
CHAPTER 5:
PRINCIPLES OF

DETAILED DESIGN

1 Software Engineering Design: Theory and Practice

1.  	Detailed	Design	Fundamentals	
2.	Structural	and	Behavioral	Design	
of	Components	

Software Engineering Design: Theory and Practice 2

Session	I:	Detailed	Design	
Fundamentals	

Software Engineering Design: Theory and Practice 3

SESSION’S AGENDA

1.  Overview of Detailed Design
a.  What is detailed design?
b.  Where does it fit?

2.  Key Tasks in Detailed Design
a.  Understanding architecture and requirements – Topic 3 & 4
b.  Creating detailed designs
c.  Evaluating detailed designs
d.  Documenting detailed designs
e.  Monitoring and controlling implementation

Software Engineering Design: Theory and Practice 4

FIRST, LET’S THINK ABOUT WHERE WE ARE…

Software Engineering Design: Theory and Practice 5

We	are	here!	

We	started	here	

Eventually,	we	want	
to	get	here!	

Important:	
At	this	point,	requirements	and	
architecture	are	specified;	they	are	
deemed	sufficiently	complete	to	
begin	the	detailed	design	of	the	
system.	

Our	design	efforts	shiL	
from	the	macro-design	
approach	to	a	micro-
design	approach	

We	now	seek	to	further	decompose	and	refine	system	
components	into	one	or	more	fine-grained	elements,	
funcOons,	and	data	variables.	

WHAT IS DETAILED DESIGN?
Ø According to the IEEE [1],

1.  The process of refining and expanding the preliminary design phase
of a system or component to the extent that the design is sufficiently
complete to be implemented .

2.  The result of the process in 1.

Ø  To keep terminology consistent, we’ll use the following
definition:
1.  The process of refining and expanding the software architecture of a

system or component to the extent that the design is sufficiently
complete to be implemented .

2.  The result of the process in 1.
Ø  During Detailed Design designers go deep into each component to define

its internal structure and behavioral capabilities, and the resulting
design leads to natural and efficient construction of software.

Software Engineering Design: Theory and Practice 6

WHAT IS DETAILED DESIGN?

Ø  Clements et al. [2] differentiate between architectural and detailed design as
follows:
ü  “Architecture is design, but not all design is architecture. That is, many design

decisions are left unbound by the architecture and are happily left to the discretion
and good judgment of downstream designers and implementers. The architecture
establishes constraints on downstream activities, and those activities must produce
artifacts—finer-grained design and code—that are compliant with the architecture,
but architecture does not define an implementation.”

Ø  Detailed design is closely related to architecture and construction; therefore
successful designers (during detailed design) are required to have or acquire
full understanding of the system’s requirements and architecture.
ü  They must also be proficient in particular design strategies (e.g., object-

oriented), programming languages, and methods and processes for software
quality control.

ü  Just as architecture provides the bridge between requirements and design, detailed
design provides the bridge between design and code.

Software Engineering Design: Theory and Practice 7

WHAT IS DETAILED DESIGN?

Software Engineering Design: Theory and Practice 8

Designer’s	Mental	Model	
During	Detailed	Design!	

If	given	requirements	and	
architecture,	detailed	designers	
must	move	the	project	forward	

all	the	way	to	code	

If	given	code,	detailed	designers	
must	be	able	to	reverse	engineer	
the	code	to	produce	detailed	and	

architectural	designs.			

When	starOng	at	detailed	design,		designers	must	be	
able	to	produce	both	code	and	architectural	designs	

Important:	
During	detailed	design,	the	use	of	
industry-grade	development	tools	
are	essenOal	for	modeling,	code	
generaOon,	compiling	generated	
code,	reverse	engineering,	soLware	
configuraOon	management,	etc.	

KEY TASKS IN DETAILED DESIGN

Ø  In practice, it can be argued that the detailed design phase is where most of the problem-
solving activities occur. Consider the case in which a formal process is followed, so that
the requirements is followed by architecture and detailed design.
ü  In many practical applications, the architectural design activity defers complex problem solving

to detailed design, mainly through abstraction.
ü  In some cases, even specifying requirements is deferred to detailed design!

Ø  For these reasons, detailed design serves as the gatekeeper for ensuring that the system’s
specification and design are sufficiently complete before construction begins.
ü  This can be especially tough for large-scale systems built from scratch without experience with

the development of similar systems.

Ø  The major tasks identified for carrying out the detailed design activity include:
1.  Understanding the architecture and requirements
2.  Creating detailed designs
3.  Evaluating detailed designs
4.  Documenting software design
5.  Monitoring and controlling implementation

Software Engineering Design: Theory and Practice 9

1. UNDERSTANDING THE ARCHITECTURE AND REQUIREMENTS

Ø  Unlike the software architecture, where the complete set of requirements are
evaluated and well understood, designers during detailed design activity
focus on requirements allocated to their specific components.

Software Engineering Design: Theory and Practice 10

IN	

DETAILED	DESIGN	

Detailed	
Design	

Class	

…	

FuncOonal	and	quality	
requirements	allocated	

to	this	component	

<<component>>
<<component>>

ClientCollectionSystem
<<component>>

Port2Port1 Port2Port1
ClientManager
<<component>> ISchedule IScheduleIClientDataIClientData

ISensorControl

SensorManager
<<component>>

IVideoControl

VideoManager
<<component>>

<<delegate>> <<delegate>>

SOFTWARE	ARCHITECTURE	

FuncOonal	and	quality	requirements	
allocated	to	this	component	

Important:	
During	detailed	design,	
components	are	allocated	
to	teams	for	further	design.	

During	the	detailed	design	of	individual	
components,	it	is	possible	for	designers	
to	derive	requirements	and	impose	them	

on	the	implementaOon	of	the	
component.	

2. CREATING DETAILED DESIGNS

Ø  After the architecture and requirements for assigned components are well
understood, the detailed design of software components can begin.
ü  Detailed design consist of both structural and behavioral designs.

Ø  When creating detailed designs, focus is placed on the following:
1.  Interface Design - Internal & External
2.  Graphical User Interface (GUI) Design (Chapter 9)

§  This may be a continuation of designs originated during architecture.
3.  Internal Component Design (Chapter 7)

§  Structural
§  Behavioral

4.  Data Design ~ Database ; data dictionary

Software Engineering Design: Theory and Practice 11

2. CREATING DETAILED DESIGNS
1.  Interface Design

ü  Refers to the design task that deals with specification of interfaces between
components in the design [3]. It can be focused on:
§  Interfaces internally within components
§  Interfaces used externally across components

Ø  An example of an internal interface design can be seen below:

Software Engineering Design: Theory and Practice 12

The	Observer	interface	in	Java	can	be	
used	internally	within	components	to	
support	the	Observer	design	paUern.	

The	design	of	this	interface	
specifies	a	well-defined	method.	

Note:	
We	can	model	this	interface	
easily	with	UML.	

2. CREATING DETAILED DESIGNS

Ø  Example of external interface design (from Wikipedia)

Software Engineering Design: Theory and Practice 13

This	is	already	specified	by	the	802.3	standard,	but,	you	may	design	your	own	applicaOon-specific	messaging	
specificaOon	at	the	applicaOon	level.		When	you	do	so,	you	end	up	with	an	Interface	Design	Document	containing	all	
the	informaOon	about	the	messaging	format.		For	example,	see	below	

The	CMHP	Header	is	
designed	as	seen	in	the	
table	to	the	right.		 Example	extracted	from	:	hEps://faaco.faa.gov/aEachments/5B9EDCCD-D566-F405-67840C21B590D68C.pdf	

2. CREATING DETAILED DESIGNS

Ø  Another example of external interface design in XML

Software Engineering Design: Theory and Practice 14

hEp://msdn.microsoT.com/en-us/magazine/cc188900.aspx#S2	

Example	extracted	from	link	below.	For	more	
details	of	this	example,	please	navigate	to	the	
link	below	

3. EVALUATING DETAILED DESIGNS

Ø  Logical designs are verified using static techniques; that is, through non-
execution of the software application.
ü  This makes sense since at this point, the software has not been constructed!

Ø  The most popular technique for evaluating detailed designs involves Technical
Reviews. When conducting technical reviews, keep in mind the following:
ü  Send a review notice with enough time for others to have appropriate time to

thoroughly review the design.
ü  Include a technical expert in the review team, as well as stakeholders of your

design.
ü  Include a member of the software quality assurance or testing team in the

review.
ü  During the review, focus on the important aspects of your designs; those that show

how your design helps meet functional and non-functional requirements.
ü  Document the review process.

§  Make sure that any action items generated during the review are captured and assigned for processing.

Software Engineering Design: Theory and Practice 15

4. DOCUMENTING DETAILED DESIGNS

Ø  Documentation of a project’s software design is mostly captured in the
software design document (SDD), also known as software design
description. The SDD is used widely throughout the development of the
software.
ü  Used by programmers, testers, maintainers, systems integrators, etc.

Ø  Other forms of documentation include:
ü  Interface Control Document

§  Serves as written contract between components of the system software as to how
they communicate.

ü  Version Control Document
§  Contains information about what is included in a software release, including

different files, scripts and executable. Different versions of the design depend on
specific software release.

Software Engineering Design: Theory and Practice 16

4. DOCUMENTING DETAILED DESIGNS

Ø  The sections of the SDD and sample table of contents:

Software Engineering Design: Theory and Practice 17

5. MANAGING IMPLEMENTATION

Ø  Monitor and control detailed design synchronicity
Ø  Detailed design synchronicity is concerned with the degree of how well

detailed designs adhere to the software architecture and how well
software code adheres to the detailed design.
ü  Forward & backward traceability
ü  Low degree of synchronicity points to a flaw in the process and can lead to

software project failure.
Ø  Particular attention needs to be paid when projects enter the maintenance

phase or when new engineers are brought into the project.
Ø  Processes must be in place to ensure that overall synchronicity is high

Software Engineering Design: Theory and Practice 18

SUMMARY…

Ø  In this session, we presented fundamentals concepts of the detailed design
activity, including:
ü  What is detailed design?
ü  Key tasks in detailed design

Software Engineering Design: Theory and Practice 19

REFERENCES

Ø  [1] IEEE. “IEEE Standard Glossary of Software Engineering
Terminology.” IEEE, 1990, p.34.

Ø  [2] Clements, Paul, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Robert Nord, and Judith Stafford. Documenting Software
Architectures. Boston, MA: Addison Wesley, 2001.

Ø  [3] Sommerville, Ian. Software Engineering, 9th ed. Boston, MA: Addison
Wesley, 2010.

Software Engineering Design: Theory and Practice 20

Session	2:	Structural	and	Behavioral	
Design	of	Components	

Software Engineering Design: Theory and Practice 21

SESSION’S AGENDA

1.  Overview of Component Design

2.  Designing Internal Structure of Components (OO Approach)
ü  Classes and objects
ü  Interfaces, types, and subtypes
ü  Dynamic binding
ü  Polymorphism

3.  Design Principles for Internal Component Design
ü  The open-closed principle
ü  The Liskov Substitution principle
ü  The interface segregation principle

4.  Designing Internal Behavior of Components

Software Engineering Design: Theory and Practice 22

OVERVIEW OF COMPONENT DESIGN

Ø  Component design (also referred as component-level design) refers to the
detailed design task of defining the internal logical structure and behavior
of components.
ü  That is, refining the structure of components identified during the software

architecture activity.
ü  In OO, the internal structure of components identified during architecture can be

designed as a single class, numerous classes, or sub components.

So#ware	Engineering	Design:	Theory	and	Prac6ce	 23	

Consider	the	following	components	and	
interface	idenOfied	during	architecture	

During	the	component	design	task	of	the	
detailed	design	acOvity,	these	components	
are	refined	to	fully	define	how	they	realize	

the	component’s	services	

This	is	the	same	as	that	

Not	quite	enough	
details,	but	you	
get	the	idea,	

right?	

During	Architecture	

During	Detailed	Design	

Important:	
In	OO,	during	detailed	design,	we	shiL	
away	from	the	more	abstract	UML	
component	and	begin	to	think	in	terms	of	
classes,	interfaces,	types,	etc.	

OVERVIEW OF COMPONENT DESIGN

Ø  In object-oriented systems, the internal structure of components is typically
modeled using UML through one or more class diagrams.

Ø  During component design, the internal data structures, algorithms,
interface details, and communication mechanisms for all components are
defined.
ü  For this reason, structural and behavioral modes created as part of detailed design

provide the most significant mechanism for determining the functional correctness
of the software system.

ü  This allows us to evaluate alternative solutions before construction begins.

Ø  The work produced during component design contributes significantly to the
functional success of the system. In OO, before we can become expert
component designers, we must understand the following:

1.  Classes and objects
2.  Interfaces, types, and subtypes
3.  Dynamic binding
4.  Polymorphism

Software Engineering Design: Theory and Practice 24

OVERVIEW OF COMPONENT DESIGN

Software Engineering Design: Theory and Practice 25

Here’s	a	
component	

All	I	need	is	one	class,	
let	me	generate	the	
code	from	the	class	

design	

SoLware	
Architect	

SoLware	
Engineer	

This	guy	is	also	a	SoLware	Engineer	

Component	designed	to	
meet	some	system	

service	
Class	designed	to	realize	the	

component’s	services	

Code	generated	from	the	
class	specificaOon	

Binary	file	is	generated	from	code	
compilaOon	and	build	process.	

Binary	file	is	executed	

Conceptual	View	
of	the	Process	

Requirements	
document	

DESIGN PRINCIPLES FOR INTERNAL COMPONENT DESIGN

Ø  In previous modules (Chp.4- Architecture Styles & Patterns), we introduced the concept of
quality and discussed several important ones, such as modifiability, performance, etc.

Ø  Let’s focus on modifiability; what does this mean at the detailed design level?
Minimizing the degree of complexity involved when changing the system to fit current
or future needs.
ü  This is hard when working with the level of detail that is required during the detailed design

activity!
ü  Modifiability cannot be met alone with sound architectural designs; detailed design is crucial to

meet this quality attribute.

Ø  Component designs that evolve gracefully over time are hard to achieve.
ü  Therefore, when designing software at the component-level, several principles have to be

followed to create designs that are reusable, easier to modify, and easier to maintain.

Ø  OO Design principles for internal component design include:
1.  The Open-Closed Principle (OCP)
2.  The Liskov Substitution Principle (LSP)
3.  The Interface-Segregation Principle (ISP)

Software Engineering Design: Theory and Practice 26

DESIGN PRINCIPLES FOR INTERNAL COMPONENT DESIGN
THE OPEN-CLOSED PRINCIPLE (OCP)

Ø  The Open-Closed principle (OCP) is an essential principle for creating
reusable and modifiable systems that evolve gracefully with time.

Ø  The OCP was originally coined by Bertrand Meyer [1] and it states that

software designs should be open to extension but closed for modification.
ü  The main idea behind the OCP is that code that works should remain untouched

and that new additions should be extensions of the original work.

Ø  That sounds contradictory, how can that be?

ü  Being close to modifications does not mean that designs cannot be modified; it
means that modifications should be done by adding new code, and
incorporating this new code in the system in ways that does not require old
code to be changed!

Software Engineering Design: Theory and Practice 27

DESIGN PRINCIPLES FOR INTERNAL COMPONENT DESIGN
THE OPEN-CLOSED PRINCIPLE (OCP)

Software Engineering Design: Theory and Practice 28

Consider a fictional gaming
system that includes several
types of terrestrial characters,
ones that can roam freely over
land. It is anticipated that new
characters will be added in the
future.

What	can	you	tell	me	about	
the	add(…)	funcOon?	

What	happens	if	we	add	a	new	
requirement	to	support	other	
types	of	characters,	e.g.,	an	
AerialCharacter	that	can	fly?	

Yes,	that	is	right,	we	would	have	to	change	the	code	inside	the	add(…)	method.		
This	violates	the	OCP	!		Let’s	see	an	improved	version	in	the	next	slide…	

Note:	
This	is	really	not	the	code	for	a	
gaming	system!		The	code	is	for	
illustraOon	purpose.	

DESIGN PRINCIPLES FOR INTERNAL COMPONENT DESIGN
THE OPEN-CLOSED PRINCIPLE (OCP)

Software Engineering Design: Theory and Practice 29

Too	easy!	I’ll	just	create	a	
base	Character	and	have	
both	terrestrial	and	aerial	
characters	derive	from	it.	

Done!	

Joe	Developer	

Joe	Developer	decided	to	abstract	the	
Character	concept	and	separate	it	from	

more	specific	Character	types	

Since	Terrestrial	characters	run	
and	Aerial	ones	fly,	Joe	decided	to	

delegate	creaOon	of	these	
funcOons	to	subtypes,	namely,	

TerrestrialCharacter	and	
AerialCharacter	

Inherits	from	Character	Inherits	from	Character	

Note:	Character	is	really	an	interface,	so	instead	of	“Inherits	from	Character”	it	(more	precisely)	realizes	the	Character	interface.	

Are	we	done?	Not	really!	
The	getType(…)	funcOon	should	
give	you	an	indicaOon	why	
we’re	sOll	violaOng	the	OCP.		
Let’s	take	a	closer	look	in	the	
next	slide…	

DESIGN PRINCIPLES FOR INTERNAL COMPONENT DESIGN
THE OPEN-CLOSED PRINCIPLE (OCP)

Software Engineering Design: Theory and Practice 30

NoOce	how	the	GameEngine	
client	needs	to	know	the	type	
of	Character	before	it	can	

acOvate	it.		This	is	a	side-effect	
of	a	violaOon	of	the	OCP	

Sample	test	driver	code	

Sample	output	

It	works!	We’re	done!	
Not	really,	we’ve	improved	the	

design,	but	are	we	OCP-Compliant?	
The	Character	design	sOll	requires	clients	to	know	too	much	about	Characters.		

What	would	happen	if	we	now	need	to	support	an	AquaOc	Character?	

Design	Principle:	
Encapsulate	VariaOon	

This	code	will	always	vary,	
depending	on	the	

characters	in	the	game!	

Yikes!	

Let’s	see	in	the	next	slide	how	to	make	this	design	OCP-Compliant…	

DESIGN PRINCIPLES FOR INTERNAL COMPONENT DESIGN
THE OPEN-CLOSED PRINCIPLE (OCP)

Software Engineering Design: Theory and Practice 31

Encapsulate	the	movement	behavior,	so	that	
move(…)	works	for	all	characters	in	the	game!	

Per	the	interface	contract,	these	
must	provide	the	implementaOon	
for	both	draw	and	fly	services	

In	the	next	slide,	let’s	see	how	the	
code	for	the	GameEngine	class	looks	
now	based	on	this	new	design…	

DESIGN PRINCIPLES FOR INTERNAL COMPONENT DESIGN
THE OPEN-CLOSED PRINCIPLE (OCP)

Software Engineering Design: Theory and Practice 32

Old	design!	Violates	OCP!	New	redesign!	Adheres	to	OCP!	

New	AquaOc	Character	added	by	
extension	and	not	by	modifying	

exisOng	working	code!	

With	this	design,	GameEngine	can	draw	and	
acOvate	current	and	future	Characters	in	the	

game	without	modificaOon!	

DESIGN PRINCIPLES FOR INTERNAL COMPONENT DESIGN
THE OPEN-CLOSED PRINCIPLE (OCP)

Software Engineering Design: Theory and Practice 33

One	final	note	about	the	OCP:	
No	design	will	be	100%	closed	for	modificaOon.		At	some	
point,	some	code	has	to	be	readily-available	for	tweaking	in	
any	soLware	system.		The	idea	of	the	OCP	is	to	locate	the	
areas	of	the	soLware	that	are	likely	to	vary	and	the	variaOons	
can	be	encapsulated	and	implemented	through	
polymorphism.	

DESIGN PRINCIPLES FOR INTERNAL COMPONENT DESIGN
THE LISKOV SUBSTITUTION PRINCIPLE (LSP)

Ø  The LSP was originally proposed by Barbara Liskov and serves as basis for
creating designs that allows clients that are written against derived classes
to behave just as they would have if they were written using the
corresponding base classes.

Ø  The LSP requires

1.  Signatures between base and derived classes to be maintained
2.  Subtype specification supports reasoning based on the super type specification

Ø  In simple terms, LSP demands that "any class derived from a base class must
honor any implied contract between the base class and the components
that use it.“ [2]

Ø  To adhere to the LSP, designs must conform to the following rules:

1.  The Signature Rule
2.  The Methods Rule

Software Engineering Design: Theory and Practice 34

DESIGN PRINCIPLES FOR INTERNAL COMPONENT DESIGN
THE LISKOV SUBSTITUTION PRINCIPLE (LSP)

Ø  The Signature Rule ensures that if a program is type-correct based on the
super type specification, it is also type-correct with respect to the subtype
specification.

Ø  The Method Rule ensures that reasoning about calls of super type methods
is valid even though the calls actually go to code that implements a
subtype.
ü  Subtype methods can weaken pre-conditions, not strengthen them (i.e., require

less, not more).
ü  Subtype methods can strengthen post-conditions, not weaken them (i.e.,

provide more, not less).

Software Engineering Design: Theory and Practice 35

DESIGN PRINCIPLES FOR INTERNAL COMPONENT DESIGN
INTERFACE SEGREGATION PRINCIPLE (ISP)

Ø  Well designed classes should have one (and only one) reason to change.

Ø  The interface segregation principle (ISP) states that "clients should not be

forced to depend on methods that they do not use“ [3].

Ø  Consider a gaming system that supports an advanced enemy character that is

able to roam over land, fly, and swim. The game also supports other enemy
characters that can either roam over land, fly, or swim.
ü  Some would be tempted to design the system as seen below.

Software Engineering Design: Theory and Practice 36

Bloated	interface!	

DESIGN PRINCIPLES FOR INTERNAL COMPONENT DESIGN
INTERFACE SEGREGATION PRINCIPLE (ISP)

Software Engineering Design: Theory and Practice 37

The	ISP	implies	that	many	client-
specific	interfaces	are	beUer	than	
one	general	purpose	interface	

Smaller,	specific	interfaces	are	easier	
to	maintain	and	reuse	and	lead	to	
easier	adherence	to	OCP	and	LSP	

38

create	smaller	well	defined	interfaces	instead	of	a	larger	one	with	many	features.	

MODELING INTERNAL BEHAVIOR OF COMPONENTS

Software Engineering Design: Theory and Practice 39

Detail	covers	
later	in	

Chapter	6	

MODELING INTERNAL BEHAVIOR OF COMPONENTS

Ø  Common interaction operators used in sequence diagrams include:

Software Engineering Design: Theory and Practice 40

SUMMARY

Ø  In this session, we presented fundamentals concepts of the component
design, including:
ü  Overview of Component Design
ü  Designing Internal Structure of Components (OO Approach)

§  Classes and objects
§  Interfaces, types, and subtypes
§  Dynamic binding
§  Polymorphism

ü  Design Principles for Internal Component Design
§  The open-closed principle
§  The Liskov Substitution principle
§  The interface segregation principle

ü  Designing Internal Behavior of Components

Software Engineering Design: Theory and Practice 41

REFERENCES

Ø  [1] Meyer, Bertrand. Object-oriented Software Construction, 2d ed. Upper
Saddle River, NJ: Prentice Hall, 1997.

Ø  [2] Pressman, Roger S. Software Engineering: A Practitioner’s Approach,
7th ed. Chicago: McGraw-Hill, 2010.

Ø  [3] Marin, Robert C. Agile Software Development: Principles, Patterns,
and Practices. Upper Saddle River, NJ: Prentice Hall, 2003.

Software Engineering Design: Theory and Practice 42

