
Chapter 5
Exploratory Data Analysis

5.1 Introduction

Exploratory data analysis (EDA) is quantitative detective work according to
John Tukey [1977]. EDA is the philosophy that data should first be explored
without assumptions about probabilistic models, error distributions, number
of groups, relationships between the variables, etc. for the purpose of discov-
ering what they can tell us about the phenomena we are investigating. The
goal of EDA is to explore the data to reveal patterns and features that will
help the analyst better understand, analyze and model the data. With the
advent of powerful desktop computers and high resolution graphics capabil-
ities, these methods and techniques are within the reach of every statistician,
engineer and data analyst.

EDA is a collection of techniques for revealing information about the data
and methods for visualizing them to see what they can tell us about the
underlying process that generated it. In most situations, exploratory data
analysis should precede confirmatory analysis (e.g., hypothesis testing,
ANOVA, etc.) to ensure that the analysis is appropriate for the data set. Some
examples and goals of EDA are given below to help motivate the reader.

• If we have a time series, then we would plot the values over time
to look for patterns such as trends, seasonal effects or change
points. In Chapter 11, we have an example of a time series that
shows evidence of a change point in a Poisson process.

• We have observations that relate two characteristics or variables,
and we are interested in how they are related. Is there a linear or
a nonlinear relationship? Are there patterns that can provide
insight into the process that relates the variables? We will see exam-
ples of this application in Chapters 7 and 10.

• We need to provide some summary statistics that describe the data
set. We should look for outliers or aberrant observations that might
contaminate the results. If EDA indicates extreme observations are

© 2002 by Chapman & Hall/CRC

112 Computational Statistics Handbook with MATLAB

in the data set, then robust statistical methods might be more
appropriate. In Chapter 10, we illustrate an example where a graph-
ical look at the data indicates the presence of outliers, so we use a
robust method of nonparametric regression.

• We have a random sample that will be used to develop a model.
This model will be included in our simulation of a process (e.g.,
simulating a physical process such as a queue). We can use EDA
techniques to help us determine how the data might be distributed
and what model might be appropriate.

In this chapter, we will be discussing graphical EDA and how these tech-
niques can be used to gain information and insights about the data. Some
experts include techniques such as smoothing, probability density estima-
tion, clustering and principal component analysis in exploratory data analy-
sis. We agree that these can be part of EDA, but we do not cover them in this
chapter. Smoothing techniques are discussed in Chapter 10 where we present
methods for nonparametric regression. Techniques for probability density
estimation are presented in Chapter 8, but we do discuss simple histograms
in this chapter. Methods for clustering are described in Chapter 9. Principal
component analysis is not covered in this book, because the subject is dis-
cussed in many linear algebra texts [Strang, 1988; Jackson, 1991].

It is likely that some of the visualization methods in this chapter are famil-
iar to statisticians, data analysts and engineers. As we stated in Chapter 1,
one of the goals of this book is to promote the use of MATLAB for statistical
analysis. Some readers might not be familiar with the extensive graphics
capabilities of MATLAB, so we endeavor to describe the most useful ones for
data analysis. In Section 5.2, we consider techniques for visualizing univari-
ate data. These include such methods as stem-and-leaf plots, box plots, histo-
grams, and quantile plots. We turn our attention to techniques for visualizing
bivariate data in Section 5.3 and include a description of surface plots, scat-
terplots and bivariate histograms. Section 5.4 offers several methods for
viewing multi-dimensional data, such as slices, isosurfaces, star plots, paral-
lel coordinates, Andrews curves, projection pursuit, and the grand tour.

5.2 Exploring Univariate Data

Two important goals of EDA are: 1) to determine a reasonable model for the
process that generated the data, and 2) to locate possible outliers in the sam-
ple. For example, we might be interested in finding out whether the distribu-
tion that generated the data is symmetric or skewed. We might also like to
know whether it has one mode or many modes. The univariate visualization
techniques presented here will help us answer questions such as these.

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 113

HistoHistoHistoHistoggggrrrraaaammmmssss

A histogram is a way to graphically represent the frequency distribution of a
data set. Histograms are a good way to

• summarize a data set to understand general characteristics of the
distribution such as shape, spread or location,

• suggest possible probabilistic models, or

• determine unusual behavior.

In this chapter, we look only at the simple, basic histogram. Variants and
extensions of the histogram are discussed in Chapter 8.

A frequency histogram is obtained by creating a set of bins or intervals that
cover the range of the data set. It is important that these bins do not overlap
and that they have equal width. We then count the number of observations
that fall into each bin. To visualize this, we plot the frequency as the height of
a bar, with the width of the bar representing the width of the bin. The histo-
gram is determined by two parameters, the bin width and the starting point
of the first bin. We discuss these issues in greater detail in Chapter 8. Relative
frequency histograms are obtained by representing the height of the bin by
the relative frequency of the observations that fall into the bin.

The basic MATLAB package has a function for calculating and plotting a
univariate histogram. This function is illustrated in the example given below.

Example 5.1
In this example, we look at a histogram of the data in forearm. These data
[Hand, et al., 1994; Pearson and Lee, 1903] consist of 140 measurements of the
length in inches of the forearm of adult males. We can obtain a simple histo-
gram in MATLAB using these commands:

load forearm
subplot(1,2,1)
% The hist function optionally returns the
% bin centers and frequencies.
[n,x] = hist(forearm);
% Plot and use the argument of width=1
% to produce bars that touch.
bar(x,n,1);
axis square
title('Frequency Histogram')
% Now create a relative frequency histogram.
% Divide each box by the total number of points.
subplot(1,2,2)
bar(x,n/140,1)
title('Relative Frequency Histogram')
axis square

© 2002 by Chapman & Hall/CRC

114 Computational Statistics Handbook with MATLAB

These plots are shown in Figure 5.1. Notice that the shapes of the histograms
are the same in both types of histograms, but the vertical axis is different.
From the shape of the histograms, it seems reasonable to assume that the data
are normally distributed.
�

One problem with using a frequency or relative frequency histogram is that
they do not represent meaningful probability densities, because they do not
integrate to one. This can be seen by superimposing a corresponding normal
distribution over the relative frequency histogram as shown in Figure 5.2.

A density histogram is a histogram that has been normalized so it will inte-
grate to one. That means that if we add up the areas represented by the bars,
then they should add up to one. A density histogram is given by the follow-
ing equation

, (5.1)

where denotes the k-th bin, represents the number of data points that
fall into the k-th bin and h represents the width of the bins. In the following

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.1111

On the left is a frequency histogram of the forearm data, and on the right is the relative
frequency histogram. These indicate that the distribution is unimodal and that the normal
distribution is a reasonable model.

16 18 20 22
0

5

10

15

20

25

30
Frequency Histogram

Length (inches)
16 18 20 22

0

0.05

0.1

0.15

0.2

0.25
Relative Frequency Histogram

Length (inches)

f̂ x() νk

nh
------= x in Bk

Bk νk

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 115

example, we reproduce the histogram of Figure 5.2 using the density histo-
gram.

Example 5.2
Here we explore the forearm data using a density histogram. Assuming a
normal distribution and estimating the parameters from the data, we can
superimpose a smooth curve that represents an estimated density for the nor-
mal distribution.

% Get parameter estimates for the normal distribution.
mu = mean(forearm);
v = var(forearm);
% Obtain normal pdf based on parameter estimates.
xp = linspace(min(forearm),max(forearm));
yp = normp(xp,mu,v);
% Get the information needed for a histogram.
[nu,x] = hist(forearm);
% Get the widths of the bins.
h = x(2)-x(1);

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.2222

This shows a relative frequency histogram of the forearm data. Superimposed on the
histogram is the normal probability density function using parameters estimated from the
data. Note that the curve is higher than the histogram, indicating that the histogram is not
a valid probability density function.

16 17 18 19 20 21 22
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Relative Frequency Histogram and Density Estimate

Length (inches)

© 2002 by Chapman & Hall/CRC

116 Computational Statistics Handbook with MATLAB

% Plot as density histogram - Equation 5.1.
bar(x,nu/(140*h),1)
hold on
plot(xp,yp)
xlabel(‘Length (inches)’)
title('Density Histogram and Density Estimate')
hold off

The results are shown in Figure 5.3. Note that the assumption of normality
for the data is not unreasonable. The estimated density function and the den-
sity histogram match up quite well.
�

SSSStemtemtemtem----aaaandndndnd----LLLLeeeeaaaaffff

Stem-and-leaf plots were introduced by Tukey [1977] as a way of displaying
data in a structured list. Presenting data in a table or an ordered list does not
readily convey information about how the data are distributed, as is the case
with histograms.

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.3333

Density histogram for the forearm data. The curve represents a normal probability density
function with parameters given by the sample mean and sample variance of the data. From
this we see that the normal distribution is a reasonable probabilistic model.

16 17 18 19 20 21 22
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Density Histogram and Density Estimate

Length (inches)

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 117

If we have data where each observation consists of at least two digits, then
we can construct a stem-and-leaf diagram. To display these, we separate each
measurement into two parts: the stem and the leaf. The stems are comprised
of the leading digit or digits, and the remaining digit makes up the leaf. For
example, if we had the number 75, then the stem is the 7, and the leaf is the 5.
If the number is 203, then the stem is 20 and the leaf is 3.

The stems are listed to the left of a vertical line with all of the leaves corre-
sponding to that stem listed to the right. If the data contain decimal places,
then they can be rounded for easier display. An alternative is to move the dec-
imal place to specify the appropriate leaf unit. We provide a function with the
text that will construct stem-and-leaf plots, and its use is illustrated in the
next example.

Example 5.3
The heights of 32 Tibetan skulls [Hand, et al. 1994; Morant, 1923] measured
in millimeters is given in the file tibetan. These data comprise two groups
of skulls collected in Tibet. One group of 17 skulls comes from graves in Sik-
kim and nearby areas of Tibet and the other 15 skulls come from a battlefield
in Lhasa. The original data contain five measurements, but for this example,
we only use the fourth measurement. This is the upper face height, and we
round to the nearest millimeter. We use the function csstemleaf that is pro-
vided with the text.

load tibetan
% This loads up all 5 measurements of the skulls.
% We use the fourth characteristic to illustrate
% the stem-and-leaf plot. We first round them.
x = round(tibetan(:,4));
csstemleaf(x)
title('Height (mm) of Tibetan Skulls')

The resulting stem-and-leaf is shown in Figure 5.4. From this plot, we see
there is not much evidence that there are two groups of skulls, if we look only
at the characteristic of upper face height. We will explore these data further
in Chapter 9, where we apply pattern recognition methods to the problem.
�

It is possible that we do not see much evidence for two groups of skulls
because there are too few stems. EDA is an iterative process, where the ana-
lyst should try several visualization methods in search of patterns and infor-
mation in the data. An alternative approach is to plot more than one line per
stem. The function csstemleaf has an optional argument that allows the
user to specify two lines per stem. The default value is one line per stem, as
we saw in Example 5.3. When we plot two lines per stem, leaves that corre-
spond to the digits 0 through 4 are plotted on the first line and those that have
digits 5 through 9 are shown on the second line. A stem-and-leaf with two
lines per stem for the Tibetan skull data is shown in Figure 5.5. In practice,

© 2002 by Chapman & Hall/CRC

118 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.4444

This shows the stem-and-leaf plot for the upper face height of 32 Tibetan skulls. The data
have been rounded to the nearest millimeter.

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.5555

This shows a stem-and-leaf plot for the upper face height of 32 Tibetan skulls where we
now have two lines per stem. Note that we see approximately the same information (a
unimodal distribution) as in Figure 5.4.

6

7

8

2 3 5 5 6 8 9

0 0 1 1 1 2 2 3 4 4 4 4 5 6 6 7 7 7 8 9 9

0 1 2 3

Height (mm) of Tibetan Skulls

6

6

7

7

8

8

2 3

5 5 6 8 9

0 0 1 1 1 2 2 3 4 4 4 4

5 6 6 7 7 7 8 9 9

0 1 2 3

Height (mm) of Tibetan Skulls

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 119

one could plot a stem-and-leaf with one and with two lines per stem as a way
of discovering more about the data. The stem-and-leaf is useful in that it
approximates the shape of the density, and it also provides a listing of the
data. One can usually recover the original data set from the stem-and-leaf (if
it has not been rounded), unlike the histogram. A disadvantage of the stem-
and-leaf plot is that it is not useful for large data sets, while a histogram is
very effective in reducing and displaying massive data sets.

QuQuQuQuaaaannnnttttile-Basile-Basile-Basile-Baseeeed Plotsd Plotsd Plotsd Plots - Continuous- Continuous- Continuous- Continuous DDDDiiiissssttttributionributionributionributionssss

If we need to compare two distributions, then we can use the quantile plot to
visually compare them. This is also applicable when we want to compare a
distribution and a sample or to compare two samples. In comparing the dis-
tributions or samples, we are interested in knowing how they are shifted rel-
ative to each other. In essence, we want to know if they are distributed in the
same way. This is important when we are trying to determine the distribution
that generated our data, possibly with the goal of using that information to
generate data for Monte Carlo simulation. Another application where this is
useful is in checking model assumptions, such as normality, before we con-
duct our analysis.

In this part, we discuss several versions of quantile-based plots. These
include quantile-quantile plots (q-q plots) and quantile plots (sometimes
called a probability plot). Quantile plots for discrete data are discussed next.
The quantile plot is used to compare a sample with a theoretical distribution.
Typically, a q-q plot (sometimes called an empirical quantile plot) is used to
determine whether two random samples are generated by the same distribu-
tion. It should be noted that the q-q plot can also be used to compare a ran-
dom sample with a theoretical distribution by generating a sample from the
theoretical distribution as the second sample.

Q-Q-Q-Q-QQQQ PloPloPloPlotttt

The q-q plot was originally proposed by Wilk and Gnanadesikan [1968] to
visually compare two distributions by graphing the quantiles of one versus
the quantiles of the other. Say we have two data sets consisting of univariate
measurements. We denote the order statistics for the first data set by

.

Let the order statistics for the second data set be

,

with .

x 1() x 2() … x n(), , ,

y 1() y 2() … y m(), , ,

m n≤

© 2002 by Chapman & Hall/CRC

120 Computational Statistics Handbook with MATLAB

We look first at the case where the sizes of the data sets are equal, so
. In this case, we plot as points the sample quantiles of one data set

versus the other data set. This is illustrated in Example 5.4. If the data sets
come from the same distribution, then we would expect the points to approx-
imately follow a straight line.

A major strength of the quantile-based plots is that they do not require the
two samples (or the sample and theoretical distribution) to have the same
location and scale parameter. If the distributions are the same, but differ in
location or scale, then we would still expect the quantile-based plot to pro-
duce a straight line.

Example 5.4
We will generate two sets of normal random variables and construct a q-q
plot. As expected, the q-q plot (Figure 5.6) follows a straight line, indicating
that the samples come from the same distribution.

% Generate the random variables.
x = randn(1,75);
y = randn(1,75);
% Find the order statistics.
xs = sort(x);
ys = sort(y);
% Now construct the q-q plot.
plot(xs,ys,'o')
xlabel('X - Standard Normal')
ylabel('Y - Standard Normal')
axis equal

If we repeat the above MATLAB commands using a data set generated from
an exponential distribution and one that is generated from the standard nor-
mal, then we have the plot shown in Figure 5.7. Note that the points in this q-
q plot do not follow a straight line, leading us to conclude that the data are
not generated from the same distribution.
�

We now look at the case where the sample sizes are not equal. Without loss
of generality, we assume that . To obtain the q-q plot, we graph the ,

 against the quantile of the other data set. Note that
this definition is not unique [Cleveland, 1993]. The quantiles of
the x data are usually obtained via interpolation, and we show in the next
example how to use the function csquantiles to get the desired plot.

Users should be aware that q-q plots provide a rough idea of how similar
the distribution is between two random samples. If the sample sizes are
small, then a lot of variation is expected, so comparisons might be suspect. To
help aid the visual comparison, some q-q plots include a reference line. These
are lines that are estimated using the first and third quartiles of
each data set and extending the line to cover the range of the data. The

m n=

m n< y i()

i 1 … m, ,= i 0.5–() m⁄
i 0.5–() m⁄

q0.25 q0.75,()

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 121

MATLAB Statistics Toolbox provides a function called qqplot that displays
this type of plot. We show below how to add the reference line.

Example 5.5
This example shows how to do a q-q plot when the samples do not have the
same number of points. We use the function csquantiles to get the
required sample quantiles from the data set that has the larger sample size.
We then plot these versus the order statistics of the other sample, as we did
in the previous examples. Note that we add a reference line based on the first
and third quartiles of each data set, using the function polyfit (see
Chapter 7 for more information on this function).

% Generate the random variables.
m = 50;
n = 75;
x = randn(1,n);
y = randn(1,m);
% Find the order statistics for y.
ys = sort(y);
% Now find the associated quantiles using the x.
% Probabilities for quantiles:
p = ((1:m) - 0.5)/m;

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.6666

This is a q-q plot of x and y where both data sets are generated from a standard normal
distribution. Note that the points follow a line, as expected.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

X − Standard Normal

Y
 −

 S
ta

nd
ar

d
N

or
m

al

© 2002 by Chapman & Hall/CRC

122 Computational Statistics Handbook with MATLAB

xs = csquantiles(x,p);
% Construct the plot.
plot(xs,ys,'ko')
% Get the reference line.
% Use the 1st and 3rd quartiles of each set to
% get a line.
qy = csquantiles(y,[0.25,0.75]);
qx = csquantiles(x,[0.25,0.75]);
[pol, s] = polyfit(qx,qy,1);
% Add the line to the figure.
yhat = polyval(pol,xs);
hold on
plot(xs,yhat,'k')
xlabel('Sample Quantiles - X'),
ylabel('Sorted Y Values')
hold off

From Figure 5.8, the assumption that each data set is generated according to
the same distribution seems reasonable.
�

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.7777

This is a q-q plot where one random sample is generated from the exponential distribution
and one is generated by a standard normal distribution. Note that the points do not follow
a straight line, indicating that the distributions that generated the random variables are not
the same.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−3

−2

−1

0

1

2

3

X − Exponential

Y
 −

 S
ta

nd
ar

d
N

or
m

al

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 123

QuQuQuQuaaaannnnttttile Plotile Plotile Plotile Plotssss

A quantile plot or probability plot is one where the theoretical quantiles are
plotted against the order statistics for the sample. Thus, on one axis we plot
the and on the other axis we plot

,

where denotes the inverse of the cumulative distribution function for
the hypothesized distribution. As before, the 0.5 in the above argument can
be different [Cleveland, 1993]. A well-known example of a quantile plot is the
normal probability plot, where the ordered sample versus the quantiles of
the normal distribution are plotted.

The MATLAB Statistics Toolbox has two functions for obtaining quantile
plots. One is called normplot, and it produces a normal probability plot. So,
if one would like to assess the assumption that a data set comes from a nor-
mal distribution, then this is the one to use. There is also a function for con-
structing a quantile plot that compares a data set to the Weibull distribution.
This is called weibplot. For quantile plots with other theoretical distribu-

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.8888

Here we show the q-q plot of Example 5.5. In this example, we also show the reference line
estimated from the first and third quartiles. The q-q plot shows that the data do seem to
come from the same distribution.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Sample Quantiles − X

S
or

te
d

Y
 V

al
ue

s

x i()

F 1– i 0.5–
n

--------------- 
 

F 1– .()

© 2002 by Chapman & Hall/CRC

124 Computational Statistics Handbook with MATLAB

tions, one can use the MATLAB code given below, substituting the appropri-
ate function to get the theoretical quantiles.

Example 5.6
This example illustrates how you can display a quantile plot in MATLAB. We
first generate a random sample from the standard normal distribution as our
data set. The sorted sample is an estimate of the quantile, so we
next calculate these probabilities and get the corresponding theoretical quan-
tiles. Finally, we use the function norminv from the Statistics Toolbox to get
the theoretical quantiles for the normal distribution. The resulting quantile
plot is shown in Figure 5.9.

% Generate a random sample from a standard normal.
x = randn(1,100);
% Get the probabilities.
prob = ((1:100)-0.5)/100;
% Now get the theoretical quantiles.
qp = norminv(prob,0,1);
% Now plot theoretical quantiles versus
% the sorted data.
plot(sort(x),qp,'ko')
xlabel('Sorted Data')
ylabel('Standard Normal Quantiles')

To further illustrate these concepts, let’s see what happens when we generate
a random sample from a uniform distribution and check it against the
normal distribution. The MATLAB code is given below, and the quantile plot
is shown in Figure 5.10. As expected, the points do not lie on a line, and we
see that the data are not from a normal distribution.

% Generate a random sample from a
% uniform distribution.
x = rand(1,100);
% Get the probabilities.
prob = ((1:100)-0.5)/100;
% Now get the theoretical quantiles.
qp = norminv(prob,0,1);
% Now plot theoretical quantiles versus
% the sorted data.
plot(sort(x),qp,'ko')
ylabel('Standard Normal Quantiles')
xlabel('Sorted Data')

�

i 0.5–() n⁄

0 1,()

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 125

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.9999

This is a quantile plot or normal probability plot of a random sample generated from a
standard normal distribution. Note that the points approximately follow a straight line,
indicating that the normal distribution is a reasonable model for the sample.

FFFFIIIIGUGUGUGURE 5.10RE 5.10RE 5.10RE 5.10

Here we have a quantile plot where the sample is generated from a uniform distribution,
and the theoretical quantiles are from the normal distribution. The shape of the curve verifies
that the sample is not from a normal distribution.

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

Sorted Data

S
ta

nd
ar

d
N

or
m

al
 Q

ua
nt

ile
s

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

S
ta

nd
ar

d
N

or
m

al
 Q

ua
nt

ile
s

Sorted Data

© 2002 by Chapman & Hall/CRC

126 Computational Statistics Handbook with MATLAB

QuQuQuQuaaaannnnttttile Plotsile Plotsile Plotsile Plots ---- Discrete DistDiscrete DistDiscrete DistDiscrete Distrrrributionibutionibutionibutionssss

Previously, we discussed quantile plots that are primarily used for continu-
ous data. We would like to have a similar technique for graphically compar-
ing the shapes of discrete distributions. Hoaglin and Tukey [1985] developed
several plots to accomplish this. We present two of them here: the Poisson-
ness plot and the binomialness plot. These will enable us to search for evi-
dence that our discrete data follow a Poisson or a binomial distribution. They
also serve to highlight which points might be incompatible with the model.

PPPPooooiiiisssssonnesonnesonnesonnesssss Ps Ps Ps Pllllooootttt

Typically, discrete data are whole number values that are often obtained by
counting the number of times something occurs. For example, these might be
the number of traffic fatalities, the number of school-age children in a house-
hold, the number of defects on a hard drive, or the number of errors in a com-
puter program. We sometimes have the data in the form of a frequency
distribution that lists the possible count values (e.g.,) and the num-
ber of observations that are equal to the count values.

The counts will be denoted as k, with . We will assume that
L is the maximum observed value for our discrete variable or counts in the
data set and that we are interested in all counts between 0 and L. Thus, the
total number of observations in the sample is

,

where represents the number of observations that are equal to the count k.
A basic Poissonness plot is constructed by plotting the count values k on

the horizontal axis and

(5.2)

on the vertical axis. These are plotted as symbols, similar to the quantile plot.
If a Poisson distribution is a reasonable model for the data, then this should
follow a straight line. Systematic curvature in the plot would indicate that
these data are not consistent with a Poisson distribution. The values for
tend to have more variability when is small, so Hoaglin and Tukey [1985]
suggest plotting a special symbol or a ‘1’ to highlight these points.

Example 5.7
This example is taken from Hoaglin and Tukey [1985]. In the late 1700’s, Alex-
ander Hamilton, John Jay and James Madison wrote a series of 77 essays
under the title of The Federalist. These appeared in the newspapers under a

0.1 2 …, ,

k 0 1 … L, , ,=

N nk

k 0=

L

∑=

nk

ϕ nk() k!nk N⁄()ln=

ϕ nk()
nk

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 127

pseudonym. Most analysts accept that John Jay wrote 5 essays, Alexander
Hamilton wrote 43, Madison wrote 14, and 3 were jointly written by Hamil-
ton and Madison. Later, Hamilton and Madison claimed that they each solely
wrote the remaining 12 papers. To verify this claim, Mosteller and Wallace
[1964] used statistical methods, some of which were based on the frequency
of words in blocks of text. Table 5.1 gives the frequency distribution for the
word may in papers that were known to be written by Madison. We are not
going to repeat the analysis of Mosteller and Wallace, we are simply using the
data to illustrate a Poissonness plot. The following MATLAB code produces
the Poissonness plot shown in Figure 5.11.

k = 0:6; % vector of counts
n_k = [156 63 29 8 4 1 1];
N=sum(n_k);
% Get vector of factorials.
fact = zeros(size(k));
for i = k
 fact(i+1) = factorial(i);
end
% Get phi(n_k) for plotting.
phik = log(fact.*n_k/N);
% Find the counts that are equal to 1.
% Plot these with the symbol 1.
% Plot rest with a symbol.
ind = find(n_k~=1);
plot(k(ind),phik(ind),'o')
ind = find(n_k==1);
if ~isempty(ind)
 text(k(ind),phik(ind),'1')

TTTTAAAABBBBLLLLEEEE 5.15.15.15.1

Frequency distribution of the word may in essays known to
be written by James Madison. The represent the number
of blocks of text that contained k occurrences of the word may
[Hoaglin and Tukey, 1985].

Number of Occurrences of the
Word may Number of Blocks

0 156
1 63
2 29
3 8
4 4
5 1
6 1

nk

k() nk()

© 2002 by Chapman & Hall/CRC

128 Computational Statistics Handbook with MATLAB

end
% Add some whitespace to see better.
axis([-0.5 max(k)+1 min(phik)-1 max(phik)+1])
xlabel('Number of Occurrences - k')
ylabel('\phi (n_k)')

The Poissonness plot has significant curvature indicating that the Poisson
distribution is not a good model for these data. There are also a couple of
points with a frequency of 1 that seem incompatible with the rest of the data.
Thus, if a statistical analysis of these data relies on the Poisson model, then
any results are suspect.
�

Hoaglin and Tukey [1985] suggest a modified Poissonness plot that is
obtained by changing the , which helps account for the variability of the
individual values. They propose the following change:

(5.3)

FFFFIIIIGUGUGUGURE 5.RE 5.RE 5.RE 5.11111111

This is a basic Poissonness plot using the data in Table 5.1. The symbol 1 indicates that
.

0 1 2 3 4 5 6 7

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1

1

Number of Occurrences − k

φ
(n

k)

nk 1=

nk

nk
*

nk 0.67– 0.8nk N;⁄– nk 2≥

1 e⁄ ; nk 1=

undefined; nk 0.=





=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 129

As we will see in the following example where we apply the modified Pois-
sonness plot to the word frequency data, the main effect of the modified plot
is to highlight those data points with small counts that do not behave con-
trary to the other observations. Thus, if a point that is plotted as a 1 in a mod-
ified Poissonness plot seems different from the rest of the data, then it should
be investigated.

Example 5.8
We return to the word frequency data in Table 5.1 and show how to get a
modified Poissonness plot. In this modified version shown in Figure 5.12, we
see that the points where do not seem so different from the rest of the
data.

% Poissonness plot - modified
k = 0:6; % vector of counts
% Find n*_k.
n_k = [156 63 29 8 4 1 1];
N = sum(n_k);
phat = n_k/N;
nkstar = n_k-0.67-0.8*phat;
% Get vector of factorials.
fact = zeros(size(k));
for i = k
 fact(i+1) = factorial(i);
end
% Find the frequencies that are 1; nkstar=1/e.
ind1 = find(n_k==1);
nkstar(ind1)= 1/2.718;
% Get phi(n_k) for plotting.
phik = log(fact.*nkstar/N);
ind = find(n_k~=1);
plot(k(ind),phik(ind),'o')
if ~isempty(ind1)
 text(k(ind1),phik(ind1),'1')
end
% Add some whitespace to see better.
axis([-0.5 max(k)+1 min(phik)-1 max(phik)+1])
xlabel('Number of Occurrences - k')
ylabel('\phi (n^*_k)')

�

BinomialnesBinomialnesBinomialnesBinomialnesssss PloPloPloPlotttt

A binomialness plot is obtained by plotting k along the horizontal axis and
plotting

nk 1=

© 2002 by Chapman & Hall/CRC

130 Computational Statistics Handbook with MATLAB

, (5.4)

along the vertical axis. Recall that n represents the number of trials, and is
given by Equation 5.3. As with the Poissonness plot, we are looking for an
approximate linear relationship between k and . An example of the
binomialness plot is given in Example 5.9.

Example 5.9
Hoaglin and Tukey [1985] provide a frequency distribution representing the
number of females in 100 queues of length 10. These data are given in Table
5.2. The MATLAB code to display a binomialness plot for is given
below. Note that we cannot display for (in this example),
because it is not defined for . The resulting binomialness plot is shown
in Figure 5.13, and it indicates a linear relationship. Thus, the binomial model
for these data seems adequate.

% Binomialness plot.

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.12222

This is a modified Poissonness plot for the word frequency data in Table 5.1. Here the counts
where do not seem radically different from the rest of the observations.

0 1 2 3 4 5 6 7

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1

1

Number of Occurrences − k

φ
(n

* k)

nk 1=

ϕ nk
*()

nk
*

N
n

k 
 
 

×

 
 
 
 
 
 
 

ln=

nk
*

ϕ nk
*()

n 10=
ϕ nk

*() k 10=
nk 0=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 131

k = 0:9;
n = 10;
n_k = [1 3 4 23 25 19 18 5 1 1];
N = sum(n_k);
nCk = zeros(size(k));
for i = k
 nCk(i+1) = cscomb(n,i);
end
phat = n_k/N;
nkstar = n_k-0.67-0.8*phat;
% Find the frequencies that are 1; nkstar=1/e.
ind1 = find(n_k==1);
nkstar(ind1) = 1/2.718;
% Get phi(n_k) for plotting.
phik = log(nkstar./(N*nCk));
% Find the counts that are equal to 1.
ind = find(n_k~=1);
plot(k(ind),phik(ind),'o')
if ~isempty(ind1)
 text(k(ind1),phik(ind1),'1')
end
% Add some whitespace to see better.
axis([-0.5 max(k)+1 min(phik)-1 max(phik)+1])
xlabel('Number of Females - k')
ylabel('\phi (n^*_k)')

�

TTTTAAAABBBBLLLLEEEE 5.25.25.25.2

Frequency Distribution for the Number of Females in a
Queue of Size 10 [Hoaglin and Tukey, 1985]

Number of Females Number of Blocks

0 1
1 3
2 4
3 23
4 25
5 19
6 18
7 5
8 1
9 1

10 0

k() nk()

© 2002 by Chapman & Hall/CRC

132 Computational Statistics Handbook with MATLAB

BoBoBoBoxxxx PlotsPlotsPlotsPlots

Box plots (sometimes called box-and-whisker diagrams) have been in use for
many years [Tukey, 1977]. As with most visualization techniques, they are
used to display the distribution of a sample. Five values from a data set are
used to construct the box plot. These are the three sample quartiles

, the minimum value in the sample and the maximum value.
There are many variations of the box plot, and it is important to note that

they are defined differently depending on the software package that is used.
Frigge, Hoaglin and Iglewicz [1989] describe a study on how box plots are
implemented in some popular statistics programs such as Minitab, S, SAS,
SPSS and others. The main difference lies in how outliers and quartiles are
defined. Therefore, depending on how the software calculates these, different
plots might be obtained [Frigge, Hoaglin and Iglewicz, 1989].

Before we describe the box plot, we need to define some terms. Recall from
Chapter 3, that the interquartile range (IQR) is the difference between the
first and the third sample quartiles. This gives the range of the middle 50% of
the data. It is estimated from the following

. (5.5)

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.13333

This shows the binomialness plot for the data in Table 5.2. From this it seems reasonable to
use the binomial distribution to model the data.

0 1 2 3 4 5 6 7 8 9 10

−10

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

1

1

1

Number of Females − k

φ
(n

* k)

q̂0.25 q̂0.5 q̂0.75, ,()

IQRˆ q̂0.75 q̂0.25–=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 133

Two limits are also defined: a lower limit (LL) and an upper limit (UL). These
are calculated from the estimated IQR as follows

(5.6)

The idea is that observations that lie outside these limits are possible outliers.
Outliers are data points that lie away from the rest of the data. This might
mean that the data were incorrectly measured or recorded. On the other
hand, it could mean that they represent extreme points that arise naturally
according to the distribution. In any event, they are sample points that are
suitable for further investigation.

Adjacent values are the most extreme observations in the data set that are
within the lower and the upper limits. If there are no potential outliers, then
the adjacent values are simply the maximum and the minimum data points.

To construct a box plot, we place horizontal lines at each of the three quar-
tiles and draw vertical lines to create a box. We then extend a line from the
first quartile to the smallest adjacent value and do the same for the third quar-
tile and largest adjacent value. These lines are sometimes called the whiskers.
Finally, any possible outliers are shown as an asterisk or some other plotting
symbol. An example of a box plot is shown in Figure 5.14.

Box plots for different samples can be plotted together for visually compar-
ing the corresponding distributions. The MATLAB Statistics Toolbox con-
tains a function called boxplot for creating this type of display. It displays
one box plot for each column of data. When we want to compare data sets, it
is better to display a box plot with notches. These notches represent the
uncertainty in the locations of central tendency and provide a rough measure
of the significance of the differences between the values. If the notches do not
overlap, then there is evidence that the medians are significantly different.
The length of the whisker is easily adjusted using optional input arguments
to boxplot. For more information on this function and to find out what
other options are available, type help boxplot at the MATLAB command
line.

Example 5.10
In this example, we first generate random variables from a uniform distribu-
tion on the interval , a standard normal distribution, and an exponen-
tial distribution. We will then display the box plots corresponding to each
sample using the MATLAB function boxplot.

% Generate a sample from the uniform distribution.
xunif = rand(100,1);
% Generate sample from the standard normal.
xnorm = randn(100,1);
% Generate a sample from the exponential distribution.

LL q̂0.25 1.5 IQRˆ⋅–=

UL q̂0.75 1.5 IQR .ˆ⋅+=

0 1,()

© 2002 by Chapman & Hall/CRC

134 Computational Statistics Handbook with MATLAB

% NOTE: this function is from the Statistics Toolbox.
xexp = exprnd(1,100,1);
boxplot([xunif,xnorm,xexp],1)

It can be seen in Figure 5.15 that the box plot readily conveys the shape of the
distribution. A symmetric distribution will have whiskers with approxi-
mately equal lengths, and the two sides of the box will also be approximately
equal. This would be the case for the uniform or normal distribution. A
skewed distribution will have one side of the box and whisker longer than
the other. This is seen in Figure 5.15 for the exponential distribution. If the
interquartile range is small, then the data in the middle are packed around
the median. Conversely, if it is large, then the middle 50% of the data are
widely dispersed.
�

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.14444

An example of a box plot with possible outliers shown as points.

1

−3

−2

−1

0

1

2

3

V
al

ue
s

Column Number

Quartiles

Possible Outliers

Adjacent
Values

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 135

5.3 Exploring Bivariate and Trivariate Data

Using Cartesian coordinates, we can view up to three dimensions. For exam-
ple, we could view bivariate data as points or trivariate data as a point cloud.
We could also view a bivariate function, as a surface. Visualizing
anything more than three dimensions is very difficult, but we do offer some
techniques in the next section. In this section, we present several methods for
visualizing 2-D and 3-D data, looking first at bivariate data. Most of the tech-
niques that we discuss are readily available in the basic MATLAB program.

SSSSccccaaaattttterplotterplotterplotterplotssss

Perhaps one of the easiest ways to visualize bivariate data is with the scatter-
plot. A scatterplot is obtained by displaying the ordered pairs as points using
some plotting symbol. This type of plot conveys useful information such as
how the data are distributed in the two dimensions and how the two vari-
ables are related (e.g., a linear or a nonlinear relationship). Before any model-

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.15555

Here we have three box plots. The one on the left is for a sample from the uniform distri-
bution. The data for the middle box plot came from a standard normal distribution, while
the data for the box plot on the right came from an exponential. Notice that the shape of
each distribution is apparent from the information contained in the box plots.

1 2 3

−3

−2

−1

0

1

2

3

4

5

6
V

al
ue

s

Column Number

z f x y,()=

© 2002 by Chapman & Hall/CRC

136 Computational Statistics Handbook with MATLAB

ing, such as regression, is done using bivariate data, the analyst should
always look at a scatterplot to see what type of relationship is reasonable. We
will explore this further in Chapters 7 and 10.

A scatterplot can be obtained easily in MATLAB using the plot command.
One simply enters the marker style or plotting symbol as one of the argu-
ments. See the help on plot for more information on what characters are
available. By entering a marker (or line) style, you tell MATLAB that you do
not want to connect the points with a straight line, which is the default. We
have already seen many examples of how to use the plot function in this
way when we constructed the quantile and q-q plots.

An alternative function for scatterplots that is available with MATLAB is
the function called scatter. This function takes the input vectors x and y
and plots them as symbols. There are optional arguments that will plot the
markers as different colors and sizes. These alternatives are explored in
Example 5.11.

Example 5.11
We first generate a set of bivariate normal random variables using the tech-
nique described in Chapter 4. However, it should be noted that we find the
matrix R in Equation 4.19 using singular value decomposition rather than
Cholesky factorization. We then create a scatterplot using the plot function
and the scatter function. The resulting plots are shown in Figure 5.16 and
Figure 5.17.

% Create a positive definite covariance matrix.
vmat = [2, 1.5; 1.5, 9];
% Create mean at (2,3).
mu = [2 3];
[u,s,v] = svd(vmat);
vsqrt = (v*(u'.*sqrt(s)))';
% Get standard normal random variables.
td = randn(250,2);
% Use x=z*sigma+mu to transform - see Chapter 4.
data = td*vsqrt+ones(250,1)*mu;
% Create a scatterplot using the plot function.
% Figure 5.16.
plot(data(:,1),data(:,2),'x')
axis equal
% Create a scatterplot using the scatter fumction.
% Figure 5.17.
% Use filled-in markers.
scatter(data(:,1),data(:,2),'filled')
axis equal
box on

�

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 137

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.16666

This is a scatterplot of the sample in Example 5.11 using the plot function. We can see that
the data seem to come from a bivariate normal distribution. Here we use 'x' as an argument
to the plot function to plot the symbols as x’s.

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.17777

This is a scatterplot of the sample in Example 5.11 using the scatter function with filled
markers.

0 0.5 1 1.5 2 2.5 3 3.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5

2

2.5

3

3.5

4

4.5

© 2002 by Chapman & Hall/CRC

138 Computational Statistics Handbook with MATLAB

SSSSuuuurrrrffffaaaace Plotce Plotce Plotce Plotssss

If we have data that represents a function defined over a bivariate domain,
such as , then we can view our values for z as a surface. MATLAB
provides two functions that display a matrix of z values as a surface: mesh
and surf.

The mesh function displays the values as points above a rectangular grid
in the x-y plane and connects adjacent points with straight lines. The mesh
lines can be colored using various options, but the default method maps the
height of the surface to a color.

The surf function is similar to mesh, except that the open spaces between
the lines are filled in with color, with lines shown in black. Other options
available with the shading command remove the lines or interpolate the
color across the patches. An example of where the ability to display a surface
can be used is in visualizing a probability density function (see Chapter 8).

Example 5.12
In this example, we begin by generating a grid over which we evaluate a
bivariate normal density function. We then calculate the z values that corre-
spond to the function evaluated at each x and y. We can display this as a sur-
face using surf, which is shown in Figure 5.18.

% Create a bivariate standard normal.
% First create a grid for the domain.
[x,y] = meshgrid(-3:.1:3,-3:.1:3);
% Evaluate using the bivariate standard normal.
z = (1/(2*pi))*exp(-0.5*(x.^2+y.^2));
% Do the plot as a surface.
surf(x,y,z)

�

Special effects can be achieved by changing color maps and using lighting.
For example, lighting and color can help highlight structure or features on
functions that have many bumps or a jagged surface. We will see some exam-
ples of how to use these techniques in the next section and in the exercises at
the end of the chapter.

Contour PlotContour PlotContour PlotContour Plotssss

We can also use contour plots to view our surface. Contour plots show lines
of constant surface values, similar to topographical maps. Two functions are
available in MATLAB for creating 2-D and 3-D contour plots. These are called
contour and contour3.

The pcolor function shows the same information that is in a contour plot
by mapping the surface height to a set of colors. It is sometimes useful to com-
bine the two on the same plot. MATLAB provides the contourf function

z f x y,()=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 139

that will create a combination pcolor and contour plot. The various
options that are available for creating contour plots are illustrated in
Example 5.13.

Example 5.13
MATLAB has a function called peaks that returns a surface with peaks and
depressions that can be used to illustrate contour plots. We show how to use
the peaks function in this example. The following MATLAB code demon-
strates how to create the 2-D contour plot in Figure 5.19.

% Get the data for plotting.
[x,y,z] = peaks;
% Create a 2-D contour plot with labels.
% This returns the information for the labels.
c = contour(x,y,z);
% Add the labels to the plot.
clabel(c)

A filled contour plot, which is a combination of pcolor and contour, is
given in Figure 5.20. The MATLAB command needed to get this plot is given
here.

% Create a 2-D filled contour plot.
contourf(x,y,z,15)

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.18888

This shows a surf plot of a bivariate normal probability density function.

−3
−2

−1
0

1
2

3

−2

0

2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

© 2002 by Chapman & Hall/CRC

140 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 5.1RE 5.1RE 5.1RE 5.19999

This is a labeled contour plot of the peaks function. The labels make it easier to understand
the hills and valleys in the surface.

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.20000

This is a filled contour plot of the peaks surface. It is created using the contourf function.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−6

−4

−2

−2
0

0

0

2

2

4

6
8

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 141

Finally, a 3-D contour plot is easily obtained using the contour3 function as
shown below. The resulting contour plot is shown in Figure 5.21.

% Create a 3-D contour plot.
contour3(x,y,z,15)

�

BivBivBivBivaaaarrrriatiatiatiateeee HistoHistoHistoHistoggggrrrraaaammmm

In the last section, we described the univariate density histogram as a way of
viewing how our data are distributed over the range of the data. We can
extend this to any number of dimensions over a partition of the space [Scott,
1992]. However, in this section we restrict our attention to the bivariate histo-
gram given by

, (5.7)

where represents the number of observations falling into the bivariate bin
 and is the width of the bin for the coordinate axis. Example 5.14

shows how to get the bivariate density histogram in MATLAB.

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.21111

This is a 3-D contour plot of the peaks function.

−3
−2

−1
0

1
2

3

−2

0

2

−10

−5

0

5

10

f̂ x() νk

nh1h2

--------------= x in Bk

νk

Bk hi xi

© 2002 by Chapman & Hall/CRC

142 Computational Statistics Handbook with MATLAB

Example 5.14
We generate bivariate standard normal random variables and use them to
illustrate how to get the bivariate density histogram. We use the optimal bin
width for data generated from a standard bivariate normal given in Scott
[1992]. We postpone discussion of the optimal bin width and how to obtain it
until Chapter 8. A scatterplot of the data and the resulting histogram are
shown in Figure 5.22.

% Generate sample that is
% standard normal in each dimension.
n = 1000;
d = 2;
x = randn(n,d);
% Need bin origins.
bin0 = [floor(min(x(:,1))) floor(min(x(:,2)))];
% The bin widths - h - are covered later.
h = 3.504*n^(-0.25)*ones(1,2);
% find the number of bins
nb1 = ceil((max(x(:,1))-bin0(1))/h(1));
nb2 = ceil((max(x(:,2))-bin0(2))/h(2));
% find the mesh
t1 = bin0(1):h(1):(nb1*h(1)+bin0(1));
t2 = bin0(2):h(2):(nb2*h(2)+bin0(2));
[X,Y] = meshgrid(t1,t2);
% Find bin frequencies.
[nr,nc] = size(X);
vu = zeros(nr-1,nc-1);
for i = 1:(nr-1)
 for j = 1:(nc-1)

 xv = [X(i,j) X(i,j+1) X(i+1,j+1) X(i+1,j)];
 yv = [Y(i,j) Y(i,j+1) Y(i+1,j+1) Y(i+1,j)];
 in = inpolygon(x(:,1),x(:,2),xv,yv);
 vu(i,j) = sum(in(:));
 end
end
Z = vu/(n*h(1)*h(2));
% Get some axes that make sense.
[XX,YY] = meshgrid(linspace(-3,3,nb1),...

linspace(-3,3,nb2));
surf(XX,YY,Z)

�

We displayed the resulting bivariate histogram using the surf plot in
MATLAB. The matrix Z in Example 5.14 contains the bin heights. When
MATLAB constructs a mesh or surf plot, the elements of the Z matrix repre-
sent heights above the x-y plane. The surface is obtained by plotting the

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 143

points and joining adjacent points with straight lines. Therefore, a surf or
mesh plot of the bivariate histogram bin heights is a linear interpolation
between adjacent bins. In essence, it provides a smooth version of a histo-
gram. In the next example, we offer another method for viewing the bivariate
histogram.

Example 5.15
In this example, we show the bin heights of the bivariate histogram as bars
using the MATLAB function bar3. The colors are mapped to the column
number of the Z matrix, not to the heights of the bins. The resulting histogram
is shown in Figure 5.23.

% The Z matrix is obtained in Example 5.14.
bar3(Z,1)
% Use some Handle Graphics.
set(gca,'YTickLabel',' ','XTickLabel',' ')
set(gca,'YTick',0,'XTick',0)
grid off

The following MATLAB code constructs a plot that displays the distribution
in a different way. We can use the scatter plotting function with arguments

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.22222

On the left is a scatterplot of the data. A surface plot of the bivariate density histogram is
on the right. Compare the estimated density given by the surface with the one shown in
Figure 5.18.

−4 −2 0 2 4
−4

−2

0

2

4

−2
0

2

−2
0

2

0

0.05

0.1

© 2002 by Chapman & Hall/CRC

144 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.23333

This shows the same bivariate histogram of Figure 5.22, where the heights of the bars are
plotted using the MATLAB function bar3.

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.24444

Here is a different display of the bivariate histogram of Example 5.15. The size and color of
the markers indicate the heights of the bins.

0

0.05

0.1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 145

that relate the marker size and color to the height of the bins. We add the
colorbar to map the heights of the bins to the color.

% Plot the 2-D histogram as a scatterplot with
% heights proportional to marker size.
% Find the bin centers to use in the scatterplot.
n1 = length(t1);
n2 = length(t2);
tt1 = linspace((t1(1)+t1(2))/2,...

(t1(n1-1)+t1(n1))/2,nb1);
tt2 = linspace((t2(1)+t2(2))/2,...

(t2(n2-1)+t2(n2))/2,nb2);
[xxs,yys] = meshgrid(tt1,tt2);
scatter(xxs(:),yys(:),(Z(:)+eps)*1000,...

(Z(:)+eps)*1000,'filled')
% Create a colorbar and set the axis
% to the correct scale
h_ax = colorbar;
% Get the current labels.
temp = get(h_ax,'Yticklabel');
[nr,nc] = size(temp);
% Convert from strings to numbers.
newlab = cell(nr,1);
tempcell = cellstr(temp);
% Re-scale and convert back to numbers.
for i=1:nr
 newlab{i}=num2str((str2num(tempcell{i})/1000));
end
set(h_ax,'Yticklabel',newlab)

This graphic is given in Figure 5.24. Note that we still see the same bivariate
normal distribution. The reader might want to compare this plot with the
scatterplot of the sample shown in Figure 5.22.
�

3333----D ScD ScD ScD Scaaaatttttttteeeerrrrploploploplotttt

As with 2-D data, one way we can view trivariate data is with the scatterplot.
This is the 3-D analog of the bivariate scatterplot. In this case, the ordered tri-
ples are plotted as points. MATLAB provides a function called
scatter3 that will create a 3-D scatterplot. Analogous to the bivariate case,
you can also use the plot3 function using a symbol for the marker style to
obtain a 3-D scatterplot.

A useful MATLAB command when visualizing anything in 3-D is
rotate3d. Simply type this in at the command line, and you will be able to
rotate your graphic using the mouse. There is also a toolbar button that acti-

x y z, ,()

© 2002 by Chapman & Hall/CRC

146 Computational Statistics Handbook with MATLAB

vates the same capability. One reason for looking at scatterplots of the data is
to look for interesting structures. The ability to view these structures for 3-D
data is dependent on the viewpoint or projection to the screen. When looking
at 3-D scatterplots, the analyst should rotate them to search the data for pat-
terns or structure.

Example 5.16
Three variables were measured on ten insects from each of three species
[Hand, et al.,1994]. The variables correspond to the width of the first joint of
the first tarsus, the width of the first joint of the second tarsus and the maxi-
mal width of the aedeagus. All widths are measured in microns. These data
were originally used in cluster analysis [Lindsey, Herzberg, and Watts, 1987].
What we would like to see from the scatterplot is whether the data for each
species can be separated from the others. In other words, is there clear sepa-
ration or clustering between the species using these variables? The 3-D scat-
terplot for these data is shown in Figure 5.25. This view of the scatterplot
indicates that using these variables for pattern recognition or clustering (see
Chapter 9) is reasonable.

% Load the insect data
load insect
% Create a 3-D scatter plot using a
% different color and marker
% for each class of insect.
% Plot the first class and hold the plot.
plot3(insect(1:10,1),insect(1:10,2),...

insect(1:10,3),'ro')
hold on
% Plot the second class.
plot3(insect(11:20,1),insect(11:20,2),...

insect(11:20,3),'gx')
% Plot the third class.
plot3(insect(21:30,1),insect(21:30,2),...

insect(21:30,3),'b*')
% Be sure to turn the hold off!
hold off

�

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 147

5.4 Exploring Multi-Dimensional Data

Several methods have been developed to address the problem of visualizing
multi-dimensional data. Here we consider applications where we are trying
to explore data that has more than three dimensions .

We discuss several ways of statically visualizing multi-dimensional data.
These include the scatterplot matrix, slices, 3-D contours, star plots, Andrews
curves, and parallel coordinates. We finish this section with a description of
projection pursuit exploratory data analysis and the grand tour. The grand
tour provides a dynamic display of projections of multi-dimensional data,
and projection pursuit looks for structure in 1-D or 2-D projections. It should
be noted that some of the methods presented here are not restricted to the
case where the dimensionality of our data is greater than 3-D.

SSSSccccaaaattttterplot Matterplot Matterplot Matterplot Matrrrrixixixix

In the previous sections, we presented the scatterplot as a way of looking at
2-D and 3-D data. We can extend this to multi-dimensional data by looking

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.25555

This is a 3-D scatterplot of the insect data. Each species is plotted using a different symbol.
This plot indicates that we should be able to identify (with reasonable success) the species
based on these three variables.

100
150

200
250

100

120

140

160
40

45

50

55

60

Width 1st TarsusWidth 2nd Tarsus

M
ax

im
al

 W
id

th
 o

f A
ed

eg
us

d 3>()

© 2002 by Chapman & Hall/CRC

148 Computational Statistics Handbook with MATLAB

at 2-D scatterplots of all possible pairs of variables. This allows one to view
pairwise relationships and to look for interesting structures in two dimen-
sions. MATLAB provides a function called plotmatrix that will create a
scatterplot matrix. Its use is illustrated below.

Example 5.17
The iris data are well-known to statisticians and are often used to illustrate
classification, clustering or visualization techniques. The data were collected
by Anderson [1935] and were analyzed by Fisher [1936], so the data are often
called Fisher’s iris data by statisticians. The data consist of 150 observations
containing four measurements based on the petals and sepals of three species
of iris. These three species are: Iris setosa, Iris virginica and Iris versicolor. We
apply the plotmatrix function to the iris data set.

load iris
% This loads up three matrices, one for each species.
% Get the plotmatrix display of the Iris setosa data.
[H,ax,bigax,P] = plotmatrix(setosa);
axes(bigax),title('Iris Setosa')

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.26666

This is the scatterplot matrix for the Iris setosa data using the plotmatrix function.

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 149

The results are shown in Figure 5.26. Several argument options are available
for the plotmatrix function. If the first two arguments are matrices, then
MATLAB plots one column versus the other column. In our example, we use
a single matrix argument, and MATLAB creates scatterplots of all possible
pairs of variables. Histograms of each variable or column are shown along
the diagonal of the scatterplot matrix. Optional output arguments allow one
to add a title or change the plot as shown in the following MATLAB com-
mands. Here we replace the histograms with text that identifies the variable
names and display the result in Figure 5.27.

% Create the labels as a cell array of strings.
labs = {'Sepal Length','Sepal Width',...

'Petal Length', 'Petal Width'};
[H,ax,bigax,P] = plotmatrix(virginica);
axes(bigax)
title('Virginica')
% Delete the histograms.
delete(P)
%Put the labels in - the positions might have
% to be adjusted depending on the text.
for i = 1:4
 txtax = axes('Position',get(ax(i,i),'Position'),...
 'units','normalized');
 text(.1, .5,labs{i})
 set(txtax,'xtick',[],'ytick',[],...
 'xgrid','off','ygrid','off','box','on')
end

�

SSSSlllliiiicccces anes anes anes andddd IsoIsoIsoIsossssuuuurrrrfafafafacccceeeessss

If we have a function defined over a volume, , then we can view it
using the MATLAB slice function or the isosurface function (available
in MATLAB 5.3 and higher). This situation could arise in cases where we
have a probability density function defined over a volume. The slice capa-
bility allows us to view the distribution of our data on slices through a vol-
ume. The isosurface function allows us to view 3-D contours through our
volume. These are illustrated in the following examples.

Example 5.18
To illustrate the slice function, we need values that are defined
over a 3-D grid or volume. We will use a trivariate normal distribution cen-
tered at the origin with covariance equal to the identity matrix. The following
MATLAB code displays slices through the , , and planes,
and the resulting display is shown in Figure 5.28. A standard normal bivari-

f x y z, ,()

f x y z, ,()

x 0= y 0= z 0=

© 2002 by Chapman & Hall/CRC

150 Computational Statistics Handbook with MATLAB

ate density is given in Figure 5.29 to help the reader understand what the
slice function is showing. The density or height of the surface defined over
the volume is mapped to a color. Therefore, in the slice plot, you can see
that the maximum density or surface height is at the origin with the height
decreasing at the edges of the slices. The color at each point is obtained by
interpolation into the volume .

% Create a grid for the domain.
[x,y,z] = meshgrid(-3:.1:3,-3:.1:3,-3:.1:3);
[n,d] = size(x(:));
% Evaluate the trivariate standard normal.
a = (2*pi)^(3/2);
arg = (x.^2 + y.^2 + z.^2);
prob = exp((-.5)*arg)/a;
% Slice through the x=0, y=0, z=0 planes.
slice(x,y,z,prob,0,0,0)
xlabel('X Axis'),ylabel('Y Axis'),zlabel('Z Axis')

�

Isosurfaces are a way of viewing contours through a volume. An isosurface
is a surface where the function values are constant. These are similar
to -level contours [Scott, 1992], which are defined by

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.27777

By using MATLAB’s Handle Graphics, we can add text for the variable name to the diagonal
boxes.

1 2 34 6 82 3 44 6 8

1

2

3
4

6

8
2

3

4
4

6

8

Virginica

Sepal Length

Sepal Width

Petal Length

Petal Width

f x y z, ,()

f x y z, ,()
α

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 151

, (5.8)

where x is a d-dimensional vector. Generally, the -level contours are nested
surfaces.

The MATLAB function isosurface(X,Y,Z,V,isosvalue) deter-
mines the contour from the volume data V at the value given by isovalue.
The arrays in X, Y, and Z define the coordinates for the volume. The outputs
from this function are the faces and vertices corresponding to the isosurface
and can be passed directly into the patch function for displaying.

Example 5.19
We illustrate several isosurfaces of 3-D contours for data that is uniformly
distributed over the volume defined by a unit cube. We display two contours
of different levels in Figures 5.30 and 5.31.

% Get some data that will be between 0 and 1.
data = rand(10,10,10);
data = smooth3(data,'gaussian');

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.28888

These are slices through the planes for a standard trivariate normal
distribution. Each of these planes slice through the volume, and the value of the volume (in
this case, the height of the trivariate normal density) is represented by the color. The mode
at the origin is clearly seen. We can also see that it is symmetric, because the volume is a
mirror image in every slice. Finally, note that the ranges for all the axes are consistent with
a standard normal distribution.

0.01

0.02

0.03

0.04

0.05

0.06

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−3

−2

−1

0

1

2

3

X Axis
Y Axis

Z
 A

xi
s

x 0 y, 0 z, 0= = =

Sα x: f x() αfmax={ };= 0 α 1≤ ≤

α

© 2002 by Chapman & Hall/CRC

152 Computational Statistics Handbook with MATLAB

% Just in case there are some figure windows
% open - we should start anew.
close all
for i = [0.4 0.6]

figure
hpatch=patch(isosurface(data,i),...

 'Facecolor','blue',...
 'Edgecolor','none',...
 'AmbientStrength',.2,...
 'SpecularStrength',.7,...
 'DiffuseStrength',.4);
 isonormals(data,hpatch)

title(['f(x,y,z) = ' num2str(i)])
daspect([1,1,1])
axis tight
axis off
view(3)
camlight right
camlight left
lighting phong
drawnow

end

FFFFIIIIGUGUGUGURE 5.2RE 5.2RE 5.2RE 5.29999

This is the surface plot for a standard normal bivariate distribution. to help the reader
understand what is shown in Figure 5.28.

−3
−2

−1
0

1
2

3

−2

0

2

0.01

0.02

0.03

0.04

0.05

0.06

X AxisY Axis

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 153

In Figure 5.30, we have the isosurface for The isosurface for
 is given in Figure 5.31. Again, these are surface contours

where the value of the volume is the same.
�

It would be better if we had a context to help us understand what we are
viewing with the isosurfaces. This can be done easily in MATLAB using the
function called isocaps. This function puts caps on the boundaries of the
domain and shows the distribution of the volume above the isosur-
face. The color of the cap is mapped to the values that are above the
given value isovalue. Values below the isovalue can be shown on the
isocap via the optional input argument, enclose. The following example
illustrates this concept by adding isocaps to the surfaces obtained in
Example 5.19.

Example 5.20
These MATLAB commands show how to add isocaps to the isosurfaces in
the previous example.

for i=[0.4 0.6]
figure
hpatch = patch(isosurface(data,i),...

'Facecolor','blue',...
'Edgecolor','none',...

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.30000

This is the isosurface of Example 5.19 for .

f x y z, ,() 0.4.=
f x y z, ,() 0.6=

f x y z, ,() 0.4=

f x y z, ,()
f x y z, ,()

© 2002 by Chapman & Hall/CRC

154 Computational Statistics Handbook with MATLAB

'AmbientStrength',.2,...
'SpecularStrength',.7,...
'DiffuseStrength',.4);

isonormals(data,hpatch)
patch(isocaps(data,i),...

'Facecolor','interp',...
'EdgeColor','none')

colormap hsv
title(['f(x,y,z) = ' num2str(i)])
daspect([1,1,1])
axis tight
axis off
view(3)
camlight right
camlight left
lighting phong
drawnow

end

Figure 5.32 shows the isosurface of Figure 5.30 with the isocaps. It is
easier now to see what values are ‘inside’ the isosurface or contour.
Figure 5.33 shows the isocaps added to the isosurface corresponding to
Figure 5.31.
�

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.31111

This is the isosurface of Example 5.19 for f x y z, ,() 0.6.=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 155

SSSStatatatarrrr PlotPlotPlotPlotssss

Star diagrams were developed by Fienberg [1979] as a way of viewing multi-
dimensional observations as a glyph or star. Each observed data point in the
sample is plotted as a star, with the value of each measurement shown as a
radial line from a common center point. Thus, each measured value for an
observation is plotted as a spoke that is proportional to the size of the mea-
sured variable with the ends of the spokes connected with line segments to
form a star. Star plots are a nice way to view the entire data set over all dimen-
sions, but they are not suitable when there is a large number of observations
() or many dimensions (e.g.,).

The next example applies this technique to data obtained from ratings of
eight brands of cereal [Chakrapani and Ehrenberg, 1981; Venables and Ripley,
1994]. In our version of the star plot, the first variable is plotted as the spoke
at angle , and the rest are shown counter-clockwise from there.

Example 5.21
This example shows the MATLAB code to plot d-dimensional observations in
a star plot. The cereal file contains a matrix where each row corresponds to

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.32222

This is the isosurface of Figure 5.30 with isocaps added. Note that the color of the
edges is mapped to the volume. The default is to map all values above to
the color on the isocaps. This can be changed by an input argument to isocaps.

f x y z, ,() 0.4=

n 10> d 15>

θ 0=

© 2002 by Chapman & Hall/CRC

156 Computational Statistics Handbook with MATLAB

an observation and each column represents one of the variables or the per-
cent agreement with the following statements about the cereal:

• come back to
• tastes nice

• popular with all the family
• very easy to digest

• nourishing
• natural flavor

• reasonably priced
• a lot of food value

• stays crispy in milk
• helps to keep you fit

• fun for children to eat

The resulting star plot is shown in Figure 5.34.

load cereal
% This file contains the labels and
% the matrix of 8 observations.

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.33333

This is the isosurface of Figure 5.31 with isocaps added. Note that the color of the
edges is mapped to the volume.

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 157

clf
n = 8;
p = 11;
% Find number of rows and columns for the stars.
ncol = floor(sqrt(n));
nrow = ceil(n/ncol);
% Re-scale the data.
md = min(cereal(:));
data = 1 + cereal - md;
% Get angles that are linearly spaced.
% Do not use the last point.
theta = linspace(0,2*pi,p+1);
theta(end) = [];
k = 0;
for i = 1:n

k = k+1;
% get the observation for plotting
r = data(k,:);
[x,y] = pol2cart(theta,r);
X = x(:); % make col vectors
Y = y(:);
X = [zeros(p,1) X];
Y = [zeros(p,1) Y];
x = [x(:); x(1)];
y = [y(:); y(1)];
subplot(nrow,ncol,k),
patch(x,y,'w')
hold on
plot(X(1,:),Y(1,:))
for ii = 2:p

 plot(X(ii,:),Y(ii,:))
end
title(labs{k})
axis off
hold off

end

�

AndrewsAndrewsAndrewsAndrews CCCCurvurvurvurveeeessss

Andrews curves [Andrews, 1972] were developed as a method for visualiz-
ing multi-dimensional data by mapping each observation onto a function.
This is similar to star plots in that each observation or sample point is repre-
sented by a glyph, except that in this case the glyph is a curve. This function
is defined as

© 2002 by Chapman & Hall/CRC

158 Computational Statistics Handbook with MATLAB

, (5.9)

where the range of t is given by . Each observation is projected onto
a set of orthogonal basis functions represented by sines and cosines and then
plotted. Thus, each sample point is now represented by a curve given by
Equation 5.9. We illustrate how to get the Andrews curves in Example 5.22.

Example 5.22
We use a simple example to show how to get Andrews curves. The data we
have are the following observations:

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.34444

This is the star plot of the cereal data.

Cereal 1 Cereal 2

Cereal 3 Cereal 4

Cereal 5 Cereal 6

Cereal 7 Cereal 8

fx t() x1 2⁄ x2 tsin x3 tcos x4 2tsin x5 2tcos …+ + + + +=

π– t π≤ ≤

x1 2 6 4, ,()=

x2 5 7 3, ,()=

x3 1 8 9, ,().=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 159

Using Equation 5.9, we construct three curves, one corresponding to each
data point. The Andrews curves for the data are:

We can plot these three functions in MATLAB using the following com-
mands. The Andrews curves for these data are shown in Figure 5.35.

% Get the domain.
t = linspace(-pi,pi);
% Evaluate function values for each observation.
f1 = 2/sqrt(2)+6*sin(t)+4*cos(t);
f2 = 5/sqrt(2)+7*sin(t)+3*cos(t);
f3 = 1/sqrt(2)+8*sin(t)+9*cos(t);
plot(t,f1,'.',t,f2,'*',t,f3,'o')
legend('F1','F2','F3')
xlabel('t')

�

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.35555

Andrews curves for the three data points in Example 5.22.

fx1
t() 2 2⁄ 6 tsin 4 tcos+ +=

fx2
t() 5 2⁄ 7 tsin 3 tcos+ +=

fx3
t() 1 2⁄ 8 tsin 9 t .cos+ +=

−4 −3 −2 −1 0 1 2 3 4
−15

−10

−5

0

5

10

15

t

F1
F2
F3

© 2002 by Chapman & Hall/CRC

160 Computational Statistics Handbook with MATLAB

It has been shown [Andrews, 1972; Embrechts and Herzberg, 1991] that
because of the mathematical properties of the trigonometric functions, the
Andrews curves preserve means, distance (up to a constant) and variances.
One consequence of this is that Andrews curves showing functions close
together suggest that the corresponding data points will also be close
together. Thus, one use of Andrews curves is to look for clustering of the data
points.

Example 5.23
We show how to construct Andrews curves for the iris data, using only the
observations for Iris setosa and Iris virginica observations. We plot the curves
for each species in a different line style to see if there is evidence that we can
distinguish between the species using these variables.

load iris
% This defines the domain that will be plotted.
theta = (-pi+eps):0.1:(pi-eps);
n = 50;
p = 4;
ysetosa = zeros(n,p);
% There will n curves plotted,
% one for each data point.
yvirginica = zeros(n,p);
% Take dot product of each row with observation.
ang = zeros(length(theta),p);
fstr = '[1/sqrt(2) sin(i) cos(i) sin(2*i)]';
k = 0;
% Evaluate sin and cos functions at each angle theta.
for i = theta
 k = k+1;
 ang(k,:) = eval(fstr);
end
% Now generate a ‘y’ for each observation.
for i = 1:n
 for j = 1:length(theta)
 % Find dot product with observation.
 ysetosa(i,j)=setosa(i,:)*ang(j,:)';
 yvirginica(i,j)=virginica(i,:)*ang(j,:)';
 end
end
% Do all of the plots.
plot(theta,ysetosa(1,:),'r',...

theta,yvirginica(1,:),'b-.')
legend('Iris Setosa','Iris Virginica')
hold
for i = 2:n

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 161

 plot(theta,ysetosa(i,:),'r',...
theta,yvirginica(i,:),'b-.')

end
hold off
title('Andrews Plot')
xlabel('t')
ylabel('Andrews Curve')

The curves are shown in Figure 5.36. By plotting the two groups with differ-
ent line styles, we can gain some insights about whether or not these two spe-
cies of iris can be distinguished based on these features. From the Andrews
curves, we see that the observations exhibit similarity within each class and
that they show differences between the classes. Thus, we might get reason-
able discrimination using these features.
�

Andrews curves are dependent on the order of the variables. Lower fre-
quency terms exert more influence on the shape of the curves, so re-ordering
the variables and viewing the resulting plot might provide insights about the
data. By lower frequency terms, we mean those that are first in the sum given

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.36666

These are the Andrews curves for the Iris setosa and Iris virginica data. The curves corre-
sponding to each species are plotted with different line styles. Note that the observations
within each group show similar curves, and that we seem to be able to separate these two
species.

−4 −3 −2 −1 0 1 2 3 4
−2

0

2

4

6

8

10

12

14

16
Andrews Plot

t

A
nd

re
w

s
C

ur
ve

Iris Setosa
Iris Virginica

© 2002 by Chapman & Hall/CRC

162 Computational Statistics Handbook with MATLAB

in Equation 5.9. Embrechts and Herzberg [1991] also suggest that the data be
rescaled so they are centered at the origin and have covariance equal to the
identity matrix. Andrews curves can be extended by using orthogonal bases
other than sines and cosines. For example, Embrechts and Herzberg [1991]
illustrate Andrews curves using Legendre polynomials and Chebychev poly-
nomials.

PPPPaaaarrrraaaalllllllleeeellll CooCooCooCoorrrrdindindindinaaaatttteeeessss

In the Cartesian coordinate system the axes are orthogonal, so the most we
can view is three dimensions. If instead we draw the axes parallel to each
other, then we can view many axes on the same display. This technique was
developed by Wegman [1986] as a way of viewing and analyzing multi-
dimensional data and was introduced by Inselberg [1985] in the context of
computational geometry and computer vision. Parallel coordinate tech-
niques were expanded on and described in a statistical setting by Wegman
[1990]. Wegman [1990] also gave a rigorous explanation of the properties of
parallel coordinates as a projective transformation and illustrated the duality
properties between the parallel coordinate representation and the Cartesian
orthogonal coordinate representation.

A parallel coordinate plot for d-dimensional data is constructed by draw-
ing d lines parallel to each other. We draw d copies of the real line represent-
ing the coordinates for The lines are the same distance apart and
are perpendicular to the Cartesian y axis. Additionally, they all have the same
positive orientation as the Cartesian x axis. Some versions of parallel coordi-
nates [Inselberg, 1985] draw the parallel axes perpendicular to the Cartesian
x axis.

A point is shown in Figure 5.37 with the MATLAB code
that generates it given in Example 5.24. We see that the point is a polygonal
line with vertices at in Cartesian coordinates on the
parallel axis. Thus, a point in Cartesian coordinates is represented in parallel
coordinates as a series of connected line segments.

Example 5.24
We now plot the point in parallel coordinates using these
MATLAB commands.

c = [1 3 7 2];
% Get range of parallel axes.
x = [1 7];
% Plot the 4 parallel axes.
plot(x,zeros(1,2),x,ones(1,2),x,...

2*ones(1,2),x,3*ones(1,2))
hold on
% Now plot point c as a polygonal line.

x1 x2 … xd., , ,

C c1 … c4, ,()=

ci i 1–,() i, 1 … d, ,= xi

C 1 3 7 2, , ,()=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 163

plot(c,0:3,c,0:3,'*')
ax = axis;
axis([ax(1) ax(2) -1 4])
set(gca,'ytick',0)
hold off

�

If we plot observations in parallel coordinates with colors designating
what class they belong to, then the parallel coordinate display can be used to
determine whether or not the variables will enable us to separate the classes.
This is similar to the Andrews curves in Example 5.23, where we used the
Andrews curves to view the separation between two species of iris. The par-
allel coordinate plot provides graphical representations of multi-dimensional
relationships [Wegman, 1990]. The next example shows how parallel coordi-
nates can display the correlation between two variables.

Example 5.25
We first generate a set of 20 bivariate normal random variables with correla-
tion given by 1. We plot the data using the function called csparallel to
show how to recognize various types of correlation in parallel coordinate
plots.

% Get a covariance matrix with correlation 1.
covmat = [1 1; 1 1];

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.37777

This shows the parallel coordinate representation for the 4-D point (1,3,7,2).

1 2 3 4 5 6 7

0

© 2002 by Chapman & Hall/CRC

164 Computational Statistics Handbook with MATLAB

% Generate the bivariate normal random variables.
% Note: you could use csmvrnd to get these.
[u,s,v] = svd(covmat);
vsqrt = (v*(u'.*sqrt(s)))';
subdata = randn(20,2);
data = subdata*vsqrt;
% Close any open figure windows.
close all
% Create parallel plot using CS Toolbox function.
csparallel(data)
title('Correlation of 1')

This is shown in Figure 5.38. The direct linear relationship between the first
variable and the second variable is readily apparent. We can generate data
that are correlated differently by changing the covariance matrix. For exam-
ple, to obtain a random sample for data with a correlation of 0.2, we can use

covmat = [4 1.2; 1.2, 9];

In Figure 5.39, we show the parallel coordinates plot for data that have a cor-
relation coefficient of -1. Note the different structure that is visible in the par-
allel coordinates plot.
�

In the previous example, we showed how parallel coordinates can indicate
the relationship between variables. To provide further insight, we illustrate
how parallel coordinates can indicate clustering of variables in a dimension.
Figure 5.40 shows data that can be separated into clusters in both of the
dimensions. This is indicated on the parallel coordinate representation by
separation or groups of lines along the and parallel axes. In Figure 5.41,
we have data that are separated into clusters in only one dimension, , but
not in the dimension. This appears in the parallel coordinates plot as a gap
in the parallel axis.

As with Andrews curves, the order of the variables makes a difference.
Adjacent parallel axes provide some insights about the relationship between
consecutive variables. To see other pairwise relationships, we must permute
the order of the parallel axes. Wegman [1990] provides a systematic way of
finding all permutations such that all adjacencies in the parallel coordinate
display will be visited.

Before we proceed to other topics, we provide an example applying paral-
lel coordinates to the iris data. In Example 5.26, we illustrate a parallel
coordinates plot of the two classes: Iris setosa and Iris virginica.

Example 5.26
First we load up the iris data. An optional input argument of the
csparallel function is the line style for the lines. This usage is shown

x1 x2

x1

x2

x1

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 165

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.38888

This is a parallel coordinate plot for bivariate data that have a correlation coefficient of 1.

FFFFIIIIGUGUGUGURE 5.3RE 5.3RE 5.3RE 5.39999

The data shown in this parallel coordinate plot are negatively correlated.

Correlation of 1

x2

x1

Correlation of −1

x2

x1

© 2002 by Chapman & Hall/CRC

166 Computational Statistics Handbook with MATLAB

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.40000

Clustering in two dimensions produces gaps in both parallel axes.

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.41111

Clustering in only one dimension produces a gap in the corresponding parallel axis.

Clustering in Both Dimensions

x2

x1

Clustering in x
1

x2

x1

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 167

below, where we plot the Iris setosa observations as dot-dash lines and the Iris
virginica as solid lines. The parallel coordinate plots is given in Figure 5.42.

load iris
figure
csparallel(setosa,'-.')
hold on
csparallel(virginica,'-')
hold off

From this plot, we see evidence of groups or separation in coordinates
and .
�

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.42222

Here we see an example of a parallel coordinate plot for the iris data. The Iris setosa is
shown as dot-dash lines and the Iris virginica as solid lines. There is evidence of groups in
two of the coordinate axes, indicating that reasonable separation between these species could
be made based on these features.

x2

x3

x4

x3

x2

x1

x4

x3

x2

x1

© 2002 by Chapman & Hall/CRC

168 Computational Statistics Handbook with MATLAB

PPPPrrrrojeojeojeojeccccttttion Pursuiion Pursuiion Pursuiion Pursuitttt

The Andrews curves and parallel coordinate plots are attempts to visualize
all of the data points and all of the dimensions at once. An Andrews curve
accomplishes this by mapping a data point to a curve. Parallel coordinate dis-
plays accomplish this by mapping each observation to a polygonal line with
vertices on parallel axes. Another option is to tackle the problem of visualiz-
ing multi-dimensional data by reducing the data to a smaller dimension via
a suitable projection. These methods reduce the data to 1-D or 2-D by project-
ing onto a line or a plane and then displaying each point in some suitable
graphic, such as a scatterplot. Once the data are reduced to something that
can be easily viewed, then exploring the data for patterns or interesting struc-
ture is possible.

One well-known method for reducing dimensionality is principal compo-
nent analysis (PCA) [Jackson, 1991]. This method uses the eigenvector
decomposition of the covariance (or the correlation) matrix. The data are then
projected onto the eigenvector corresponding to the maximum eigenvalue
(sometimes known as the first principal component) to reduce the data to one
dimension. In this case, the eigenvector is one that follows the direction of the
maximum variation in the data. Therefore, if we project onto the first princi-
pal component, then we will be using the direction that accounts for the max-
imum amount of variation using only one dimension. We illustrate the notion
of projecting data onto a line in Figure 5.43.

We could project onto two dimensions using the eigenvectors correspond-
ing to the largest and second largest eigenvalues. This would project onto the
plane spanned by these eigenvectors. As we see shortly, PCA can be thought
of in terms of projection pursuit, where the interesting structure is the vari-
ance of the projected data.

There are an infinite number of planes that we can use to reduce the dimen-
sionality of our data. As we just mentioned, the first two principal compo-
nents in PCA span one such plane, providing a projection such that the
variation in the projected data is maximized over all possible 2-D projections.
However, this might not be the best plane for highlighting interesting and
informative structure in the data. Structure is defined to be departure from
normality and includes such things as clusters, linear structures, holes, outli-
ers, etc. Thus, the objective is to find a projection plane that provides a 2-D
view of our data such that the structure (or departure from normality) is max-
imized over all possible 2-D projections.

We can use the Central Limit Theorem to motivate why we are interested
in departures from normality. Linear combinations of data (even Bernoulli
data) look normal. Since in most of the low-dimensional projections, one
observes a Gaussian, if there is something interesting (e.g., clusters, etc.), then
it has to be in the few non-normal projections.

Freidman and Tukey [1974] describe projection pursuit as a way of search-
ing for and exploring nonlinear structure in multi-dimensional data by exam-
ining many 2-D projections. The idea is that 2-D orthogonal projections of the

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 169

data should reveal structure that is in the original data. The projection pursuit
technique can also be used to obtain 1-D projections, but we look only at the
2-D case. Extensions to this method are also described in the literature by
Friedman [1987], Posse [1995a, 1995b], Huber [1985], and Jones and Sibson
[1987]. In our presentation of projection pursuit exploratory data analysis, we
follow the method of Posse [1995a, 1995b].

Projection pursuit exploratory data analysis (PPEDA) is accomplished by
visiting many projections to find an interesting one, where interesting is mea-
sured by an index. In most cases, our interest is in non-normality, so the pro-
jection pursuit index usually measures the departure from normality. The
index we use is known as the chi-square index and is developed in Posse
[1995a, 1995b]. For completeness, other projection indexes are given in
Appendix C, and the interested reader is referred to Posse [1995b] for a sim-
ulation analysis of the performance of these indexes.

PPEDA consists of two parts:

1) a projection pursuit index that measures the degree of the structure
(or departure from normality), and

2) a method for finding the projection that yields the highest value
for the index.

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.43333

This illustrates the projection of 2-D data onto a line.

−2 0 2 4 6 8 10 12

0

2

4

6

8

10

© 2002 by Chapman & Hall/CRC

170 Computational Statistics Handbook with MATLAB

Posse [1995a, 1995b] uses a random search to locate the global optimum of the
projection index and combines it with the structure removal of Freidman
[1987] to get a sequence of interesting 2-D projections. Each projection found
shows a structure that is less important (in terms of the projection index) than
the previous one. Before we describe this method for PPEDA, we give a sum-
mary of the notation that we use in projection pursuit exploratory data anal-
ysis.

NOTATION - PROJECTION PURSUIT EXPLORATORY DATA ANALYSIS

X is an matrix, where each row corresponds to a d-dimen-
sional observation and n is the sample size.

Z is the sphered version of X.

 is the sample mean:

. (5.10)

 is the sample covariance matrix:

. (5.11)

 are orthonormal (and) d-dimensional
vectors that span the projection plane.

 is the projection plane spanned by and .

 are the sphered observations projected onto the vectors and
:

(5.12)

 denotes the plane where the index is maximum.

 denotes the chi-square projection index evaluated using
the data projected onto the plane spanned by and .
 is the standard bivariate normal density.

 is the probability evaluated over the k-th region using the standard
bivariate normal,

. (5.13)

n d× X i()

µµµµ̂ 1 d×

µµµµ̂ Xi n⁄∑=

ΣΣΣΣ
ˆ

ΣΣΣΣij
ˆ 1

n 1–
------------ Xi µµµµ̂–() X j µµµµ̂–()

T

∑=

α β, αTα 1 βTβ= = αTβ 0=

P α β,() α β
zi

α zi
β, α

β

zi
α zi

Tα=

zi
β zi

Tβ=

α* β*,()
PIχ2 α β,()

α β
φ2

ck

ck φ2 zd 1 z2d
Bk

∫∫=

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 171

 is a box in the projection plane.
 is the indicator function for region .

, is the angle by which the data are rotated in
the plane before being assigned to regions .

 and are given by

(5.14)

c is a scalar that determines the size of the neighborhood around
 that is visited in the search for planes that provide better

values for the projection pursuit index.
v is a vector uniformly distributed on the unit d-dimensional sphere.

half specifies the number of steps without an increase in the projection
index, at which time the value of the neighborhood is halved.

m represents the number of searches or random starts to find the best
plane.

PPPPrrrrojeojeojeojeccccttttion Pursuition Pursuition Pursuition Pursuit IndIndIndIndeeeexxxx

Posse [1995a, 1995b] developed an index based on the chi-square. The plane
is first divided into 48 regions or boxes that are distributed in rings. See
Figure 5.44 for an illustration of how the plane is partitioned. All regions have
the same angular width of 45 degrees and the inner regions have the same
radial width of . This choice for the radial width provides
regions with approximately the same probability for the standard bivariate
normal distribution. The regions in the outer ring have probability . The
regions are constructed in this way to account for the radial symmetry of the
bivariate normal distribution.

Posse [1995a, 1995b] provides the population version of the projection
index. We present only the empirical version here, because that is the one that
must be implemented on the computer. The projection index is given by

. (5.15)

The chi-square projection index is not affected by the presence of outliers.
This means that an interesting projection obtained using this index will not
be one that is interesting solely because of outliers, unlike some of the other
indexes (see Appendix C). It is sensitive to distributions that have a hole in
the core, and it will also yield projections that contain clusters. The chi-square
projection pursuit index is fast and easy to compute, making it appropriate

Bk

IBk
Bk

η j πj 36⁄= j 0 … 8, ,=
Bk

α η j() β η j()

α η j() α η jcos β η jsin–=

β η j() α η jsin β ηjcos+=

α* β*,()

Bk

2 6log()1 2⁄ 5⁄

1 48⁄

PI
χ2 α β,() 1

9
--- 1

ck

---- 1
n
--- IBk

zi

α ηj()
zi

β η j()
,()

i 1=

n

∑ ck–

2

k 1=

48

∑
j 1=

8

∑=

© 2002 by Chapman & Hall/CRC

172 Computational Statistics Handbook with MATLAB

for large sample sizes. Posse [1995a] provides a formula to approximate the
percentiles of the chi-square index so the analyst can assess the significance
of the observed value of the projection index.

FFFFindingindingindinginding tttthhhhe Ste Ste Ste Strrrruuuuccccttttuuuurrrreeee

The second part of PPEDA requires a method for optimizing the projection
index over all possible projections onto 2-D planes. Posse [1995a] shows that
his optimization method outperforms the steepest-ascent techniques [Fried-
man and Tukey, 1974]. The Posse algorithm starts by randomly selecting a
starting plane, which becomes the current best plane . The method
seeks to improve the current best solution by considering two candidate solu-
tions within its neighborhood. These candidate planes are given by

(5.16)

In this approach, we start a global search by looking in large neighborhoods
of the current best solution plane and gradually focus in on a maxi-
mum by decreasing the neighborhood by half after a specified number of

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.44444

This shows the layout of the regions for the chi-square projection index. [Posse, 1995a]

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Bk

α* β*,()

a1
α* cv+

α* cv+
----------------------= b1

β* a1
Tβ*()a1–

β* a1
Tβ*()a1–

------------------------------------=

a2
α* cv–

α* cv–
----------------------= b1

β* a2
Tβ*()a2–

β* a2
Tβ*()a2–

------------------------------------ .=

α* β*,()

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 173

steps with no improvement in the value of the projection pursuit index.
When the neighborhood is small, then the optimization process is termi-
nated.

A summary of the steps for the exploratory projection pursuit algorithm is
given here. Details on how to implement these steps are provided in
Example 5.27 and in Appendix C. The complete search for the best plane
involves repeating steps 2 through 9 of the procedure m times, using m ran-
dom starting planes. Keep in mind that the best plane is the plane
where the projected data exhibit the greatest departure from normality.

PROCEDURE - PROJECTION PURSUIT EXPLORATORY DATA ANALYSIS

1. Sphere the data using the following transformation

,

where the columns of are the eigenvectors obtained from ,
is a diagonal matrix of corresponding eigenvalues, and is the
i-th observation.

2. Generate a random starting plane, . This is the current best
plane, .

3. Evaluate the projection index for the starting plane.
4. Generate two candidate planes and according to

Equation 5.16.

5. Evaluate the value of the projection index for these planes,
 and .

6. If one of the candidate planes yields a higher value of the projection
pursuit index, then that one becomes the current best plane

.

7. Repeat steps 4 through 6 while there are improvements in the
projection pursuit index.

8. If the index does not improve for half times, then decrease the value
of c by half.

9. Repeat steps 4 through 8 until c is some small number set by the
analyst.

Note that in PPEDA we are working with sphered or standardized versions
of the original data. Some researchers in this area [Huber, 1985] discuss the
benefits and the disadvantages of this approach.

α* β*,()

Zi ΛΛΛΛ 1 2⁄– QT X i µµµµ̂–()= i 1 … n, ,=

Q ΣΣΣΣ̂ ΛΛΛΛ
Xi

α0 β0,()
α* β*,()

PIχ2 α0 β0,()
a1 b1,() a2 b2,()

PIχ2 a1 b1,() PIχ2 a2 b2,()

α* β*,()

© 2002 by Chapman & Hall/CRC

174 Computational Statistics Handbook with MATLAB

SSSSttttrrrruuuucccctttture Removure Removure Removure Removaaaallll

In PPEDA, we locate a projection that provides a maximum of the projection
index. We have no reason to assume that there is only one interesting projec-
tion, and there might be other views that reveal insights about our data. To
locate other views, Friedman [1987] devised a method called structure
removal. The overall procedure is to perform projection pursuit as outlined
above, remove the structure found at that projection, and repeat the projec-
tion pursuit process to find a projection that yields another maximum value
of the projection pursuit index. Proceeding in this manner will provide a
sequence of projections providing informative views of the data.

Structure removal in two dimensions is an iterative process. The procedure
repeatedly transforms data that are projected to the current solution plane
(the one that maximized the projection pursuit index) to standard normal
until they stop becoming more normal. We can measure ‘more normal’ using
the projection pursuit index.

We start with a matrix , where the first two rows of the matrix are
the vectors of the projection obtained from PPEDA. The rest of the rows of
have ones on the diagonal and zero elsewhere. For example, if , then

We use the Gram-Schmidt process [Strang, 1988] to make orthonormal.
We denote the orthonormal version as .

The next step in the structure removal process is to transform the Z matrix
using the following

. (5.17)

In Equation 5.17, T is , so each column of the matrix corresponds to a d-
dimensional observation. With this transformation, the first two dimensions
(the first two rows of T) of every transformed observation are the projection
onto the plane given by .

We now remove the structure that is represented by the first two dimen-
sions. We let be a transformation that transforms the first two rows of T to
a standard normal and the rest remain unchanged. This is where we actually
remove the structure, making the data normal in that projection (the first two
rows). Letting and represent the first two rows of T, we define the
transformation as follows

d d× U*

U*

d 4=

U*

α1
* α2

* α3
* α4

*

β1
* β2

* β3
* β4

*

0 0 1 0

0 0 0 1

.=

U*

U

T UZT=

d n×

α* β*,()

Θ

T1 T2

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 175

(5.18)

where is the inverse of the standard normal cumulative distribution
function and is a function defined below (see Equations 5.19 and 5.20). We
see from Equation 5.18, that we will be changing only the first two rows of T.

We now describe the transformation of Equation 5.18 in more detail, work-
ing only with and . First, we note that can be written as

,

and as

.

Recall that and would be coordinates of the j-th observation projected
onto the plane spanned by .

Next, we define a rotation about the origin through the angle as follows

(5.19)

where and represents the j-th element of at
the t-th iteration of the process. We now apply the following transformation
to the rotated points,

, (5.20)

where represents the rank (position in the ordered list) of .
This transformation replaces each rotated observation by its normal score

in the projection. With this procedure, we are deflating the projection index
by making the data more normal. It is evident in the procedure given below,
that this is an iterative process. Friedman [1987] states that during the first
few iterations, the projection index should decrease rapidly. After approxi-
mate normality is obtained, the index might oscillate with small changes.
Usually, the process takes between 5 to 15 complete iterations to remove the
structure.

Θ T1() Φ 1– F T1()[]=

Θ T2() Φ 1– F T2()[]=

Θ Ti() T i= ; i 3 … d ,, ,=

Φ 1–

F

T1 T2 T1

T1 z1
α*

… zj
α*

… zn
α*

, , , ,()=

T2

T2 z1
β*

… zj
β*

… zn
β*

, , , ,()=

zj
α*

zj
β*

α* β*,()
γ

z̃j
1 t() zj

1 t() γcos zj
2 t() γsin+=

z̃j
2 t() zj

2 t() γcos zj
1 t() γ,sin–=

γ 0 π 4⁄ π 8⁄ 3π 8⁄, , ,= zj
1 t() T1

zj
1 t 1+() Φ 1– r z̃j

1 t()() 0.5–
n

 
 
 

= zj
2 t 1+() Φ 1– r z̃j

2 t()() 0.5–
n

 
 
 

=

r z̃j
1 t()() z̃j

1 t()

© 2002 by Chapman & Hall/CRC

176 Computational Statistics Handbook with MATLAB

Once the structure is removed using this process, we must transform the
data back using

. (5.21)

In other words, we transform back using the transpose of the orthonormal
matrix U. From matrix theory [Strang, 1988], we see that all directions orthog-
onal to the structure (i.e., all rows of T other than the first two) have not been
changed. Whereas, the structure has been Gaussianized and then trans-
formed back.

PROCEDURE - STRUCTURE REMOVAL

1. Create the orthonormal matrix U, where the first two rows of U
contain the vectors .

2. Transform the data Z using Equation 5.17 to get T.

3. Using only the first two rows of T, rotate the observations using
Equation 5.19.

4. Normalize each rotated point according to Equation 5.20.

5. For angles of rotation , repeat steps 3
through 4.

6. Evaluate the projection index using and , after going
through an entire cycle of rotation (Equation 5.19) and normaliza-
tion (Equation 5.20).

7. Repeat steps 3 through 6 until the projection pursuit index stops
changing.

8. Transform the data back using Equation 5.21.

Example 5.27
We use a synthetic data set to illustrate the MATLAB functions used for
PPEDA. The source code for the functions used in this example is given in
Appendix C. These data contain two structures, both of which are clusters. So
we will search for two planes that maximize the projection pursuit index.
First we load the data set that is contained in the file called ppdata. This
loads a matrix X containing 400 six-dimensional observations. We also set up
the constants we need for the algorithm.

% First load up a synthetic data set.
% This has structure
% in two planes - clusters.
% Note that the data is in
% ppdata.mat
load ppdata

Z′ UTΘ UZT()=

α* β*,

γ 0 π 4⁄ π 8⁄ 3π 8⁄, , ,=

zj
1 t 1+() zj

2 t 1+()

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 177

% For m random starts, find the best projection plane
% using N structure removal procedures.
% Two structures:
N = 2;
% Four random starts:
m = 4;
c = tan(80*pi/180);
% Number of steps with no increase.
half = 30;

We now set up some arrays to store the results of projection pursuit.

% To store the N structures:
astar = zeros(d,N);
bstar = zeros(d,N);
ppmax = zeros(1,N);

Next we have to sphere the data.

% Sphere the data.
[n,d] = size(X);
muhat = mean(X);
[V,D] = eig(cov(X));
Xc = X-ones(n,1)*muhat;
Z = ((D)^(-1/2)*V'*Xc')';

We use the sphered data as input to the function csppeda. The outputs from
this function are the vectors that span the plane containing the structure and
the corresponding value of the projection pursuit index.

% Now do the PPEDA.
% Find a structure, remove it,
% and look for another one.
Zt = Z;
for i = 1:N

[astar(:,i),bstar(:,i),ppmax(i)] =,...
 csppeda(Zt,c,half,m);
 % Now remove the structure.
 Zt = csppstrtrem(Zt,astar(:,i),bstar(:,i));
end

Note that each column of astar and bstar contains the projections for a
structure, each one found using m random starts of the Posse algorithm. To
see the first structure and second structures, we project onto the best planes
as follows:

% Now project and see the structure.
proj1 = [astar(:,1), bstar(:,1)];
proj2 = [astar(:,2), bstar(:,2)];
Zp1 = Z*proj1;

© 2002 by Chapman & Hall/CRC

178 Computational Statistics Handbook with MATLAB

Zp2 = Z*proj2;
figure
plot(Zp1(:,1),Zp1(:,2),'k.'),title('Structure 1')
xlabel('\alpha^*'),ylabel('\beta^*')
figure
plot(Zp2(:,1),Zp2(:,2),'k.'),title('Structure 2')
xlabel('\alpha^*'),ylabel('\beta^*')

The results are shown in Figure 5.45 and Figure 5.46, where we see that pro-
jection pursuit did find two structures. The first structure has a projection
pursuit index of 2.67, and the second structure has an index equal to 0.572.
�

GrandGrandGrandGrand TTTTouououourrrr

The grand tour of Asimov [1985] is an interactive visualization technique that
enables the analyst to look for interesting structure embedded in multi-
dimensional data. The idea is to project the d-dimensional data to a plane and
to rotate the plane through all possible angles, searching for structure in the
data. As with projection pursuit, structure is defined as departure from nor-
mality, such as clusters, spirals, linear relationships, etc.

In this procedure, we first determine a plane, project the data onto it, and
then view it as a 2-D scatterplot. This process is repeated for a sequence of
planes. If the sequence of planes is smooth (in the sense that the orientation
of the plane changes slowly), then the result is a movie that shows the data
points moving in a continuous manner. Asimov [1985] describes two meth-
ods for conducting a grand tour, called the torus algorithm and the random
interpolation algorithm. Neither of these methods is ideal. With the torus
method we may end up spending too much time in certain regions, and it is
computationally intensive. The random interpolation method is better com-
putationally, but cannot be reversed easily (to recover the projection) unless
the set of random numbers used to generate the tour is retained. Thus, this
method requires a lot of computer storage. Because of these limitations, we
describe the pseudo grand tour described in Wegman and Shen [1993].

One of the important aspects of the torus grand tour is the need for a con-
tinuous space-filling path through the manifold of planes. This requirement
satisfies the condition that the tour will visit all possible orientations of the
projection plane. Here, we do not follow a space-filling curve, so this will be
called a pseudo grand tour. In spite of this, the pseudo grand tour has many
benefits:

• It can be calculated easily;
• It does not spend a lot of time in any one region;

• It still visits an ample set of orientations; and
• It is easily reversible.

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 179

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.45555

Here we see the first structure that was found using PPEDA. This structure yields a value
of 2.67 for the chi-square projection pursuit index.

FFFFIIIIGUGUGUGURE 5.4RE 5.4RE 5.4RE 5.46666

Here is the second structure we found using PPEDA. This structure has a value of 0.572 for
the chi-square projection pursuit index.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Structure 1

α*

β*

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3
Structure 2

α*

β*

© 2002 by Chapman & Hall/CRC

180 Computational Statistics Handbook with MATLAB

The fact that the pseudo grand tour is easily reversible enables the analyst to
recover the projection for further analysis. Two versions of the pseudo grand
tour are available: one that projects onto a line and one that projects onto a
plane.

As with projection pursuit, we need unit vectors that comprise the desired
projection. In the 1-D case, we require a unit vector such that

for every t, where t represents a point in the sequence of projections. For the
pseudo grand tour, must be a continuous function of t and should pro-
duce all possible orientations of a unit vector.

We obtain the projection of the data using

, (5.22)

where is the i-th d-dimensional data point. To get the movie view of the
pseudo grand tour, we plot on a fixed 1-D coordinate system, re-display-
ing the projected points as t increases.

The grand tour in two dimensions is similar. We need a second unit vector
 that is orthonormal to ,

.

We project the data onto the second vector using

. (5.23)

To obtain the movie view of the 2-D pseudo grand tour, we display and
 in a 2-D scatterplot, replotting the points as t increases.

The basic idea of the grand tour is to project the data onto a 1-D or 2-D
space and plot the projected data, repeating this process many times to pro-
vide many views of the data. It is important for viewing purposes to make
the time steps small to provide a nearly continuous path and to provide
smooth motion of the points. The reader should note that the grand tour is an
interactive approach to EDA. The analyst must stop the tour when an inter-
esting projection is found.

Asimov [1985] contends that we are viewing more than one or two dimen-
sions because the speed vectors provide further information. For example,
the further away a point is from the computer screen, the faster the point

αααα t()

αααα t() 2 αααα i
2 t()

i 1=

d

∑ 1= =

αααα t()

zi
αααα t() ααααT t()x i=

xi

zi
αααα t()

ββββ t() αααα t()

ββββ t() 2 ββββi
2 t()

i 1=

d

∑ 1= = ααααT t()ββββ t() 0=

zi
ββββ t() ββββT t()xi=

zi
αααα t()

zi
ββββ t()

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 181

rotates. We believe that the extra dimension conveyed by the speed is difficult
to understand unless the analyst has experience looking at grand tour mov-
ies.

In order to implement the pseudo grand tour, we need a way of obtaining
the projection vectors and . First we consider the data vector x. If d
is odd, then we augment each data point with a zero, to get an even number
of elements. In this case,

This will not affect the projection. So, without loss of generality, we present
the method with the understanding that d is even. We take the vector to
be

, (5.24)

and the vector as

. (5.25)

We choose and such that the ratio is irrational for every i and
j. Additionally, we must choose these such that no is a rational multi-
ple of any other ratio. It is also recommended that the time step be a small
positive irrational number. One way to obtain irrational values for is to let

, where is the i-th prime number.
The steps for implementing the 2-D pseudo grand tour are given here. The

details on how to implement this in MATLAB are given in Example 5.28.

PROCEDURE - PSEUDO GRAND TOUR

1. Set each to an irrational number.
2. Find vectors and using Equations 5.24 and 5.25.

3. Project the data onto the plane spanned by these vectors using
Equations 5.23 and 5.24.

4. Display the projected points, and , in a 2-D scatterplot.

5. Using irrational, increment the time, and repeat steps 2
through 4.

Before we illustrate this in an example, we note that once we stop the tour at
an interesting projection, we can easily recover the projection by knowing the
time step.

αααα t() ββββ t()

x x1 … xd 0, , ,();= for d odd.

αααα t()

αααα t() 2 d⁄ ω1t ω1t … ωd 2⁄ t ωd 2⁄ tcos,sin, ,cos,sin()=

ββββ t()

ββββ t() 2 d⁄ ω1t ω1t …,sin– ωd 2⁄ t ωd 2⁄ tsin–,cos, ,cos()=

ωi ω j ωi ωj⁄
ωi ωj⁄

∆t
ωi

ωi Pi= Pi

ωi

αααα t() ββββ t()

zi
αααα t() zi

ββββ t()

∆t

© 2002 by Chapman & Hall/CRC

182 Computational Statistics Handbook with MATLAB

Example 5.28
In this example, we use the iris data to illustrate the grand tour. First we
load up the data and set up some preliminaries.

% This is for the iris data.
load iris
% Put data into one matrix.
x = [setosa;virginica;versicolor];
% Set up vector of frequencies.
th = sqrt([2 3]);
% Set up other constants.
[n,d] = size(x);
% This is a small irrational number:
delt = eps*10^14;
% Do the tour for some specified time steps.
maxit = 1000;
cof = sqrt(2/d);
% Set up storage space for projection vectors.
a = zeros(d,1);
b = zeros(d,1);
z = zeros(n,2);

We now do some preliminary plotting, just to get the handles we need to use
MATLAB’s Handle Graphics for plotting. This enables us to update the
points that are plotted rather than replotting the entire figure.

% Get an initial plot, so the tour can be implemented
% using Handle Graphics.
Hlin1 = plot(z(1:50,1),z(1:50,2),'ro');
set(gcf,'backingstore','off')
set(gca,'Drawmode','fast')
hold on
Hlin2 = plot(z(51:100,1),z(51:100,2),'go');
Hlin3 = plot(z(101:150,1),z(101:150,2),'bo');
hold off
axis equal
axis vis3d
axis off

Now we do the actual pseudo grand tour, where we use a maximum number
of iterations given by maxit.

for t = 0:delt:(delt*maxit)
% Find the transformation vectors.
for j = 1:d/2

a(2*(j-1)+1) = cof*sin(th(j)*t);
a(2*j) = cof*cos(th(j)*t);
b(2*(j-1)+1) = cof*cos(th(j)*t);

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 183

b(2*j) = cof*(-sin(th(j)*t));
end
% Project onto the vectors.
z(:,1) = x*a;
z(:,2) = x*b;
set(Hlin1,'xdata',z(1:50,1),'ydata',z(1:50,2))
set(Hlin2,'xdata',z(51:100,1),'ydata',z(51:100,2))
set(Hlin3,'xdata',z(101:150,1),'ydata',z(101:150,2))
drawnow

end

�

5.5 MATLAB Code

MATLAB has many functions for visualizing data, both in the main package
and in the Statistics Toolbox. Many of these were mentioned in the text and
are summarized in Appendix E. Basic MATLAB has functions for scatterplots
(scatter) , h is to gram s (hist , bar) , and scat te rp lot m atr i ce s
(plotmatrix). The Statistics Toolbox has functions for constructing q-q
plots (normplot, qqplot, weibplot), the empirical cumulative distribu-
tion function (cdfplot), grouped versions of plots (gscatter,
gplotmatrix), and others. Some other graphing functions in the standard
MATLAB package that might be of interest include pie charts (pie), stair
plots (stairs), error bars (errorbar), and stem plots (stem).

The methods for statistical graphics described in Cleveland’s Visualizing
Data [1993] have been implemented in MATLAB. They are available for
download at

http://www.datatool.com/Dataviz_home.htm.

This book contains many useful techniques for visualizing data. Since
MATLAB code is available for these methods, we urge the reader to refer to
this highly readable text for more information on statistical visualization.

Rousseeuw, Ruts and Tukey [1999] describe a bivariate generalization of
the univariate boxplot called a bagplot. This type of plot displays the loca-
tion, spread, correlation, skewness and tails of the data set. Software
(MATLAB and S-Plus®) for constructing a bagplot is available for download
at

http://win-www.uia.ac.be/u/statis/index.html.

© 2002 by Chapman & Hall/CRC

http://www.datatool.com/Dataviz_home.htm.
http://win-www.uia.ac.be/u/statis/index.html.

184 Computational Statistics Handbook with MATLAB

In the Computational Statistics Toolbox, we include several functions that
implement some of the algorithms and graphics covered in Chapter 5. These
are summarized in Table 5.3.

5.6 Further Reading

One of the first treatises on graphical exploratory data analysis is John
Tukey’s Exploratory Data Analysis [1977]. In this book, he explains many
aspects of EDA, including smoothing techniques, graphical techniques and
others. The material in this book is practical and is readily accessible to read-
ers with rudimentary knowledge of data analysis. Another excellent book on
this subject is Graphical Exploratory Data Analysis [du Toit, Steyn and Stumpf,
1986], which includes several techniques (e.g., Chernoff faces and profiles)
that we do not cover. For texts that emphasize the visualization of technical
data, see Fortner and Meyer [1997] and Fortner [1995]. The paper by Weg-
man, Carr and Luo [1993] discusses many of the methods we present, along
with others such as stereoscopic displays, generalized nonlinear regression
using skeletons and a description of d-dimensional grand tour. This paper
and Wegman [1990] provide an excellent theoretical treatment of parallel
coordinates.

The Grammar of Graphics by Wilkinson [1999] describes a foundation for
producing graphics for scientific journals, the internet, statistical packages, or

TTTTAAAABBBBLLLLEEEE 5.35.35.35.3

List of Functions from Chapter 5 Included in the
Computational Statistics Toolbox

Purpose MATLAB Function

Star Plot csstars

Stem-and-leaf Plot csstemleaf

Parallel Coordinates Plot csparallel

Q-Q Plot csqqplot

Poissonness Plot cspoissplot

Andrews Curves csandrews

Exponential Probability Plot csexpoplot

Binomial Plot csbinoplot

PPEDA csppeda
csppstrtrem

csppind

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 185

any visualization system. It looks at the rules for producing pie charts, bar
charts scatterplots, maps, function plots, and many others.

For the reader who is interested in visualization and information design,
the three books by Edward Tufte are recommended. His first book, The Visual
Display of Quantitative Information [Tufte, 1983], shows how to depict num-
bers. The second in the series is called Envisioning Information [Tufte, 1990],
and illustrates how to deal with pictures of nouns (e.g., maps, aerial photo-
graphs, weather data). The third book is entitled Visual Explanations [Tufte,
1997], and it discusses how to illustrate pictures of verbs. These three books
also provide many examples of good graphics and bad graphics. We highly
recommend the book by Wainer [1997] for any statistician, engineer or data
analyst. Wainer discusses the subject of good and bad graphics in a way that
is accessible to the general reader.

Other techniques for visualizing multi-dimensional data have been pro-
posed in the literature. One method introduced by Chernoff [1973] represents
d-dimensional observations by a cartoon face, where features of the face
reflect the values of the measurements. The size and shape of the nose, eyes,
mouth, outline of the face and eyebrows, etc. would be determined by the
value of the measurements. Chernoff faces can be used to determine simple
trends in the data, but they are hard to interpret in most cases.

Another graphical EDA method that is often used is called brushing.
Brushing [Venables and Ripley, 1994; Cleveland, 1993] is an interactive tech-
nique where the user can highlight data points on a scatterplot and the same
points are highlighted on all other plots. For example, in a scatterplot matrix,
highlighting a point in one plot shows up as highlighted in all of the others.
This helps illustrate interesting structure across plots.

High-dimensional data can also be viewed using color histograms or data
images. Color histograms are described in Wegman [1990]. Data images are
discussed in Minotte and West [1998] and are a special case of color histo-
grams.

For more information on the graphical capabilities of MATLAB, we refer
the reader to the MATLAB documentation Using MATLAB Graphics. Another
excellent resource is the book called Graphics and GUI’s with MATLAB by
Marchand [1999]. These go into more detail on the graphics capabilities in
MATLAB that are useful in data analysis such as lighting, use of the camera,
animation, etc.

We now describe references that extend the techniques given in this book.

• Stem-and-leaf: Various versions and extensions of the stem-and-
leaf plot are available. We show an ordered stem-and-leaf plot in
this book, but ordering is not required. Another version shades the
leaves. Most introductory applied statistics books have information
on stem-and-leaf plots (e.g., Montgomery, et al. [1998]). Hunter
[1988] proposes an enhanced stem-and-leaf called the digidot plot.
This combines a stem-and-leaf with a time sequence plot. As data

© 2002 by Chapman & Hall/CRC

186 Computational Statistics Handbook with MATLAB

are collected they are plotted as a sequence of connected dots and
a stem-and-leaf is created at the same time.

• Discrete Quantile Plots: Hoaglin and Tukey [1985] provide similar
plots for other discrete distributions. These include the negative
binomial, the geometric and the logarithmic series. They also dis-
cuss graphical techniques for plotting confidence intervals instead
of points. This has the advantage of showing the confidence one
has for each count.

• Box plots: Other variations of the box plot have been described in
the literature. See McGill, Tukey and Larsen [1978] for a discussion
of the variable width box plot. With this type of display, the width
of the box represents the number of observations in each sample.

• Scatterplots: Scatterplot techniques are discussed in Carr, et al.
[1987]. The methods presented in this paper are especially pertinent
to the situation facing analysts today, where the typical data set
that must be analyzed is often very large . They
recommend various forms of binning (including hexagonal bin-
ning) and representation of the value by gray scale or symbol area.

• PPEDA: Jones and Sibson [1987] describe a steepest-ascent algo-
rithm that starts from either principal components or random
starts. Friedman [1987] combines steepest-ascent with a stepping
search to look for a region of interest. Crawford [1991] uses genetic
algorithms to optimize the projection index.

• Projection Pursuit: Other uses for projection pursuit have been
proposed. These include projection pursuit probability density esti-
mation [Friedman, Stuetzle, and Schroeder, 1984], projection pur-
suit regression [Friedman and Stuetzle, 1981], robust estimation [Li
and Chen, 1985], and projection pursuit for pattern recognition
[Flick, et al., 1990]. A 3-D projection pursuit algorithm is given in
Nason [1995]. For a theoretical and comprehensive description of
projection pursuit, the reader is directed to Huber [1985]. This
invited paper with discussion also presents applications of projec-
tion pursuit to computer tomography and to the deconvolution of
time series. Another paper that provides applications of projection
pursuit is Jones and Sibson [1987]. Not surprisingly, projection
pursuit has been combined with the grand tour by Cook, et al.
[1995]. Montanari and Lizzani [2001] apply projection pursuit to
the variable selection problem. Bolton and Krzanowski [1999]
describe the connection between projection pursuit and principal
component analysis.

n 103 106 …, ,=()

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 187

Exercises

5.1. Generate a sample of 1000 univariate standard normal random vari-
ables using randn. Construct a frequency histogram, relative fre-
quency histogram, and density histogram. For the density histogram,
superimpose the corresponding theoretical probability density func-
tion. How well do they match?

5.2. Repeat problem 5.1 for random samples generated from the exponen-
tial, gamma, and beta distributions.

5.3. Do a quantile plot of the Tibetan skull data of Example 5.3 using the
standard normal quantiles. Is it reasonable to assume the data follow
a normal distribution?

5.4. Try the following MATLAB code using the 3-D multivariate normal
as defined in Example 5.18. This will create a slice through the volume
at an arbitrary angle. Notice that the colors indicate a normal distri-
bution centered at the origin with the covariance matrix equal to the
identity matrix.

% Draw a slice at an arbitrary angle
hs = surf(linspace(-3,3,20),...

linspace(-3,3,20),zeros(20));
% Rotate the surface :
rotate(hs,[1,-1,1],30)
% Get the data that will define the
% surface at an arbitrary angle.
xd = get(hs,'XData');
yd = get(hs,'YData');
zd = get(hs,'ZData');
delete(hs)
% Draw slice:
slice(x,y,z,prob,xd,yd,zd)
axis tight
% Now plot this using the peaks surface as the slice.
% Try plotting against the peaks surface
[xd,yd,zd] = peaks;
slice(x,y,z,prob,xd,yd,zd)
axis tight

5.5. Repeat Example 5.23 using the data for Iris virginica and Iris versicolor.
Do the Andrews curves indicate separation between the classes? Do
you think it will be difficult to separate these classes based on these
features?

5.6. Repeat Example 5.4, where you generate random variables such that

© 2002 by Chapman & Hall/CRC

188 Computational Statistics Handbook with MATLAB

(a) and
(b) and

How can you tell from the q-q plot that the scale and the location
parameters are different?

5.7. Write a MATLAB program that permutes the axes in a parallel coor-
dinates plot. Apply it to the iris data.

5.8. Write a MATLAB program that permutes the order of the variables
and plots the resulting Andrews curves. Apply it to the iris data.

5.9. Implement Andrews curves using a different set of basis functions as
suggested in the text.

5.10. Repeat Example 5.16 and use rotate3d (or the rotate toolbar button)
to rotate about the axes. Do you see any separation of the different
types of insects?

5.11. Do a scatterplot matrix of the Iris versicolor data.
5.12. Verify that the two vectors used in Equations 5.24 and 5.25 are

orthonormal.

5.13. Write a function that implements Example 5.17 for any data set. The
user should have the opportunity to input the labels.

5.14. Define a trivariate normal as your volume, Use the
MATLAB functions isosurface and isocaps to obtain contours of
constant volume or probability (in this case).

5.15. Construct a quantile plot using the forearm data, comparing the
sample to the quantiles of a normal distribution. Is it reasonable to
model the data using the normal distribution?

5.16. The moths data represent the number of moths caught in a trap over
24 consecutive nights [Hand, et al., 1994]. Use the stem-and-leaf to
explore the shape of the distribution.

5.17. The biology data set contains the number of research papers for
1534 biologists [Tripathi and Gupta, 1988; Hand, et al., 1994]. Con-
struct a binomial plot of these data. Analyze your results.

5.18. In the counting data set, we have the number of scintillations in
72 second intervals arising from the radioactive decay of polonium
[Rutherford and Geiger, 1910; Hand, et al., 1994]. Construct a Pois-
sonness plot. Does this indicate agreement with the Poisson distribu-
tion?

5.19. Use the MATLAB Statistics Toolbox function boxplot to compare
box plots of the features for each species of iris data.

5.20. The thrombos data set contains measurements of urinary-thrombo-
globulin excretion in 12 normal and 12 diabetic patients [van Oost, et
al.; 1983; Hand, et al., 1994]. Put each of these into a column of a

X N 0 2,()∼ Y N 0 1,()∼
X N 5 1,()∼ Y N 0 1,()∼

f x y z, ,().

© 2002 by Chapman & Hall/CRC

Chapter 5: Exploratory Data Analysis 189

matrix and use the boxplot function to compare normal versus
diabetic patients.

5.21. To explore the shading options in MATLAB, try the following code
from the documentation:

% The ezsurf function is available in MATLAB 5.3
% and later.
% First get a surface.
ezsurf('sin(sqrt(x^2+y^2))/sqrt(x^2+y^2)',...
 [-6*pi,6*pi])
% Now add some lighting effects:
view(0,75)
shading interp
lightangle(-45,30)
set(findobj('type','surface'),...
 'FaceLighting','phong',...
 'AmbientStrength',0.3,'DiffuseStrength',0.8,...
 'SpecularStrength',0.9,'SpecularExponent',25,...
 'BackFaceLighting','unlit')
axis off

5.22. The bank data contains two matrices comprised of measurements
made on genuine money and forged money. Combine these two
matrices into one and use PPEDA to discover any clusters or groups
in the data. Compare your results with the known groups in the data.

5.23. Using the data in Example 5.27, do a scatterplot matrix of the original
sphered data set. Note the structures in the first four dimensions. Get
the first structure and construct another scatterplot matrix of the
sphered data after the first structure has been removed. Repeat this
process after both structures are removed.

5.24. Load the data sets in posse. These contain several data sets from
Posse [1995b]. Apply the PPEDA method to these data.

© 2002 by Chapman & Hall/CRC

© 2002 by Chapman & Hall/CRC

	Computational Statistics Handbook with MATLAB®
	Contents
	Chapter 5: Exploratory Data Analysis
	5.1 Introduction
	5.2 Exploring Univariate Data
	Histograms
	Example 5.1
	Example 5.2

	Stem-and-Leaf
	Example 5.3

	Quantile-Based Plots - Continuous Distributions
	Q-QPlot
	Example 5.4
	Example 5.5

	Quantile Plots
	Example 5.6

	Quantile Plots - Discrete Distributions
	Poissonness Plot
	Example 5.7
	Example 5.8

	Binomialness Plot
	Example 5.9

	Box Plots
	Example 5.10

	5.3 Exploring Bivariate and Trivariate Data
	Scatterplots
	Example 5.11

	Surface Plots
	Example 5.12

	Contour Plots
	Example 5.13

	Bivariate Histogram
	Example 5.14
	Example 5.15

	3-D Scatterplot
	Example 5.16

	5.4 Exploring Multi- Dimensional Data
	Scatterplot Matrix
	Example 5.17

	Slices and Isosurfaces
	Example 5.18
	Example 5.19
	Example 5.20

	Star Plots
	Example 5.21

	Andrews Curves
	Example 5.22
	Example 5.23

	Parallel Coordinates
	Example 5.24
	Example 5.25
	Example 5.26

	Projection Pursuit
	Projection Pursuit Index
	Finding the Structure
	Structure Removal
	Example 5.27

	Grand Tour
	Example 5.28

	5.5 MATLAB Code
	5.6 Further Reading
	Exercises

