Chapter 5 Electronic Structure and Periodic Trends

5.3

Sublevels and Orbitals

A p sublevel consists of three porbitals.

Energy Levels

Energy levels

- are assigned quantum numbers $n=1,2,3,4$, and so on
- increase in energy as the value of n increases
- have a maximum number of electrons equal to $2 n^{2}$

TABLE 5.1 Maximum Number of Electrons Allowed in Energy Levels 1-4

Energy Level (n)	1	2	3	4
$2 n^{2}$	$2(1)^{2}$	$2(2)^{2}$	$2(3)^{2}$	$2(4)^{2}$
Maximum Number of Electrons	2	8	18	32

Sublevels

A sublevel

- contains electrons with the same energy
- has the same shape but increases in volume at higher energy levels
- is found within each energy level
- is designated by the letters s, p, d, or f

Energy of Sublevels

In any energy level

- the s sublevel has the lowest energy
- the s sublevel is followed by the p, d, f sublevels
- higher sublevels are possible, but only s, p, d, f sublevels are needed to hold the number of electrons in the atoms known today

Number of Sublevels

Principal energy level

$$
n=4
$$

$$
n=3
$$

$$
n=2
$$

$$
n=1
$$

© 2011 Pearson Education, Inc.

Types of sublevels

\square

The number of sublevels in an energy level is the same as the principal quantum number, n.

Orbitals

An orbital

- is a three-dimensional space around a nucleus where an electron is found most of the time
- has a shape that represents electron density (not a path the electron follows)
- can hold up to two electrons
- contains two electrons that spin in opposite directions

s Orbitals

An sorbital

- has a spherical shape around the nucleus
- increases in size around the nucleus as the energy level n value increases
- is a single orbital found in each s sublevel

All sorbitals have spherical shapes that increase in volume at higher energy levels.

p Orbitals

A porbital

- has a two-lobed shape
- is one of three p orbitals that make up each p sublevel, each aligned along a different axis
- increases in size as the value of n increases

Sublevels and Orbitals

Each sublevel consists of a specific number of orbitals.

- an s sublevel contains one s orbital
- a p sublevel contains three p orbitals
- a d sublevel contains five d orbitals
- an f sublevel contains seven f orbitals

Electron Capacity

TABLE 5.2 Electron Capacity in Sublevels for Energy Levels 1-4

Energy Level (n)	Number of Sublevels	Type of Sublevels	Number of Orbitals	Maximum Number of Electrons	Total Electrons $\left(2 n^{2}\right)$
4	4	$4 f$	7	14	32
		$4 d$	5	10	
		$4 p$	3	6	
		$4 s$	1	2	
3	3	$3 d$	5	10	18
		$3 p$	3	6	
		$3 s$	1	2	
2	2	$2 p$	3	6	8
		$2 s$	1	2	
1	1	$1 s$	1	2	2

© 2011 Pearson Education, Inc.
The total number of electrons in all the sublevels adds up to give the maximum number of electrons ($2 n^{2}$) allowed in an energy level.

Learning Check

Indicate the number and type of orbitals in each of the following:
A. $4 s$ sublevel
B. $3 d$ sublevel
C. $n=3$

Solution

Indicate the number and type of orbitals in each of the following:
A. $4 s$ sublevel one $4 s$ orbital
B. $3 d$ sublevel
five 3d orbitals
C. $n=3$
one $3 s$ orbital, three $3 p$ orbitals, and five 3d orbitals

Learning Check

The number of
A. electrons that can occupy a p orbital is

1) 1
2) 2
3) 3
B. p orbitals in the $2 p$ sublevel is
4) 1
5) 2
6) 3
C. d orbitals in the $n=4$ energy level is
7) 1
8) 3
9) 5
D. electrons that can occupy the $4 f$ sublevel is
10) 2
11) 6
12) 14

Solution

The number of

A. electrons that can occupy a p orbital is

$$
\text { 2) } 2
$$

B. p orbitals in the $2 p$ sublevel is

$$
\text { 3) } 3
$$

C. d orbitals in the $n=4$ energy level is

$$
\text { 3) } 5
$$

D. electrons that can occupy the $4 f$ sublevel is

$$
\text { 3) } 14
$$

Chapter 5 Electronic Structure and Periodic Trends

5.4

Drawing Orbital Diagrams and Writing Electron Configurations

Orbital diagram of carbon

In the orbital diagram of carbon, two electrons occupy the $1 s$ orbital, two electrons occupy the $2 s$ orbital, and two electrons each occupy a $2 p$ orbital in the $2 p$ sublevel.

Order of Filling

Energy levels fill with electrons

- in order of increasing energy
- beginning with quantum number $n=1$
- beginning with s followed by p, d, and f

Energy Diagram for Sublevels

The orbitals of an atom fill in order of increasing energy of the sublevels beginning with 1 s .

Orbital Diagrams

An orbital diagram shows

- orbitals as boxes in each sublevel
- electrons in orbitals as vertical arrows
- electrons in the same orbital with opposite spins (up and down vertical arrows)

Atomic
Number Element Orbital Diagram

Order of Filling

Electrons in an atom

- fill each orbital in a sublevel with one electron until half full
- then pair up with an electron of opposite spin

Writing Orbital Diagrams

The orbital diagram for carbon consists of

- two electrons in the $1 s$ orbital
- two electrons in the $2 s$ orbital
- one electron each in two of the $2 p$ orbitals

Learning Check

Write the orbital diagrams for

A. nitrogen

B. oxygen
C. magnesium

Solution

Write the orbital diagrams for $1 s \quad 2 s$
$2 p$
3s
A. nitrogen
B. oxygen

C. magnesium

Electron Configuration

An electron configuration

- lists the sublevels filling with electrons in order of increasing energy
- uses superscripts to show the number of electrons in each sublevel
- for carbon is as follows:

Period 1 Configurations

In Period 1, the first two electrons go into the 1s orbital.

Atomic
Number

Electron
 Configuration

$1 s^{1}$
$1 s^{2}$

Abbreviated Configurations

An abbreviated configuration shows

- the symbol of the noble gas in brackets that represents completely filled sublevels
- the remaining electrons in order of their sublevels

Example: Fluorine has a configuration and abbreviated electron configuration of

Element		Orbital Diagram				Electron Configuration	Abbreviated Electron Configuration
F	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow			$1 s^{2} 2 s^{2} 2 p^{5}$	$[\mathrm{He}] 2 s^{2} 2 p^{5}$

Period 2 Configurations

Atomic
Number

Electron
Configuration
$\begin{array}{ll}1 s^{2} 2 s^{1} & {[\mathrm{He}] 2 s^{1}} \\ 1 s^{2} 2 s^{2} & {[\mathrm{He}] 2 s^{2}}\end{array}$
$1 s^{2} 2 s^{2} 2 p^{1}$
$1 s^{2} 2 s^{2} 2 p^{2}$
$1 s^{2} 2 s^{2} 2 p^{3}$
$1 s^{2} 2 s^{2} 2 p^{4}$
$1 s^{2} 2 s^{2} 2 p^{5}$
$1 s^{2} 2 s^{2} 2 p^{6}$

Abbreviated Electron
Configuration
$[\mathrm{He}] 2 s^{2} 2 p^{1}$
$[\mathrm{He}] 2 s^{2} 2 p^{2}$
$[\mathrm{He}] 2 s^{2} 2 p^{3}$
$[\mathrm{He}] 2 s^{2} 2 p^{4}$
$[\mathrm{He}] 2 s^{2} 2 p^{5}$
$[\mathrm{He}] 2 s^{2} 2 p^{6}$

Period 3 Configurations

Atomic
Number

11
12

13
14
15
16
17
18

Orbital Diagram ($3 s$ and $3 p$ orbitals only)

$[\mathrm{Ne}] \uparrow \downarrow$

$[\mathrm{Ne}] \uparrow \downarrow$

Electron
Configuration
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
$[\mathrm{Ne}] 3 s^{2} 3 p^{2}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
$[\mathrm{Ne}] 3 s^{2} 3 p^{3}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4} \quad[\mathrm{Ne}] 3 s^{2} 3 p^{4}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} \quad[\mathrm{Ne}] 3 s^{2} 3 p^{5}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \quad[\mathrm{Ne}] 3 s^{2} 3 p^{6}$

Learning Check

A. The correct electron configuration for nitrogen is

1) $1 s^{2} 2 p^{5}$
2) $1 s^{2} 2 s^{2} 2 p^{6}$
3) $1 s^{2} 2 s^{2} 2 p^{3}$
B. The correct electron configuration for oxygen is
4) $1 s^{2} 2 p^{6}$
5) $1 s^{2} 2 s^{2} 2 p^{4}$
6) $1 s^{2} 2 s^{2} 2 p^{6}$
C. The correct electron configuration for calcium is
7) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2}$
8) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$
9) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{8}$

Solution

A. The correct electron configuration for nitrogen is

$$
\text { 3) } 1 s^{2} 2 s^{2} 2 p^{3}
$$

B. The correct electron configuration for oxygen is

$$
\text { 2) } 1 s^{2} 2 s^{2} 2 p^{4}
$$

C. The correct electron configuration for calcium

$$
\text { 2) } 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}
$$

Learning Check

Write the electron configuration and abbreviated configuration for each of the following elements:
A. Cl
B. S
C. K

Solution

A. Cl
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
[$\mathrm{Ne} \mathrm{e} 3 s^{2} 3 p^{5}$
B. S
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
[$\mathrm{Ne} \mathrm{e} 3 s^{2} 3 p^{4}$
C. K
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
[Ar]4s ${ }^{1}$

Chapter 5 Electronic Structure and Periodic Trends

5.5

Electron Configurations and the Periodic Table
d block

Sublevel Blocks on the Periodic Table

The periodic table consists of sublevel blocks arranged in order of increasing energy.

- Groups 1A(1)-2A(2) = s level
- Groups 3A(13)-8A(18) = plevel
- Groups 3B(3) to 2B(12) = d level
- Lanthanides/Actinides = flevel

Sublevel Blocks

Electron configurations follow the order of sublevels on the periodic table.

Using Sublevel Blocks

To write an electron configuration using Sublevel blocks,

- locate the element on the periodic table
- starting with H in $1 s$,write each sublevel block in order going from left to right across each period
- write the number of electrons in each block

Writing Electron Configurations

Using the periodic table, write the electron configuration for silicon.

Solution

Period 1
Period 2
Period $3 \quad 3 s \rightarrow 3 p$ blocks $\quad 3 s^{2} 3 p^{2}(\mathrm{Si})$
Writing all the sublevel blocks in order gives

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}
$$

Electron Configurations d Sublevel

- The $4 s$ orbital has a lower energy that the $3 d$ orbitals.
- In potassium, K, the last electron enters the $4 s$ orbital, not the 3d (as shown below).

	$1 s$	$2 s 2 p$	$3 s 3 p$	$3 d$	4 s
Ar	$1 s^{2}$	$2 s^{2} 2 p^{6}$	$3 s^{2} 3 p^{6}$		
K	$1 s^{2}$	$2 s^{2} 2 p^{6}$	$3 s^{2} 3 p^{6}$	$4 \mathrm{~s}^{1}$	
Ca	$1 s^{2}$	$2 s^{2} 2 p^{6}$	$3 s^{2} 3 p^{6}$	$4 \mathrm{~s}^{2}$	
Sc	$1 s^{2}$	$2 s^{2} 2 p^{6}$	$3 s^{2} 3 p^{6} 3 d^{1}$	$4 \mathrm{~s}^{2}$	
Ti	$1 s^{2}$	$2 s^{2} 2 p^{6}$	$3 s^{2} 3 p^{6} 3 d^{2}$	$4 \mathrm{~s}^{2}$	

Writing Electron Configurations

Using the periodic table, write the electron configuration for manganese.

Solution

Period 1
Period 2
Period 3
Period $4 \quad 4 s \rightarrow 3 d$ blocks $4 s^{2} 3 d^{5}$
(at Mn)
Writing all the sublevel blocks in order gives

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}
$$

Writing Electron Configurations

Using the periodic table, write the electron configuration for iodine.

Solution

Period 1
Period 2
Period 3
Period 4
Period 5

1s block
$2 s \rightarrow 2 p$ blocks
$3 s \rightarrow 3 p$ blocks
$4 s \rightarrow 3 d \rightarrow 3 p$ blocks
$5 s \rightarrow 4 d \rightarrow 5 p$ blocks
$1 s^{2}$
$2 s^{2} 2 p^{6}$
$3 s^{2} 3 p^{6}$
$4 s^{2} 3 d^{10} 4 p^{6}$
$5 s^{2} 4 d^{10} 5 p^{5}$

Writing all the sublevel blocks in order gives $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{5}$ (iodine)

4s Block

Period number	s block				
1	H He				
2	$2 s$				
3	3 s	7			
4	$4 s$				
5	$5 s$	Atomic Number	Element	Electron Configuration	Abbreviated Electron Configuration
6	$6 s$	$4 s$ Block			
		19	K	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$	[Ar]4s ${ }^{1}$
7	$7 s$	20	Ca	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$	$[\mathrm{Ar}] 4{ }^{2}$

3d Block

d block

				$3 d$				
				$4 d$				
				$5 d$				
				$6 d$				

Sc	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{1}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{1}$
Ti	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{2}$
V	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{3}$
Cr^{*}	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$	$[\mathrm{Ar}] 4 s^{1} 3 d^{5}$ (half-filled
		d sublevel is stable)
Mn	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{5}$
Fe	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{6}$
Co	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{7}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{7}$
Ni	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{8}$
Cu	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$	$[\mathrm{Ar}] 4 s^{1} 3 d^{10}$ (filled
		$d \operatorname{sublevel}$ is stable)
Zn	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{10}$

4p Block

Abbreviated Electron

\section*{| Atomic N |
| :--- |
| $4 p$ Block |}

31	Ga	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{1}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{1}$
32	Ge	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{2}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{2}$
33	As	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{3}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{3}$
34	Se	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{4}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{4}$
35	Br	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{5}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{5}$
36	Kr	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{6}$

*Exceptions to the order of filling.
© 2011 Pearson Education, Inc.

Learning Check

A. The last two sublevel blocks in the electron configuration for Co are

1) $3 p^{6} 4 s^{2}$
2) $4 s^{2} 4 d^{7}$
3) $4 s^{2} 3 d^{7}$
B. The last three sublevel blocks in the electron configuration for Sn are
4) $5 s^{2} 5 p^{2} 4 d^{10}$
5) $5 s^{2} 4 d^{10} 5 p^{2}$
6) $5 s^{2} 5 d^{10} 5 p^{2}$

Solutions

A. The last two sublevel blocks in the electron configuration for Co are 3) $4 s^{2} 3 d^{7}$
B. The last three sublevel blocks in the electron configuration for Sn are 2) $5 s^{2} 4 d^{10} 5 p^{2}$

Learning Check

Using the periodic table, write the electron configuration and abbreviated configuration for each of the following elements:
A. Zn
B. Sr
C. I

Solution

A. Zn
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10}$
[Ar] $4 s^{2} 3 d^{10}$
B. Sr
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2}$ $[\mathrm{Kr}] 5 s^{2}$
C. 1
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{5}$ $[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{5}$

Learning Check

Give the symbol of the element that has
A. $[\operatorname{Ar}] 4 s^{2} 3 d^{6}$
B. Four $3 p$ electrons
C. Two electrons in the $4 d$ sublevel
D. Electron configuration
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$

Solution

Give the symbol of the element that has
A. $[\operatorname{Ar}] 4 s^{2} 3 d^{6}$

Fe
B. Four $3 p$ electrons
C. Two electrons in the $4 d$ sublevel $Z r$
D. Electron configuration

Ti $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$

Chapter 5 Electron Configuration and Periodic Trends

5.6

Periodic Trends of the Elements

Valence Electrons

The valence electrons

- determine the chemical properties of an element
- are the electrons in the s and p sublevels in the highest energy level
- are related to the group number of the element

Example: Phosphorus has 5 valence electrons
5 valence electrons
P Group 5A(15)
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$

Group Number and Valence Electrons

All the elements in a group have the same number of valence electrons.

Example:
Elements in Group 2A (2) have two (2) valence electrons.

$$
\begin{array}{ll}
\mathrm{Be} & 1 s^{2} 2 s^{2} \\
\mathrm{Mg} & 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} \\
\mathrm{Ca} & 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} \\
\mathrm{Sr} & 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2}
\end{array}
$$

Periodic Table and Valence Electrons

TABLE 5.3 Valence Electrons for Representative Elements in Periods 1-4
$1 \mathrm{~A}(1) \quad 2 \mathrm{~A}(2) \quad 3 \mathrm{~A}(13) \quad 4 \mathrm{~A}(14) \quad 5 \mathrm{~A}(15) \quad 6 \mathrm{~A}(16) \quad 7 \mathrm{~A}(17) \quad 8 \mathrm{~A}(18)$

1									
H									
$1 s^{1}$									
3	4	5	6	7	8	9	2 He $1 s^{2}$		
Li	Be	B	C	N	O	F	Ne		
$2 s^{1}$	$2 s^{2}$	$2 s^{2} 2 p^{1}$	$2 s^{2} 2 p^{2}$	$2 s^{2} 2 p^{3}$	$2 s^{2} 2 p^{4}$	$2 s^{2} 2 p^{5}$	$2 s^{2} 2 p^{6}$		
11	12	13	14	15	16	17	18		
Na	Mg	Al	Si	P	S	Cl	Ar		
$3 s^{1}$	$3 s^{2}$	$3 s^{2} 3 p^{1}$	$3 s^{2} 3 p^{2}$	$3 s^{2} 3 p^{3}$	$3 s^{2} 3 p^{4}$	$3 s^{2} 3 p^{5}$	$3 s^{2} 3 p^{6}$		
19	20	31	32	33	34	35	36		
K	Ca	Ga	Ge	As	Se	Br	Kr		
$4 s^{1}$	$4 s^{2}$	$4 s^{2} 4 p^{1}$	$4 s^{2} 4 p^{2}$	$4 s^{2} 4 p^{3}$	$4 s^{2} 4 p^{4}$	$4 s^{2} 4 p^{5}$	$4 s^{2} 4 p^{6}$		

@ 2011 Pearson Education, Inc.

Learning Check

State the number of valence electrons for each:
A. O

1) 4
2) 6
3) 8
B. Al
4) 13
5) 3
6) 1
C. Cl
7) 2
8) 5
9) 7

Solution

State the number of valence electrons for each. A. O

$$
\text { 2) } 6
$$

B. Al

$$
\text { 2) } 3
$$

C. Cl

$$
\text { 3) } 7
$$

Learning Check

State the number of valence electrons for each.
A. Calcium

1) 1
2) 2
3) 3
B. Group 6A (16)

$$
\begin{array}{lll}
\text { 1) } 2 & \text { 2) } 4 & \text { 3) } 6
\end{array}
$$

C. Tin

1) 2
2) 4
3) 14

Solution

State the number of valence electrons for each.
A. Calcium
2) 2
B. Group 6A (16)
3) 6
C. Tin
2) 4

Learning Check

State the number of valence electrons for each. A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{4}$
C. $1 s^{2} 2 s^{2} 2 p^{5}$

Solution

State the number of valence electrons for each.
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$

5
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{4} \quad 6$
C. $1 s^{2} 2 s^{2} 2 p^{5}$

7

Electron-Dot Symbols

An electron-dot symbol

- indicates the valence electrons as dots around the symbol of the element
- for Mg shows two valence electrons placed as single dots on the sides of the symbol Mg
-Mg • or $\mathrm{Mg} \cdot$ or $\cdot \mathrm{Mg}$ or $\cdot \mathrm{Mg}$ •

Electron configuration of magnesium

Writing Electron-Dot Symbols

The electron-dot symbols for

- Groups 1A (1) to 4A (14) use single dots
Na .
- Mg •
- Al
- C.
- Groups 5A (15) to 7A (17) use pairs and single dots
-P. \quad O.

Groups and Electron-Dot Symbols

- In a group, all the electron-dot symbols have the same number of valence electrons (dots).
Example: Atoms of elements in Group 2A (2) each have two valence electrons.

2A (2)

- Be ${ }^{-}$
- Mg•
- Ca ${ }^{-}$
- $\mathbf{S r}{ }^{-}$
- Ba ${ }^{-}$

Periodic Table and ElectronDot Symbols

TABLE 5.4 Electron-Dot Symbols for Selected Elements in Periods 1-4

Group Number								
	$\begin{aligned} & \text { 1A } \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A} \\ & \text { (2) } \end{aligned}$	$\begin{gathered} 3 \mathrm{~A} \\ (13) \end{gathered}$	$\begin{aligned} & \text { 4A } \\ & (14) \end{aligned}$	$\begin{gathered} 5 \mathrm{~A} \\ (15) \end{gathered}$	$\begin{gathered} 6 \mathrm{~A} \\ (16) \end{gathered}$	$\begin{gathered} 7 \mathrm{~A} \\ (17) \end{gathered}$	$\begin{gathered} 8 \mathrm{~A} \\ (18) \end{gathered}$
Number of Valence Electrons	1	2	3	4	5	6	7	8
Electron-Dot	H.							He:
	Li	$\dot{B 1}$ -	$\cdot \dot{\mathrm{B}}$.	$\cdot \dot{\text { C }}$.	$\cdot \stackrel{.0}{\mathrm{~N}}$.	. ${ }_{\mathrm{O}}$:	$\cdot \stackrel{\ddot{\mathrm{F}}}{\cdot}$:	: $\because \mathrm{N} \mathrm{e}$:
	Na -	Mg .	. $\dot{\mathrm{Al}}$.	- $\dot{\mathrm{S}}$ -	- $\stackrel{\text { Pr }}{ }$.	. \ddot{S} :	. C l :	: Ärr $^{\text {r }}$
	K \cdot	$\dot{\mathrm{Ca}}$.	. Ga .	- Ge -	- A.s. $^{\text {. }}$. $\ddot{\text { Se }}$:	- $\ddot{\mathrm{Br}}$:	: $\ddot{\mathrm{K}}_{\mathrm{r}}$:

Learning Check

A. \dot{X} is the electron-dot symbol for

1) Na
2) K
3) Al
B. $\quad \bullet \ddot{X}$ •
is the electron-dot symbol of
4) B
5) N
6) P

Solution

A. $\dot{\mathrm{X}}$ is the electron-dot symbol for

1) Na
2) K
B. $\bullet \ddot{X}$.

- is the electron-dot symbol of

2) $N \quad$ 3) P

Atomic Radius

The atomic radius

- is the distance from the nucleus to the valence electrons

Atomic Radius within a Group

The atomic radius increases

- going down each group of representative elements
- as the number of energy levels increases

Atomic Radius across a Period

The atomic radius decreases

- going from left to right across a period
- as more protons increase the nuclear attraction for valence electrons

Learning Check

Select the element in each pair with the larger atomic radius.
A. Li or K
B. K or Br
C. P or Cl

Solution

Select the element in each pair with the larger atomic radius.
A. K is larger than Li
B. K is larger than Br
C. P is larger than Cl

Ionization Energy

Ionization energy

- is the energy it takes to remove a valence electron

$$
\begin{aligned}
& \mathrm{Na}(g)+\text { energy (ionization) } \\
& \mathrm{Na}^{+}+e^{-}
\end{aligned}
$$

Ionization Energy

Metals have

- 1-3 valence electrons
- lower ionization energies

Ionization Energy

Nonmetals have

- 5-7 valence electrons
- higher ionization energies

Ionization Energy

Noble gases have

- complete octets (He has two valence electrons)
- the highest ionization energies in each period

Learning Check

Select the element in each pair with the higher ionization energy.
A. Li or K
B. K or Br
C. P or Cl

Solution

Select the element in each pair with the higher ionization energy.
A. Li
B. Br
C. Cl

Sizes of Metal Atoms and Ions

A positive ion

- has lost its
valence electrons
- is smaller than the corresponding metal atom (about half the size)

Size of Sodium Ion

The sodium ion Na^{+}

- forms when the Na atom loses one electron from the third energy level
- is smaller than a Na atom

$$
\left(1 \mathrm{pm}=10^{-12} \mathrm{~m}\right)
$$

Empty

Sizes of Nonmetal Atoms and Ions

Group 7A (17)
A negative ion

- has a complete octet

Size of Fluoride Ion

The fluoride ion F^{-}

- forms when a valence electron is added
- has increased repulsions due to the added valence electron
- is larger than a F atom

$\left(1 \mathrm{pm}=10^{-12} \mathrm{~m}\right)$

e^{-}added

Filled

Learning Check

1. Which is larger in each of the following?
A. $\mathrm{K}^{\text {or } \mathrm{K}^{+}}$
B. Al or Al^{3+}
C. S^{2-} or S
2. Which is smaller in each of the following?
A. N^{3-} or N
B. $\mathrm{Cl} \mathrm{or}_{\mathrm{Cl}}{ }^{-}$
C. Sr^{2+} or Sr

Solution

1. Which is larger in each of the following?
A. $\mathrm{K}>\mathrm{K}^{+}$
B. $\mathrm{Al}>\mathrm{Al}^{3+}$
C. $\mathrm{S}^{2-}>\mathrm{S}$
2. Which is smaller in each of the following?
A. $\mathrm{N}<\mathrm{N}^{3-}$
B. $\mathrm{Cl}^{<} \mathrm{Cl}^{-}$
C. $\mathrm{Sr}^{2+}<\mathrm{Sr}$

$\bullet \bullet$
 Concept Map

@ 2011 Pearson Education, Inc.

