam considered
in Fig. 47.51 are plotted as shown in Fig. 47.52. For a section, when the sum of the moments of all the
forces to the left is clockwise or when the sum to the right is counterclockwise, the moment is taken as
positive. The values of bending moment at sections 1-1 and 2-2 are obtained for various positions of
unit load and plotted as shown in the figure.

It should be understood that a shear or bending moment diagram shows the variation of shear or
moment across an entire structure for loads fixed in one position. On the other hand, an influence line
for shear or moment shows the variation of that response at one particular section in the structure caused
by the movement of a unit load from one end of the structure to the other.

Influence lines can be used to obtain the value of a particular response for which they are drawn when
the beam is subjected to any particular type of loading. If, for example, a uniform load of intensity qo

per unit length is acting over the entire length of the simple beam shown in Fig. 47.51, the shear force
at section 1-1 is given by the product of the load intensity, qo, and the net area under the influence line
diagram. The net area is equal to 0.3, and the shear force at section 1-1 is therefore equal to 0.3 qo. In
the same way, the bending moment at the section can be found as the area of the corresponding influence
line diagram times the intensity of loading, qo. The bending moment at the section is equal to 0.08qol2.

Influence Lines for Trusses

Influence lines for support reactions and member forces may be constructed in the same manner as those
for various beam functions. They are useful to determine the maximum load that can be applied to the
truss. The unit load moves across the truss, and the ordinates for the responses under consideration may
be computed for the load at each panel point. Member force, in most cases, does not need to be calculated
for every panel point, because certain portions of influence lines can readily be seen to consist of straight
lines for several panels. One method used for calculating the forces in a chord member of a truss is the
method of sections, discussed earlier.

The truss shown in Fig. 47.53 is considered for illustrating the construction of influence lines for
trusses.

The member forces in U1U2, L1L2, and U1L2 are determined by passing section 1-1 and considering
the equilibrium of the free-body diagram of one of the truss segments. Unit load is placed at L1 first,
and the force in U1U2 is obtained by taking the moment about L2 of all the forces acting on the right-
hand segment of the truss and dividing the resulting moment by the lever arm (the perpendicular distance

FIGURE 47.52 Influence line for bending moment.
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of the force in U1U2 from L2). The value thus obtained gives the ordinate of the influence diagram at L1

in the truss. The ordinate at L2, obtained similarly, represents the force in U1U2 for a unit load placed at
L2. The influence line can be completed with two other points, one at each of the supports. The force in
the member L1L2 due to a unit load placed at L1 and L2 can be obtained in the same manner, and the
corresponding influence line diagram can be completed. By considering the horizontal component of
force in the diagonal of the panel, the influence line for force in U1L2 can be constructed. Figure 47.53
shows the respective influence diagram for member forces in U1U2, L1L2, and U1L2. Influence line ordinates
for the force in a chord member of a “curved chord” truss may be determined by passing a vertical section
through the panel and taking moments at the intersection of the diagonal and the other chord.

Qualitative Influence Lines

One of the most effective methods of obtaining influence lines is using Müller-Breslau’s principle, which
states that the ordinates of the influence line for any response in a structure are equal to those of the
deflection curve obtained by releasing the restraint corresponding to this response and introducing a
corresponding unit displacement in the remaining structure. In this way, the shape of the influence lines
for both statically determinate and indeterminate structures can be easily obtained, especially for beams.

To draw the influence lines of a

1. support reaction, remove the support and introduce a unit displacement in the direction of the
corresponding reaction to the remaining structure, as shown in Fig. 47.54, for a symmetrical
overhang beam.

2. shear, make a cut at the section and introduce a unit relative translation (in the direction of positive
shear) without relative rotation of the two ends at the section, as shown in Fig. 47.55.

3. bending moment, introduce a hinge at the section (releasing the bending moment) and apply
bending (in the direction corresponding to the positive moment) to produce a unit relative rotation
of the two beam ends at the hinged section, as shown in Fig. 47.56.

Influence Lines for Continuous Beams

Using Müller-Breslau’s principle, the shape of the influence line of any response of a continuous beam
can be sketched easily. One of the methods for beam deflection can then be used for determining the

FIGURE 47.53 Influence line for truss.
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ordinates of the influence line at critical points. Figures 47.57 to 47.59 show the influence lines of the
bending moment at various points of two-, three-, and four-span continuous beams.

47.8 Energy Methods

Energy methods are a powerful tool in obtaining numerical solutions of statically indeterminate problems.
The basic quantity required is the strain energy, or work stored due to deformations, of the structure.

Strain Energy Due to Uniaxial Stress

In an axially loaded bar with a constant cross section the applied load causes normal stress sy, as shown
in Fig. 47.60. The tensile stress sy increases from zero to a value sy as the load is gradually applied. The

FIGURE 47.54 Influence line for support reaction.

FIGURE 47.55 Influence line for midspan shear force.

FIGURE 47.56 Influence line for midspan bending moment.

FIGURE 47.57 Influence line for bending moment — two-span beam.
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original, unstrained position of any section such as C-C will be displaced by an amount dv. A section
D-D located a differential length below C-C will have been displaced by an amount v + (∂v/∂y)dy. As sy

varies with the applied load, from zero to sy, the work done by the forces external to the element can be
shown to be

(47.106)

in which A = the area of cross section of the bar
ey = the strain in the direction of sy.

FIGURE 47.58  Influence line for bending moment — three-span beam.

FIGURE 47.59  Influence line for bending moment — four-span beam.

FIGURE 47.60  Axial loaded bar.
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Strain Energy in Bending

It can be shown that the strain energy of a differential volume dxdydz stressed in tension or compression
in the x direction only by a normal stress sx will be

(47.107)

When sx is the bending stress given by sx = My/I (see Fig. 47.61), then

where I is the moment of inertia of the cross-sectional area about the neutral axis.
The total strain energy of bending of a beam is obtained as

where

Therefore

(47.108)

Strain Energy in Shear

Figure 47.62 shows an element of volume dxdydz subjected to shear stress txy and tyx. For static equilib-
rium, it can readily be shown that

txy = tyx

The shear strain, g , is defined as AB/AC. For small deformations, it follows that

Hence, the angle of deformation, gxy, is a measure of the shear strain. The strain energy for this differential
volume is obtained as

FIGURE 47.61 Beam under arbitrary bending load.

y

y

y

L

(a)
(b)

p(x)

x
x z

z

dx
C.G.

dzdy

dV
1

2E
dxdydz

1

2
dxdydzx

 2
x x= =s s e

dV
E

M y

I
dxdydz= 1

2

2 2

2 ,

V
E

M

I
y dzdy dx

volume

= ÚÚÚ 1

2

2

2
2

I y dzdy
area

= ÚÚ 2

V M
2EI

dx
2

= Úlength

xy

AB

AC
g =
© 2003 by CRC Press LLC



Theory and Analysis of Structures 47-71
(47.109)

Hooke’s law for shear stress and strain is

(47.110)

where G is the shear modulus of elasticity of the material. The expression for strain energy in shear
reduces to

(47.111)

The Energy Relations in Structural Analysis

The energy relations or laws, such as the law of conservation of energy, the theorem of virtual work, the
theorem of minimum potential energy, and the theorem of complementary energy, are of fundamental
importance in structural engineering and are used in various ways in structural analysis.

The Law of Conservation of Energy

The law of conservation of energy states that if a structure and the
external loads acting on it are isolated so that these neither receive nor
give out energy, then the total energy of this system remains constant.

A typical application of the law of conservation of energy can be
made by referring to Fig. 47.63, which shows a cantilever beam of
constant cross sections subjected to a concentrated load at its end. If
only bending strain energy is considered,

external work = internal work

Substituting M = –Px and integrating along the length gives

(47.112)

FIGURE 47.62 Shear loading.
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The Theorem of Virtual Work

The theorem of virtual work can be derived by considering the beam shown in Fig. 47.64. The full curved
line represents the equilibrium position of the beam under the given loads. Assume the beam to be given
an additional small deformation consistent with the boundary conditions. This is called a virtual defor-
mation and corresponds to increments of deflection Dy1, Dy2, … , Dyn at loads P1, P2, …, Pn, as shown
by the dashed line.

The change in potential energy of the loads is given by

(47.113)

By the law of conservation of energy this must be equal to the internal strain energy stored in the beam.
Hence, we may state the theorem of virtual work as: if a body in equilibrium under the action of a system
of external loads is given any small (virtual) deformation, then the work done by the external loads
during this deformation is equal to the increase in internal strain energy stored in the body.

The Theorem of Minimum Potential Energy

Let us consider the beam shown in Fig. 47.65. The beam is in equilibrium under the action of loads P1,
P2, P3, …, Pi, …, Pn. The curve ACB defines the equilibrium positions of the loads and reactions. Now
apply by some means an additional small displacement to the curve so that it is defined by AC¢B. Let yi

be the original equilibrium displacement of the curve beneath a particular load Pi. The additional small
displacement is called dyi. The potential energy of the system while it is in the equilibrium configuration
is found by comparing the potential energy of the beam and loads in equilibrium and in the undeflected
position. If the change in potential energy of the loads is W and the strain energy of the beam is V, the
total energy of the system is

U = W + V (47.114)

If we neglect the second-order terms, then

(47.115)

The above is expressed as the principle or theorem of minimum potential energy, which can be stated
as: if all displacements satisfy given boundary conditions, those that satisfy the equilibrium conditions
make the potential energy a minimum.

FIGURE 47.64 Equilibrium of a simple supported beam under loading.

FIGURE 47.65 Simply supported beam under point loading.
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Castigliano’s Theorem

This theorem applies only to structures stressed within the elastic limit, and all deformations must be
linear homogeneous functions of the loads.

For a beam in equilibrium, as in Fig. 47.64, the total potential energy is

(47.116)

For an elastic system, the strain energy, V, turns out to be one half the change in the potential energy of
the loads.

(47.117)

Castigliano’s theorem results from studying the variation in the strain energy, V, produced by a
differential change in one of the loads, say Pj.

If the load Pj is changed by a differential amount dPj and if the deflections y are linear functions of
the loads, then

(47.118)

Castigliano’s theorem states that the partial derivatives of the total strain energy of any structure with
respect to any one of the applied forces is equal to the displacement of the point of application of the
force in the direction of the force.

To find the deflection of a point in a beam that is not the point of application of a concentrated load,
one should apply a load P = 0 at that point and carry the term P into the strain energy equation. Finally,
introduce the true value of P = 0 into the expression for the answer.

Example 47.6

Determination of the bending deflection at the free end of a cantilever, loaded as shown in Fig. 47.66, is
required.

Solution:

FIGURE 47.66 Example 47.6.
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Castigliano’s theorem can be applied to determine deflection of trusses as follows:

We know that the increment of strain energy for an axially loaded bar is given as

Substituting sy = S/A, where S is the axial load in the bar, and integrating over the length of the bar, the
total strain energy of the bar is given as

(47.119)

The deflection component Di of the point of application of a load Pi in the direction of Pi is given as

Example 47.7

Determine the vertical deflection at g of the truss subjected to three-point load, as shown in Fig. 47.67.
Let us first replace the 20 load at g by P and carry out the calculations in terms of P. At the end, P will
be replaced by the actual load of 20.

Member A L S n
nS

ab 2 25 –(33.3 + 0.83P) –0.83 2 (691 + 17.2P)
af 2 20  (26.7 + 0.67P) 0.67 2 (358 + 9P)
fg 2 20  (26.7 + 0.67P)  0.67 2 (358 + 9P)
bf 1 15 20 0 2 0
bg 1 25 0.83P  0.83 2 34.4P
bc 2 20 –26.7 – 1.33P –1.33 2 (710 + 35.4P)
cg 1 15 0 0 1 0

 
2117 + 105P

Note: n indicates the number of similar members.
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With P = 20,

Unit Load Method

The unit load method is a versatile tool in the solution of deflections of both trusses and beams. Consider
an elastic body in equilibrium under loads P1, P2, P3, P4, … Pn and a load p applied at point O, as shown
in Fig. 47.68. By Castigliano’s theorem, the component of the deflection of point O in the direction of
the applied force p is

(47.120)

in which V is the strain energy of the body. It has been shown in Eq. (47.108) that the strain energy of
a beam, neglecting shear effects, is given by

Also it was shown that if the elastic body is a truss, from Eq. (47.119)

For a beam, therefore, from Eq. (47.120)

(47.121)

FIGURE 47.67 Example 47.7.

FIGURE 47.68  Elastic body in equilibrium under load.
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and for a truss,

(47.122)

The bending moments M and the axial forces S are functions of the load p as well as of the loads P1,
P2, … Pn. Let a unit load be applied at O on the elastic body and the corresponding moment be m if the
body is a beam and the forces in the members of the body u if the body is a truss. For the body in
Fig. 47.68 the moments M and the forces S due to the system of forces P1, P2, … Pn and p at O applied
separately can be obtained by superposition as

(47.123)

(47.124)

in which Mp and Sp are, respectively, moments and forces produced by P1, P2, … Pn.
Then

(47.125)

(47.126)

Using Eqs. (47.125) and (47.126) in Eqs. (47.121) and (47.122), respectively,

(47.127)

(47.128)

Example 47.8

Determine, using the unit load method, the deflection at C of a simple beam of constant cross section
loaded as shown in Fig. 47.69a.

Solution:
The bending moment diagram for the beam due to the applied loading is shown in Fig. 47.69b. A unit
load is applied at C, where it is required to determine the deflection, as shown in Fig. 47.69c; the
corresponding bending moment diagram is shown in Fig. 47.69d. Now, using Eq. (47.127), we have
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Further details on energy methods in structural analysis may be found in Borg and Gennaro (1959).

47.9 Matrix Methods

In this method, a set of simultaneous equations that describe the load–deformation characteristics of the
structure under consideration are formed. These equations are solved using the matrix algebra to obtain
the load–deformation characteristics of discrete or finite elements into which the structure has been
subdivided. The matrix method is ideally suited for performing structural analysis using a computer. In
general, there are two approaches for structural analysis using the matrix analysis. The first is called the
flexibility method, in which forces are used as independent variables, and the second is called the stiffness
method, which employs deformations as the independent variables. The two methods are also called the
force method and the displacement method, respectively.

Flexibility Method

In this method, the forces and displacements are related to one another by using stiffness influence
coefficients. Let us consider, for example, a simple beam in which three concentrated loads, W1, W2, and
W3, are applied at sections 1, 2, and 3, respectively, as shown in Fig. 47.70. The deflection at section 1,
D1, can be expressed as

FIGURE 47.69 Example 47.8.
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in which F11, F12, and F13 are called flexibility coefficients and are defined as the deflection at section 1
due to unit loads applied at sections 1, 2, and 3, respectively. Deflections at sections 2 and 3 are similarly
given as

and

(47.129)

These expressions are written in matrix form as

or

(47.130)

Matrix [F] is called the flexibility matrix. It can be shown, by applying Maxwell’s reciprocal theorem
(Borg and Gennaro, 1959), that matrix [F] is a symmetric matrix.

Let us consider a cantilever beam loaded as shown in Fig. 47.71. The first column in the flexibility
matrix can be generated by applying a unit vertical load at the free end of the cantilever, as shown in
Fig. 47.71b, and making use of the moment area method. We get

Columns 2, 3, and 4 are similarly generated by applying unit moment at the free end and unit force and
unit moment at the midspan, as shown in Figs. 47.71c to e, respectively. Combining the results, the
flexibility matrix can be formed as

(47.131)

For a given structure, it is necessary to subdivide the structure into several elements and to form the
flexibility matrix for each of the elements. The flexibility matrix for the entire structure is then obtained
by combining the flexibility matrices of the individual elements.

FIGURE 47.70 Simple beam under concentrated loads.
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Theory and Analysis of Structures 47-79
The force transformation matrix relates what occurs in these elements to the behavior of the entire
structure. Using the conditions of equilibrium, it relates the element forces to the structure forces. The
principle of conservation of energy may be used to generate transformation matrices.

Stiffness Method

In this method, forces and deformations in a structure are
related to one another by means of stiffness influence coeffi-
cients. Let us consider a simply supported beam subjected to
end moments W1 and W2 applied at supports 1 and 2, respec-
tively, and let the rotations be denoted as D1 and D2, as shown
in Fig. 47.72. We can now write the expressions for end
moments W1 and W2 as

(47.132)

in which K11 and K12 are called stiffness influence coefficients defined as moments at 1 due to unit rotation
at 1 and 2, respectively. The above equations can be written in matrix form as

or

(47.133)

Matrix [K] is referred to as the stiffness matrix. It can be shown that the flexibility matrix of a structure
is the inverse of the stiffness matrix and vice versa. The stiffness matrix of the whole structure is formed
out of the stiffness matrices of the individual elements that make up the structure.

FIGURE 47.71 Cantilever beam.
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Element Stiffness Matrix

Axially Loaded Member

Figure 47.73 shows an axially loaded member of a constant cross-sectional area with element forces q1

and q2 and displacements d1 and d2. They are shown in their respective positive directions. With unit
displacement d1 = 1 at node 1, as shown in Fig. 47.73, axial forces at nodes 1 and 2 are obtained as

In the same way, by setting d2 = 1, as shown in Fig. 47.73, the corresponding forces are obtained as

The stiffness matrix is written as

or

(47.134)

Flexural Member

The stiffness matrix for the flexural element can be constructed by referring to Fig. 47.74. The forces and
the corresponding displacements viz. the moments, shears, and corresponding rotations and translations
at the ends of the member are defined in the figure. The matrix equation that relates these forces and
displacements can be written in the form

FIGURE 47.73 Axially loaded member.
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The terms in the first column consist of the element forces q1 through q4 that result from displacement
d1 = 1 when d2 = d3 = d4 = 0. This means that a unit vertical displacement is imposed at the left end of
the member, while translation at the right end and rotation at both ends are prevented, as shown in
Fig. 47.74. The four member forces corresponding to this deformation can be obtained using the moment
area method.

The change in slope between the two ends of the member is zero, and the area of the M/EI diagram
between these points must therefore vanish. Hence

and

(47.135)

The moment of the M/EI diagram about the left end of the member is equal to unity. Hence

and in view of Eq. (47.135),

Finally, moment equilibrium of the member about the right end leads to

FIGURE 47.74 Beam element — stiffness matrix.
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and from equilibrium in the vertical direction we obtain

The forces act in the directions indicated in Fig. 47.74b. To obtain the correct signs, one must compare
the forces with the positive directions defined in Fig. 47.74a. Thus

The second column of the stiffness matrix is obtained by letting d2 = 1 and setting the remaining three
displacements equal to zero, as indicated in Fig. 47.74c. The area of the M/EI diagram between the ends
of the member for this case is equal to unity, and hence

The moment of the M/EI diagram about the left end is zero, so that

Therefore, one obtains

From vertical equilibrium of the member,

and moment equilibrium about the right end of the member leads to

Comparison of the forces in Fig. 47.74c with the positive directions defined in Fig. 47.74a indicates that
all the influence coefficients except k12 are positive. Thus

Using Figs. 47.74d and e, the influence coefficients for the third and fourth columns can be obtained.
The results of these calculations lead to the following element stiffness matrix:

(47.136)
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Note that Eq. (47.135) defines the element stiffness matrix for a flexural member with constant flexural
rigidity EI.

If the axial load in a frame member is also considered, the general form of an element stiffness matrix
for an element shown in Fig. 47.75 becomes

or

(47.137)

The member stiffness matrix can be written as

(47.138)

Structure Stiffness Matrix

Equation (47.137) has been expressed in terms of the coordinate system of the individual members. In
a structure consisting of many members there would be as many systems of coordinates as the number
of members. Before the internal actions in the members of the structure can be related, all forces and
deflections must be stated in terms of one single system of axes common to all — the global axes. The
transformation from element to global coordinates is carried out separately for each element, and the
resulting matrices are then combined to form the structure stiffness matrix. A separate transformation
matrix [T] is written for each element, and a relation of the form

FIGURE 47.75 Beam element with axial force.
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(47.139)

is written in which [T]n defines the matrix relating the element deformations of element n to the structure
deformations at the ends of that particular element. The element and structure forces are related in the
same way as the corresponding deformations as

(47.140)

where [q]n contains the element forces for element n and [W]n contains the structure forces at the
extremities of the element. The transformation matrix [T]n can be used to transform element n from its
local coordinates to structure coordinates. We know, for an element n, that the force–deformation relation
is given as

Substituting for [q]n and [d]n from Eqs. (47.138) and (47.139), one obtains

or

 (47.141)

[K]n is the stiffness matrix that transforms any element n from its local coordinate to structure coordi-
nates. In this way, each element is transformed individually from element coordinate to structure coor-
dinate, and the resulting matrices are combined to form the stiffness matrix for the entire structure.

For example, the member stiffness matrix [K]n in global coordinates for the truss member shown in
Fig. 47.76 is given as

(47.142)

in which l = cosf
m = sinf.

FIGURE 47.76 Grid member.
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To construct [K]n for a given member, it is necessary to have the values of l and m for the member.
In addition, the structure coordinates i, j, k, and l at the extremities of the member must be known.

The member stiffness matrix [K]n in structural coordinates for the flexural member shown in Fig. 47.77
can be written as

(47.143)

where l = cosf and m = sinf.

Example 47.9

Determine the displacement at the loaded point of the truss shown in Fig. 47.78a. Both members have
the same area of cross section: A = 3 and E = 30 ¥ 10 3.

The details required to form the element stiffness matrix with reference to structure coordinates axes
are listed below (see Fig. 47.78b):

We now use these data in Eq. (47.142) to form [K]n for the two elements.

FIGURE 47.77 Flexural member in global coordinate.

Member Length f l m i j k l

1 10 90° 0 1 1 2 3 4
2 18.9 32° 0.85 0.53 1 2 5 6

FIGURE 47.78  Example 47.9.
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For member 1,

For member 2,

Combining the element stiffness matrices [K]1 and [K]2, one obtains the structure stiffness matrix as follows:

The stiffness matrix can now be subdivided to determine the unknowns. Let us consider D1 and D2, the
deflections at joint 2, which can be determined in view of D3 = D4 = D5 = D6 = 0 as follows:

or

Example 47.10

A simple triangular frame is loaded at the tip by 20 units of force, as shown in Fig. 47.80. Assemble the
structure stiffness matrix and determine the displacements at the loaded node.
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For members 1 and 2 the stiffness matrices in structure coordinates can be written by making use of
Eq. (47.143):

and

Combining the element stiffness matrices [K]1 and [K]2, one obtains the structure stiffness matrix as
follows:

FIGURE 47.79  Example 47.10.

2

1
1

2

3

6 ft
20 kips

45°

1

23 4
5

6

7
8 9

[ ]K 1
310

1 2 3 4 5 6

1 0 0 1 0 0

0 1 36 0 1 36

0 36 1728 0 36 864

1 0 0 1 0 0

0 1 36 0 1 36

0 36 864 0 36 1728

1

2

3

4

5

6

= ¥

-
-

-
-

- - -
-

Í

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˙

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

[ ]K 2
310

1 2 3 7 8 9

1 0 36 1 0 36

0 1 36 0 1 36

36 36 3457 36 36 1728

1 0 36 1 0 36

0 1 36 0 1 36

36 36 1728 36 36 3457

1

2

3

7

8

9

= ¥

- - -

- -
-

- -
- -

Í

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˙

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

[ ]K = ¥

- - - -
-

- - -
-

- - -
-

-
- -

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

10

2 0 36 1 0 0 1 0 36

0 2 72 0 1 36 0 1 36

36 72 5185 0 36 864 36 36 1728

1 0 0 1 0 0 0 0 0

0 1 36 0 1 36 0 0 0

0 36 864 0 36 1728 0 0 0

1 0 36 0 0 0 1000 0 36

0 1 36 0 0 0 0 1 36

36 36 1728 0 0 0 36 36 3457

3

ÍÍ
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

1

2

3

4

5

6

7

8

9

© 2003 by CRC Press LLC



47-88 The Civil Engineering Handbook, Second Edition
The deformations at joints 2 and 3 corresponding to D5 to D9 are zero, since joints 2 and 4 are restrained
in all directions. Canceling the rows and columns corresponding to zero deformations in the structure
stiffness matrix, one obtains the force–deformation relation for the structure:

Substituting for the applied load F 2 = –20, the deformations are given as

or

Loading between Nodes

The problems discussed so far have involved concentrated forces and moments applied only to nodes.
But real structures are subjected to distributed or concentrated loading between nodes, as shown in
Fig. 47.80. Loading may range from a few concentrated loads to an infinite variety of uniform or
nonuniform distributed loads. The solution method of matrix analysis must be modified to account for
such load cases.

One way to treat such loads in the matrix analysis is to insert artificial nodes, such as p and q, as
shown in Fig. 47.80. The degrees of freedom corresponding to the additional nodes are added to the total
structure, and the necessary additional equations are written by considering the requirements of equi-
librium at these nodes. The internal member forces on each side of nodes p and q must equilibrate the
external loads applied at these points. In the case of distributed loads, suitable nodes such as l, m, and
n, shown in Fig. 47.80, are selected arbitrarily and the distributed loads are lumped as concentrated loads
at these nodes. The degrees of freedom corresponding to the arbitrary and real nodes are treated as
unknowns of the problem. There are different ways of obtaining equivalence between the lumped and
the distributed loading. In all cases the lumped loads must be statically equivalent to the distributed
loads they replace.

The method of introducing arbitrary nodes is not a very elegant procedure because the number of
unknown degrees of freedom make the solution procedure laborious. The approach that is of the most
general use with the displacement method is the one employing the related concepts of artificial joint
restraint, fixed-end forces, and equivalent nodal loads.

FIGURE 47.80  Loading between nodes.
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Semirigid End Connection

A rigid connection holds unchanged the original angles between interesting members; a simple connec-
tion allows the member end to rotate freely; a semirigid connection possesses a moment resistance
intermediate between those of the simple and rigid connections.

A simplified linear relationship between the moment M acting on the connection and the resulting
connection rotation y in the direction of M is assumed, giving

(47.144)

where EI and L are the flexural rigidity and length of the member, respectively. The nondimension
quantity R, which is a measure of the degree of rigidity of the connection, is called the rigidity index.
For a simple connection, R is zero; for a rigid connection, R is infinity. Considering the semirigidity of
joints, the member flexibility matrix for flexure is derived as

(47.145)

or

(47.146)

where f1 and f2 are as shown in Fig. 47.81.
For convenience, two parameters are introduced as follows

and

where p1 and p2 are called the fixity factors. For hinged connections, both the fixity factors, p, and the
rigidity index, R, are zero, but for rigid connections, the fixity factor is 1 and the rigidity index is infinity.
Since the fixity factor can vary only from 0 to 1.0, it is more convenient to use in the analyses of structures
with semirigid connections.

FIGURE 47.81  Flexural member with semirigid end connections.

M R
EI

L
= y

f
f

1

2

1

2

1

2

1

3

1 1

6
1

6

1

3

1
È

Î
Í

˘

˚
˙ =

+ -

- +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î
Í

˘

˚
˙

L

EI

R

R

M

M

f[ ] = [ ][ ]F M

p

R

1

1

1

1
3

=
+

p

R

2

2

1

1
3

=
+

M2

M1

ψ2

ψ1

f 1

f 2

f 2

f 1
© 2003 by CRC Press LLC



47-90 The Civil Engineering Handbook, Second Edition
Equation (47.145) can be rewritten to give

(47.147)

From Eq. (47.147), the modified member stiffness matrix [K] for a member with semirigid connections
expresses the member end moments M1 and M2 in terms of the member end rotations f1 and f2 as

(47.148a)

Expressions for K11, K12 = K21, and K22 may be obtained by inverting matrix [F], thus

(47.148b)

(47.148c)

(47.148d)

The modified member stiffness matrix [K], as expressed by Eq. (47.148a to d), will be needed in the
stiffness method of analysis of frames in which there are semirigid member end connections.

47.10 Finite Element Method

For problems involving complex material properties and boundary conditions, numerical methods are
employed to provide approximate but acceptable solutions. Of the many numerical methods developed
before and after the advent of computers, the finite element method has proven to be a powerful tool.
This method can be regarded as a natural extension of the matrix methods of structural analysis. It can
accommodate complex and difficult problems such as nonhomogenity, nonlinear stress–strain behavior,
and complicated boundary conditions. The finite element method is applicable to a wide range of
boundary value problems in engineering, and it dates back to the mid-1950s with the pioneering work
by Argyris (1960), Clough and Penzien (1993), and others. The method was applied first to the solution
of plane stress problems and extended subsequently to the solution of plates, shells, and axisymmetric
solids.

Basic Principle

The finite element method is based on the representation of a body or a structure by an assemblage of
subdivisions called finite elements, as shown in Fig. 47.82. These elements are considered to be connected
at nodes. Displacement functions are chosen to approximate the variation of displacements over each
finite element. Polynomial functions are commonly employed to approximate these displacements. Equi-
librium equations for each element are obtained by means of the principle of minimum potential energy.
These equations are formulated for the entire body by combining the equations for the individual
elements so that the continuity of displacements is preserved at the nodes. The resulting equations are
solved satisfying the boundary conditions in order to obtain the unknown displacements.
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The entire procedure of the finite element method involves the following steps:

1. The given body is subdivided into an equivalent system of finite elements.
2. A suitable displacement function is chosen.
3. The element stiffness matrix is derived using a variational principle of mechanics, such as the

principle of minimum potential energy.
4. The global stiffness matrix for the entire body is formulated.
5. The algebraic equations thus obtained are solved to determine unknown displacements.
6. The element strains and stresses are computed from the nodal displacements.

Elastic Formulation

Figure 47.83 shows the state of stress in an elemental volume of a
body under load. It is defined in terms of three normal stress com-
ponents sx, sy, and sz and three shear stress components txy, tyz,
and tzx. The corresponding strain components are three normal
strains ex, ey, and ez and three shear strains gxy, gyz, and gzx. These
strain components are related to the displacement components u, v,
and w at a point as follows:

(47.149)

The relations given in Eq. (47.149) are valid in the case of the body experiencing small deformations. If
the body undergoes large or finite deformations, higher order terms must be retained.

The stress–strain equations for isotropic materials may be written in terms of Young’s modulus and
Poisson’s ratio as

(47.150)

FIGURE 47.82  Assemblage of subdivisions.
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Plane Stress

When the elastic body is very thin and there are no loads applied in the direction parallel to the thickness,
the state of stress in the body is said to be plane stress. A thin plate subjected to in-plane loading, as
shown in Fig. 47.84, is an example of a plane stress problem. In this case, sz = tyz = tzx = 0 and the
constitutive relation for an isotropic continuum is expressed as

(47.151)

Plane Strain

The state of plane strain occurs in members that are not free to expand in the direction perpendicular
to the plane of the applied loads. Examples of some plane strain problems are retaining walls, dams, long
cylinders, tunnels, etc., as shown in Fig. 47.85. In these problems ez, gyz, and gzx will vanish and hence

The constitutive relations for an isotropic material is written as

(47.152)

FIGURE 47.84 Plane stress problem.

FIGURE 47.85 Practical examples of plane strain problems.
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Choice of Element Shapes and Sizes

A finite element generally has a simple one-, two-, or three-dimensional configuration. The boundaries
of elements are often straight lines, and the elements can be one-, two-, or three-dimensional, as shown
in Fig. 47.86. While subdividing the continuum, one has to decide the number, shape, size, and config-
uration of the elements in such a way that the original body is simulated as closely as possible. Nodes
must be located in locations where abrupt changes in geometry, loading, and material properties occur.
A node must be placed at the point of application of a concentrated load because all loads are converted
into equivalent nodal-point loads.

It is easy to subdivide a continuum into a completely regular one having the same shape and size. But
problems encountered in practice do not involve regular shape; they may have regions of steep gradients
of stresses. A finer subdivision may be necessary in regions where stress concentrations are expected in
order to obtain a useful approximate solution. Typical examples of mesh selection are shown in Fig. 47.87.

Choice of Displacement Function

Selection of displacement function is the important step in the finite element analysis, since it determines
the performance of the element in the analysis. Attention must be paid to select a displacement function
that:

FIGURE 47.86 (a) One-dimensional element. (b) Two-dimensional element. (c) Three-dimensional element.
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1. has the number of unknown constants as the total number of degrees of freedom of the element.
2. does not have any preferred directions.
3. allows the element to undergo rigid-body movement without any internal strain.
4. is able to represent states of constant stress or strain.
5. satisfies the compatibility of displacements along the boundaries with adjacent elements.

Elements that meet both 3 and 4 are known as complete elements.
A polynomial is the most common form of displacement function. Mathematics of polynomials are

easy to handle in formulating the desired equations for various elements and convenient in digital
computation. The degree of approximation is governed by the stage at which the function is truncated.
Solutions closer to exact solutions can be obtained by including a greater number of terms. The poly-
nomials are of the general form

(47.153)

The coefficient a’s are known as generalized displacement amplitudes. The general polynomial form for
a two-dimensional problem can be given as

FIGURE 47.87  Typical examples of finite element mesh.
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in which

(47.154)

These polynomials can be truncated at any desired degree to give constant, linear, quadratic, or higher
order functions. For example, a linear model in the case of a two-dimensional problem can be given as

(47.155)

A quadratic function is given by

(47.156)

Pascal’s triangle, shown below, can be used for the purpose of achieving isotropy, i.e., to avoid displace-
ment shapes that change with a change in the local coordinate system.

Nodal Degrees of Freedom

The deformation of the finite element is specified completely by the nodal displacement, rotations, and/or
strains, which are referred to as degrees of freedom. Convergence, geometric isotropy, and potential energy
function are the factors that determine the minimum number of degrees of freedom necessary for a given
element. Additional degrees of freedom beyond the minimum number may be included for any element
by adding secondary external nodes, and such elements with additional degrees of freedom are called
higher order elements. The elements with more additional degrees of freedom become more flexible.

Isoparametric Elements

The scope of finite element analysis is also measured by the variety of element geometries that can be
constructed. Formulation of element stiffness equations requires the selection of displacement expressions
with as many parameters as there are node point displacements. In practice, for planar conditions, only
the four-sided (quadrilateral) element finds as wide an application as the triangular element. The simplest
form of quadrilateral, the rectangle, has four node points and involves two displacement components at
each point, for a total of eight degrees of freedom. In this case one would choose four-term expressions
for both u and v displacement fields. If the description of the element is expanded to include nodes at
the midpoints of the sides, an eight-term expression would be chosen for each displacement component.

The triangle and rectangle can approximate the curved boundaries only as a series of straight line
segments. A closer approximation can be achieved by means of isoparametric coordinates. These are
nondimensionalized curvilinear coordinates whose description is given by the same coefficients as are
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employed in the displacement expressions. The displacement expressions are chosen to ensure continuity
across element interfaces and along supported boundaries, so that geometric continuity is ensured when
the same forms of expressions are used as the basis of description of the element boundaries. The elements
in which the geometry and displacements are described in terms of the same parameters and are of the
same order are called isoparametric elements. The isoparametric concept enables one to formulate ele-
ments of any order that satisfy the completeness and compatibility requirements and that have isotropic
displacement functions.

Isoparametric Families of Elements

Definitions and Justifications

For example, let ui represent nodal displacements and xi represent nodal x coordinates. The interpolation
formulas are

where Ni and N are shape functions written in terms of the intrinsic coordinates. The value of u and the
value of x at a point within the element are obtained in terms of nodal values of ui and xi from the above
equations when the (intrinsic) coordinates of the internal point are given. Displacement components v
and w in the y and z directions are treated in a similar manner.

The element is isoparametric if m = n, Ni = N, and the same nodal points are used to define both
element geometry and element displacement (Fig. 47.88a); the element is subparametric if m > n, the
order of Ni is larger than N¢i (Fig. 47.88b); the element is superparametric if m < n, the order of Ni is
smaller than N¢i (Fig. 47.88c). The isoparametric elements can correctly display rigid-body and constant-
strain modes.

Element Shape Functions

The finite element method is not restricted to the use of linear elements. Most finite element codes
commercially available allow the user to select between elements with linear or quadratic interpolation
functions. In the case of quadratic elements, fewer elements are needed to obtain the same degree of
accuracy in the nodal values. Also, the two-dimensional quadratic elements can be shaped to model a
curved boundary. Shape functions can be developed based on the following properties:

1. Each shape function has a value of 1 at its own node and is zero at each of the other nodes.
2. The shape functions for two-dimensional elements are zero along each side that the node does

not touch.
3. Each shape function is a polynomial of the same degree as the interpolation equation. Shape

functions for typical elements are given in Fig. 47.89a and b.

Formulation of Stiffness Matrix

It is possible to obtain all the strains and stresses within the element and to formulate the stiffness matrix
and a consistent load matrix once the displacement function has been determined. This consistent load
matrix represents the equivalent nodal forces that replace the action of external distributed loads.

FIGURE 47.88  (a) Isoparametric element. (b) Subparametric element. (c) Superparametric element.

(a) (b) (c)

u       x
i=1

m

i=1

n
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As an example, let us consider a linearly elastic element of any of the types shown in Fig. 47.90. The
displacement function may be written in the form

(47.157)

in which {f} may have two components {u, v} or simply be equal to w, [P] is a function of x and y only,
and {A} is the vector of undetermined constants. If Eq. (47.157) is applied repeatedly to the nodes of the
element one after the other, we obtain a set of equations of the form

(47.158)

in which {D*} is the nodal parameters and [C] is the relevant nodal coordinates. The undetermined
constants {A} can be expressed in terms of the nodal parameters {D*} as

(47.159)

FIGURE 47.89 Shape functions for typical elements.
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Substituting Eq. (47.159) into (47.157)

(47.160)

Constructing the displacement function directly in terms of the nodal parameters, one obtains

(47.161)

where [L] is a function of both (x, y) and (x, y)i,j,m given by

(47.162)

FIGURE 47.89  (continued).

Element
name

Configuration

η

η

η

ξ

ξ

ξ

(1,1)

(1,1)

(1,0)

(0,1)

(1,−1)

(1,−1)

(−1,1) 

(−1,1) 

(−1,0) 

(−1,−1) 

(−1,−1) 
(0,−1) 

4

1

1

2

2 3
4

67 5

8

3

1 2 3 4
5

6
7810 9

11

12

(−1
3,1) (13,1)

(1,13)(−1,13)

(−1,−1
3)

(1
3,−1)(−1

3,−1)

(1,−1
3)

(1,1)

(1,−1)(−1,−1)

(−1,1)

Four-node
plane

quadrilateral

Eight-node
plane 

quadrilateral

Twelve-node
plane 

quadrilateral

DOF

u, v

u, v

u, v

Shape functions

Ni = 14 (1 + ξ0)(1 + η0);

Ni =  14 (1 + ξ0)(1 + η0)

Ni = 3
1
2(1 + ξ0)(1 + η0)

Ni = 3
9
2(1 + ξ0)(1 + η2)

Ni = 3
9
2(1 + η0)(1 − ξ2)

Ni =  12 (1 − ξ2)(1 + η0)

Ni = 12 (1 − η2)(1 + ξ0)

i = 1, 2, 3, 4

i = 1, 3, 5, 7 

i = 2,6

i = 4, 8

i = 1, 4, 7, 10

(ξ0 + η0 − 1);

(−10 + 9(ξ2 + η2) )

(1 + 9η0)

i = 5, 6, 11, 12

(1 + 9ξ0)

i = 2, 3, 8, 9

Serial
no.

1

2

3

f P C D{ } = [ ][ ] { }-1
*

f L D{ } = [ ]{ }*

L P C[ ] = [ ][ ]-1
© 2003 by CRC Press LLC



Theory and Analysis of Structures 47-99
The various components of strain can be obtained by appropriate differentiation of the displacement
function. Thus,

(47.163)

FIGURE 47.89  (continued).
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[B] is derived by differentiating appropriately the elements of [L] with respect to x and y. The stresses {s}
in a linearly elastic element are given by the product of the strain and a symmetrical elasticity matrix [E].
Thus,

or

(47.164)

The stiffness and the consistent load matrices of an element can be obtained using the principle of
minimum total potential energy. The potential energy of the external load in the deformed configuration
of the element is written as

(47.165)

In Eq. (47.165) {Q*} represents concentrated loads at nodes, and {q} the distributed loads per unit
area. Substituting for {f}T from Eq. (47.161), one obtains

(47.166)

Note that the integral is taken over the area a of the element. The strain energy of the element integrated
over the entire volume v, is given as

Substituting for {e} and {s} from Eqs. (47.163) and (47.164), respectively,

(47.167)

FIGURE 47.90  Degrees of freedom: (a) triangular plane stress element, (b) triangular bending element.
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The total potential energy of the element is

V = U + W
or

(47.168)

Using the principle of minimum total potential energy, we obtain

or

(47.169)

where

(47.170a)

and

(47.170b)

Plates Subjected to In-Plane Forces

The simplest element available in two-dimensional stress analysis is the triangular element. The stiffness
and consistent load matrices of such an element will now be obtained by applying the equation derived
in the previous section.

Consider the triangular element shown in Fig. 47.90a. There are two degrees of freedom per node and
a total of six degrees of freedom for the entire element. We can write

u = A 1 + A 2x + A 3y

and

v = A 4 + A 5x + A 6y

expressed as

(47.171)

or

(47.172)
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Once the displacement function is available, the strains for a plane problem are obtained from

and

Matrix [B], relating the strains to the nodal displacement {D*}, is thus given as

(47.173)

bi, ci, etc. are constants related to the nodal coordinates only. The strains inside the element must all be
constant and hence the name of the element.

For derivation of strain matrix, only isotropic material is considered. The plane stress and plane strain
cases can be combined to give the following elasticity matrix, which relates the stresses to the strains:

(47.174)

where

and

and for both cases,

and
–
E is the modulus of elasticity.

The stiffness matrix can now be formulated according to Eq. (47.170a)

where D is the area of the element.
The stiffness matrix is given by Eq. (47.10.37a) as
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The stiffness matrix has been worked out algebraically to be

Beam Element

The stiffness matrix for a beam element with two degrees of freedom (one deflection and one rotation)
can be derived in the same manner as for other finite elements using Eq. (47.170a).

The beam element has two nodes, one at each end, and two degrees of freedom at each node, giving
it a total of four degrees of freedom. The displacement function can be assumed as

i.e.,

or

With the origin of the x and y axis at the left-hand end of the beam, we can express the nodal
displacement parameters as
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or

where

and

Using Eq. (47.177), we obtain

(47.175)

or

(47.176)

Neglecting shear deformation

Substituting Eq. (47.191) into Eq. (47.176) and the result into Eq. (47.192)

or

The moment–curvature relationship is given by
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The stiffness matrix can now be obtained from Eq. (47.170a) written in the form

with the integration over the length of the beam. Substituting for [B] and [E], we obtain

or

(47.178)

Plate Element

For the rectangular bending element shown in Fig. 47.91 with three degrees of freedom (one deflection
and two rotations) at each node, the displacement function can be chosen as a polynomial with 12
undetermined constants:

(47.179)

FIGURE 47.91  Rectangular bending element.
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or

The displacement parameter vector is defined as

where

As in the case of beams, it is possible to derive from Eq. (47.179) a system of 12 equations relating
{D*} to constants {A}. The last equation

(47.180)

The curvatures of the plate element at any point (x, y) are given by

By differentiating Eq. (47.180), we obtain

(47.181)

or

(47.182)

where
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and

(47.184)
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For an isotropic slab, the moment–curvature relationship is given by

(47.185)

(47.186)

and

(47.187)

For orthotropic plates with the principal directions of orthotropy coinciding with the x and y axes,
no additional difficulty is experienced. In this case we have

(47.188)

where Dx, D1, Dy, and Dxy are the orthotropic constants used by Timoshenko and Woinowsky-Krieger
(1959), and

(47.189)

where Ex, Ey, nx, ny, and G are the orthotropic material constants and h is the plate thickness.
Unlike the strain matrix for the plane stress triangle (see Eq. (47.173)), the stress and strain in the

present element vary with x and y. In general we calculate the stresses (moments) at the four corners.
These can be expressed in terms of the nodal displacements by Eq. (47.164), which, for an isotropic
element, take the form
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The stiffness matrix corresponding to the 12 nodal coordinates can be calculated by

(47.191)

For an isotropic element, this gives

(47.192)

where

(47.193)

(47.194)

and [K]
–

is given by the matrix shown in Eq. (47.195).
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If the element is subjected to a uniform load in the z direction of intensity q, the consistent load vector
becomes

(47.196)

where {Q*
q} is 12 forces corresponding to the nodal displacement parameters. Evaluating the integrals in

this equation gives

(47.197)

More details on the finite element method can be found in Desai and Abel (1972) and Ghali and
Neville (1978).

47.11 Inelastic Analysis

An Overall View

Inelastic analyses can be generalized into two main approaches. The first approach is known as plastic
hinge analysis. This analysis assumes that structural elements remain elastic except at critical regions
where plastic hinges are allowed to form. The second approach is known as spread of plasticity analysis.
This analysis follows explicitly the gradual spread of yielding throughout the structure. Material yielding
in the member is modeled by discretization of members into several line elements and subdivision of
the cross sections into many “fibers.” Although the spread of plasticity analysis can predict accurately the
inelastic response of the structure, the plastic hinge analysis is considered to be computationally more
efficient and less expensive to execute.

If the geometric nonlinear effect is not considered, the plastic hinge analysis predicts the maximum
load of the structure corresponding to the formation of a plastic collapse mechanism (Chen and Sohal,
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1995). First-order plastic analysis is finding considerable application in continuous beams and low-rise
building frames where members are loaded primarily in flexure. For tall building frames and frames with
slender columns subjected to side sway, the interaction between yielding and instability may lead to
collapse prior to the formation of a plastic mechanism (SSRC, 1988). If an incremental analysis is carried
out based on the updated deformed geometry of the structure, the analysis is termed second order. The
need for a second-order analysis of steel frames is increasing in view of the modern codes and standards
that give explicit permission for the engineer to compute load effects from a direct second-order analysis.

This section presents the virtual work principle to explain the fundamental theorems of plastic hinge
analysis. Simple and approximate techniques of practical plastic analysis methods are then introduced.
The concept of hinge-by-hinge analysis is presented. The more advanced topics, such as second-order
elastic-plastic hinge, refined plastic hinge analysis, and spread of plasticity analysis, are covered in the
Stability of Structures section.

Ductility

Plastic analysis is strictly applicable for materials that can undergo large deformation without fracture.
Steel is one such material, with an idealized stress–strain curve, as shown in Fig. 47.92. When steel is
subjected to tensile force, it will elongate elastically until the yield stress is reached. This is followed by
an increase in strain without much increase in stress. Fracture will occur at very large deformation. This
material idealization is generally known as elastic-perfectly plastic behavior. For a compact section, the
attainment of initial yielding does not result in failure of a section. The compact section will have reserved
plastic strength that depends on the shape of the cross-section. The capability of the material to deform
under a constant load without decrease in strength is the ductility characteristic of the material.

Redistribution of Forces

The benefit of using a ductile material can be demonstrated from an example of a three-bar system,
shown in Fig. 47.93. From the equilibrium condition of the system,

(47.198)

Assuming the elastic stress–strain law, the displacement and force relationship of the bars may be written
as:

(47.199)

FIGURE 47.92  Idealized stress–strain curve.
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Since L2 = L1/2 = L/2, Eq. (47.199) can be written as

(47.200)

where T1 and T2 = the tensile forces in the rods
L1 and L2 = the lengths of the rods

A = the cross-section area
E = the elastic modulus.

Solving Eqs. (47.199) and (47.200) for T2 :

(47.201)

The load at which the structure reaches the first yield (in Fig. 47.93b) is determined by letting T2 = syA.
From Eq. (47.201),

(47.202)

The corresponding displacement at first yield is

(47.203)

FIGURE 47.93  Force redistribution in a three-bar system: (a) elastic, (b) partially yielded, (c) fully plastic, (d) load-
deflection curve.
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After bar 2 is yielded, the system continues to take additional load until all the three bars reach their
maximum strength of syA, as shown in Fig. 47.93c. The plastic limit load of the system is thus written as

(47.204)

The process of successive yielding of bars in this system is known as inelastic redistribution of forces.
The displacement at the incipient of collapse is

(47.205)

Figure 47.93d shows the load-displacement behavior of the system when subjected to increasing force.
As load increases, bar 2 will reach its maximum strength first. As it yields, the force in the member
remains constant, and additional loads on the system are taken by the less critical bars. The system will
eventually fail when all three bars are fully yielded. This is based on an assumption that material strain
hardening does not take place.

Concept of Plastic Hinge

A plastic hinge is said to form in a structural member when the cross-section is fully yielded. If material
strain hardening is not considered in the analysis, a fully yielded cross-section can undergo indefinite
rotation at a constant restraining plastic moment Mp.

Most of the plastic analyses assume that plastic hinges are concentrated at zero length plasticity. In
reality, the yield zone is developed over a certain length, normally called the plastic hinge length, depending
on the loading, boundary conditions, and geometry of the section. The hinge lengths of beams (DL) with
different support and loading conditions are shown in Fig. 47.94a to c. Plastic hinges are developed first
at the sections subjected to the greatest moment. The possible locations for plastic hinges to develop are
at the points of concentrated loads, at the intersections of members involving a change in geometry, and
at the point of zero shear for members under uniform distributed load.

Plastic Moment Capacity

A knowledge of full plastic moment capacity of a section is important in plastic analysis. It forms the
basis for limit load analysis of the system. Plastic moment is the moment resistance of a fully yielded
cross section. The cross-section must be fully compact in order to develop its plastic strength. The
component plates of a section must not buckle prior to the attainment of full moment capacity.

The plastic moment capacity, Mp, of a cross-section depends on the material yield stress and the section
geometry. The procedure for the calculation of Mp may be summarized in the following two steps:

1. The plastic neutral axis of a cross-section is located by considering equilibrium of forces normal
to the cross section. Figure 47.95a shows a cross-section of arbitrary shape subjected to increasing
moment. The plastic neutral axis is determined by equating the force in compression (C) to that
in tension (T). If the entire cross-section is made of the same material, the plastic neutral axis can
be determined by dividing the cross-sectional area into two equal parts. If the cross-section is
made of more than one type of material, the plastic neutral axis must be determined by summing
the normal force and letting the force equal zero.

2. The plastic moment capacity is determined by obtaining the moment generated by the tensile and
compressive forces.

Consider an arbitrary section with area 2A and with one axis of symmetry of which the section is
strengthened by a cover plate of area a, as shown in Fig. 47.95b. Further assume that the yield strengths
of the original section and the cover plate are syo and syc, respectively. At the full plastic state, the total
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axial force acting on the cover plate is asyc. In order to maintain equilibrium of force in the axial direction,
the plastic neutral axis must shift down from its original position by a¢, i.e.,

(47.206)

The resulting plastic capacity of the “built-up” section may be obtained by summing the full plastic
moment of the original section and the moment contribution by the cover plate. The additional capacity
is equal to the moment caused by the cover plate force asyc and a force due to the fictitious stress 2syo

FIGURE 47.94  Hinge lengths of beams with different support and loading conditions.

FIGURE 47.95  Cross-section of arbitrary shape subjected to bending.
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acting on the area a¢, resulting from the shifting of the plastic neutral axis from the tension zone to the
compression zone, as shown in Fig. 47.95c.

Figure 47.96 shows the computation of plastic moment capacity of several shapes of cross-sections.
Based on the principle developed in this section, the plastic moment capacities of typical cross-sections
may be generated. Additional information for sections subjected to combined bending, torsion, shear,
and axial load can be found in Mrazik et al. (1987).

FIGURE 47.96 Plastic moment capacities of sections.
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Theory of Plastic Analysis

There are two main assumptions for first-order plastic analysis:

1. The structure is made of ductile material that can undergo large deformations beyond elastic limit
without fracture or buckling.

2. The deflections of the structure under loading are small so that second-order effects can be ignored.

An “exact” plastic analysis solution must satisfy three basic conditions. They are equilibrium, mecha-
nism, and plastic moment conditions. The plastic analysis disregards the continuity condition as required
by the elastic analysis of indeterminate structures. The formation of a plastic hinge in members leads to
discontinuity of slope. If sufficient plastic hinges are formed to allow the structure to deform into a
mechanism, this is a mechanism condition. Since plastic analysis utilizes the limit of resistance of a
member’s plastic strength, the plastic moment condition is required to ensure that the resistance of the
cross-sections is not violated anywhere in the structure. Lastly, the equilibrium condition, which is the
same condition to be satisfied in elastic analysis, requires that the sum of all applied forces and reactions
be equal to zero and that all internal forces be self-balanced.

When all three conditions are satisfied, the resulting plastic analysis for the limiting load is the “correct”
limit load. The collapse loads for simple structures such as beams and portal frames can be solved easily
using a direct approach or through visualization of the formation of “correct” collapse mechanism.
However, for more complex structures, the exact solution satisfying all three conditions may be difficult
to predict. Thus, simple techniques using approximate methods of analysis are often used to assess these
solutions. These techniques, named equilibrium and mechanism methods, will be discussed in the
subsequent sections.

Principle of Virtual Work

The virtual work principle may be applied to relate a system of forces in equilibrium to a system of
compatible displacements. For example, if a structure in equilibrium is given a set of small compatible
displacement, then the work done by the external loads on these external displacements is equal to the
work done by the internal forces on the internal deformation. In plastic analysis, internal deformations
are assumed to be concentrated at plastic hinges. The virtual work equation for hinged structures can
be written in explicit form as

(47.207)

where Pi is an external load and Mi is an internal moment at a hinge location. Both Pi and Mi constitute
an equilibrium set, and they must be in equilibrium. dj is the displacement under point load Pi and in
the direction of the load. qj is the plastic hinge rotation under the moment Mi. Both dj and qj constitute
a displacement set, and they must be compatible with each other.

Lower Bound Theorem

For a given structure, if there exists any distribution of bending moments in the structure that satisfies
both the equilibrium and plastic moment conditions, then the load factor, lL, computed from this
moment diagram must be equal to or less than the collapse load factor, lc, of the structure. The lower
bound theorem provides a safe estimate of the collapse limit load, i.e., lL £ lL.

Upper Bound Theorem

For a given structure subjected to a set of applied loads, a load factor, lu, computed based on an assumed
collapse mechanism must be greater than or equal to the true collapse load factor, lc. The upper bound
theorem, which uses only the mechanism condition, overestimates or equals the collapse limit load, i.e.,
lu ≥ lc.

Â = ÂP Mi j i jd q
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Uniqueness Theorem

A structure at collapse has to satisfy three conditions. First, a sufficient number of plastic hinges must
be formed to turn the structure, or part of it, into a mechanism; this is called the mechanism condition.
Second, the structure must be in equilibrium, i.e., the bending moment distribution must satisfy equi-
librium with the applied loads. Finally, the bending moment at any cross-section must not exceed the
full plastic value of that cross-section; this is called the plastic moment condition. The theorem simply
implies that the collapse load factor, lc, obtained from the three basic conditions (mechanism, equilib-
rium, and plastic moment) has a unique value.

The proof of the three theorems can be found in Chen and Sohal (1995). A useful corollary of the lower
bound theorem is that if at a load factor, l, it is possible to find a bending moment diagram that satisfies
both the equilibrium and moment conditions but not necessarily the mechanism condition, then the
structure will not collapse at that load factor, unless the load happens to be the collapse load. A corollary
of the upper bound theorem is that the true load factor at collapse is the smallest possible one that can
be determined from a consideration of all possible mechanisms of collapse. This concept is very useful in
finding the collapse load of the system from various combinations of mechanisms. From these, it can be
seen that the lower bound theorem is based on the equilibrium approach, while the upper bound technique
is based on the mechanism approach. These two alternative approaches to an exact solution, called the
equilibrium method and the mechanism method, will be discussed in the following sections.

Equilibrium Method

The equilibrium method, which employs the lower bound theorem, is suitable for the analysis of con-
tinuous beams and frames in which the structural redundancies are not exceeding 2. The procedures of
obtaining the equilibrium equations of a statically indeterminate structure and evaluating its plastic limit
load are as follows:

To obtain the equilibrium equations of a statically indeterminate structure:

1. Select the redundant(s).
2. Free the redundants and draw a moment diagram for the determinate structure under the applied

loads.
3. Draw a moment diagram for the structure due to the redundant forces.
4. Superimpose the moment diagrams in steps 2 and 3.
5. Obtain the maximum moment at critical sections of the structure utilizing the moment diagram

in step 4.

To evaluate the plastic limit load of the structure:

6. Select value(s) of redundant(s) such that the plastic moment condition is not violated at any
section in the structure.

7. Determine the load corresponding to the selected redundant(s).
8. Check for the formation of a mechanism. If a collapse mechanism condition is met, then the

computed load is the exact plastic limit load. Otherwise, it is a lower bound solution.
9. Adjust the redundant(s) and repeat steps 6 to 9 until the exact plastic limit load is obtained.

Example 47.11: Continuous Beam

Figure 47.97a shows a two-span continuous beam that is analyzed using the equilibrium method. The
plastic limit load of the beam is calculated based on the step-by-step procedure described in the previous
section as follows:

1. Select the redundant force as M1, which is the bending moment at the intermediate support, as
shown in Fig. 47.97b.

2. Free the redundants and draw a moment diagram for the determinate structure under the applied
loads, as shown in Fig. 47.97c.
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3. Draw a moment diagram for the structure due to the redundant moment M1, as shown in Fig. 47.97d.
4. Superimpose the moment diagrams in Fig. 47.97c and d, and the results are shown in Fig. 47.97e.

The moment diagram in Fig. 47.97e is redrawn on a single straight baseline. The critical moment in the
beam is

(47.208)

The maximum moment at critical sections of the structure utilizing the moment diagram in Fig. 47.97e
is obtained. By letting Mcr = Mp, the resulting moment distribution is shown in Fig. 47.97f.

A lower bound solution may be obtained by selecting a value of redundant moment M1. For example,
if M1 = 0 is selected, the moment diagram is reduced to that shown in Fig. 47.97c. By equating the
maximum moment in the diagram to the plastic moment, Mp, we have

(47.209)

which gives P = P1 as

(47.210)

FIGURE 47.97 Analysis of a two-span continuous beam using equilibrium method.
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The moment diagram in Fig. 47.97c shows a plastic hinge formed at each span. Since two plastic hinges
in each span are required to form a plastic mechanism, the load P1 is a lower bound solution.
However, setting the redundant moment M1 equal to the plastic moment Mp and letting the maximum
moment in Fig. 47.97f equal the plastic moment, we have

(47.211)

which gives P = P2 as

(47.212)

Since a sufficient number of plastic hinges has formed in the beams (Fig. 47.97g) to arrive at a collapse
mechanism, the computed load, P2, is the exact plastic limit load.

Example 47.12: Portal Frame

A pin-based rectangular frame is subjected to vertical load V and horizontal load H, as shown in
Fig. 47.98a. All the members of the frame are made of the same section with moment capacity Mp. The
objective is to determine the limit value of H if the frame’s width-to-height ratio, L/h, is 1.0.
Procedure:

The frame has one degree of redundancy. The redundancy for this structure can be chosen as the
horizontal reaction at E. Figure 47.98b and c show the resulting determinate frame loaded by the applied
loads and redundant force. The moment diagrams corresponding to these two loading conditions are
shown in Fig. 47.98d and e.

The horizontal reaction S should be chosen in such a manner that all three conditions — equilibrium,
plastic moment, and mechanism — are satisfied. Formation of two plastic hinges is necessary to form a

FIGURE 47.98  Analysis of portal frame using equilibrium method.
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mechanism. The plastic hinges may be formed at B, C, and D. Assuming that a plastic hinge is formed
at D, as shown in Fig. 47.98e, we have

(47.213)

Corresponding to this value of S, the moments at B and C can be expressed as

(47.214)

(47.215)

The condition for the second plastic hinge to form at B is |MB| > |MC|. Form Eqs. (47.214) and (47.215)
we have

 (47.216)

and

(47.217)

The condition for the second plastic hinge to form at C is |MC| > |MB|. Form Eqs. (47.214) and (47.215)
we have

 (47.218)

and

(47.219)

For a particular combination of V, H, L, and h, the collapse load for H can be calculated.
When L/h = 1 and V/H = 1/3, we have

(47.220)

(47.221)

Since |MB| > |MC|, the second plastic hinge will form at B, and the corresponding value for H is

(47.222)

When L/h = 1 and V/H = 3, we have

(47.223)

(47.224)
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Since |MC| > |MB|, the second plastic hinge will form at C, and the corresponding value for H is

(47.225)

Mechanism Method

This method, which is based on the upper bound theorem, states that the load computed on the basis
of an assumed failure mechanism is never less than the exact plastic limit load of a structure. Thus, it
always predicts the upper bound solution of the collapse limit load. It can also be shown that the minimum
upper bound is the limit load itself. The procedure of using the mechanism method has the following
two steps:

1. Assume a failure mechanism and form the corresponding work equation from which an upper
bound value of the plastic limit load can be estimated.

2. Write the equilibrium equations for the assumed mechanism and check the moments to see
whether the plastic moment condition is met everywhere in the structure.

To obtain the true limit load using the mechanism method, it is necessary to determine every possible
collapse mechanism, some of which are the combinations of a certain number of independent mecha-
nisms. Once the independent mechanisms have been identified, a work equation may be established for
each combination, and the corresponding collapse load is determined. The lowest load among those
obtained by considering all the possible combinations of independent mechanisms is the correct plastic
limit load.

Independent Mechanisms

The number of possible independent mechanisms, n, for a structure can be determined from the following
equation:

(47.226)

where N is the number of critical sections at which plastic hinges might form and R is the degrees of
redundancy of the structure.

Critical sections generally occur at the points of concentrated loads, at joints where two or more
members are meeting at different angles, and at sections where there is an abrupt change in section
geometries or properties. To determine the number of redundancies (R) of a structure, it is necessary to
free sufficient supports or restraining forces in structural members so that the structure becomes an
assembly of several determinate substructures.

Figure 47.99 shows two examples. The cuts that are made in each structure reduce the structural
members to either cantilevers or simply supported beams. The fixed-end beam requires a shear force
and a moment to restore continuity at the cut section, and thus R = 2. For the two-story frame, an axial
force, shear, and moment are required at each cut section for full continuity, and thus R = 12.

Types of Mechanisms

Figure 47.100a shows a frame structure subjected to a set of loading. The frame may fail by different
types of collapse mechanisms dependent on the magnitude of loading and the frame’s configurations.
The collapse mechanisms are:

1. Beam: possible mechanisms of this type are shown in Fig. 47.100b.
2. Panel: the collapse mode is associated with side sway, as shown in Fig. 47.100c.
3. Gable: the collapse mode is associated with the spreading of column tops with respect to the

column bases, as shown in Fig. 47.100d.

H
M

h
p=

1 6.

n N R= -
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4. Joint: the collapse mode is associated with the rotation of joints of which the adjoining members
developed plastic hinges and deformed under an applied moment, as shown in Fig. 47.100e.

5. Combined: it can be a partial collapse mechanism, as shown in Fig. 47.100f, or it may be a complete
collapse mechanism, as shown in Fig. 47.100g.

FIGURE 47.99 Number of redundants in: (a) a beam, (b) a frame.

FIGURE 47.100 Typical plastic mechanisms.
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The principal rule for combining independent mechanisms is to obtain a lower value of collapse load.
The combinations are selected in such a way that the external work becomes a maximum and the internal
work becomes a minimum. Thus the work equation would require that the mechanism involve as many
applied loads as possible and at the same time eliminate as many plastic hinges as possible. This procedure
is illustrated in the following example.

Example 47.13: Rectangular Frame

A fixed-end rectangular frame has a uniform section with Mp = 20 and carries the load shown in
Fig. 47.101. Determine the value of load ratio l at collapse.
Solution:

Number of possible plastic hinges: N = 5
Number of redundancies: R = 3
Number of independent mechanisms: N – R = 2

The two independent mechanisms are shown in Fig. 47.101b and c, and the corresponding work equations
are

Panel mechanism: 20l = 4(20) = 80 fi l = 4
Beam mechanism: 30l = 4(20) = 80 fi l = 2.67

FIGURE 47.101  Collapse mechanisms of a fixed base portal frame.
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The combined mechanisms are now examined to see whether they will produce a lower l value. It is
observed that only one combined mechanism is possible. The mechanism is shown in Fig. 47.101c and
involves cancellation of the plastic hinge at B. The calculation of the limit load is described below:

Panel mechanism: 20l = 4(20)
Beam mechanism: 30l = 4(20)
Addition: 50l = 8(20)
Cancel of plastic hinge: –2(20)
Combined mechanism: 50l = 6(20) fi l = 2.4

The combined mechanism results in a smaller value for l, and no other possible mechanism can produce
a lower load. Thus, l = 2.4 is the collapse load.

Example 47.14: Frame Subjected to Distributed Load

When a frame is subjected to distributed loads, the maximum moment and hence the plastic hinge
location is not known in advance. The exact location of the plastic hinge may be determined by writing
the work equation in terms of the unknown distance and then maximizing the plastic moment by formal
differentiation.

Consider the frame shown in Fig. 47.102a. The side sway collapse mode in Fig. 47.102b leads to the
following work equation:

which gives

The beam mechanism of Fig. 47.102c gives

which gives

In fact the correct mechanism is shown in Fig. 47.102d, in which the distance Z from the plastic hinge
location is unknown. The work equation is

which gives

To maximize Mp, the derivative of Mp is set to zero, i.e.,
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which gives

and

In practice, uniform load is often approximated by applying several equivalent point loads to the member
under consideration. Plastic hinges thus can be assumed to form only at the concentrated load points,
and the calculations become simpler when the structural system is getting more complex.

Example 47.15: Gable Frame

The mechanism method is used to determine the plastic limit load of the gable frame shown in Fig. 47.103.
The frame is composed of members with a plastic moment capacity of 270 kip-in. The column bases are
fixed. The frame is loaded by a horizontal load H and vertical concentrated load V. A graph from which
V and H cause the collapse of the frame is to be produced.

FIGURE 47.102 Portal frame subjected to a combined uniform distributed load and horizontal load.
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Solution:
Consider the three modes of collapse as follows:

Mechanism 1: plastic hinges form at A, C, D, and E:
The mechanism is shown in Fig. 47.103b. The instantaneous center O for member CD is located at the
intersection of AC and ED extended. From similar triangles ACC1 and OCC2, we have

which gives

From triangles ACC¢ and CC¢O, we have

 

FIGURE 47.103 Collapse mechanisms of a fixed base gable frame.
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which gives

Similarly, from triangles ODD¢ and EDD¢, the rotation at E is given as

which gives

From the hinge rotations and displacements, the work equation for this mechanism can be written as

Substituting values for y and f and simplifying, we have

V + 2.25H = 180

Mechanism 2: mechanism with hinges at B, C, D, and E:
Figure 47.103c shows the mechanism in which the plastic hinge rotations and displacements at the load
points can be expressed in terms of the rotation of member CD about the instantaneous center O.

FIGURE 47.103 (continued).
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From similar triangles BCC1 and OCC2, we have

which gives

From triangles BCC¢ and CC¢O, we have

which gives

Similarly, from triangles ODD¢ and EDD¢, the rotation at E is given as

which gives

The work equation for this mechanism can be written as

 

Substituting values of y and f and simplifying, we have

V + 1.5H = 150

Mechanism 3: mechanism with hinges at A, B, D, and E:
The hinge rotations and displacements corresponding to this mechanism are shown in Fig. 47.103d. The
rotation of all hinges is q. The horizontal load moves by 13.5q, but the horizontal load has no vertical
displacement. The work equation becomes

or

H = 80

The interaction equations corresponding to the three mechanisms are plotted in Fig. 47.104. By carrying
out moment checks, it can be shown that mechanism 1 is valid for portion AB of the curve, mechanism
2 is valid for portion BC, and mechanism 3 is valid only when V = 0.
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Analysis Aids for Gable Frames

Pin-Based Gable Frames

Figure 47.105a shows a pinned-end gable frame subjected to a uniform gravity load lwL and a horizontal
load l1H at the column top. The collapse mechanism is shown in Fig. 47.105b. The work equation is
used to determine the plastic limit load. First, the instantaneous center of rotation O is determined by
considering similar triangles,

(47.227)

and

(47.228)

From the horizontal displacement of D,

(47.229)

of which

(47.230)

where k = h2/h1. From the vertical displacement at C,

(47.231)

The work equation for the assumed mechanism is

(47.232)

FIGURE 47.104 Vertical load and horizontal force interaction curve for collapse analysis of gable frame.
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which gives

(47.233)

Differentiating Mp in Eq. (47.233) with respect to x and solving for x,

(47.234)

where

(47.235)

Substituting for x in the expression for Mp gives

(47.236)

FIGURE 47.105  Pinned base gable frame subjected to a combined uniform distributed load and horizontal load.

(a)

A

B

C

D

E
L

h1

h2 = kh1
λ1H

λwL

1 − x
L

h2

h1

xL xLA

B

L

C F

(c)

E

θ
θ

ff

D

0

0

xL

2xh2

h1
θ

f

β
B

A

F C

L

(b)

E

D

(1 − x)h1 + 2xh2
x

M
x Hh x x wL

kxp =
-( ) + -( )

+( )
1 1 2

2 1
1 1

2l l

x
A

k
= - 1

A k Uk and U
Hh

wL
= +( ) -( ) =1 1

2 1 1
2        

l
l

M
wL U U

A A Ukp =
+( )

+ - +
È

Î
Í

˘

˚
˙

l 2

2 28

2

2 1
© 2003 by CRC Press LLC



47-130 The Civil Engineering Handbook, Second Edition
In the absence of horizontal loading, the gable mechanism, as shown in Fig. 47.105c, is the failure mode.
In this case, letting H = 0 and U = 0 gives (Horne, 1964):

(47.237)

Equation (47.236) can be used to produce a chart, as shown in Fig. 47.106, by which the value of Mp

can be determined rapidly by knowing the values of

(47.238)

Fixed-Base Gable Frames

A similar chart can be generated for fixed-base gable frames, as shown in Fig. 47.107. Thus, if the values
of loading, lw and l1H, and frame geometry, h1, h2, and L, are known, the parameters k and U can be
evaluated and the corresponding value of Mp/(lwL2) can be read directly from the appropriate chart.
The required value of Mp is obtained by multiplying the value of Mp/(lwL2) by lwL2.

Grillages

Grillage is a type of structure that consists of straight beams lying on the same plane, subjected to loads
acting perpendicular to the plane. An example of such a structure is shown in Fig. 47.108. The grillage
consists of two equal simply supported beams of span length 2L and full plastic moment Mp. The two
beams are connected rigidly at their centers, where a concentrated load W is carried.

The collapse mechanism consists of four plastic hinges formed at the beams adjacent to the point load,
as shown in Fig. 47.108. The work equation is

FIGURE 47.106 Analysis chart for pinned base gable frame.
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of which the collapse load is

Six-Beam Grillage

A grillage consisting of six beams of span length 4L each and full plastic moment Mp is shown in
Fig. 47.109. A total load of 9W acts on the grillage, splitting into concentrated loads W at the nine nodes.
Three collapse mechanisms are possible. Ignoring member twisting due to torsional forces, the work
equations associated with the three collapse mechanisms are computed as follows:
Mechanism 1 (Fig. 47.110a):

FIGURE 47.107 Analysis chart for fixed gable frame.

FIGURE 47.108 Two-beam grillage system.

FIGURE 47.109  Six-beam grillage system.
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Work equation:

of which

Mechanism 2 (Fig. 47.110b):

FIGURE 47.110 Six-beam grillage system: (a) mechanism 1, (b) mechanism 2, (c) mechanism 3.
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Work equation:

of which

Mechanism 3 (Fig. 47.110c):

Work equation:

of which

The lowest upper bound load corresponds to mechanism 3. This can be confirmed by conducting a
moment check to ensure that bending moments anywhere are not violating the plastic moment condition.
Additional discussion of plastic analysis of grillages can be found in Baker and Heyman (1969) and
Heyman (1971).

Vierendeel Girders

Figure 47.111 shows a simply supported girder in which all members are rigidly joined and have the
same plastic moment Mp. It is assumed that axial loads in the members do not cause member instability.
Two possible collapse mechanisms are considered, as shown in Fig. 47.111b to c.

The work equation for mechanism 1 is

so that

The work equation for mechanism 2 is

or

It can be easily proved that the collapse load associated with mechanism 2 is the correct limit load. This
is done by constructing an equilibrium set of bending moments and checking that they are not violating
the plastic moment condition.
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Hinge-by-Hinge Analysis

Instead of finding the collapse load of the frame, it may be useful to obtain information about the
distribution and redistribution of forces prior to reaching the collapse load. Elastic-plastic hinge analysis
(also known as hinge-by-hinge analysis) determines the order of plastic hinge formation, the load factor
associated with each plastic hinge formation, and member forces in the frame between each hinge
formation. Thus the state of the frame can be defined at any load factor rather than only at the state of
collapse. This allows a more accurate determination of member forces at the design load level.

Educational and commercial software are now available for elastic-plastic hinge analysis (Chen and
Sohal, 1995). The computations of deflections for simple beams and multistory frames can be done using
the virtual work method (Chen and Sohal, 1995; ASCE, 1971; Beedle, 1958; Knudsen et al., 1953). The
basic assumption of first-order elastic-plastic hinge analysis is that the deformations of the structure are
insufficient to alter radically the equilibrium equations. This assumption ceases to be true for slender
members and structures, and the method gives unsafe predictions of limit loads.

47.12 Stability of Structures

Stability Analysis Methods

Several stability analysis methods have been utilized in research and practice. Figure 47.112 shows sche-
matic representations of the load-displacement results of a sway frame obtained from each type of analysis
to be considered.

Elastic Buckling Analysis

The elastic buckling load is calculated by linear buckling or bifurcation (or eigenvalue) analysis. The
buckling loads are obtained from the solutions of idealized elastic frames subjected to loads that do not

FIGURE 47.111 Collapse mechanism of a Vierendeel girder.
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produce direct bending in the structure. The only displacements that occur before buckling occurs are
those in the directions of the applied loads. When buckling (bifurcation) occurs, the displacements
increase without bound, assuming linearized theory of elasticity and small displacement, as shown by
the horizontal straight line in Fig. 47.112. The load at which these displacements occur is known as the
buckling load, commonly referred to as the bifurcation load. For structural models that actually exhibit
a bifurcation from the primary load path, the elastic buckling load is the largest load that the model can
sustain, at least within the vicinity of the bifurcation point, provided that the postbuckling path is in
unstable equilibrium. If the secondary path is in stable equilibrium, the load can still increase beyond
the critical load value.

Buckling analysis is a common tool for calculations of column effective lengths. The effective length
factor of a column member can be calculated using the procedure described later. The buckling analysis
provides useful indices of the stability behavior of structures; however, it does not predict actual behavior
of all structures, but of idealized structures with gravity loads applied only at the joints.

Second-Order Elastic Analysis

The analysis is formulated based on the deformed configuration of the structure. When derived rigorously,
a second-order analysis can include both the member curvature (P-d) and the side sway (P-D) stability
effects. The P-d effect is associated with the influence of the axial force acting through the member
displacement with respect to the rotated chord, whereas the P-D effect is the influence of the axial force
acting through the relative side sway displacements of the member ends. A structural system will become
stiffer when its members are subjected to tension. Conversely, the structure will become softer when its
members are in compression. Such behavior can be illustrated by a simple model shown in Fig. 47.113.
There is a clear advantage for a designer to take advantage of the stiffer behavior of tension structures.
However, the detrimental effects associated with second-order deformations due to compression forces
must be considered in designing structures subjected to predominant gravity loads.

Unlike the first-order analysis, in which solutions can be obtained in a rather simple and direct manner,
the second-order analysis often requires an iterative procedure to obtain solutions. The load-displacement
curve generated from a second-order elastic analysis will gradually approach the horizontal straight line,
which represents the buckling load obtained from the elastic buckling analysis, as shown in Fig. 47.112.

FIGURE 47.112 Catagorization of stability analysis methods.
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Differences in the two limit loads may arise from the fact that the elastic stability limit is calculated for
equilibrium based on the deformed configuration, whereas the elastic critical load is calculated as a
bifurcation from equilibrium on the undeformed geometry of the frame.

The load-displacement response of many practical structures usually does not involve any bifurcation
of the equilibrium path. In some cases, the second-order elastic incremental response may not have
yielded any limit. See Chen and Lui (1987) for a basic discussion of these behavioral issues.

Recent works on second-order elastic analysis have been reported in Liew et al. (1991), White and
Hajjar (1991), Chen and Lui (1991), and Chen and Toma (1994), among others. Second-order analysis
programs that can take into consideration connection flexibility are also available (Chen et al., 1996;
Chen and Kim, 1997; Faella et al., 2000).

Second-Order Inelastic Analysis

Second-order inelastic analysis refers to methods of analysis that can capture geometrical and material
nonlinearities of the structures. The most rigorous inelastic analysis method is called spread-of-plasticity
analysis. It involves discretization of a member into many line segments and the cross-section of each
segment into a number of finite elements. Inelasticity is captured within the cross-sections and along
the member length. The calculation of forces and deformations in the structure after yielding requires
iterative trial-and-error processes because of the nonlinearity of the load–deformation response and the
change in the cross section effective stiffness at inelastic regions associated with the increase in the applied
loads and the change in structural geometry. Although most spread-of-plasticity analysis methods have
been developed for planar analysis (White, 1985; Vogel, 1985), three-dimensional spread-of-plasticity
techniques are also available involving various degrees of refinements (Clark, 1994; White, 1988; Wang,
1988; Chen and Atsuta, 1977; Jiang et al, 2002).

The simplest second-order inelastic analysis is the elastic-plastic hinge approach. The analysis assumes
that the element remains elastic except at its ends, where zero-length plastic hinges are allowed to form.
Plastic hinge analysis of planar frames can be found in Orbison (1982), Ziemian et al. (1992a, 1992b),
White et al. (1993), Liew et al. (1993), Chen and Toma (1994), Chen and Sohal (1995), and Chen et al.
(1996). Advanced analyses of three-dimensional frames are reported in Chen et al. (2000) and Liew et al.
(2000). Second-order plastic hinge analysis allows efficient analysis of large-scale building frames. This
is particularly true for structures in which the axial forces in the component members are small and the
behavior is predominated by bending actions. Although elastic-plastic hinge approaches can provide
essentially the same load-displacement predictions as second-order plastic-zone methods for many frame

FIGURE 47.113  Behavior of frame in compression and tension.
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problems, they cannot be classified as advanced analysis for use in frame design. Some modifications to
the elastic-plastic hinge are required to qualify the methods as advanced analysis; they are discussed later.

Figure 47.112 shows the load-displacement curve (a smooth curve with a descending branch) obtained
from the second-order inelastic analysis. The computed limit load should be close to that obtained from
the plastic-zone analysis.

Column Stability

Stability Equations

The stability equation of a column can be obtained by considering an infinitesimal deformed segment
of the column, as shown in Fig. 47.114. Considering the moment equilibrium about point b, we obtain

or, upon simplification,

(47.239)

Summing the force horizontally, we can write

or, upon simplification,

(47.240)

Differentiating Eq. (47.239) with respect to x, we obtain

(47.241)

FIGURE 47.114 Stability equations of a column segment.
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which, when compared with Eq. (47.240), gives

(47.242)

Since moment M = –EI(d2y/dx4), Eq. (47.242) can be written as

(47.243)

or

(47.244)

Equation (47.244) is the general fourth-order differential equation that is valid for all support condi-
tions. The general solution to this equation is

(47.245)

To determine the critical load, it is necessary to have four boundary conditions: two at each end of
the column. In some cases, both geometric and force boundary conditions are required to eliminate the
unknown coefficients (A, B, C, and D) in Eq. (47.245).

Column with Pinned Ends

For a column pinned at both ends, as shown in Fig. 47.115a, the four boundary conditions are:

(47.246)

(47.247)

Since M = –EIy≤, the moment conditions can be written as

(47.248)

FIGURE 47.115  Column with: (a) pinned ends, (b) fixed ends, (c) fixed–free ends.
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Using these conditions, we have

(47.249)

The deflection function (Eq. 47.245) reduces to

(47.250)

Using the conditions y(L) = y≤(L) = 0, Eq. (47.250) gives

(47.251)

and

(47.252)

(47.253)

If A = C = 0, the solution is trivial. Therefore, to obtain a nontrivial solution, the determinant of the
coefficient matrix of Eq. (47.253) must be zero, i.e.,

(47.254)

or

(47.255)

Since k2L cannot be zero, we must have

(47.256)

or

 (47.257)

The lowest buckling load corresponds to the first mode obtained by setting n = 1:

(47.258)

Column with Fixed Ends

The four boundary conditions for a fixed-end column are (Fig. 47.115b):

(47.259)

(47.260)

Using the first two boundary conditions, we obtain

(47.261)

The deflection function (Eq. 47.245) becomes

(47.262)
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Using the last two boundary conditions, we have

(47.263)

For a nontrivial solution, we must have

(47.264)

or, after expanding,

(47.265)

Using trigonometric identities sin kL = 2 sin (kL/2) cos (kL/2) and cos kL = 1 – 2 sin2 (kL/2), Eq. (47.265)
can be written as

(47.266)

The critical load for the symmetric buckling mode is Pcr = 4p2EI/L2 by letting sin (kL/2) = 0. The
buckling load for the antisymmetric buckling mode is Pcr = 80.8EI/L2 by letting the bracket term in
Eq. (47.266) equal zero.

Column with One End Fixed and One End Free

The boundary conditions for a fixed–free column are (Fig. 47.115c):

(47.267)

at the fixed end and

(47.268)

and at the free end. The moment M = EIy� is equal to zero, and the shear force V = –dM/dx = –EI� is
equal to Py¢, which is the transverse component of P acting at the free end of the column:

(47.269)

It follows that the shear force condition at the free end has the form

(47.270)

Using the boundary conditions at the fixed end, we have

(47.271)

The boundary conditions at the free end give

(47.272)

In matrix form, Eqs. (47.271) and (47.272) can be written as

(47.273)
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For a nontrivial solution, we must have

(47.274)

The characteristic equation becomes

(47.275)

Since k cannot be zero, we must have cos kL = 0 or

(47.276)

The smallest root (n = 1) gives the lowest critical load of the column

(47.277)

The boundary conditions for columns with various end
conditions are summarized in Table 47.1.

Column Effective Length Factor

The effective length factor, K, of columns with different end
boundary conditions can be obtained by equating the Pcr load
obtained from the buckling analysis with the Euler load of a
pinned-end column of effective length KL:

The effective length factor can be obtained as

 (47.278)

The K factor is a factor that can be multiplied to the actual length of the end-restrained column to give
the length of an equivalent pinned-end column whose buckling load is the same as that of the end-
restrained column. Table 47.1 (AISC, 1993) summarizes the theoretical K factors for columns with
different boundary conditions. Also shown in the table are the recommended K factors for design
applications. The recommended values for design are equal to or higher than the theoretical values to
account for semirigid effects of the connections used in practice.

Stability of Beam-Columns

Figure 47.116a shows a beam-column subjected to an axial compressive force P at the ends, a lateral load
w along the entire length, and end moments MA and MB. The stability equation can be derived by
considering the equilibrium of an infinitesimal element of length ds, as shown in Fig. 47.116b. The cross
section forces S and H act in the vertical and horizontal directions.
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Considering the equilibrium of forces,

Horizontal equilibrium:

(47.279)

Vertical equilibrium:

(47.280)

TABLE 47.2 Comparison of Theoretical and Design K Factors

FIGURE 47.116  Basic differential equation of a beam-column.

Buckled shape of
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Moment equilibrium:

(47.281)

Since (dS/ds)ds and (dH/ds)ds are negligibly small compared to S and H, the above equilibrium equations
can be reduced to

(47.282a)

(47.282b)

(47.282c)

For small deflections and neglecting shear deformations,

 (47.283)

where y is the lateral displacement of the member. Using the above approximations, Eq. (47.282) can be
written as

(47.284)

Differentiating Eq. (47.284) and substituting Eq. (47.283a and b) into the resulting equation, we have

(47.285)

From elementary mechanics of materials, it can easily be shown that

(47.286)

Upon substitution of Eq. (47.286) into Eq. (47.285) and realizing that H = –P, we obtain

(47.287)

The general solution to this differential equation has the form

(47.288)

where k =  and f(x) is a particular solution satisfying the differential equation. The constants A,
B, C, and D can be determined from the boundary conditions of the beam-column under investigation.
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Beam-Column Subjected to Transverse Loading

Figure 47.117 shows a fixed-end beam-column with a uniformly distributed load w.
The general solution to Eq. (47.287) is

(47.289)

Using the boundary conditions

(47.290)

in which a prime denotes differentiation with respect to x, it can be shown that

(47.291a)

(47.291b)

(47.291c)

(47.291d)

Upon substitution of these constants into Eq. (47.289), the deflection function can be written as

(47.292)

The maximum moment for this beam-column occurs at the fixed ends and is equal to

(47.293)

where u = kL/2.
Since wL2/12 is the maximum first-order moment at the fixed ends, the term in the bracket represents

the theoretical moment amplification factor due to the P-d effect.

FIGURE 47.117 Beam-column subjects to uniform loading.
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For beam-columns with other transverse loading and boundary conditions, a similar approach can
be followed to determine the moment amplification factor. Table 47.3 summarizes the expressions for
the theoretical and design moment amplification factors for some loading conditions (AISC, 1989).

Beam-Column Subjected to End Moments

Consider the beam-column shown in Fig. 47.118. The member is subjected to an axial force of P and
end moments MA and MB. The differential equation for this beam-column can be obtained from Eq.
(47.287) by setting w = 0:

(47.294)

The general solution is

(47.295)

The constants A, B, C, and D are determined by enforcing the four boundary conditions:

(47.296)

TABLE 47.3 Theoretical and Design Moment Amplification Factor (u = kL/2 = 

1/2 

Boundary 
Conditions Pcr Location of Mmax Moment Amplification Factor

Hinged-hinged Midspan

Hinged-fixed End

Fixed-fixed End

Hinged-hinged Midspan

Hinged-fixed End

Fixed-fixed Midspan and end

FIGURE 47.118  Beam-column subjects to end moments.
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to give

(47.297a)

(47.297b)

(47.297c)

(47.297d)

Substituting Eq. (47.297a to d) into the deflection function Eq. (47.295) and rearranging gives

(47.298)

The maximum moment can be obtained by first locating its position by setting dM/dx = 0 and substituting
the result into M = –EIy≤ to give

(47.299)

Assuming that MB is the larger of the two end moments, Eq. (47.299) can be expressed as

(47.300)

Since MB is the maximum first-order moment, the expression in brackets is therefore the theoretical
moment amplification factor. In Eq. (47.300), the ratio (MA /MB) is positive if the member is bent in
double (or reverse) curvature, and the ratio is negative if the member is bent in single curvature. A special
case arises when the end moments are equal and opposite (i.e., MB = –MA). By setting MB = –MA = M0

in Eq. (47.300), we have

(47.301)

For this special case, the maximum moment always occurs at midspan.

Slope Deflection Equations

The slope deflection equations of a beam-column can be derived by considering the beam-column shown
in Fig. 47.118. The deflection function for this beam-column can be obtained from Eq. (47.298) in terms
of MA and MB as:

(47.302)
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from which

(47.303)

The end rotations qA and qB can be obtained from Eq. (47.303) as

(47.304)

and

(47.305)

The moment rotation relationship can be obtained from Eqs. (47.304) and (47.305) by arranging MA

and MB in terms of qA and qB as:

(47.306)

(47.307)

where

(47.308)

(47.309)

are referred to as the stability functions.
Equations (47.306) and (47.307) are the slope deflection equations for a beam-column that is not

subjected to transverse loading and relative joint translation. It should be noted that when P approaches
zero, kL = L approaches zero, and by using the L’Hospital’s rule, it can be shown that sij = 4 and
sij = 2. Values for sii and sij for various values of kL are plotted as shown in Fig. 47.119.

Equations (47.307) and (47.308) are valid if the following conditions are satisfied:

1. The beam is prismatic.
2. There is no relative joint displacement between the two ends of the member.
3. The member is continuous, i.e., there is no internal hinge or discontinuity in the member.
4. There is no in-span transverse loading on the member.
5. The axial force in the member is compressive.

If these conditions are not satisfied, some modifications to the slope deflection equations are necessary.
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Member Subjected to Side Sway

If there is a relative joint translation, D, between the member ends, as shown in Fig. 47.120, the slope
deflection equations are modified as

(47.310)

(47.311)

Member with a Hinge at One End

If a hinge is present at the B end of the member, the end moment there is zero, i.e.,

(47.312)

FIGURE 47.119 Plot of stability functions.

FIGURE 47.120 Beam-column subjects to end moments and side sway.
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from which

(47.313)

Upon substituting Eq. (47.313) into Eq. (47.310), we have

(47.314)

If the member is hinged at the A end rather than at the B end, Eq. (47.314) is still valid, provided that
the subscript A is changed to B.

Member with End Restraints

If the member ends are connected by two linear elastic springs, as in Fig. 47.121, with spring constants
RkA and RkB at the A and B ends, respectively, the end rotations of the linear spring are MA/RkA and
MB /RkB. If we denote the total end rotations at joints A and B by qA and qB, respectively, then the member
end rotations, with respect to its chord, will be qA – MA/RkA and qB – MB/RkB. As a result, the slope
deflection equations are modified to

(47.315)

(47.316)

Solving Eqs. (47.315) and (47.316) simultaneously for MA and MB gives

(47.317)

(47.318)

where

(47.319)

FIGURE 47.121 Beam column with end springs.
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In writing Eqs. (47.317) and (47.318), the equality sjj = sii has been used. Note that as RkA and RkB

approach infinity, Eqs. (47.317) and (47.318) reduce to Eqs. (47.306) and (47.307), respectively.

Member with Transverse Loading

For members subjected to transverse loading, the slope deflection Eqs. (47.306) and (47.307) can be
modified by adding an extra term for the fixed-end moment of the member.

(47.320)

(47.321)

Table 47.4 gives the expressions for the fixed-end moments of five commonly encountered cases of
transverse loading. See Chen and Lui (1987, 1991) for more details.

Member with Tensile Axial Force

For members subjected to tensile force, Eqs. (47.306) and (47.307) can be used, provided that the stability
functions are redefined as

(47.322)

(47.323)

Member Bent in Single Curvature with �B = –�A

For the member bent in a single curvature in which qB = –qA, the slope deflection equations reduce to

(47.324)

(47.325)

Member Bent in Double Curvature with �B = �A

For the member bent in a double curvature such that qB = qA, the slope deflection equations become

(47.326)

(47.327)

Second-Order Elastic Analysis

There are two methods to incorporate second-order effects, the stability function approach and the
geometric stiffness (or finite element) approach. The stability function approach is based on the governing
differential equations of the problem, as described above, whereas the stiffness approach is based on an
assumed cubic polynomial variation of the transverse displacement along the element length. Therefore,
the stability function approach is more exact in terms of representing the member stability behavior.
However, the geometric stiffness approach is easier to implement for matrix analysis.
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TABLE 47.4 Beam-Column Fixed-End Moments (Chen and Lui, 1991)
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For either of these approaches, the linearized element stiffness equations may be expressed in either
incremental or total force and displacement forms as

(47.328)

where [K] is the element stiffness matrix, {d} = {d1, d2, … , d6}T is the element nodal displacement vector,
{rf} = {rf1, rf2, … , rf6}T is the element fixed-end force vector due to the presence of in-span loading, and
{r} = {r1, r2, … , r6}T is the nodal force vector, as shown in Fig. 47.122. If stability function approach is
employed, the stiffness matrix of a two-dimensional beam-column element may be written as

 (47.329)

where Sii and Sij are the member stiffness coefficients obtained from the elastic beam-column stability
functions (Chen and Lui, 1987). These coefficients may be expressed as

(47.330)

(47.331)

where kL = L  and P is positive in compression and negative in tension.

FIGURE 47.122 Nodal displacements and forces of a beam-column element.
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The fixed-end force vector rf is a 6 ¥ 1 matrix that can be computed from the in-span loading in the
beam-column. If curvature shortening is ignored, rf1 = rf4 = 0, rf3 = MFA, and rf6 = MFB. MFA and MFB can
be obtained from Table 47.4 for different in-span loading conditions. rf2 and rf5 can be obtained from
the equilibrium of forces.

If the axial force in the member is small, Eq. (47.329) can be simplified by ignoring the higher order
terms of the power series expansion of the trigonometric functions. The resulting element stiffness matrix
becomes:

(47.332)

The first term on the right is the first-order elastic stiffness matrix, and the second term is the geometric
stiffness matrix, which accounts for the effect of axial force on the bending stiffness of the member.
Detailed discussions on the limitation of the geometric stiffness approach versus the stability function
approach are given in Liew et al. (2000).

Modifications to Account for Plastic Hinge Effects

There are two commonly used approaches for representing plastic hinge behavior in a second-order
elastic-plastic hinge formulation (Chen et al., 1996). The most basic approach is to model the plastic
hinge behavior as a “real” hinge for the purpose of calculating the element stiffness. The change in
moment capacity due to the change in axial force can be accommodated directly in the numerical
formulation. The change in moment is determined in the force recovery at each solution step such that,
for continued plastic loading, the new force point is positioned at the strength surface at the current
value of the axial force. A detailed description of these procedures is given by Chen and Lui (1991), Chen
et al. (1996), and Lee and Basu (1989), among others.

Alternatively, the elastic-plastic hinge model may be formulated based on the “extending and contract-
ing” plastic hinge model. The plastic hinge can rotate and extend or contract for plastic loading and axial
force. The formulation can follow the force–space plasticity concept using the normality flow rule relative
to the cross section surface strength (Chen and Han, 1988). Formal derivations of the beam-column
element based on this approach have been presented by Porter and Powell (1971), Orbison et al. (1982),
and Liew et al., (2000), among others.

Modification for End Connections

The moment rotation relationship of the beam-column with end connections at both ends can be
expressed as (Eqs. (47.317) and (47.318)):

(47.333)

(47.334)
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where

(47.335)

(47.336)

and

(47.337)

The member stiffness relationship can be written in terms of six degrees of freedom — see the beam-
column element shown in Fig. 47.123 — as

Second-Order Refined Plastic Hinge Analysis

The main limitation of the conventional elastic-plastic hinge approach is that it overpredicts the strength
of columns that fail by inelastic flexural buckling. The key reason for this limitation is the modeling of

FIGURE 47.123 Nodal displacements and forces of a beam-column with end connections.
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a member by a perfect elastic element between the plastic hinge locations. Furthermore, the elastic-plastic
hinge model assumes that material behavior changes abruptly from the elastic state to the fully yielded
state. The element under consideration exhibits a sudden stiffness reduction upon the formation of a
plastic hinge. This approach, therefore, overestimates the stiffness of a member loaded into the inelastic
range (Liew et al., 1993; White et al., 1991, 1993). This leads to further research and development of an
alternative method called the refined plastic hinge approach. This approach is based on the following
improvements to the elastic-plastic hinge model:

1. A column tangent modulus model Et is used in place of the elastic modulus E to represent the
distributed plasticity along the length of a member due to axial force effects. The member inelastic
stiffness, represented by the member axial and bending rigidities EtA and EtI, is assumed to be the
function of axial load only. In other words, EtA and EtI can be thought of as the properties of an
effective core of the section, considering column action only. The tangent modulus captures the
effect of early yielding in the cross-section due to residual stresses, which is believed to be the
cause for the low strength of inelastic column buckling. The tangent modulus approach has been
previously utilized by Orbison et al. (1982), Liew (1992), and White et al. (1993) to improve the
accuracy of the elastic-plastic hinge approach for structures in which members are subjected to
large axial forces.

2. Distributed plasticity effects associated with flexure are captured by gradually degrading the
member stiffness at the plastic hinge locations as yielding progresses under an increasing load as
the cross section strength is approached. Several models of this type have been proposed in recent
literature based on extensions to the elastic-plastic hinge approach (Powell and Chen, 1986), as
well as the tangent modulus inelastic hinge approach (Liew et al., 1993; White et al., 1993). The
rationale of modeling stiffness degradation associated with both axial and flexural actions is that
the tangent modulus model represents the column strength behavior in the limit of pure axial
compression, and the plastic hinge stiffness degradation model represents the beam behavior in
pure bending; thus the combined effects of these two approaches should also satisfy the cases in
which the member is subjected to combined axial compression and bending.

It has been shown that with the above two improvements, the refined plastic hinge model can be used
with sufficient accuracy to provide a quantitative assessment of a member’s performance up to failure.
Detailed descriptions of the method and discussion of the results generated by the method are given in
White et al. (1993) and Chen et al. (1996). Significant work has been done to implement the refined
plastic hinge methods for the design of three-dimensional real-size structures (Al-Bermani et al., 1995;
Liew et al., 2000).

Second-Order Spread of Plasticity Analysis

Spread of plasticity analyses can be classified into two main types, namely three-dimensional shell element
and two-dimensional beam-column approaches. In the three-dimensional spread of plasticity analysis,
the structure is modeled using a large number of finite three-dimensional shell elements, and the elastic
constitutive matrix, in the usual incremental stress–strain relations, is replaced by an elastic-plastic
constitutive matrix once yielding is detected. This analysis approach typically requires numerical inte-
gration for the evaluation of the stiffness matrix. Based on a deformation theory of plasticity, the
combined effects of normal and shear stresses may be accounted for. The three-dimensional spread-of-
plasticity analysis is computational intensive and best suited for analyzing small-scale structures.

The second approach for plastic-zone analysis is based on use of the beam-column theory, in which
the member is discretized into many beam-column segments, and the cross section of each segment is
further subdivided into a number of fibers. Inelasticity is typically modeled by the consideration of
normal stress only. When the computed stresses at the centroid of any fibers reach the uniaxial normal
strength of the material, the fiber is considered yielded. Compatibility is treated by assuming that full
continuity is retained throughout the volume of the structure in the same manner as for elastic range
© 2003 by CRC Press LLC
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calculations. Most of the plastic-zone analysis methods developed are meant for planar (two-dimensional)
analysis (Chen and Toma, 1994; White, 1985; Vogel, 1985). Three-dimensional plastic-zone techniques
are also available involving various degrees of refinements (White, 1988; Wang, 1988).

A plastic-zone analysis, which includes the spread of plasticity, residual stresses, initial geometric
imperfections, and any other significant second-order behavioral effects, is often considered to be an
exact analysis method. Therefore, when this type of analysis is employed, the checking of member
interaction equations is not required. However, in reality, some significant behavioral effects, such as
joint and connection performances, tend to defy precise numerical and analytical modeling. In such
cases, a simpler method of analysis that adequately captures the inelastic behavior would be sufficient
for engineering application. Second-order plastic hinge-based analysis is still the preferred method for
advanced analysis of large-scale steel frames.

Three-Dimensional Frame Element

The two-dimensional beam-column formulation can be extended to a three-dimensional space frame
element by including additional terms due to shear force, bending moment, and torsion. The following
stiffness equation for a space frame element has been derived by Yang and Kuo (1994) by referring to
Fig. 47.124:

(47.339)

FIGURE 47.124  Three-dimensional frame element: (a) nodal degrees of freedom, (b) nodal forces.
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where

(47.340)

is the displacement vector, which consists of three translations and three rotations at each node, and

(47.341)

is the force vector, which consists of the corresponding nodal forces at configuration i = 1 or i = 2.
The physical interpretation of Eq. (47.339) is as follows: by increasing the nodal forces acting on the

element from {1f} to {2f}, further deformations {d} may occur with the element, resulting in the motion
of the element from a configuration associated with the forces {1f} to the new configuration associated
with {2f}. During this process of deformation, the increments in the nodal forces, i.e., {2f} – {1f}, will be
resisted not only by the elastic actions generated by the elastic stiffness matrix [ke] but also by the forces
induced by the change in geometry, as represented by the geometric stiffness matrix [kg].

The only assumption with the incremental stiffness equation is that the strains occurring with each
incremental step should be small, so that the approximations implied by the incremental constitutive
law are not violated.

The elastic stiffness matrix [Ke] for the space frame element, which has a 12 x 12 dimension, can be
derived as

(47.342)

where the submatrices are

 (47.343)
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 (47.345)

where Ix, Iy, and Iz = the moments of inertia about the x, y, and z axes
L = the member length
E = the modulus of elasticity
A = the cross-sectional area
G = the shear modulus
J = the torsional stiffness

The geometric stiffness matrix for a three-dimensional space frame element can be given as

 (47.346)

where a = –f6 + f12 /L2; b = 6f7/5L; c = –f5 + f11/L2; d = f5/L; e = f6/L; f = f7J/AL; g = f10/L; h = –f7/10; i =
f6 + f12/6; j = 2f7L/15; k = –f5 + f11/6; l = f11/L; m = f12/L; n = –f7L/30; o = –f10/2.

Further details can be obtained from Yang and Kuo (1994).

Buckling of Thin Plates

Rectangular Plates

The main difference between columns and plates is that quantities such as deflections and bending
moments, which are functions of a single independent variable in columns, become functions of two
independent variables in plates. Consequently, the behavior of plates is described by partial differential
equations, whereas ordinary differential equations suffice for describing the behavior of columns. A main
difference between column and plate buckling is that column buckling terminates the ability of the
member to resist the axial load in columns; this is not true for plates. Upon reaching the critical load,
the plate continues to resist the increasing axial force, and it does not fail until a load considerably in
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excess of the elastic buckling load is reached. The critical load of a plate is, therefore, not its failure load.
Instead, one must determine the load-carrying capacity of a plate by considering its postbuckling strength.

To determine the critical in-plane loading of a plate, a governing equation in terms of biaxial com-
pressive forces Nx and Ny and constant shear force Nxy, as shown in Fig. 47.125, can be derived as

(47.347)

The critical load for uniaxial compression can be determined from the differential equation

(47.348)

which is obtained by setting Nx = Nxy = 0 in Eq. (47.347).
For example, in the case of a simply supported plate Eq. (47.348) can be solved to give

(47.349)

The critical value of Nx (i.e., the smallest value) can be obtained by taking n equal to 1. The physical
meaning of this is that a plate buckles in such a way that there can be several half-waves in the direction
of compression, but only one half-wave in the perpendicular direction. Thus, the expression for the
critical value of the compressive force becomes

(47.350)

The first factor in this expression represents the Euler load for a strip of unit width and of length a. The
second factor indicates in what proportion the stability of the continuous plate is greater than the stability
of an isolated strip. The magnitude of this factor depends on the magnitude of the ratio a/b and also on
the number m, which is the number of half-waves into which the plate buckles. If a is smaller than b,
the second term in the parentheses of Eq. (47.350) is always smaller than the first, and the minimum
value of the expression is obtained by taking m = 1, i.e., by assuming that the plate buckles in one half-
wave. The critical value of Nx can be expressed as

(47.351)

FIGURE 47.125 Plate subjected to in-plane forces.
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The factor k depends on the aspect ratio a/b of the plate and m. The variation of k with a/b for different
values of m can be plotted as shown in Fig. 47.126. The critical value of Nx is the smallest value obtained
for m = 1, and the corresponding value of k is 4.0. This formula is analogous to Euler’s formula for the
buckling of a column.

In the case where the normal forces Nx and Ny and the shearing forces Nxy are acting on the boundary
of the plate, the same general method can be used. The critical stress for the case of a uniaxially compressed
simply supported plate can be written as

(47.352)

The critical stress values for different loading and support conditions can be expressed in the form

(47.353)

Values of k for plates with several different boundary and loading conditions are given in Fig. 47.127.

Circular Plates

The critical value of the compressive forces Nr uniformly distributed around the edge of a circular plate
of radius ro, clamped along the edge (Fig. 47.128), can be determined by

(47.354)

in which f is the angle between the axis of revolution of the plate surface and any normal to the plate,
r is the distance of any point measured from the center of the plate, and Q is the shearing force per unit
of length. When there are no lateral forces acting on the plate, the solution of Eq. (47.5.60) involves a
Bessel function of the first order of the first and second kind, and the resulting critical value of Nr is
obtained as

(47.355)

The critical value of Nr for the plate when the edge is simply supported can be obtained in the same way as

(47.356)

FIGURE 47.126 Buckling stress coefficients for unaxially compressed plate.
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Buckling of Shells

If a circular cylindrical shell is uniformly compressed in the axial direction, buckling symmetrical with
respect to the axis of the cylinder (Fig. 47.129) may occur at a certain value of the compressive load. The
critical value of the compressive force Ncr per unit length of the edge of the shell can be obtained by
solving the differential equation

FIGURE 47.127 Values of K for plate with different boundary and loading conditions.

FIGURE 47.128 Circular plate under compressive loading.
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(47.357)

in which a is the radius of the cylinder and h is the wall thickness.
Alternatively, the critical force per unit length may also be obtained by using the energy method. For

a cylinder of length L, simply supported at both ends, one obtains

(47.358)

For each value of m there is a unique buckling mode shape and a unique buckling load. The lowest value
is of greatest interest and is thus found by setting the derivative of Ncr with respect to L equal to zero for
m = 1. With Poisson’s ratio equal to 0.3, the buckling load is obtained as

(47.359)

It is possible for a cylindrical shell to be subjected to uniform external pressure or to the combined action
of axial and uniform lateral pressure. 

47.13 Dynamic Analysis

Equation of Motion

The essential physical properties of a linearly elastic structural system subjected to external dynamic
loading are its mass, stiffness properties, and energy absorption capability or damping. The principle of
dynamic analysis may be illustrated by considering a simple single-story structure, as shown in Fig. 47.130.
The structure is subjected to a time-varying force f(t). k is the spring constant that relates the lateral
story deflection x to the story shear force, and the dash pot relates the damping force to the velocity by
a damping coefficient c. If the mass, m, is assumed to concentrate at the beam, the structure becomes a
single-degree-of-freedom (SDOF) system. The equation of motion of the system may be written as

(47.360)

Various solutions to Eq. (47.360) can give insight into the behavior of the structure under dynamic
situations.

Free Vibration

In this case the system is set to motion and allowed to vibrate in the absence of applied force f(t). Letting
f(t) = 0, Eq. (47.360) becomes

FIGURE 47.129 Buckling of a cylindrical shell.
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(47.361)

Dividing Eq. (47.361) by the mass, m, we have

(47.362)

where

(47.363)

The solution to Eq. (47.362) depends on whether the vibration is damped or undamped.

Example 47.16: Undamped Free Vibration

In this case, c = 0, and the solution to the equation of motion may be written as

(47.364)

where  is the circular frequency. A and B are constants that can be determined by the initial
boundary conditions. In the absence of external forces and damping, the system will vibrate indefinitely
in a repeated cycle of vibration with an amplitude of

(47.365)

and a natural frequency of

(47.366)

The corresponding natural period is

(47.367)

The undamped free vibration motion, as described by Eq. (47.364), is shown in Fig. 47.131.

FIGURE 47.130 (a) One DOF structure. (b) Forces applied to structures.
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Example 47.17: Damped Free Vibration

If the system is not subjected to applied force and damping is presented, the corresponding solution
becomes

(47.368)

where

(47.369)

and

(47.370)

The solution of Eq. (47.368) changes its form with the value of x , defined as

(47.371)

If x2 < 1, the equation of motion becomes

(47.372)

where xd is the damped angular frequency defined as

(47.373)

For most building structures x is very small (about 0.01), and therefore wd ª w. The system oscillates
about the neutral position as the amplitude decays with time t. Figure 47.132 illustrates an example of
such motion. The rate of decay is governed by the amount of damping present.

If the damping is large, then oscillation will be prevented. This happens when x2 > 1; the behavior is
referred to as overdamped. The motion of such behavior is shown in Fig. 47.133.

Damping with x2 = 1 is called critical damping. This is the case where minimum damping is required
to prevent oscillation, and the critical damping coefficient is given as

(47.374)

where k and m are the stiffness and mass of the system, respectively.
The degree of damping in the structure is often expressed as a proportion of the critical damping

value. Referring to Eqs. (47.371) and (47.375), we have

FIGURE 47.131 Response of undamped free vibration.
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(47.375)

x is called the critical damping ratio.

Forced Vibration

If a structure is subjected to a sinusoidal motion such as a ground acceleration of , it will
oscillate, and after some time the motion of the structure will reach a steady state. For example, the
equation of motion due to the ground acceleration (from Eq. (47.362)) is

(47.376)

The solution to the above equation consists of two parts: the complimentary solution given by Eq. (47.364)
and the particular solution. If the system is damped, oscillation corresponding to the complementary
solution will decay with time. After some time the motion will reach a steady state, and the system will
vibrate at a constant amplitude and frequency. This motion, which is called force vibration, is described
by the particular solution expressed as

(47.377)

It can be observed that the steady force vibration occurs at the frequency of the excited force, wf, not at
the natural frequency of the structure, w.

Substituting Eq. (47.377) into (47.376), the displacement amplitude can be shown to be

(47.378)

FIGURE 47.132  Response of damped free vibration.

FIGURE 47.133  Response of free vibration with critical damping.

x(t)

x(0)

t
2π
ωd

4π
ωd

3π
ωd

π
ωd

x(t)

t

x(0)

x(0)

x = c

ccr

˙̇ sinx F tf= w

˙̇ ˙ sinx x x F tf+ + = -2 2xw w w

x C t C tf f= +1 2sin cosw w

X
F

f f

= -

- Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

+ Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í

˘

˚

˙
˙

w
w
w

xw
w

2
2 2 2

1

1
2

© 2003 by CRC Press LLC



47-166 The Civil Engineering Handbook, Second Edition
The term –F/w2 is the static displacement caused by the force due to the inertia force. The ratio of the
response amplitude relative to the static displacement –F/w2 is called the dynamic displacement ampli-
fication factor, D, given as

(47.379)

The variation of the magnification factor with the frequency ratio wf/w and damping ratio x is shown
in Fig. 47.134.

When the dynamic force is applied at a frequency much lower than the natural frequency of the system
(wf /w � 1), the response is quasistatic. The response is proportional to the stiffness of the structure, and
the displacement amplitude is close to the static deflection.

When the force is applied at a frequency much higher than the natural frequency (wf /w � 1), the
response is proportional to the mass of the structure. The displacement amplitude is less than the static
deflection (D < 1).

When the force is applied at a frequency close to the natural frequency, the displacement amplitude
increases significantly. The condition at which wf/w = 1 is known as resonance.

Similarly, the ratio of the acceleration response relative to the ground acceleration may be expressed as

(47.380)

Da is called the dynamic acceleration magnification factor.

Response to Suddenly Applied Load

Consider the spring–mass damper system of which a load Po is applied suddenly. The differential equation
is given by

(47.381)

FIGURE 47.134  Vibration of dynamic amplification factor with frequency ratio.
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If the system is started at rest, the equation of motion is

(47.382)

If the system is undamped, then x = 0 and wd = w; we have

(47.383)

The maximum displacement is 2(Po /k), corresponding to cos wdt = –1. Since Po /k is the maximum static
displacement, the dynamic amplification factor is 2. The presence of damping would naturally reduce
the dynamic amplification factor and the force in the system.

Response to Time-Varying Loads

Some forces and ground motions that are encountered in practice are rather complex in nature. In
general, numerical analysis is required to predict the response of such effects, and the finite element
method is one of the most common techniques to be employed in solving such problems.

The evaluation of responses due to time-varying loads can be carried out using the piecewise exact
method. In using this method, the loading history is divided into small time intervals. Between these
points, it is assumed that the slope of the load curve remains constant. The entire load history is
represented by a piecewise linear curve, and the error of this approach can be minimized by reducing
the length of the time steps. A description of this procedure is given in Clough and Penzien (1993).

Other techniques employed include Fourier analysis of the forcing function, followed by solution for
Fourier components in the frequency domain. For random forces, the random vibration theory and
spectrum analysis may be used (Dowrick, 1988; Warburton, 1976).

Multiple Degree Systems

In multiple degree systems, an independent differential equation of motion can be written for each degree
of freedom. The nodal equations of a multiple degree system consisting of n degrees of freedom may be
written as

(47.384)

where [m] = a symmetrical n x n matrix of mass
[c] = a symmetrical n x n matrix of damping coefficient

{F(t)} = the force vector, which is zero in the case of free vibration

Consider a system under free vibration without damping; the general solution of Eq. (47.384) is
assumed in the form of

(47.385)

where angular frequency w and phase angle f are common to all x’s. In this assumed solution, f and C1,
C2, … Cn are the constants to be determined from the initial boundary conditions of the motion, and
w is a characteristic value (eigenvalue) of the system.
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Substituting Eq. (47.385) into Eq. (47.384) yields

(47.386)

or

(47.387)

where [k] and [m] are the n ¥ n matrices, w2 and cos(wt – f) are scalars, and {C} is the amplitude vector.
For nontrivial solution, cos(wt – f) π 0; thus solution to Eq. (47.387) requires the determinant of [[k] –
w2[m]] = 0. The expansion of the determinant yields a polynomial of n degree as a function of w2, the
n roots of which are the eigenvalues w1, w2, … wn.

If the eigenvalue w for a normal mode is substituted in Eq. (47.387), the amplitude vector {C} for that
mode can be obtained. {C1}, {C2}, {C3}, … {Cn} are therefore called eigenvectors, the absolute values that
must be determined through initial boundary conditions. The resulting motion is a sum of n harmonic
motions, each governed by the respective natural frequency w, written as

(47.388)

Distributed Mass Systems

Although many structures may be approximated by lumped mass systems, in practice all structures are
distributed mass systems consisting of an infinite number of particles. Consequently, if the motion is
repetitive, the structure has an infinite number of natural frequency and mode shapes. The analysis of a
distributed-parameter system is entirely equivalent to that of a discrete system once the mode shapes
and frequencies have been determined, because in both cases the amplitudes of the modal response
components are used as generalized coordinates in defining the response of the structure.

In principle an infinite number of these coordinates are available for a distributed-parameter system,
but in practice only a few modes, usually those of lower frequencies, will provide significant contribute
to the overall response. Thus the problem of a distributed-parameter system can be converted to a discrete
system form in which only a limited number of modal coordinates is used to describe the response.

Flexural Vibration of Beams

The motion of the distributed mass system is best illustrated by a classical example of a uniform beam
with of span length L, a flexural rigidity EI, and a self-weight of m per unit length, as shown in Fig. 47.135a.
The beam is free to vibrate under its self-weight. From Fig. 47.135b, dynamic equilibrium of a small
beam segment of length dx requires:

(47.389)

in which

(47.390)
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and

(47.391)

Substituting these equations into Eq. (47.389) leads to the equation of motion of the flexural beam:

(47.392)

Equation (47.392) can be solved for beams with given sets of boundary conditions. The solution consists
of a family of vibration modes with corresponding natural frequencies. Standard results are available in
Table 47.5 to compute the natural frequencies of uniform flexural beams of different supporting condi-
tions. Methods are also available for dynamic analysis of continuous beams (Clough and Penzien, 1993).

Shear Vibration of Beams

Beams can deform by flexure or shear. Flexural deformation normally dominates the deformation of
slender beams. Shear deformation is important for short beams or in higher modes of slender beams.
Table 47.6 gives the natural frequencies of uniform beams in shear, neglecting flexural deformation. The
natural frequencies of these beams are inversely proportional to the beam length L rather than L2, and
the frequencies increase linearly with the mode number.

Combined Shear and Flexure

The transverse deformation of real beams is the sum of flexure and shear deformations. In general,
numerical solutions are required to incorporate both the shear and flexural deformation in the prediction
of the natural frequency of beams. For beams with comparable shear and flexural deformations, the
following simplified formula may be used to estimate the beam’s frequency:

(47.393)

where f is the fundamental frequency of the beam and ff and fs are the fundamental frequencies predicted
by the flexure and shear beam theories, respectively (Rutenberg, 1975).

FIGURE 47.135  (a) Beam in flexural vibration. (b) Equilibrium of beam segment in vibration.
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Natural Frequency of Multistory Building Frames

Tall building frames often deform more in the shear mode than in flexure. The fundamental frequencies
of many multistory building frameworks can be approximated by (Housner and Brody, 1963; Rinne, 1952)

TABLE 47.5 Frequencies and Mode Shapes of Beams in Flexural Vibration

x

L

y

x

L

y

Fixed - Fixed

Pinned - Pinned

x

x

L

y

y

L

Fixed - Pinned

Cantilever

Boundary conditions

n = 1, 2, 3...

L = Length (m)

EI = Flexural rigidity (Nm2)

M = Mass per unit length (kg/m)

Kn;
n = 1,2,3

Mode shape yn �x−L� An;
n = 1,2,3...

(nπ)2 nπxsin
L

cosh   Knx − cos   Knx

− An�sin h   K
L

nx − sin   K
L

nx�

cosh   K
L
nx − cos   K

L
nx

− An�sin h   K
L
nx − sin   K

L
nx�

cosh   K
L

nx − cos   K
L
nx

− An �sin h   K
L

nx − sin   K
L
nx �

(2n −1)2 π
4

2 
;

n > 5

0.73410
1.01847
0.99922
1.00003

1.0; n > 4

3.52
22.03
61.69

120.90
199.86

(4n + 1)2 π
4

2
;

n > 5

15.42
49.96

104.25
178.27
272.03

1.0; n > 3

1.00078
1.00000

n > 5

(2n + 1) π
4

2
;

22.37
61.67

120.90
199.86
298.55

1.0; n > 5

0.98250
1.00078
0.99997
1.00000
0.99999

fn = K
2

n
π     

EI
mL4

HZ

L L
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(47.394)

where a = approximately equal to 11 /sec
B = the building width in the direction of vibration
H = the building height

This empirical formula suggests that a shear beam model with f inversely proportional to H is more
appropriate than a flexural beam for predicting natural frequencies of buildings.

Portal Frames

A portal frame consists of a cap beam rigidly connected to two vertical columns. The natural frequencies
of portal frames vibrating in the fundamental asymmetric and symmetric modes are shown in Tables 47.7

TABLE 47.6 Frequencies and Mode Shapes of Beams in Shear Vibration

x

y

L

x

y

L

Fixed - Fixed

Fixed - Free

Boundary condition Kn;   n  = 1,2,3...

nπ;   n  = 1,2,3...

nπ;   n  = 1,2,3...

cos nπx;   n = 1,2,3...

Mode shape yn�
x
L
�

sinn
L
πx;   n = 1,2,3...

L  = Length

K = Shear coefficient (Cowper, 1966)

G  = Shear modulus = E/[2(1 + ν)]

ρ   = Mass density

fn =  
Kn     

KG
  HZ

ρL22π

L

f
B

H
= a

m
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and 47.8, respectively. The beams in these frames are assumed to be uniform and sufficiently slender, so
that shear and axial and torsional deformations can be neglected. The method of analysis of these frames
is given in Yang and Sun (1973). The vibration is assumed to be in the plane of the frame, and the results
are presented for portal frames with pinned and fixed bases.

If the beam is rigid and the columns are slender and uniform, but not necessarily identical, then the
natural fundamental frequency of the frame can be approximated using the following formula (Robert,
1979):

TABLE 47.7 Fundamental Frequencies of Portal Frames in Asymmetrical Mode of Vibration

f = 
2π

λ
L

2

1
2 �E1I1�1/2 

HZ

E = Modulus of elasticity

I = Area moment of inertia

m = Mass per unit length

First asymmetric in-plane mode

L1

L2

E1I1,m1

E2I2, m2

E
E

1

2

I
I
1

2

m
m

1

2

λ value

L1/L2 L1/L2

Clamped basesPinned bases

   
0.25 0.25 0.6964 0.9520 1.1124 1.2583 1.3759 0.9953 1.3617 1.6003 1.8270 2.0193

0.75 0.6108 0.8961 1.0764 1.2375 1.3649 0.9030 1.2948 1.5544 1.7999 2.0051
1.5 0.5414 0.8355 1.0315 1.2093 1.3491 0.8448 1.2323 1.5023 1.7649 1.9853
3.0 0.4695 0.7562 0.9635 1.1610 1.3201 0.7968 1.1648 1.4329 1.7096 1.9504
6.0 0.4014 0.6663 0.8737 1.0870 1.2702 0.7547 1.1056 1.3573 1.6350 1.8946

0.75 0.25 0.8947 1.1740 1.3168 1.4210 1.4882 1.2873 1.7014 1.9262 2.0994 2.2156
0.75 0.7867 1.1088 1.2776 1.3998 1.4773 1.1715 1.6242 1.8779 2.0733 2.2026
1.5 0.6983 1.0368 1.2281 1.3707 1.4617 1.0979 1.5507 1.8218 2.0390 2.1843
3.0 0.6061 0.9413 1.1516 1.3203 1.4327 1.0373 1.4698 1.7454 1.9838 2.1516
6.0 0.5186 0.8314 1.0485 1.2414 1.3822 0.9851 1.3981 1.6601 1.9072 2.0983

1.5 0.25 1.0300 1.2964 1.4103 1.4826 1.5243 1.4941 1.9006 2.0860 2.2090 2.2819
0.75 0.9085 1.2280 1.3707 1.4616 1.5136 1.3652 1.8214 2.0390 2.1842 2.2695
1.5 0.8079 1.1514 1.3203 1.4326 1.4982 1.2823 1.7444 1.9837 2.1515 2.2521
3.0 0.7021 1.0482 1.2414 1.3821 1.4694 1.2141 1.6583 1.9070 2.0983 2.2206
6.0 0.6011 0.9279 1.1335 1.3024 1.4191 1.1570 1.5808 1.8198 2.0234 2.1693

3.0 0.25 1.1597 1.3898 1.4719 1.5189 1.5442 1.7022 2.0612 2.1963 2.2756 2.3190
0.75 1.0275 1.3202 1.4326 1.4981 1.5336 1.5649 1.9834 2.1515 2.2520 2.3070
1.5 0.9161 1.2412 1.3821 1.4694 1.5182 1.4752 1.9063 2.0982 2.2206 2.2899
3.0 0.7977 1.1333 1.3024 1.4191 1.4896 1.4015 1.8185 2.0233 2.1693 2.2595
6.0 0.6838 1.0058 1.1921 1.3391 1.4395 1.3425 1.7382 1.9366 2.0964 2.2094

6.0 0.25 1.2691 1.4516 1.5083 1.5388 1.5545 1.8889 2.1727 2.2635 2.3228 2.3385
0.75 1.1304 1.3821 1.4694 1.5181 1.5440 1.7501 2.0980 2.2206 2.2899 2.3268
1.5 1.0112 1.3023 1.4191 1.4896 1.5287 1.6576 2.0228 2.1693 2.2595 2.3101
3.0 0.8827 1.1919 1.3391 1.4395 1.5002 1.5817 1.9358 2.0963 2.2095 2.2802
6.0 0.7578 1.0601 1.2277 1.3595 1.4502 1.5244 1.8550 2.0110 2.1380 2.2309

m1

0.25 0.75 1.5 3.0 6.0 0.25 0.75 1.5 3.0 6.0
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(47.395)

where M is the mass of the beam, Mi is the mass of the i-th column, and EiIi is the flexural rigidity of
the i-th column. The summation refers to the sum of all columns, and i must be greater or equal to 2.
Additional results for frames with inclined members are discussed in Chang (1978).

TABLE 47.8 Fundamental Frequencies of Portal Frames in Symmetrical Mode of Vibration

L1

L2

E1I1,m1

E2I2, m2

First symmetric in-plane mode

f = 
2π

λ
L

2

1
2 �E1I1�1/2 

HZ

E = Modulus of elasticity

I = Area moment of inertia

m = Mass per unit length

�m
m

2

1
�1/4 �E

E
2

1

I
I
2

1
�3/4

λ value

�E
E

1

2

I
I
1

2  

m
m

2

1
�1/4 L

L
2

1

Pinned bases

Clamped bases

8.0

4.0

2.0

1.0

0.8

0.4

0.2

8.0

4.0

2.0

1.0

0.8

0.4

0.2

8.0

0.4637

0.4958

0.5273

0.5525

0.5589

0.5735

0.5819

0.4767

0.5093

0.5388

0.5606

0.5659

0.5776

0.5842

4.0

0.8735

0.9270

0.9911

1.0540

1.0720

1.1173

1.1466

0.8941

0.9532

1.0185

1.0773

1.0932

1.1316

1.1551

2.0

1.6676

1.7394
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2.0037
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1.7847

1.9008
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Damping

Damping is found to increase with the increasing amplitude of vibration. It arises from the dissipation
of energy during vibration. The mechanisms contributing to energy dissipation are material damping,
friction at interfaces between components, and energy dissipation due to a foundation interacting with
soil, among others. Material damping arises from the friction at bolted connections and frictional
interaction between structural and nonstructural elements, such as partitions and cladding.

The amount of damping in a building can never be predicted precisely, and design values are generally
derived based on dynamic measurements of structures of a corresponding type. Damping can be mea-
sured by the rate of decay of free vibration following an impact, spectral methods based on an analysis
of the response to wind loading, and force excitation by a mechanical vibrator at varying frequencies to
establish the shape of the steady-state resonance curve. However, these methods may not be easily carried
out if several modes of vibration close in frequency are presented.

Table 47.8 gives values of modal damping that are appropriate for use when amplitudes are low. Higher
values are appropriate at larger amplitudes where local yielding may develop, e.g., in seismic analysis.

Numerical Analysis

Many less complex dynamic problems can be solved without much difficulty by hand methods. For more
complex problems, such as determination of natural frequencies of complex structures, calculation of
response due to time-varying loads and response spectrum analysis to determine seismic forces may
require numerical analysis. The finite element method has been shown to be a versatile technique for
this purpose.

The global equations of an undamped force–vibration motion, in matrix form, may be written as

(47.396)

where

(47.397)

are the global stiffness, mass, and force matrices, respectively. [ki], [mi], and [fi] are the stiffness, mass,
and force of the i-th element, respectively. The elements are assembled using the direct stiffness method
to obtain the global equations such that intermediate continuity of displacements is satisfied at common
nodes, and in addition, interelement continuity of acceleration is also satisfied.

Equation (47.396) is the matrix equations discretized in space. To obtain solution of the equation,
discretization in time is also necessary. The general method used is called direct integration. There are
two methods for direct integration: implicit or explicit. The first, and simplest, is an explicit method
known as the central difference method (Biggs, 1964). The second, more sophisticated but more versatile,
is an implicit method known as the Newmark method (Newmark, 1959). Other integration methods are
also available in Bathe (1982).

The natural frequencies are determined by solving Eq. (47.396) in the absence of force F(t) as

(47.398)

The standard solution for x(t) is given by the harmonic equation in time

(47.399)

where {X} is the part of the nodal displacement matrix called natural modes, which are assumed to be
independent of time; i is the imaginary number; and w is the natural frequency.

M x K x F t[ ]{ } = [ ]{ } = ( ){ }˙̇ ˙
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Differentiating Eq. (47.399) twice with respect to time, we have

(47.400)

Substituting of Eqs. (47.399) and (47.400) into Eq. (47.398) yields

(47.401)

Since eiwt is not zero, we obtain

(47.402)

Equation (47.402) is a set of linear homogeneous equations in terms of displacement mode {X}. It has
a nontrivial solution if the determinant of the coefficient matrix {X} is nonzero; that is

(47.403)

In general, Eq. (47.403) is a set of n algebraic equations, where n is the number of degrees of freedom
associated with the problem.
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