What are distributed forces?

- Forces that act on a body per unit length, area or volume.
- They are not discrete forces that act at specific points. Rather they act over a continuous region.

Examples:

- Weight of any body.
- Lift force on an airplane wing.
- Buoyancy force on a submerged object.
- Hydrostatic Pressure on a dam or leave.


### 5.2 Center of Gravity



Gravity pulls each and every particle of a body vertically downwards.
What is the location of the equivalent single force that replaces all the distributed forces.



Let the location be $(\bar{x}, \bar{y})$


$$
\vec{W}=\lim _{\Delta W \rightarrow 0}\left(\sum \Delta \vec{W}\right)=\int_{B} d \vec{N}
$$

For the Location

Example
Find the Center of Gravity of the area shown below.


Equation of the limns:

$$
y=-\frac{b}{a} x+b
$$

OR $\quad x=\frac{-a}{b} y+a$
Total Weight: density thickness


$$
\begin{aligned}
& =\rho g t \int_{0}^{0} y d x \\
& =\rho g t \int_{0}^{a}\left(\frac{-b}{a} x+b\right) d x \\
& =\rho g t\left[-\frac{b}{a}\left(\frac{x^{2}}{2}\right)+b x\right]_{0}^{a} \\
W & =\rho g t\left[-\frac{a b}{2}+a b\right]=\rho g t\left(\frac{1}{2} a b\right)
\end{aligned}
$$

For Center of gravity:


$$
w \bar{x}=\int x d w=\rho g t \int_{a}^{a} x \int_{0}^{y} d y d x
$$

$$
=\rho g t \int_{0}^{a} x\left(-\frac{b}{a} x+b\right) d x
$$

$$
=\rho g t\left[-\frac{b}{a} \frac{x^{3}}{3}+b \frac{x^{2}}{2}\right]_{0}^{a}
$$

$$
=\rho g t\left(\frac{a^{2} b}{6}\right)
$$

$$
\Rightarrow \bar{x}=\frac{\int x d w}{w}=\frac{a}{3}
$$

similarly:

$$
\begin{aligned}
w \bar{y} & =\int y d w=\rho g t \int_{0}^{b} y \underbrace{\left(\int_{0}^{\left(\int_{0}^{x} d x\right)} d y\right.} \\
& =\rho g t \int_{0}^{b} y\left(-\frac{a}{b} y+a\right) d y \\
& =\rho g t\left(\frac{a b^{2}}{6}\right)
\end{aligned}
$$

Equation :


$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow y=b \sqrt{1-\frac{x^{2}}{a^{2}}}=\frac{b}{a} \sqrt{a^{2}-x^{2}}
$$

Total Area:

$$
\left.\begin{array}{rl}
A & =\int d A=\int_{-a}^{a} y d x=\frac{b}{a} \int_{-a}^{a} \sqrt{a^{2}-x^{2}} d x \\
& =\frac{b}{a} \int_{\pi}^{0} a \sqrt{1-\cos ^{2} \theta}(-a \sin \theta) d \theta \\
& =-a b \int_{\pi}^{0} \sin ^{2} \theta d \theta=-a b \int_{\pi}^{0}\left(\frac{1-\cos 2 \theta}{2}\right) d \theta \\
\Rightarrow \theta+a \cos \theta \\
d x=-a \sin \theta d \theta \\
x=-a \Rightarrow \theta=\pi \\
x=a \Rightarrow \theta=0
\end{array}\right\}
$$

$$
Q_{y}=\bar{x} A=\int x d A=\int x y d x
$$

Note:
about

$$
\begin{aligned}
& =\int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} x d x \\
& =\frac{b}{a} \int_{a^{2}}^{0} \sqrt{u} \frac{d u}{-2}=\frac{-b}{2 a}\left[\frac{u \sqrt{u}}{\left(\frac{3}{2}\right)}\right]_{a^{2}}^{0} \\
& \Rightarrow \frac{d u}{-2}=x d x \\
& x=0 \Rightarrow u=a^{2} \\
& x=a \quad \Rightarrow u=0 \\
& =\frac{-b}{3 a}\left(-a^{2} \sqrt{a^{2}}\right)=\frac{a^{2} b}{3} \\
& \Rightarrow \bar{x}= \begin{cases}\left(\frac{a^{2} b}{3}\right) /\left(\frac{\pi}{4} a b\right) & =\frac{4}{3} \frac{a}{\pi} \\
0 & \text { (Quarter) } \\
0 & 0\end{cases}
\end{aligned}
$$

Similarly:

Alvout

$$
Q_{x}=\bar{y} A=\int y d A=\int y \cdot x \cdot d y
$$

$x$-axis

$$
=\int_{0}^{b} \underbrace{\frac{a}{b} \sqrt{b^{2}-y^{2}}}_{x} y d y
$$


$\longrightarrow$ Finish yourself.

Centroids of Lines


Once again:

area of cross-section

In the limit: $d l=\sqrt{d x^{2}+d y^{2}}$


$$
d L=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

$$
\Delta L=\sqrt{\Delta x^{2}+\Delta y^{2}}
$$

Question: What if shape of the wire changes?
Exercise 5.45
Find the Centroid of the wire shown.
Total weight: $W=\int_{L} d W=\int_{L} \rho A d L$

$$
=\rho A \int_{L} \sqrt{d x^{2}+d y^{2}}
$$

Substitute

$$
\begin{aligned}
& \text { Substitute } \cos ^{3} \theta \Rightarrow \frac{d x}{d \theta}=3 a \cos ^{2} \theta(-\sin \theta) \\
& y=a \sin ^{3} \theta \Rightarrow \frac{d y}{d \theta}=3 a \sin ^{2} \theta(\cos \theta) \\
& \Rightarrow W=\rho A \int_{0}^{\pi / 2} \sqrt{(3 a)^{2}\left[\cos ^{2} \theta(-\sin \theta)\right]^{2}+(3 a)^{2}\left[\sin ^{2} \theta \cos \theta\right]^{2}} d \theta \\
& =\rho A \int_{0}^{\pi / 2} 3 a \cos \theta \sin \theta \theta \underbrace{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}_{1} d \theta \\
& =\rho A \int_{0}^{\pi / 2} \frac{3 a}{2} \sin 2 \theta d \theta=\rho A\left(\frac{3 a}{2}\right)\left[-\frac{\cos 2 \theta}{2}\right]_{0}^{\pi / 2} \Rightarrow W=\rho A\left(\frac{3 a}{2}\right)
\end{aligned}
$$

Moment about $x$ :-

$$
\begin{aligned}
& M_{x}=-\int_{L} y d W=-\bar{y} W \\
& \Rightarrow \bar{y}=\frac{1}{W} \int_{L} y d W=\frac{1}{W} \int_{0}^{\pi / 2} \underbrace{\left(a \sin ^{3} \theta\right.}_{y}) \underbrace{\rho A 3 a \cos \theta \sin \theta d \theta}_{d W} \\
& =\frac{(2)}{\operatorname{sA}(3 a)} \rho A 3 a a \int_{0}^{\pi / 2} \sin ^{4} \theta \cos \theta d \theta \\
& =2 a \int_{0}^{1} u^{4} d u=2 a\left[\frac{u^{5}}{5}\right]_{0}^{1} \\
& \Rightarrow \bar{y}=\frac{2 a}{5} \\
& \text { Let } u=\sin \theta \\
& \Rightarrow \frac{d u}{d \theta}=\cos \theta \\
& \text { limits: } \\
& \begin{array}{l}
\theta=0 \Rightarrow u=0 \\
\theta=\pi / 2 \Rightarrow u=1
\end{array}
\end{aligned}
$$

By symmetry $\quad \bar{x}=\frac{2 a}{5}$

## 5.3-5.4 Centroids and First Moments of Areas \& Lines.

Definition:
First Moment of an Area

$$
\binom{a b o u t}{y \text {-axis }} \quad Q_{y}=\int x d A=\bar{x} A
$$

$\binom{$ about }{$x$-axis }
$Q_{x}=\int y d A=\bar{y} A$


## Properties of Symmetry

- An area is symmetric with respect to an axis $B B^{\prime}$ if for every point $P$ there exists a point $P^{\prime}$ such that $P P$ ' is perpendicular to $B B^{\prime}$ and is divided into two equal parts by $B B^{\prime}$.
- The first moment of an area with respect to a line of symmetry is zero.
- If an area possesses a line of symmetry, its centroid lies on that axis
- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center $O$ if for every element $d A$ at $(x, y)$ there exists an area $d A$ ' of equal area at $(-x,-y)$.
- The centroid of the area coincides with the center of symmetry.

NOTE:

- Centroid of any area always exists.
- But, a center of symmetry may or may not exist.

Definition:
First Moment of a Line
$Q_{y}=\int x d L=\bar{x} L$
$Q_{x}=\int y d L=\bar{y} L$


(a)


### 5.5 Composite Areas and Lines

The Centroid of an area (or line) that is made up of several simple shapes can be found easily using the centroids of the individual shapes.



$$
W=\sum W_{i}=W_{1}+W_{2}+W_{3} \cdots
$$




To find $G=(\bar{x}, \bar{y})$ :

similarly.

$$
\begin{aligned}
M_{x}=-\bar{y} W & =-\sum \bar{y}_{i} W_{i} \\
\binom{\text { moment }}{\text { about x }} & =-\left(\bar{y}_{1} W_{1}+\bar{y}_{2} W_{2}+\bar{y}_{3} W_{3}+\cdots\right) \\
& \Rightarrow \bar{Y}=\frac{1}{W}\left(\bar{y}_{1} W_{1}+\bar{y}_{2} W_{2}+\bar{y}_{3} W_{3}+\cdots\right)
\end{aligned}
$$

Note:
If an area is composed by adding some shapes and subtracting other shapes, then the moments of the subtracted shapes need to be subtracted as well.

## Exercise 5.7

Find the centroid of the figure shown.

Find the reactions at A \& B.
(specific weight $\gamma=0.28 \mathrm{lb} / \mathrm{in}^{3}$; thickness $t=1 \mathrm{in}$ )
Area $\bar{x} \bar{y} Q_{y} Q_{x}$
$\oplus A 1: \frac{\pi r^{2}}{2}$
$0 \frac{4 r}{3 \pi}$
$0 \quad\left(\frac{4 \gamma}{3 \pi}\right)\left(\frac{\pi \gamma^{2}}{2}\right)$
$2268.23 \quad 0 \quad 16.13 \quad 0 \quad 36581.33$
$\Theta$

$$
\begin{gather*}
\text { AL: } 320-10 \quad 8 \quad-3200 \quad 2560.0 \\
\hline 1948.23 \bar{x} \quad \bar{y}+3200 \quad 34021.33 \\
\bar{x}=\frac{Q_{y}}{A}=1.643 \mathrm{in} \\
\bar{y}=\frac{Q_{x}}{A}=17.463 \mathrm{in}
\end{gather*}
$$


$\oplus$



To find the reactions:

$$
\begin{aligned}
\sum_{1} F_{x}=0 & \Rightarrow A_{x}=0 \\
\sum F_{y}=0 & \Rightarrow-W+A_{y}+B_{y}=0 \\
& \Rightarrow-\gamma A t+A_{y}+B_{y}=0 \\
& \Rightarrow-545.5+A_{y}+B_{y}=0 \\
\sum M_{A}=0 & \Rightarrow-W(38+\bar{x})+B_{y}(76)=0 \\
& \Rightarrow B_{y}=284.5 \mathrm{lb} \Rightarrow A_{y}=260.96 \mathrm{lb}
\end{aligned}
$$



Exercise 5.28

A uniform circular rod of weight 8 lb and radius $\mathrm{r}=10$ in is shown. Determine the tension in the cable AB \& the reaction at C .

$$
\bar{x}=\bar{y}=\frac{-2 \gamma}{\pi}=-6.3662 \mathrm{in}
$$

$$
\sum F_{x}=0 \Rightarrow T+C_{x}=0
$$

$$
\sum_{1} F_{y}=0 \Rightarrow-W+C_{y}=0 \Rightarrow C_{y}=8 l b
$$

$$
\sum_{1} M_{c}=0 \Rightarrow-T_{\times} 10+W\left(\frac{2 \gamma}{\pi}\right)=0
$$

$$
\Rightarrow \quad T=5.093 \mathrm{lb} \quad C_{x}=-5.093 \mathrm{lb}
$$

FBI:


### 5.7 Surfaces \& Volumes of Revolution: Theorems of Pappus-Guldinus

Surfaces of revolution are obtained when one "sweeps" a 2-D curve about a fixed axis.


## Theorem 1

Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation.


## Surface areas of revolution

$$
\begin{aligned}
& \text { Rotating about y-axis: } A=2 \pi \vec{x} L \\
& \text { Rotating about x-axis: } A=2 \pi \bar{y} L
\end{aligned}
$$

## General 3D surfaces (aside)

The concepts of area, centers of areas, and Moments of areas can also be extended to general 3D surfaces.

The same integral formulas still hold:
(1) Area: $A=\int d A$
(2) Moment
$Q_{x}=\int y d A=\bar{y} A$
(3) Moment
about $y$ :

$$
Q_{y}=\int x d A=\bar{x} A
$$

(4) Centroid:

$$
\begin{aligned}
& \bar{x}=\frac{\int x d A}{A} \\
& \bar{y}=\frac{\int y d A}{A}
\end{aligned}
$$



Note: However " $d A$ " is not

$$
\begin{aligned}
& \text { as simple as "dxdy" } \\
& \qquad \underset{\overleftrightarrow{4 x}}{\square} \uparrow d y
\end{aligned}
$$

## Theorem 2

Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation.


## Volumes of Revolution



## Exercise 5.59

Find the internal surface area and the volume of the punch bowl.

Given $\mathrm{R}=250 \mathrm{~mm}$.
$\bar{x}_{1}=\left(\frac{\gamma \sin \alpha}{\alpha}\right)(\cos \alpha)$

$\bar{x}_{2}=\frac{\gamma}{4}$
Surface Area
$A=2 \pi \bar{x}_{1} L_{1}+2 \pi \bar{x}_{2} L_{2}$
$=2 \pi\left(\frac{\gamma \sin (\pi / 6)}{(\pi / 6)}\right) \cdot \cos (\pi / 6) \cdot\left(\frac{\pi}{3} r\right) \leftrightarrow \bar{x}_{2}$

$+2 \pi\left(\frac{r}{4}\right) \cdot\left(\frac{r}{2}\right)$
$=364631.1 \mathrm{~mm}^{2}$

## Volume

$$
\begin{aligned}
V & =2 \pi x_{1}^{\prime} A_{1}+2 \pi x_{2}^{\prime} A_{2} \\
& =2 \pi\left(\frac{2 r \sin \alpha}{3 \alpha}\right) \cos \alpha \cdot\left(\alpha \gamma^{2}\right) \\
& +2 \pi\left(\frac{\gamma}{6}\right) \cdot\left(\frac{1}{2} \frac{\gamma}{2} r \cos \alpha\right)
\end{aligned}
$$


$=31.88$ litres

In several applications, engineers have to design beams that carry distributed loads along their length. $w(\mathrm{x})$ is weight per unit length.

Simply supported beam.

Cantilever Beam


Total weight: $W=\int_{0}^{L} w d x$
Point of action:

$$
\bar{x}=\frac{Q y}{W}=\frac{\int^{L} x w d x}{W}
$$



## Exercise 5.70

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$F_{2}=\int_{15}^{21} w d x=600 l b$
$\begin{aligned} \quad F_{x} & =0 \\ & \Rightarrow A_{x}=0\end{aligned}$
$\sum F_{y}=0 \Rightarrow$

$$
A_{y}+B_{y}-F_{1}-F_{2}=0
$$

$\sum M_{A}=0$

$$
\Rightarrow \quad B_{y} \times 15-F_{1} \times 1.5-F_{2} \times 11=0
$$

3 Unknowns $\left(A_{x}, A_{y}, B_{y}\right)$; 3 equations
5.9 Distributed forces on submerged surfaces.

Objects that are submerged in water (or in any liquid) are subjected to distributed force per unit area which is called pressure.

In water, this pressure always acts perpendicular (normal) to the submerged surface and its magnitude is given by:


Note:
The buoyancy force is the resultant of all these distributed forces acting on the body. Recall the buoyancy force is equal to the weight of the water displaced.


Aside: If the liquid is viscous, then in addition the normal pressure the viscous fluid may also apply a tangential traction to the body. This traction is also a force per unit area and is a more general form of pressure.

## Resultant force

To obtain the resultant force acting on a submerged surface:

$$
\begin{gathered}
\qquad \vec{F}=\int_{A} \vec{P} d A \\
\text { For inclined surfaces: } \\
(d A=b d x) \text { width of the plate } \\
R=\int_{L} p b d x \\
\bar{x}=\frac{\int_{L} x p b d x}{R}
\end{gathered}
$$



## Exercise 5.82

$3 \mathrm{~m} \times 4 \mathrm{~m}$ wall of the tank is hinged at A and held by rod BC.
Find the tension in the rod as a function of the water depth $d$.

$$
\begin{aligned}
\sum M_{A} & =0 \\
\Rightarrow & +3 T-F d / 3=0 \\
\Rightarrow T & =\frac{1}{9} F d \\
& =\frac{1}{9} \underbrace{\left(\frac{1}{2} \rho g d\right)}_{F} \cdot d \cdot 4 d . \\
T & =\frac{2}{9} \rho g d^{3}
\end{aligned}
$$




## For Curved Surfaces:

Forces on curved submerged surfaces can he obtained by using equilibrium of a surrounding portion of water.

$$
\begin{aligned}
\vec{R}_{1} & =\left(\rho g h_{1}\right) b b(-j) \\
\vec{R}_{2} & =\left(\rho g h_{1}\right)\left(h_{2}-h_{1}\right) b(-\underline{i}) \\
& +\frac{1}{2}\left(\rho g\left(h_{2}-h_{1}\right)\right)\left(h_{2}-h_{1}\right) b(-\underline{i})
\end{aligned}
$$

$\vec{W}=$ weight of small body
of water
Equilibrium of the small
body of water:
$\sum \vec{F}=0$
$\Rightarrow \vec{R}_{1}+\overrightarrow{R_{2}}+\vec{w}+(-\vec{R})=0$


$$
\Rightarrow \vec{R}=\vec{R}_{1}+\overrightarrow{R_{2}}+\vec{W}
$$



Example 5.10
FBD 1:
1 ft . deep
$\gamma_{\text {conc }}=150 \mathrm{eb} / \mathrm{ft}^{3}$
$\gamma_{\text {water }}=62.4 \mathrm{lb} / \mathrm{ft}^{3}$
$W_{1}=\frac{1}{2} \times 9 \times 22 \times 1 \times \gamma_{c}=14,850 \mathrm{lb}$
$W_{2}=5 \times 22 \times 1 \times \gamma_{c}=16,500 \mathrm{lb}$
$W_{3}=\frac{a h_{x}}{3} l \times Y_{c}=9000 \mathrm{lb}$
$W_{4}=\frac{2}{3} a h_{x} 1 \times \gamma_{\omega}=7488 \mathrm{eb}$.


Note: The reactions $H, V, M$ are not actual reactions.
The reactions at the bottom of the dam are also distributed.
$H, V, M$ are the resultants at $A$ of these distributed reactions.

$$
\begin{aligned}
\sum F_{x}=0 & \Rightarrow H=P=10109 \mathrm{lb} \\
\sum F_{y}=0 & \Rightarrow V=W_{1}+W_{2}+W_{3}+W_{4}=47,840 \mathrm{lb} \\
\sum M_{A}=0 & \Rightarrow M-W_{1} \times 6-W_{2} \times 11.5-W_{3} \times 17-W_{4} \times 20+P \times 6 \\
& \Rightarrow M=520,960 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

single Equivalent force The resultant reaction acts at a point " $d$ " from $A$ :

$$
\begin{aligned}
V d & =M \\
\Rightarrow d & =\frac{M}{V}=10.89 \mathrm{ft}
\end{aligned}
$$

Resultant of water pressure:
Equilibrium of Body of water
(Note: 3 force member.)


$$
\Rightarrow \quad(\vec{R})+\vec{W}_{4}+\vec{P}=0
$$

$\Rightarrow$ Resultant water pressure $\vec{R}=10109 \underline{i}+7488 j$ lb

The formulas for center of gravity in 2 D can be easily generalized to 3D as follows:


$$
\dot{\Sigma} \vec{F}=\int_{V} d \vec{W}=\int_{V} d W(-j)
$$



$$
W=\int_{V} d W
$$

$$
\sum \vec{M}_{0}=\int_{V} \vec{r} \times d \vec{W}=\vec{\nabla} \times \vec{W}
$$

$$
\bar{r}=\bar{x} \underline{i}+\bar{y} \underline{j}+\bar{z} \underline{k}
$$



$$
\bar{x}=\frac{\int x d w}{w}
$$



$$
\bar{z}=\frac{\int z d W}{W}
$$

5.11 Composition of Volumes

$$
\begin{aligned}
& \bar{x}=\frac{\sum \bar{x}_{i} W_{i}}{W} \\
& \bar{y}=\frac{\sum \bar{y}_{i} W_{i}}{W} \\
& \bar{z}=\frac{\sum \bar{z}_{i} W_{i}}{W}
\end{aligned}
$$

Examples 5.11 and 5.12 in the book.

(t)

5.12 Center of Volume by integration.

Volume $\quad V=\iiint d x d y d z$
Center of Volume:

$$
\bar{x}=\frac{\int x d V}{V} \quad \bar{y}=\frac{\int y d V}{V} \quad \bar{z}=\frac{\int z d V}{V}
$$



For complex 3D shapes, triple integrals can be difficult to evaluate exactly.

For some special cases one can find the centroid as follows:
(i) Bodies of revolution
(ii) Volume under a surface

(ii) $V=\iint y(x, z) d x d z$

Read Example 5.13
Exercise 5.126
Find the centroid of the volume obtained by rotating the shaded area about the x -axis.

Note $\bar{y}=\bar{z}=0$
To find $\bar{x}$ :

$$
\left.\begin{aligned}
& \bar{x}=\frac{\int x d V}{V} \\
& \bar{x}=\frac{\int x A(x) d x}{\int A(x) d x}=\frac{\int x T}{\int \pi} \\
& \Rightarrow \bar{x}=\frac{\frac{x^{8 / 3}}{8 / 3}}{x^{5 / 3}} \\
& 5 / 3
\end{aligned}\right|_{0} ^{h}=\frac{5 h}{8}
$$



$$
\frac{\int x \pi\left(k x^{1 / 3}\right)^{2} d x}{\int \pi\left(k x^{1 / 3}\right)^{2} d x}=\frac{\pi k^{2} \int x^{5 / 3} d x}{\pi k^{2} \int x^{2 / 3} d x}
$$

