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Chapter 5

Bayes Methods and Elementary
Decision Theory

1 Elementary Decision Theory

Notation 1.1. Let

• Θ ≡ the states of nature.

• A ≡ the action space.

• X ≡ the sample space of a random variable X with distribution Pθ.

• P : X×Θ #→ [0, 1]; Pθ(X = x) = probability of observing X = x when θ is true.

• L : Θ×A #→ R+; a loss function.

• d : A × X → [0, 1], d(a, x) = d(a|x) = probability of action a when X = x (a decision
function).

• D ≡ {all decision functions}.

The risk for the rule d ∈ D when θ ∈ Θ is true is

R(θ, d) = EθL(θ, d(·|X))

=
∫

X

∫

A
L(θ, a)d(da|X = x)Pθ(dx)

=
k∑

i=1

L(θ, ai)






m∑

j=1

d(ai, xj)Pθ(X = xj)




 in the discrete case.

We will call R : Θ×D→ R+ the risk function.
A decision rule d is inadmissible if there is a rule d′ such that R(θ, d′) ≤ R(θ, d) for all θ and

R(θ, d′) < R(θ, d) for some θ. A decision rule d is admissible if it is not inadmissible.

Example 1.1 Hypothesis testing. A = {0, 1}, Θ = Θ0 ∪Θ1,

L(θ, 0) = l01Θ1(θ), L(θ, 1) = l11Θ0(θ).
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Since A contains just two points, d(1|x) = 1− d(0|x) ≡ φ(x); and then

Pθ(accept H0) = Eθd(0|X) = Eθ(1− φ(X)),
Pθ(reject H0) = Eθd(1|X) = Eθφ(X),

and

R(θ, d) = l1Eθφ(X)1Θ0(θ) + l0Eθ(1− φ(X))1Θ1(θ).

The classical Neyman - Pearson hypothesis testing philosophy bounds l1α ≡ supθ∈Θ0
R(θ, d) and

tries to minimize

l0(1− βd(θ)) ≡ R(θ, d)

for each θ ∈ Θ1.

Example 1.2 Estimation. A = Θ; typically Θ = Rs for some s (but sometimes it is useful
to take Θ to be a more general metric space (Θ, d)). A typical loss function (often used for
mathematical simplicity more than anything else) is

L(θ, a) = K|θ − a|2 for some K.

Then the risk of a rule d is:

R(θ, d) = KEθ|θ − d(·|X)|2

= KEθ|θ − d(X)|2 for a non -randomized rule d

= K{V arθ(d(X)) + [biasθ(d(X))]2} when s = 1.

Definition 1.1 A decision rule dM is minimax if

inf
d∈D

sup
θ∈Θ

R(θ, d) = sup
θ∈Θ

R(θ, dM ).

Definition 1.2 A probability distribution Λ over Θ is called a prior distribution.

Definition 1.3 For any given prior Λ and d ∈ D, the Bayes risk of d with respect to Λ is

R(Λ, d) =
∫

Θ
R(θ, d)dΛ(θ)

=
l∑

i=1

R(θi, d)λi if Θ = {θ1, . . . , θl}.

Definition 1.4 A Bayes decision rule with respect to Λ, dΛ, is any rule satisfying

R(Λ, dΛ) = inf
d∈D

R(Λ, d) ≡ Bayes risk.

Example 1.3 Θ = {1, 2}.

Urn 1: 10 red balls, 20 blue balls, 70 green balls.

Urn 2: 40 red balls, 40 blue balls, 20 green balls.



1. ELEMENTARY DECISION THEORY 5

One ball is drawn from one of the two urns. Problem: decide which urn the ball came from if the
losses L(θ, a) are given by:

θ/a 1 2
1 0 10
2 6 0

Let d = (dR, dB , dG) with dx = probability of choosing urn 1 if color X = x is observed. Then

R(1, d) = 10P1(action 2) = 10{.1(1 − dR) + .2(1 − dB) + .7(1 − dG)}

and, similarly,

R(2, d) = 6{.4dR + .4dB + .2dG}.

if the prior distribution on the urns is given by λ1 = λ and λ2 = 1− λ, then the Bayes risk is

R(Λ, d) = 10λ + (2.4 − 3.4λ)dR + (2.4 − 4.4λ)dB + (1.2− 8.2λ)dG.

This is minimized by choosing dx = 1 if its coefficient is negative, 0 if its coefficient is positive. For
example, if λ = 1/2, then the Bayes risk with respect to λ equals

5 + .7dR + .2dB − 2.9dG,

which is minimized by dR = dB = 0, dG = 1; i.e. the Bayes rule dΛ with respect to λ = 1/2 is
dΛ = (0, 0, 1). Note that the Bayes rule is in fact a non-randomized rule. This gives us the Bayes
risk for λ = 1/2 as R(1/2, dB) = 2.1.

I claim that the minimax rule is dM = (0, 9/22, 1), which is a randomization of the two non-
random rules d2 = (0, 0, 1), and d7 = (0, 1, 1). This is easily confirmed by computing R(1, dM ) =
240/110 = R(2, dM ). Here is a table giving all of the nonrandomized rules and their risks:

X d1 d2 d3 d4 d5 d6 d7 d8

R 0 0 0 1 1 1 0 1
B 0 0 1 0 1 0 1 1
G 0 1 0 0 0 1 1 1

R(1, d) 10 3 8 9 7 2 1 0
R(2, d) 0 1.2 2.4 2.4 4.8 3.6 3.6 6
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2 Structure of the Risk Body: the finite case

Suppose that

Θ = {θ1, . . . , θl}, X = {x1, . . . , xm}, A = {a1, . . . , ak}.

Definition 2.1 A set A ⊂ Rl is convex if, for all λ ∈ [0, 1], x, y ∈ A, λx + (1− λ)y ∈ A.

Lemma 2.1 Let λ = (λ1, . . . ,λt) be a probability distribution (so λi ≥ 0 for i = 1, . . . , t, and∑t
i=1 λi = 1). Then for any d1, . . . , dt ∈ D,

∑t
i=1 λidi ∈ D.

Proof. Set d(al, xj) =
∑t

i=1 λidi(al, xj). Then d(al, xj) ≥ 0 and

k∑

l=1

d(al, xj) =
t∑

i=1

λi

k∑

l=1

di(al, xj) =
t∑

i=1

λi = 1.

!

We call

R = {(R(θ1, d), . . . , R(θl, d)) ∈ R+l : d ∈ D}

the risk body.

Theorem 2.1 The risk body is convex.

Proof. Let d1, d2 ∈ D denote the rules corresponding to Ri = (R(θ1, di), . . . , R(θl, di)), i = 1, 2,
and set d = λd1 + (1− λ)d2 ∈ D by the lemma. Then

λR(θl, d1) + (1− λ)R(θl, d2) =
k∑

i=1

m∑

j=1

L(θl, ai){λd1(ai, xj) + (1− λ)d2(ai, xj)}pθl
(xj)

= R(θl, d),

so d ∈ D has risk point λR1 + (1− λ)R2 ∈ R. !

Theorem 2.2 Every d ∈ D may be expressed as a convex combination of the the nonrandomized
rules.

Proof. Any d ∈ D may be represented as a k ×m matrix of ≥ 0 real numbers whose columns
add to 1. The nonrandomized rules are those whose entries are 0’s and 1’s. Set d(ai, xj) = dij ,
d = (dij), 1 ≤ i ≤ k, 1 ≤ j ≤ m.

There are km nonrandom decision rules: call them δ(r) = (δ(r)
ij ), for 1 ≤ r ≤ km. Given d ∈ D,

we want to find λr ≥ 0 with
∑km

r=1 λr = 1 so that

km∑

r=1

λrδ
(r) = d.
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Claim:

λr ≡
m∏

j=1

k∏

i=1

d
δ(r)
ij

ij =
m∏

j=1

{
k∑

i=1

dijδ
(r)
ij }

work. (This is easily proved by induction on m.) !

Remark 2.1 The space of decision rules defined above, D, with d ∈ D being a probability dis-
tribution over actions given that X = x, corresponds to the behavioral decision rules as discussed
by Ferguson (1967), page 25. This differs from Ferguson’s collection D∗, the randomized decision
functions, which are probability distributions over the non-randomized rules.
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3 The finite case: relations between Bayes, minimax, and admis-
sibility

This section continues our examination of the special, but illuminating, case of a finite set Θ. In
this case we can prove a number of results about Bayes and minimax rules and connections between
them which carry over to more general problems with some appropriate reformulation.

Theorem 3.1 A minimax rule always exists.

Proof. If 0 /∈ R, then for some c > 0 the cube with all sides of length c in the positive quadrant
does not intersect R. Let c increase until the square intersects R; call this number c0. Any decision
rule with a risk point which intersects the c0 square is minimax. (Note that the equation for the
boundary of a cube is maxi R(θi, d) = constant.) !

Theorem 3.2 If λ = (λ1, . . . ,λl) is a prior, then Bayes decision rules have risk points on the
hyperplane {x ∈ Rl :

∑
i λixi = c∗} where

c∗ = inf{c ≥ 0 : the plane determined by
∑

i

λixi = c intersects R}.

Proof. The Bayes risk is R(Λ, d) =
∑l

i=1 λiR(θi, d) is the Bayes risk and we want to minimize
it. !

Lemma 3.1 An admissible rule is a Bayes rule for some prior λ.

Proof. See the picture! !

Note that not every Bayes rule is admissible.

Theorem 3.3 Suppose that d0 is Bayes with respect to λ = (λ1, . . . ,λl) and λi > 0, i = 1, . . . , l.
Then d0 is admissible.

Proof. Suppose that d0 is not admissible; then there is a rule d better than d0: i.e.

R(θi, d) ≤ R(θi, d0) for all i

with < for some i. Since λi > 0 for i = 1, . . . , l,

R(Λ, d) =
l∑

i=1

λiR(θi, d) <
l∑

i=1

λiR(θi, d0) = R(Λ, d0),

contradicting the fact that d0 is Bayes with respect to λ. !

Theorem 3.4 If dB ∈ D is Bayes for λ and it has constant risk, then dB is minimax.
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Proof. Let r0 be the constant risk. Assume dB is not minimax and let dM be the minimax
rule (which exists). Then

R(θi, dM ) ≤ max
1≤j≤l

R(θj, dM ) < max
1≤j≤l

R(θj, dB) = r0(a)

and

min
d∈D

R(λ, d) = R(λ, dB) =
∑

λiR(θi, dB) = r0.(b)

But (a) yields

R(λ, dM ) =
∑

i

λiR(θi, dM ) <
∑

i

λir0 = r0(c)

which contradicts (b). !

Example 3.1 We return to Example 1.3, and consider it from the perspective of Theorem 3.4.
When the prior λ = (λ, 1− λ) with λ = 6/11, we find that the Bayes risk is given by

R(Λ, d) = 10λ + (2.4− 3.4λ)dR + (2.4 − 4.4λ)dB + (1.2 − 8.2λ)dG

= 10 · 6
11

+
6
11

dR + 0 · dB −
36
11

dG,

so all the rules dΛ = (0, dB , 1) are Bayes with respect to λ = 6/11. Can we find one with constant
risk? The risks of these Bayes rules dΛ are given by

R(1, dΛ) = 1 + 2(1− dB),
R(2, dΛ) = 0 + 2.4dB + 1.2,

and these are equal if dB satisfies 3− 2dB = 1.2 + 2.4dB , and hence dB = 9/22. For this particular
Bayes rule, dΛ = (0, 9/22, 1), and the risks are given by R(1, dΛ) = 24/11 = R(2, dΛ). Thus the
hypotheses of Theorem 3.4 are satisfied, and we conclude that dΛ = (0, 9/22, 1) is a minimax rule.
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4 Posterior Distributions

Now we will examine Bayes rules more generally.

Definition 4.1 If θ ∼ Λ, a prior distribution over Θ, then the conditional distribution of θ given
X, P (θ ∈ A|X), A ∈ B(Θ), is called the posterior distribution of θ. Write Λ(θ|x) = P (θ ≤ θ|X = x)
for the conditional distribution function if Θ is Euclidean.

If Λ has density λ with respect to ν and Pθ has density pθ with respect to µ, then

λ(θ|x) =
p(x|θ)λ(θ)∫

Θ p(x|θ)λ(θ)dν(θ)
=

p(x|θ)λ(θ)
p(x)

is the posterior density of θ given X = x.

Definition 4.2 Suppose X has density p(x|θ), and λ = λ(·) is a prior density, λ ∈ PΛ. If the
posterior density λ(·|x) has the same form (i.e. λ(·|x) ∈ PΛ for a.e. x), then λ is said to be a
conjugate prior for p(·|θ).

Example 4.1
A. (Poisson - Gamma). Suppose that (X|θ = θ) ∼ Poisson(θ), θ ∼ Γ(α,β). Then

λ(θ|x) =
p(x|θ)λ(θ)

p(x)
∝ p(x|θ)λ(θ)

= e−θ θ
x

x!
βα

Γ(α)
θα−1e−βθ

=
βα

x!Γ(α)
θα+x−1e−(β+1)θ,

so (θ|X = x) ∼ Γ(α + x,β + 1), and gamma is a conjugate prior for Poisson.
B. (Normal mean - normal). (Example 1.3, Lehmann TPE, page 243). Suppose that (X|θ = θ) ∼
N(θ,σ2), θ ∼ N(µ, τ2). Then

(θ|X = x) ∼ N

(
µ/τ2 + x/σ2

1/τ2 + 1/σ2
,

1
1/τ2 + 1/σ2

)
.

Note that if X is replaced by X1, . . . ,Xn i.i.d. N(θ,σ2), then by sufficiency,

(θ|X = x) ∼ N

(
n/σ2

1/τ2 + n/σ2
x +

1/τ2

1/τ2 + n/σ2
µ, ,

1
1/τ2 + n/σ2

)
.

Example 4.2 If (X|θ = θ) ∼ Binomial(n, θ), θ ∼ B(α,β), then

λ(θ|x) =
p(x|θ)λ(θ)

p(x)
∝ p(x|θ)λ(θ)

=
(

n

x

)
θx(1− θ)n−xθα−1(1− θ)β−1 Γ(α + β)

Γ(α)Γ(β)

= θα+x−1(1− θ)β+n−x−1 Γ(α + β)
Γ(α)Γ(β)

(
n

x

)
,

so (θ|X = x) ∼ Beta(α + x,β + n− x).
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Example 4.3 (Multinomial - Dirichlet). Suppose that (X|θ = θ) ∼ Multinomialk(n, θ) and θ ∼
Dirichlet(α); i.e.

λ(θ) =
Γ(α1 + · · · + αk)∏k

i=1 Γ(αi)
θα1−1
1 · · · θαk−1

k

for θi ≥ 0,
∑k

i=1 θi = 1, αi > 0. Then (θ|X = x) ∼ Dirichlet(α + x),

E(θ) =
α

∑k
i=1 αi

,

and

dΛ(X) =
α + X∑
αi + n

=
∑

αi∑
αi + n

α∑
αi

+
n∑

αi + n

X

n
.
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5 Finding Bayes Rules

For convex loss functions we can restrict attention to non-randomized rules; see corollary 1.7.9,
TPE, page 48. The following theorem gives a useful recipe for finding Bayes rules.

Theorem 5.1 Suppose that θ ∼ Λ, (X|θ = θ) ∼ Pθ, and L(θ, a) ≥ 0 for all θ ∈ Θ, a ∈ A. If
(i) There exists a rule d0 with finite risk, and
(ii) For a.e. x there exists dΛ(x) minimizing

E{L(θ, d(·|x))|X = x} =
∫

Θ
L(θ, d(·|x))λ(θ|x)dν(θ),

then dΛ(·|x) is a Bayes rule.

Proof. For any rule d with finite risk

E{L(θ, d(X))|X} ≥ E{L(θ, dΛ(X))|X} a.s.(a)

by (ii). Hence

R(Λ, d) = EE{L(θ, d(X))|X} = EL(θ, d(X))(b)
≥ EE{L(θ, dΛ(X))|X} = EL(θ, dΛ(X))
= R(Λ, dΛ).

!

Corollary 1 (Estimation with weighted squared - error loss). If Θ = A = R and L(θ, a) =
K(θ)|θ − a|2, then

dΛ(X) =
E{K(θ)θ|X}
E{K(θ)|X} =

∫
Θ θK(θ)dΛ(θ|X)∫
Θ K(θ)dΛ(θ|X)

.

When K(θ) = 1, then

dΛ(X) =
∫

θdΛ(θ|X) = E{θ|X} ≡ the posterior mean.

Proof. For an arbitrary (nonrandomized) rule d ∈ D,
∫

K(θ)|θ − d(x)|2dΛ(θ|x) =
∫

K(θ)|θ − dΛ(x) + dΛ(x)− d(x)|2dΛ(θ|x)

=
∫

K(θ)|θ − dΛ(x)|2dΛ(θ|x)

+ 2(dΛ(x)− d(x))
∫

K(θ){θ − dΛ(x)}dΛ(θ|x)

+ (dΛ(x)− d(x))2
∫

K(θ)dΛ(θ|x)

≥
∫

K(θ)|θ − dΛ(x)|2dΛ(θ|x)

with equality if d(x) = dΛ(x). !



5. FINDING BAYES RULES 13

Corollary 2 (Estimation with L1−loss). If Θ = A = R and L(θ, a) = |θ − a|, then

dΛ(x) = any median of Λ(θ|x).

Corollary 3 (Testing with 0− 1 loss). If A = {0, 1}, Θ = Θ0 + Θ1 (in the sense of disjoint union
of sets), and L(θ, ai) = li1Θc

i
(θ), i = 0, 1, then any rule of the form

dΛ(x) =






1 if P (θ ∈ Θ1|X = x) > (l1/l0)P (θ ∈ Θ0|X = x)
γ(x) if P (θ ∈ Θ1|X = x) = (l1/l0)P (θ ∈ Θ0|X = x)
0 if P (θ ∈ Θ1|X = x) < (l1/l0)P (θ ∈ Θ0|X = x)

is Bayes with respect to Λ. Note that this reduces to a test of the Neyman - Pearson form when
Θi = {θi}, i = 0, 1.

Proof. Let φ(x) = d(1|x). Then

E{L(θ,φ(x))|X = x} =
∫

Θ
L(θ,φ(x))dΛ(θ|x)

=
∫

Θ
{l1φ(x)1Θ0(θ) + l0(1− φ(x))1Θ1(θ)}dΛ(θ|x)

= l1φ(x)P (θ ∈ Θ0|X = x) + l0(1− φ(x))P (θ ∈ Θ1|X = x)
= l0P (θ ∈ Θ1|X = x) + φ(x){l1P (θ ∈ Θ0|X = x)− l0P (θ ∈ Θ1|X = x)}

which is minimized by any rule of the form dΛ. !

Corollary 4 (Testing with linear loss). If Θ = R, A = {0, 1}, Θ0 = (−∞, θ0], Θ1 = (θ0,∞), and

L(θ, 0) = (θ − θ0)1Θ1(θ); L(θ, 1) = (θ0 − θ)1Θ0(θ);

then

dΛ(x) =






1 if E(θ|X = x) > θ0,
γ(x) if E(θ|X = x) = θ0,
0 if E(θ|X = x) < θ0

is Bayes with respect to Λ.

Proof. Again, by theorem 5.1 it suffices to minimize

E{L(θ,φ(x))|X = x}

=
∫

Θ
{φ(x)(θ0 − θ)1(−∞,θ0](θ) + (1− φ(x))(θ − θ0)1(θ0,∞)(θ)}dΛ(θ|x)

=
∫

Θ
(θ0 − θ)1(−∞,θ0](θ)dΛ(θ|x) + (1− φ(x)){E(θ|X = x)− θ0}

which is minimized for each fixed x by any rule of the form dΛ. !
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Example 5.1 Suppose X ∼ Binomial(n, θ) with θ ∼ Beta(α,β). Thus (θ|X = x) ∼ Beta(α +
x,β + n− x), so that

E(θ) =
α

α + β

and hence for L(θ, a) = (θ − a)2 the Bayes rule is

dΛ(X) = E{θ|X} =
α + X

α + β + n

=
α + β

α + β + n
· α

α + β
+

n

α + β + n

X

n
.

If the loss is L(θ, a) = (θ − a)2/{θ(1 − θ)} instead of squared - error loss, then, with B(α,β) ≡
Γ(α + β)/(Γ(α)Γ(β)),

E{θK(θ)|X} =
B(α + X,β + n−X − 1)

B(α + X,β + n−X)
,

E{K(θ)|X} =
B(α + X − 1,β + n−X − 1)

B(α + X,β + n−X)
,

and hence the Bayes rule with respect to Λ for this loss function is

dΛ(X) =
B(α + X,β + n−X − 1)

B(α + X − 1,β + n−X − 1)

= λn(α,β)
α− 1

α + β − 2
+ (1− λn(α,β))

X

n

where λn(α,β) = (α + β − 2)/(α + β + n− 2). Note that when α = β = 1, the Bayes estimator for
this loss function becomes the familiar maximum likelihood estimator p̂ = X/n.

Example 5.2 Suppose that (X |θ) ∼ Multinomialk(n,θ), and θ ∼ Dirichlet(α). Then

E(θ) =
α∑
αi

,

and for squared error loss the Bayes rule is

dΛ(X) = E(θ|X) =
α + X∑
αi + n

.

Example 5.3 Normal with normal prior. If (X|θ = θ) ∼ N(θ,σ2), θ ∼ N(µ,σ2), then

(θ|X) ∼ N

(
1/τ2

1/τ2 + 1/σ2
µ +

1/σ2

1/τ2 + 1/σ2
X,

1
1/τ2 + 1/σ2

)
.

Consequently

E(θ) = µ,

and, for squared error loss the Bayes rule is

dΛ(X) = E(θ|X) =
1/τ2

1/τ2 + 1/σ2
µ +

1/σ2

1/τ2 + 1/σ2
X.

This remains true if L(θ, a) = ρ(θ − a) where ρ is convex and even (see e.g. Lehmann, TPE, page
244).
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The following example of the general set-up is sometimes referred to as a “classification prob-
lem”. Suppose that Θ = {θ1, . . . , θk} and A = {a1, . . . , ak} = Θ. Suppose that X ∼ Pi ≡ Pθi ,
i = 1, . . . , k when θi is the true state of nature where Pi has density pi with respect to a σ−finite
dominating measure µ A simple loss function is given by

L(θi, aj) = 1{i .= j}, i = 1, . . . , k, j = 1, . . . , k.

Given a (“multiple”) decision rule d = (d(1|X), . . . , d(k|X)), the risk function is

R(θi, d) =
k∑

j=1

L(θi, aj)Eθi{d(j|X)} =
∑

j '=i

Eθi{d(j|X)}

= 1− Eθi{d(i|X)}.

Suppose that λ = (λ1, . . . ,λk) is a prior distribution on Θ = {θ1, . . . , θk}. then the Bayes risk is

R(λ, d) = 1−
k∑

i=1

λiEθi{d(i|X)}

= probability of missclassification using d

when the distribution from which X is drawn
is chosen according to λ.

Here is a theorem characterizing the class of Bayes rules in this setting.

Theorem 5.2 Any rule d for which

d(i|X) = 0 whenever λipi(X) < max
j

λjpj(X)

for i = 1, . . . , k is Bayes with respect to λ. Equivalently, since
∑k

i=1 d(i|X) = 1 for all X,

d(i|X) = 1 if λipi(X) > λjpj(X), for j .= i.

Proof. Let d′ be any other rule. We want to show that

R(λ, d′)−R(λ, d) ≥ 0

where d is any rule of the form given. But

R(λ, d′)−R(λ, d) =
k∑

i=1

λi

∫
d(i|x)pi(x)dµ(x)−

k∑

j=1

λj

∫
d′(j|x)pj(x)dµ(x)

=
k∑

i=1

k∑

j=1

∫
d(i|x)d′(j|x){λipi(x)− λjpj(x)}dµ(x)

≥ 0

since whenever λipi(x) < λjpj(x) it follows that d(i|x) = 0. !

Finally, here is a cautionary example.
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Example 5.4 (Ritov-Wasserman). Suppose that (X1, R1, Y1), . . . , (Xn, Rn, Yn) are i.i.d. with a
distribution described as follows. Let θ = (θ1, . . . , θB) ∈ [0, 1]B ≡ Θ where B is large, e.g. 1010.
Let ξ = (ξ1, . . . , ξB) be a vector of known numbers with 0 < δ ≤ ξj ≤ 1 − δ < 1 for j = 1, . . . , B.
Furthermore, suppose that:

(i) Xi ∼ Uniform{1, . . . , B}.

(ii) Ri ∼ Bernoulli(ξXi).

(iii) If Ri = 1, Yi ∼ Bernoulli(θXi); if Ri = 0, Yi is missing (i.e. not observed).

Our goal is to estimate

ψ = ψ(θ) = Pθ(Y1 = 1) =
B∑

j=1

P (Y1 = 1|X1 = j)P (X1 = j) =
1
B

B∑

j=1

θj.

Now the likelihood contribution of (Xi, Ri, Yi) is

f(Xi)f(Ri|Xi)f(Yi|Xi, Ri) =
1
B

ξRi
Xi

(1− ξXi)
1−RiθYiRi

Xi
(1 − θXi)

(1−Yi)Ri ,

and hence the likelihood for θ is

Ln(θ) =
n∏

i=1

1
B

ξRi
Xi

(1− ξXi)
1−RiθYiRi

Xi
(1− θXi)

(1−Yi)Ri

∝
n∏

i=1

θYiRi
Xi

(1− θXi)
(1−Yi)Ri .

Thus

ln(θ) =
n∑

i=1

{YiRi log θXi + (1− Yi)Ri log(1− θXi)}

=
B∑

j=1

nj log θj +
B∑

j=1

mj log(1− θj)

where

nj = #{i : Yi = 1, Ri = 1,Xi = j}, mj = #{i : Yi = 0, Ri = 1,Xi = j}.

Note that nj = mj = 0 for most j since B >> n. Thus the MLE for most θj is not defined.
Furthermore, for most θj the posterior distribution is the prior distribution (especially if the prior
is a product distribution on Θ = [0, 1]B !). Thus both MLE and Bayes estimation fail.

Here is a purely frequentist solution: the Horovitz- Thompson estimator of ψ is

ψ̂n =
1
n

n∑

i=1

Ri

ξXi

Yi.
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Note that

E(ψ̂n) = E{ R1

ξX1

Y1} = EE{ R1

ξX1

Y1|X1, R1} = E

{
R1

ξX1

E{Y1|X1, R1}
}

= E

{
R1

ξX1

θX1

}
= EE

{
R1

ξX1

θX1|X1

}
= E

{
θX1

ξX1

E{R1|X1}
}

= E

{
θX1

ξX1

ξX1

}
= E{θX1}

= B−1
B∑

j=1

θj = ψ(θ) .

Thus ψ̂n is an unbiased estimator of ψ(θ). Moreover,

V ar(ψ̂n) =
1
n





1
B

B∑

j=1

θj

ξj
− ψ(θ)2




 .(1)

Exercise 5.1 Show that (1) holds and hence that

V ar(ψ̂n) ≤ 1
nδ

under the assumption that ξj ≥ δ > 0 for all 1 ≤ j ≤ B. [Hint: use the formula V ar(Y ) =
EV ar(Y |X) + V ar[E(Y |X)] twice.]
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6 Finding Minimax Rules

Definition 6.1 A prior Λ0 for which R(Λ, dΛ) is maximized is called a least favorable prior:

R(Λ0, dΛ0) = sup
Λ

R(Λ, dΛ).

Theorem 6.1 Suppose that Λ is a prior distribution on Θ such that

R(Λ, dΛ) =
∫

Θ
R(θ, dΛ)dΛ(θ) = sup

θ
R(θ, dΛ).(1)

Then:
(i) dΛ is minimax.
(ii) If dΛ is unique Bayes with respect to Λ, dΛ is unique minimax.
(iii) Λ is least favorable.

Proof. (i) Let d be another rule. Then

sup
θ

R(θ, d) ≥
∫

Θ
R(θ, d)dΛ(θ)

≥
∫

Θ
R(θ, dΛ)dΛ(θ) since dΛ is Bayes wrt Λ(a)

= sup
θ

R(θ, dΛ) by (1).

Hence dΛ is minimax.
(ii). If dΛ is unique Bayes, then > holds in (a), so dΛ is unique minimax.
(iii). Let Λ∗ be some other prior distribution. Then

rΛ∗ ≡
∫

Θ
R(θ, dΛ∗)dΛ∗(θ) ≤

∫

Θ
R(θ, dΛ)dΛ∗(θ)

since dΛ∗ is Bayes wrt Λ∗

≤ sup
θ

R(θ, dΛ)

= R(Λ, dΛ) ≡ rΛ by (1).

!

Corollary 1 If dΛ is Bayes with respect to Λ and has constant risk, R(θ, dΛ) = constant, then dΛ

is minimax.

Proof. If dΛ has constant risk, then (1) holds. !

Corollary 2 Let

ΘΛ ≡ {θ ∈ Θ : R(θ, dΛ) = sup
θ′

R(θ′, dΛ)}

be the set of θ’s where the risk of dΛ assumes its maximum. Then dΛ is minimax if Λ(ΘΛ) = 1.
Equivalently, dΛ is minimax if there is a set ΘΛ with Λ(ΘΛ) = 1 and R(θ, dΛ) = supθ′ R(θ′, dΛ) for
all θ ∈ ΘΛ.
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Example 6.1 Suppose X ∼ Binomial(n, θ) with θ ∼ Beta(α,β). Thus (θ|X = x) ∼ Beta(α +
x,β + n− x), and as we computed in section 5,

dΛ(X) =
α + X

α + β + n
=

α + β

α + β + n

α

α + β
+

n

α + β + n

X

n
.

Consequently,

R(θ, dΛ) =
(

n

α + β + n

)2 θ(1− θ)
n

+
(

α + nθ

α + β + n
− θ

)2

=
1

(α + β + n)2
{
α2 + (n− 2α(α + β))θ + ((α + β)2 − n)θ2

}

=
1

(α + β + n)2
α2

if 2α(α + β) = n and (α + β)2 = n. But solving these two equations yields α = β =
√

n/2. Thus
for these choices of α and β, the risk of the Bayes rule is constant in θ, and hence

dM (X) =
1

1 +
√

n

1
2

+
√

n

1 +
√

n

X

n

is Bayes with respect to Λ = Beta(
√

n/2,
√

n/2) and has risk

R(θ, dM ) =
1

4(1 +
√

n)2
≤ θ(1− θ)

n
= R(θ,X/n)

if

|θ − 1/2| ≤ 1
2

√
1 + 2

√
n

1 +
√

n
∼ 1√

2n1/4
.

Hence Beta(
√

n/2,
√

n/2) is least favorable and dM is minimax. Note that dM is a consistent
estimator of θ:

dM (X)→p θ

as n → ∞, but its bias is of the order n−1/2 (the bias equals (1/2 − θ)/(1 +
√

n)). Furthermore,
dM is a (locally) regular estimator of θ, but the limit distribution is not centered at zero if θ .= 1/2:
under Pθn with θn = θ + tn−1/2

√
n(dM (X) − θn)→d N(1/2 − θ, θ(1− θ)).

If a least-favorable prior does not exist, then we can still consider improper priors or limits of
proper priors:

Let {Λk} be a sequence of prior distributions, let dk denote the Bayes estimator corresponding
to Λk, and set

rk ≡
∫

Θ
R(θ, dk)dΛk(θ).

Suppose that

rk → r <∞ as k →∞.(2)
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Definition 6.2 The sequence of prior distributions {Λk} with Bayes risks {rk} is said to be least
favorable if rΛ ≡ R(Λ, dΛ) ≤ r for any prior distribution Λ.

Theorem 6.2 Suppose that {Λk} is a sequence of prior distributions with Bayes risks satisfying

rk → r,(3)

and d is an estimator for which

sup
θ

R(θ, d) = r.(4)

Then:
A. d is mininax, and
B. {Λk} is least - favorable.

Proof. A. Suppose d∗ is any other estimator. Then

sup
θ

R(θ, d∗) ≥
∫

R(θ, d∗)dΛk(θ) ≥ rk

for all k ≥ 1. Hence

sup
θ

R(θ, d∗) ≥ r = sup
θ

R(θ, d) by (4),

so d is minimax.
B. If Λ is any prior distribution, then

rΛ =
∫

R(θ, dΛ)dΛ(θ) ≤
∫

R(θ, d)dΛ(θ) ≤ sup
θ

R(θ, d) = r

by (4). !

Example 6.2 Let X1, . . . ,Xn be i.i.d. N(θ,σ2) given θ = θ, and suppose that θ ∼ N(µ, τ2) and
that σ2 is known. Then it follows from (5.3) that

dΛ(X) = E{θ|X} =
1/τ2

1/τ2 + n/σ2
µ +

n/σ2

1/τ2 + n/σ2
Xn

and

R(Λ, dΛ) ≡ rΛ = E{θ − dΛ(X)}2

= EE{[θ − dΛ(X)]2|X}
= EV ar{θ|X}

=
1

1/τ2 + n/σ2
→ σ2

n
as τ2 →∞

= R(θ,X)

for all θ ∈ Θ = R. Hence by theorem 6.2, X is a minimax estimator of θ.

The remainder of this section is aimed at extending minimaxity of estimators from smaller
models to larger ones.
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Lemma 6.1 Suppose that X ∼ P ∈ M ≡ {all P ’s on X}, and that ν : P ⊂ M #→ R is a
functional (e.g. ν(P ) = EP (X) =

∫
xdP (x), ν(P ) = V arP (X), ν(P ) = Pf for some fixed function

f). Suppose that d is a minimax estimator of ν(P ) for P ∈ P0 ⊂ P1. If

sup
P∈P0

R(P, d∗) = sup
P∈P1

R(P, d),

then d is also minimax for estimating ν(P ), P ∈ P1.

Proof. Suppose that d is not minimax. Then there exists a rule d∗ with smaller maximum risk:

sup
P∈P0

R(P, d∗) ≤ sup
P∈P1

R(P, d∗) < sup
P∈P1

R(P, d) = sup
P∈P0

R(P, d)

which contradicts the hypothesis that d is minimax for P0. !

Example 6.3 This continues the normal mean example 6.2. Suppose that σ2 is unknown. Thus,
with Θ = {(θ,σ2) : θ ∈ R, 0 < σ2 <∞},

sup
(θ,σ2)∈Θ

R((θ,σ2),Xn) = sup
(θ,σ2)∈Θ

σ2

n
=∞.

So, to get something reasonable, we need to restrict σ2. Let

P0 = {N(θ,M) : θ ∈ R},
P1 = {N(θ,σ2) : θ ∈ R, 0 ≤ σ2 ≤M}.

Then Xn is minimax for P0 by our earlier calculation, P0 ⊂ P1, and

sup
P1

R(P,Xn) = sup
P0

R(P,Xn) =
M

n
.

Thus Xn is a minimax estimator of θ for P1.

Example 6.4 Let X1, . . . ,Xn be i.i.d. P ∈ Pµ where

Pµ = {all probability measures P : EP |X| <∞}

and consider estimation of ν(P ) = EP (X) with squared error loss for the families

Pbσ2 ≡ {P ∈ Pµ : V arP (X) ≤M <∞}
Pbr ≡ {P ∈ Pµ : P (a ≤ X ≤ B) = 1} for some fixed a, b ∈ R.

Then:
A. X is minimax for Pbσ2 = P1 by Example 6.3 since it is minimax for P1 ≡ {N(θ,σ2) : θ ∈
R, 0 < σ2 ≤M}, and

sup
P∈P0

R(P,X) = sup
P∈P1

R(P,X).

B. Without loss of generality suppose a = 0 and b = 1. Let

P1 = {P : P ([0, 1]) = 1},
P0 = {P ∈ P1 : P (X = 1) = p, P (X = 0) = 1− p for some 0 < p < 1}.
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For P0 we know that the minimax estimator is

dM (X) =
1

1 +
√

n

1
2

+
√

n

1 +
√

n
X.

Now, with EP X ≡ θ,

R(P, dM ) =
1

(1 +
√

n)2

{
VarP (X) +

(
1
2
− θ

)2
}

≤ 1
(1 +

√
n)2

{θ − θ2 + (1/4) − θ + θ2}

since 0 ≤ X ≤ 1 implies EP X2 ≤ EP X ≡ θ

=
1/4

(1 +
√

n)2
.

Thus

sup
P∈P1

R(P, dM ) = sup
P∈P0

R(P, dM ),

and by Lemma 6.1 dM is minimax.

Remark 6.1 The restriction σ2 ≤ M in (5) is crucial; note that ν(P ) = EP (X) is discontinuous
at every P in the sense that we can easily have Pm →d P , but ν(Pm) fails to converge to ν(P ).

Remark 6.2 If Θ = [−M,M ] ⊂ R, then X is no longer minimax in the normal case; see Bickel
(1981). The approximately least favorable densities for M →∞ are

λM (θ) = M−1 cos2((π/2)(θ/M)1[−M,M ](θ).



7. ADMISSIBILITY AND INADMISSIBILITY 23

7 Admissibility and Inadmissibility

Our goal in this section is to establish some basic and simple results about admissibility / inad-
missibility of some classical estimators. In particular, we will show that X is admissible for the
Gaussian location model for k = 1, but inadmissible for the Gaussian location model for k ≥ 3.
The fundamental work in this area is that of Stein (1956) and James and Stein (1961). For an
interesting expository paper, see Efron and Morris (1977); for more work on admissibility issues
see e.g. Eaton (1992), (1997), and Brown (1971).

Theorem 7.1 Any unique Bayes estimator is admissible.

Proof. Suppose that dΛ is unique Bayes with respect to Λ and is inadmissible. Then there
exists an estimator d such that R(θ, d) ≤ R(θ, dΛ) with strict inequality for some θ, and hence

∫

Θ
R(θ, d)Λ(θ) ≤

∫

Θ
R(θ, dΛ)dΛ(θ)

which contradicts uniqueness of dΛ. Thus dΛ is admissible. !

Lemma 7.1 If the loss function L(θ, a) is squared error (or is convex in a) and, with Q defined
by Q(A) =

∫
Pθ(X ∈ A)dΛ(θ), a.e. Q implies a.e. P, then a Bayes rule with finite Bayes risk is

unique a.e. P. [a.e. P means P (N) = 0 for all P ∈ P.]

Proof. See Lehmann and Casella TPE Corollary 4.1.4 page 229. !

Example 7.1 Consider the Bayes estimator of a normal mean, dΛ = pnµ + (1 − pn)X , pn =
(1/τ2)/(1/τ2 +n/σ2). The Bayes risk is finite and a.e. Q implies a.e. P. Hence dΛ is unique Bayes
and admissible.

Theorem 7.2 If X is a random variable with mean θ and variance σ2, then aX + b is inadmissible
as an estimator of θ for squared error loss if

(i) a > 1
(ii) a < 0
(iii) a = 1, b .= 0.

Proof. For any a, b the risk of the rule aX + b is

R(θ, aX + b) = a2σ2 + {(a− 1)θ + b}2 ≡ ρ(a, b).

(i) If a > 1

ρ(a, b) ≥ a2σ2 > σ2 = ρ(1, 0),

so aX + b is dominated by X.
(ii) If a < 0, then (a− 1)2 > 1 and

ρ(a, b) ≥ {(a− 1)θ + b}2 = (a− 1)2{θ +
b

a− 1
}2

> {θ +
b

a− 1
}2 = ρ(0,−b/(a − 1)).
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(iii) If a = 1, b .= 0,

ρ(1, b) = σ2 + b2 > σ2 = ρ(1, 0),

so X + b is dominated by X. !

Example 7.2 Thus aX + b is inadmissible for a < 0 or a > 1. When a = 0, d = b is admissible
since it is the only estimator with zero risk at θ = b. When a = 1, b .= 0, d is inadmissible. What is
left is X: is X admissible as the estimator of a normal mean in R? The following theorem answers
this affirmatively.

Theorem 7.3 If X1, . . . ,Xn are i.i.d. N(θ,σ2), θ ∈ Θ = R with σ2 known, then X is an admissible
estimator of θ.

Proof. Limiting Bayes method. Suppose that X is inadmissible (and σ = 1). Then there is
an estimator d∗ such that R(θ, d∗) ≤ 1/n = R(θ,X) for all θ with risk < 1/n for some θ. Now

R(θ, d) = Eθ(θ − d(X))2

is continuous in θ for every d, and hence there exists ε > 0 and θ0 < θ1 so that

R(θ, d∗) <
1
n
− ε for all θ0 < θ < θ1.

Let

r∗τ ≡
∫

Θ
R(θ, d∗)dΛ(θ)

where Λ = N(0, τ2). Thus

rτ ≡
∫

Θ
R(θ, dτ )dΛ(θ) =

1
1/τ2 + n

=
τ2

1 + nτ2

so rτ ≤ r∗τ . Thus

1/n − r∗τ
1/n − rτ

=
1√
2πτ

∫ ∞
−∞ {1/n −R(θ, d∗)} exp(−θ2/2τ2)dθ

1/n − τ2/(1 + nτ2)

≥
1√
2πτ

ε
∫ θ1
θ0

exp(−θ2/2τ2)dθ

1/n(1 + nτ2)

=
n(1 + nτ2)√

2πτ
ε

∫ θ1

θ0

exp(−θ2/2τ2)dθ

→ ∞ · ε · (θ1 − θ0) =∞ as τ →∞.

Hence
1
n
− r∗τ >

1
n
− rτ

for τ > some τ0, or, r∗τ < rτ for some τ > τ0, which contradicts dτ Bayes with respect to Λτ with
Bayes risk rτ . Hence X is admissible. !
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Proof. (Information inequality method). The risk of any rule d is

R(θ, d) = Eθ(d− θ)2 = V arθ[d(X)] + b2(θ)

≥ [1 + b′(θ)]2

n
+ b2(θ)

since I(θ) = 1. Suppose that d is any estimator satisfying

R(θ, d) ≤ 1/n for all θ.

then

1
n
≥ b2(θ) +

[1 + b′(θ)]2

n
.(a)

But (a) implies that:
(i) |b(θ)| ≤ 1/

√
n for all θ; i.e. b is bounded.

(ii) b′(θ) ≤ 0 since 1 + 2b′(θ) + [b′(θ)]2 ≤ 1 .
(iii) There exists θi →∞ such that b′(θi)→ 0.

[If b′(θ) ≤ −ε for all θ > θ0, then b(θ) is not bounded.]
Similarly, there exists θi → −∞ such that b′(θi)→ 0. (iv)

b2(θ) ≤ 1
n
− [1 + b′(θ)]2

n
= −2b′(θ) + [b′(θ)]2

n

Hence b(θ) = 0, and R(θ, d) ≡ 1/n. !

Theorem 7.4 (Stein’s theorem) If k ≥ 3, then X is inadmissible.

Remark 7.1 The sample mean is admissible when k = 2; see Stein (1956), Ferguson (1967), page
170.

Proof. Let g : Rk → Rk have

E
∣∣∣

∂

∂xi
gi(X)

∣∣∣ <∞,

and consider estimators of the form

θ̂n = X + n−1g(X).

Now

Eθ|X − θ|2 − Eθ|θ̂n − θ|2 = Eθ|X − θ|2 − Eθ|X − θ + n−1g(X)|2

= −2n−1Eθ〈X − θ, g(X)〉 − n−2Eθ|g(X)|2.(a)

!

To proceed further we need an identity due to Stein.
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Lemma 7.2 If X ∼ N(θ,σ2), and g is a function with E|g′(X)| <∞, then

σ2Eg′(X) = E(X − θ)g(X).(1)

If X ∼ Nk(θ,σ2I), and g : Rk → Rk has

E| ∂

∂xi
gi(X)| <∞,

then:

σ2E
∂

∂xi
gi(X) = E(Xi − θi)gi(X), i = 1, . . . , k.(2)

Proof. Without loss of generality, suppose that θ = 0 and σ2 = 1. Integration by parts gives

Eg′(X) =
1√
2π

∫ ∞

−∞
g′(x) exp(−x2/2)dx

= − 1√
2π

∫ ∞

−∞
g(x) exp(−x2/2){−2x/2}dx

= EXg(X).

In applying integration by parts here, we have ignored the term uv|∞−∞ = g(x)φ(x)|∞−∞. To prove
that this does in fact vanish, it is easiest to apply Fubini’s theorem (twice!) in a slightly devious way
as follows: let φ(t) = (2π)−1/2 exp(−t2/2) be the standard normal density. Since φ′(t) = −tφ(t),
we have both

φ(x) = −
∫ ∞

x
φ′(t)dt =

∫ ∞

x
tφ(t)dt

and

φ(x) =
∫ x

−∞
φ′(t)dt = −

∫ x

−∞
tφ(t)dt.

Therefore we can write

Eg′(X) =
∫ ∞

−∞
g′(x)φ(x)dx

=
∫ ∞

0
g′(x)

∫ ∞

x
tφ(t)dtdx−

∫ 0

−∞
g′(x)

∫ x

−∞
tφ(t)dtdx

=
∫ ∞

0
tφ(t)

{∫ t

0
g′(x)dx

}
dt−

∫ 0

−∞
tφ(t)

{∫ 0

t
g′(x)dx

}
dt

=
(∫ ∞

0
+

∫ 0

−∞

)
{tφ(t)}[g(t) − g(0)]}dt

=
∫ ∞

−∞
tg(t)φ(t)dt = EXg(X).

Here the third equality is justified by the hypothesis E|g′(X)| <∞ and Fubini’s theorem.]
To prove (2), write X(i) ≡ (X1, . . . ,Xi−1,Xi+1, . . . ,Xk). Then

σ2E
∂

∂xi
gi(X) = σ2EE{ ∂

∂xi
gi(X)|X(i)}

= EE{(Xi − θi)gi(X)|X(i)} by (1)
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!

Proof. Now we return to the proof of the theorem. Using (2) in (a) yields

−2n−2Eθ

k∑

i=1

∂gi

∂xi
(X)− n−2Eθ|g(X)|2.(a)

Now let ψ : Rk → R be twice differentiable, and set

g(x) = ∇{log ψ(x)} =
1

ψ(x)

(
∂ψ(x)
∂x1

, . . . ,
∂ψ(x)
∂xk

)
.

Thus

∂gi

∂xi
(x) =

1
ψ(x)

∂2

∂x2
i

ψ(x)− 1
ψ2(x)

(
∂ψ(x)
∂xi

)2

=
1

ψ(x)
∂2

∂x2
i

ψ(x)− gi(x)2

and
k∑

i=1

∂gi

∂xi
(x) =

1
ψ(x)

∇2ψ(x) − |g(x)|2.

Hence the right side of (a) is

= n−2Eθ|g(X)|2 − 2n−2Eθ

{
1

ψ(X)
∇2ψ(X)

}
> 0(b)

if ψ(x) ≥ 0 and ∇2ψ ≤ 0, g .= 0 (i.e. ψ is super-harmonic). Here is one example of such a function:
A. Suppose that ψ(x) = |x|−(k−2) = {x2

1 + · · · + x2
k}−(k−2)/2. Then

g(x) = ∇ logψ(x) = −k − 2
|x|2 x

and ∇2ψ(x) = 0, so ψ is harmonic. Thus

θ̂n =
(

1− k − 2
n|X|2

)
X

and

Eθ|X − θ|2 − E|θ̂ − θ|2 = n−2Eθ|g(X)|2 =
(

k − 2
n

)2

Eθ|X |−2

=
(

k − 2√
n

)2

Eθ|
√

n(X − θ) +
√

nθ|−2

=
(

k − 2√
n

)2

E0|X +
√

nθ|−2

=

{ (
k−2
n

)2
E0|n−1/2X + θ|−2 = O(n−2), θ .= 0,

(k−2)2

n
1

k−2 = k−2
n , θ = 0
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since |X|2 ∼ χ2
k with E(1/χ2

k) = 1/(k − 2). Hence

E0|θ̂ − θ|2

E0|X − θ|2
=

2
k

< 1.

For general θ,

R(θ, θ̂) =
k

n
− (k − 2)2

n
E0

(
1

|X +
√

nθ|2

)

=
k

n

(
1− k − 2

n
E0

(
k − 2
χ2

k(δ)

))

since |X +
√

nθ|2 ∼ χ2
k(δ) with δ = n|θ|2/2. Thus

R(θ, θ̂)
R(θ,X)

=
(

1− k − 2
n

E0

(
k − 2
χ2

k(δ)

))

= 2/k when θ = 0,
→ 1 as n→∞ for fixed θ .= 0,
→ 1 as |θ|→∞ for fixed n.

!

Remark 7.2 Note that the James-Stein estimator

θ̂n =
(

1− k − 2
n|X|2

)
X

derived above is not regular at θ = 0: if θn = tn−1/2, then
√

n(X − θn) d= Z ∼ Nk(0,σ2I) under
Pθn , so that

√
n(θ̂n − θn) =

√
n(X − θn)− k − 2

|
√

n(X − θn) + t|2
{√

n(X − θn) + t
}

= Z − k − 2
|Z + t|2 (Z + t)

which has a distribution dependent on t.

Remark 7.3 It turns out that the James - Stein estimator θ̂n is itself inadmissible; see Lehmann
and Casella, TPE pages 356-357, and Section 5.7, pages 376-389.

Remark 7.4 Another interesting function ψ is

ψ(x) =
{

|x|−(k−2), |x| ≥
√

k − 2,
(k − 2)−(k−2)/2 exp([(k − 2)− |x|2]/2), |x| <

√
k − 2.

For this ψ we have

g(x) = ∇ logψ(x) =

{
−k−2

|x|2 x, |x| ≥
√

k − 2
−x, |x| ≤

√
k − 2.
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Another approach to deriving the James-Stein estimator is via an empirical Bayes approach. We
know that the Bayes estimator for squared error loss when X ∼ Nk(θ,σ2I) and θ ∼ Nk(0, τ2I) ≡ Λτ

is
dΛ(X) =

τ2

σ2 + τ2
X,

with Bayes risk

R(Λ, dΛ) =
k

1/σ2 + 1/τ2
=

kσ2τ2

σ2 + τ2
.

Regarding τ as unknown and estimating it via the marginal distribution Q of X is a (parametric)
empirical Bayes approach. Since the marginal distribution Q of X is Nk(0, (σ2 +τ2)I), with density

q(x; τ2) =
1

(
√

2π(σ2 + τ2))k
exp

(
− ‖x‖2

2(σ2 + τ2)

)

the MLE of σ2 + τ2 is ‖X‖2/k, and the resulting MLE τ̂2 of τ2 is given by

τ̂2 =
(
‖X‖2

k
− σ2

)+

.

Thus
τ̂2

σ2 + τ̂2
=

(
1− kσ2

‖X‖2

)+

,

and this leads to the following version of the (positive part) James-Stein estimator:

dEB,MLE(X) =
(

1− kσ2

‖X‖2

)+

X.

If, instead of the MLE, we used an unbiased estimator of τ2/(σ2 + τ2), then we get the positive
part James-Stein estimator

dJS(X) =
(

1− (k − 2)σ2

‖X‖2

)+

X.
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8 Asymptotic theory of Bayes estimators

We begin with a basic result for Bayes estimation of a Bernoulli probability θ.
Suppose that (Y1, Y2, . . .)|θ = θ are i.i.d. Bernoulli(θ). Suppose that the prior distribution is

an arbitrary distribution on (0, 1). The Bayes estimator of θ with respect to squared error loss is
the posterior mean d(Y ) = d(Y1, . . . , Yn) = E(θ|Y ). Now this sequence is a (uniformly integrable)
martingale; this type of martingale is sometimes known as a Doob martingale. Hence by the
martingale convergence theorem,

d(Y n) = E(θ|Y n)→a.s. E(θ|Y1, Y2, . . .).

To prove consistency, it remains only to show that E(θ|Y1, Y2, . . .) = θ.
To see this, we compute conditionally on θ: now

E

(
n∑

i=1

Yi|θ
)

= nθ, V ar

(
n∑

i=1

Yi|θ
)

= nθ(1− θ).

Hence, with θ̂n ≡ Y n,

E(θ̂n − θ)2 ≤ 1/4
n

,

and by Chebychev’s inequality, θ̂n converges in probability to θ. Therefore θ̂nk → θ almost surely
for some subsequence nk. Hence θ = θ̃ a.s. where θ̃ ≡ limk θ̂nk is measurable with respect to
Y1, Y2, . . .. Thus we have

E(θ|Y1, Y2, . . .) = E(θ̃|Y1, Y2, . . .) = θ̃ = θ a.s. PΛ

where

PΛ(Y ∈ A, θ ∈ B) =
∫

B
Pθ(Y ∈ A)dΛ(θ).

Therefore

PΛ(d(Y n)→ θ) =
∫

[0,1]
Pθ(d(Y n)→ θ)dΛ(θ) = 1,

and this implies that

Pθ(d(Y n)→ θ) = 1 a.e. Λ.

Thus the Bayes estimator d(Y n) ≡ E(θ|Y n) is consistent for Λ a.e. θ.
A general result of this type for smooth, finite - dimensional families was established by Doob

(1948), and has been generalized by Breiman, Le Cam, and Schwartz (1964), Freedman (1963),
and Schwartz (1965). See van der Vaart (1998), pages 149-151 for the general result. The upshot
is that for smooth, finite - dimensional families (θ,Λ) is consistent if an only if θ is in the support
of Λ. However the assumption of finite-dimensionality is important: Freedman (1963) gives an
example of an inconsistent Bayes rule when the sample space is X = Z+ and Θ is the collection of
all probabilities on X . The paper by Diaconis and Freedman (1986) on the consistency of Bayes
estimates is an outgrowth of Freedman (1963).

Asymptotic Efficiency of Bayes Estimators
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Now we consider a more general situation, but still with a real-valued parameter θ. Let
X1, . . . ,Xn be i.i.d. pθ(x) with respect to µ where θ ∈ Θ ⊂ R, and θ0 ∈ Θ (an open interval)
is true; write P for Pθ0 .

Assumptions:
B1: (a) - (f) of Theorem 2.6 (TPE, pages 440 - 441) hold. Thus it follows that

ln(θ)− ln(θ0) = (θ − θ0)l̇θ(X ; θ0)−
1
2
(θ − θ0)2{nI(θ0) + Rn(θ)}(1)

where n−1Rn(θ)→p 0; see problems 6.3.22 and 6.8.3, TPE, pages 503 and 514. We strengthen this
to:
B2: for any ε > 0 there exists a δ > 0 such that

P

{

sup
|θ−θ0|≤δ

|n−1Rn(θ)| ≥ ε

}

→ 0 as n→∞.

B3: For any δ > 0 there exists an ε > 0 such that

P

{
sup

|θ−θ0|≥δ
(ln(θ)− ln(θ0)) ≤ −ε

}
→ 1.

B4: The prior density λ of θ is continuous and > 0 for all θ ∈ Θ.
B5: Eλ|θ| <∞.

Theorem 8.1 Suppose that λ∗(t|X) is the posterior density of
√

n(θ − Tn) where

Tn ≡ θ0 +
1

I(θ0)
{n−1l̇θ(X ; θ0)}.

(i) If B1 - B4 hold, then

dTV (Λ∗(·|X), N(0, 1/I(θ0))) =
∫

|λ∗(t|X)−
√

I(θ0)φ(t
√

I(θ0))|dt→p 0.

(ii) If B1 - B5 hold, then
∫

(1 + |t|)|λ∗(t|X)−
√

I(θ0)φ(t
√

I(θ0))|dt→p 0.

Theorem 8.2 If B1 - B5 hold and θ̃n is the Bayes estimator with respect to λ for squared error
loss, then

√
n(θ̃n − θ0)→d N(0, 1/I(θ0)),

so that θ̃n is
√

n−consistent and asymptotically efficient.

Example 8.1 Suppose that X1, . . . ,Xn are i.i.d. N(θ,σ2) and that the prior on θ is N(µ, τ2).
Then the posterior distribution is given by (θ|X) ∼ N(pnX + (1− pn)µ,σ2

n/n) where

pn ≡
n/σ2

n/σ2 + 1/τ2
, σ2

n =
n

n/σ2 + 1/τ2
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so that pn → 1,
√

n(1− pn)→ 0, and σ2
n → σ2. Note that

Tn = θ0 +
1

1/σ2

(X − θ0)
σ2

= X,

and the Bayes estimator with squared error loss is

E(θ|X) = pnX + (1− pn)µ.

Thus

(
√

n(θ −X)|X) ∼ N(
√

n(1− pn)(µ−X),σ2
n)

→d N(0,σ2) = N(0, 1/I(θ0)) a.s.

in agreement with theorem 8.1, while
√

n(E(θ|X)− θ0) =
√

n(pnX + (1− pn)µ− θ0)
= pn

√
n(X − θ0) +

√
n(1− pn)(µ− θ0)

d= pnN(0,σ2) +
√

n(1− pn)(µ− θ0)
→d N(0,σ2)

in agreement with theorem 8.2.

Proof. We first suppose that theorem 8.1 is proved, and show that it implies theorem 8.2. Note
that

√
n(θ̃n − θ0) =

√
n(θ̃n − Tn) +

√
n(Tn − θ0).(a)

Since
√

n(Tn − θ0)→d N(0, 1/I(θ0)),(b)

it suffices to show that
√

n(θ̃n − Tn)→p 0.(c)

To prove (c), note that by definition of θ̃n

θ̃n =
∫

θλ(θ|X)dθ =
∫ {

t√
n

+ Tn

}
λ∗(t|X)dt,

and hence
√

n(θ̃n − Tn) =
∫

tλ∗(t|X)dt−
∫

t
√

I(θ0)φ(t
√

I(θ0))dt.

It folows that
√

n|θ̃n − Tn| ≤
∫

|t||λ∗(t|X)−
√

I(θ0)φ(t
√

I(θ0))|dt→p 0

as n→ ∞ by theorem 8.1(ii). Thus (c) holds, and the proof is complete; it remains only to prove
theorem 8.1.
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Proof of theorem 8.1: (i) By definition of Tn

λ∗(t|X) =
λ(Tn + n−1/2t) exp(l(Tn + n−1/2t))∫
λ(Tn + n−1/2u) exp(l(Tn + n−1/2u))du

≡ eω(t)λ(Tn + n−1/2t)/Cn

where

ω(t) ≡ l(Tn + n−1/2t)− l(θ0)−
1

2nI(θ0)
{l̇θ(X ; θ0)}2(d)

and

Cn ≡
∫

eω(u)λ(Tn + n−1/2u)du.(e)

Now if we can show that

J1n ≡
∫

|eω(t)λ(Tn + n−1/2t)− exp(−t2I(θ0)/2)λ(θ0)|dt→p 0,(f)

then

Cn →p

∫
exp(−t2I(θ0)/2)λ(θ0)dt = λ(θ0)

√
2π/I(θ0),(g)

and the left side of (2) is Jn/Cn where

Jn ≡
∫

|eω(t)λ(Tn + n−1/2t)− Cn

√
I(θ0)φ(t

√
I(θ0))|dt.(h)

Furthermore Jn ≤ J1n + J2n where J1n is defined in (f) and

J2n ≡
∫

|Cn

√
I(θ0)φ(t

√
I(θ0))− exp(−t2I(θ0)/2)λ(θ0)|dt(i)

=
∣∣∣
Cn

√
I(θ0)√
2π

− λ(θ0)
∣∣∣
∫

exp(−t2I(θ0)/2)dt →p 0

by (g). Hence it remains only to prove that (f) holds.
(ii) The same proof works with J ′

1n replacing J1n where J ′
1n has an additional factor of (1+ |t|).

!

Lemma 8.1 The following identity holds:

ω(t) ≡ l(Tn + n−1/2t)− l(θ0)−
1

2nI(θ0)
{l̇θ(X ; θ0)}2(2)

= −I(θ0)
t2

2
− 1

2n
Rn(Tn + n−1/2t)

{
t +

1
I(θ0)

l̇θ(X; θ0)√
n

}2

.
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Proof. This follows immediately from the definition of Tn, (1), and algebra. !

Proof. that J1n →p 0: Recall the definition of J1n given in (f) of the proof of theorem 8.1.
Divide the region of integration into:
(i) |t| ≤M ;
(ii) M ≤ |t| ≤ δ

√
n; and

(iii) δ
√

n < t <∞.
For the region (i), the integral is bounded by 2M times the supremum of the integrand over the
set |t| ≤ M , and by application of lemma 8.1 it is seen that this supremum converges to zero in
probability if

sup
|t|≤M

∣∣∣
1
n

Rn(Tn + n−1/2t)

(

t +
1

I(θ0)
l̇θ(X ; θ0)√

n

)2 ∣∣∣→p 0(a)

and

sup
|t|≤M

|λ(Tn + n−1/2t)− λ(θ0)|→p 0.(b)

Now λ is continuous by B4 and Tn →p θ0 by B1, so λ is uniformly continuous in a neighborhood
of θ0 and

θ0 − δ ≤ Tn − n−1/2M ≤ Tn + n−1/2t ≤ Tn + n−1/2M ≤ θ0 + δ(c)

for |t| ≤ M , so (b) holds. Now n−1/2l̇θ(X; θ0) is bounded in probability (by B1 and the central
limit theorem), so it follows from (c) and B2 that (a) holds.

(ii) For the region M ≤ |t| ≤ δ
√

n it suffices to show that the integrand is bounded by an
integrable function with probability close to one, since then the integral can be made small by
choosing M sufficiently large. Since the second term of the integrand in J1n is integrable, it suffices
to find such an integrable bound for the first term. In particular, it can be shown that for every
ε > 0 there exists a C = C(ε, δ) and an integer N = N(ε, δ) so that, for n ≥ N ,

P (exp(ω(t)λ(Tn + n−1/2t) ≤ C exp(−t2I(θ0)/4) for all |t| ≤ δ
√

n) ≥ 1− ε;

this follows from the assumption B2; see TPE, pages 494-496.
(iii) The integral over the region |t| ≥ δ

√
n converges to zero by an argument similar to that

for the region (ii), but now the assumption B3 comes into play; see TPE pages 495-496.
The proof for J ′

1n requires only trivial changes using assumption B5. !

Remark 8.1 This proof is from Lehmann and Casella, TPE, pages 489 - 496. This type of theorem
apparently dates back to Laplace (1820), and was later rederived by Bernstein (1917), and von Mises
(1931). More general versions have been established by Le Cam (1958), Bickel and Yahav (1969),
and Ibragimov and Has’minskii (1972). See the discussion on pages 488 and 493 of TPE. For a
recent treatment along the lines of Le Cam (1958) that covers the case of Θ ⊂ Rd, see chapter 10
of van der Vaart (1998). For a version with the true measure Q generating the data not in P, see
Hartigan (1983).

Remark 8.2 See Ibragimov and Has’minskii (1981) and Strasser (1981) for more on the consis-
tency and efficiency of Bayes estimators.
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Remark 8.3 Analogues of these theorems for nonparametric and semiparametric problems are
currently an active research area. See Ghosal, Ghosh, and van der Vaart (2000), Ghosal and van
der Vaart (2001), and Shen (2002).

Now we will continue the development for convex likelihoods started in section 4.7. The notation
will be as in section 4.7, and we will make use of lemmas 4.7.1 and 4.7.2. Here, as in section 4.7, we
will not assume that the distribution P governing the data is a member of the parametric model
P = {Pθ : θ ∈ Θ ⊂ Rd}.

Here are the hypotheses we will impose.

C1. λ(θ) ≤ C1 exp(C2|θ|) for all θ for some positive constants C1, C2.

C2. λ is continuous at θ0.

C3. log p(x, θ0 + t)− log p(x, θ0) = ψ(x)T t + R(x; t) is concave in t.

C4. EPψ(X1)ψ(X1)T ≡ K, EPψ(X1) = 0.

C5. EP R(X1; t) = −tTJt/2 + o(|t|2) and VarP (R(X1; t)) = o(|t|2) where J is symmetric, positive
definite.

C6. X1, . . . ,Xn are i.i.d. P .

Theorem 8.3 Suppose that C1 - C6 hold. Then the maximum likelihood estimator θ̂n is
√

n−consistent
for θ0 = θ0(P ) and satisfies

√
n(θ̂n − θ0)→d Nd(0, J−1K(J−1)T ).

Moreover the Bayes estimator θ̃n = E{θ|Xn} satisfies
√

n(θ̃n − θ̂n)→p 0,

and hence also
√

n(θ̃n − θ0)→d Nd(0, J−1K(J−1)T ).

Proof. Let Ln(θ) ≡
∏n

i=1 p(Xi, θ) denote the likelihood function. Define random convex
functions An by

exp(−An(t)) = Ln(θ̂n + t/
√

n)/Ln(θ̂n).

By definition of the MLE, An achieves its minimum value of zero at t = 0. Then

θ̃n =
∫
θLn(θ)λ(θ)dθ∫
Ln(θ)λ(θ)dθ

= θ̂n +
1√
n

t exp(−An(t))λ(θ̂n + t/
√

n) exp(−C2|θ̂n|)dt

exp(−An(t))λ(θ̂n + t/
√

n) exp(−C2|θ̂n|)dt

by the change of variable θ = θ̂n + t/
√

n.

Claim: The random functions An converge in probability uniformly on compact sets to tT Jt/2.
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Proof. Let

A0
n(t) = nPn{log p(x; θ0 + t/

√
n)− log p(x; θ0)}.

From the proof of theorem 4.7.6 (with h(x; θ) ≡ − log p(x; θ) and multiplication by −1),

A0
n(t) = UT

n t +
1
2
tTJt + op(1),(a)

and this holds uniformly in t in compact sets by Lemma 4.x.y. Note that

An(t) = A0
n(t +

√
n(θ̂n − θ0))−A0

n(
√

n(θ̂n − θ0)).

Since
√

n(θ̂n − θ0) = Op(1) so that for every ε > 0 there exists a compact set K ≡ Kε such that
P (
√

n(θ̂n − θ0) ∈ K) ≥ 1− ε. Hence by the uniformity in t in the convergence in (a),

An(t) = UT
n (t +

√
n(θ̂n − θ0))− UT

n (
√

n(θ̂n − θ0))

+
1
2
{(t +

√
n(θ̂n − θ0))T J(t +

√
n(θ̂n − θ0))

−
√

n(θ̂n − θ0)T J
√

n(θ̂n − θ0)} + op(1)

= UT
n t +

1
2
tT Jt +

√
n(θ̂n − θ0)T Jt + op(1)

=
1
2
tT Jt + op(1)

where the last line follows because
√

n(θ̂n − θ0) = −J−1Un + op(1). Since An is convex and
converges pointwise in probability to tT Jt/2, it converges uniformly in probability on compact
subsets by lemma 4.7.1. !

Now we return to the main proof. Define γn ≡ inf |u|=1 An(u). It converges in probability to
γ0 = inf |u|=1 uT Ju/2 > 0. By the same argument used in lemma 4.7.2 it follows that

An(t) ≥ γn|t| for |t| > 1.

Now the integrand in the numerator above converges in probability for each fixed t to

t exp(−tT Jt/2)λ(θ0) exp(−C2|θ0|),

and similarly the integrand of the denominator converges for each fixed t to

exp(−tT Jt/2)λ(θ0) exp(−C2|θ0|),

Furthermore the domination hypotheses of the following convergence lemma hold for both the
numerator and denominator with dominating function

D(t) ≡ 2C11{|t| ≤ 1} + C1|t| exp(−γ0|t|/2)1{|t| > 1}.

Hence the ratio of integrals converges in probability to
∫

t exp(−tT Jt/2)λ(θ0) exp(−C2|θ0|)dt∫
exp(−tT Jt/2)λ(θ0) exp(−C2|θ0|)

= 0.

!



8. ASYMPTOTIC THEORY OF BAYES ESTIMATORS 37

Lemma 8.2 Suppose that Xn(t), Yn(t) are jointly measurable random functions, Xn(t,ω), Yn(t,ω)
for (t,ω) ∈ K × Ω where K ⊂ Rd is compact, that λ is a measure on Rd, and :
(i) Yn(t)→p Y (t) and Xn(t)→p X(t) for λ almost all t ∈ K.
(ii)

∫
K Yn(t)dλ(t)→p

∫
Y (t)dλ(t) with |

∫
K Y (t)dλ(t)| <∞ almost surely.

Then
∫
K Xn(t)dλ(t) →p

∫
K X(t)dλ(t).

Proof. It suffices to show almost sure convergence for some further subsequence of any given
subsequence. By convergence in probability for fixed t, and then dominated convergence

Hn(ε) ≡ (P ⊗ Λ)({(ω, t) : |Xn(t,ω)−X(t,ω)| > ε)

=
∫

K
P ({ω : |Xn(t,ω)−X(t,ω)| > ε})dt→ 0

by the dominated convergence theorem, and similarly for {Yn}. By replacing ε by εn ↓ 0 and
extraction of subsequences we can find a subsequence {n′} so that the integrals

∫
K Xndλ converge

and for some set N ⊂ K × Ω with P ⊗ λ(N) = 0 we get convergence for all (ω) ∈ N c of both Xn′

and Yn′ . Then we have λ({t : (ω, t) ∈ N}) = 0 for almost all ω. Hence by Fatou’s lemma applied
to Yn′ ± Xn′ we deduce that

∫

K
Xn′(t)dλ(t) →a.s.

∫

K
X(t)dλ(t).

!

Corollary 1 Suppose that:
(i) Gn(t)→p G(t) for each fixed t ∈ Rd.
(ii) P (|Gn(t)| ≤ D(t) for all t ∈ Rd)→ 1.
(iii)

∫
D(t)dt <∞.

Then
∫

Gn(t)dt→p
∫

G(t)dt.

Proof. Let ε > 0; choose a compact set K = Kε so that
∫
Kc D(t)dt < ε. This is possible since∫

D(t)dt <∞. Then, using |G(t) ≤ D(t),
∣∣∣
∫

Gn(t)dt −
∫

G(t)dt
∣∣∣ ≤

∣∣∣
∫

K
Gn(t)−

∫

K
G(t)dt

∣∣∣ +
∫

Kc
|Gn(t)|dt +

∫

Kc
|G(t)|dt

≤
∣∣∣
∫

K
Gn(t)1[|Gn(t)|≤D(t)]dt−

∫

K
G(t)dt

∣∣∣

+
∫

K∩[|Gn(t)|>D(t)]
|Gn(t)|dt +

∫

Kc∩[|Gn(t)|>D(t)]
|Gn(t)|dt

+ 2
∫

Kc
D(t)dt.

Now apply lemma 8.2 with Yn(t) ≡ D(t) and

Xn(t) ≡ Gn(t)1[|Gn(t)|≤D(t)].

Then Xn(t) →p G(t) and the second hypothesis of the lemma holds easily. Hence
∫

Xn(t)dt →p∫
G(t)dt so that the first term above →p 0. The second and third terms converge in probability to

zero because the set over which the integral is take is empty with arbitrarily high probability; and
the third term is bounded by 2ε by choice of K. !


