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Chapter 5 
Force Analysis 

 
 

Static Force Analysis 
 
► Introduction 
 

A machine is a device that performs work and, as such, transmits energy by 
means mechanical force from a power source to a driven load. It is necessary in the 
design machine mechanisms to know the manner in which forces are transmitted from 
input to the output, so that the components of the machine can be properly size 
withstand the stresses that are developed. If the members are not designed to strong 
enough, then failure will occur during machine operation; if, on the other hand, the 
machine is over designed to have much more strength than required, then the machine 
may not be competitive with others in terms of cost, weight, size, power requirements, 
or other criteria. The bucket load and static weight loads may far exceed any dynamic 
loads due to accelerating masses, and a static-force analysis would be justified. An 
analysis that includes inertia effects is called a dynamic-force analysis and will be 
discussed in the next chapter. An example of an application where a dynamic-force 
analysis would be required is in the design of an automatic sewing machine, where, 
due to high operating speeds, the inertia forces may be greater than the external loads 
on the machine. 

Another assumption deals with the rigidity of the machine components. No 
material is truly rigid, and all materials will experience significant deformation if the 
forces, either external or inertial in nature, are great enough. It will be assumed in this 
chapter and the next that deformations are so small as to be negligible and, therefore, 
the members will be treated as though they are rigid. The subject of mechanical 
vibrations, which is beyond the scope of this book, considers the flexibility of 
machine components and the resulting effects on machine behavior. A third major 
assumption that is often made is that friction effects are negligible. Friction is inherent 
in all devices, and its degree is dependent upon many factors, including types of 
bearings, lubrication, loads, environmental conditions, and so on. Friction will be 
neglected in the first few sections of this chapter, with an introduction to the subject 
presented. In addition to assumptions of the types discussed above, other assumptions 
may be necessary, and some of these will be addressed at various points throughout 
the chapter. 

The first part of this chapter is a review of general force analysis principles 
and will also establish some of the convention and terminology to be used in 
succeeding sections. The remainder of the chapter will then present both graphical 
and analytical methods for static-force analysis of machines. 
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Figure 5.1(A) A four-bar linkage. 

 
► 5.1.1 Free-Body Diagrams: 
 

 Engineering experience has demonstrated the importance and usefulness of 
free-body diagrams in force analysis. A free-body diagram is a sketch or drawing of 
part or all of a system, isolated in order to determine the nature of forces acting on 
that body. Sometimes a free-body diagram may take the form of a mental picture; 
however, actual sketches are strongly recommended, especially for complex 
mechanical systems. 

Generally, the first, and one of the most important, steps in a successful force 
analysis is the identification of the free bodies to be used. Figures 5.1B through 5.1E 
show examples of various free bodies that might be considered in the analysis of the 
four-bar linkage shown in Figure 5.1A. In Figure 5.1B, the free body consists of the 
three moving members isolated from the frame; here, the forces acting on the free 
body include a driving force or torque, external loads, and the forces transmitted: 

 
 

 
 
 
 
 
 
 

   
 

 
 
 
 
 

    
 
 
 
 
 
 

Figure 5.1(B) Free-body diagram 
of the three moving links 

Figure 5.1(C) Free-body diagram of 
two connected links  

Figure 5.1(D) Free-body diagram 
of a single link  

Figure 5.1(E) Free body diagram 
of part of a link.  

F03 F03 
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► 5.1.2 Static Equilibrium: 
 

For a free body in static equilibrium, the vector sum of all forces acting on the 
body must be zero and the vector sum of all moments about any arbitrary point must 
also be zero. These conditions can be expressed mathematically as follows: 

0F =∑     (5.1A) 

0T =∑     (5.1B) 
 
Since each of these vector equations represents three scalar equations, there are a total 
of six independent scalar conditions that must be satisfied for the general case of 
equilibrium under three-dimensional loading. 

There are many situations where the loading is essentially planar; in which case, 
forces can be described by two-dimensional vectors. If the xy plane designates the 
plane of loading, then the applicable form of Eqs. 5.1A and 5.1B is:- 

0xF =∑      (5.2A) 
0yF =∑      (5.2B) 
0zT =∑      (5.2C) 

Eqs. 5.2A to 5.2C are three scalar equations that state that, for the case of two-
dimensional xy loading, the summations of forces in the x and y directions must 
individually equal zero and the summation of moments about any arbitrary point in 
the plane must also equal zero. The remainder of this chapter deals with two-
dimensional force analysis. A common example of three-dimensional forces is gear 
forces. 
 
► 5.1.3 Superposition: 
 

The principle of superposition of forces is an extremely useful concept, 
particularly in graphical force analysis. Basically, the principle states that, for linear 
systems, the net effect of multiple loads on a system is equal to the superposition (i.e., 
vector summation) of the effects of the individual loads considered one at a time. 
Physically, linearity refers to a direct proportionality between input force and output 
force. Its mathematical characteristics will be discussed in the section on analytical 
force analysis. Generally, in the absence of Coulomb or dry friction, most 
mechanisms are linear for force analysis purposes, despite the fact that many of these 
mechanisms exhibit very nonlinear motions. Examples and further discussion in later 
sections will demonstrate the application of this principle 
 
► 5.1.4 Graphical Force Analysis: 
 

Graphical force analysis employs scaled free-body diagrams and vector 
graphics in the determination of unknown machine forces. The graphical approach is 
best suited for planar force systems. Since forces are normally not constant during 
machine motion. analyses may be required for a number of mechanism positions; 
however, in many cases, critical maximum-force positions can be identified and 
graphical analyses performed for these positions only. An important advantage of the 
graphical approach is that it provides useful insight as to the nature of the forces in the 
physical system. 
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This approach suffers from disadvantages related to accuracy and time. As is 
true of any graphical procedure, the results are susceptible to drawing and 
measurement errors. Further, a great amount of graphics time and effort can be 
expended in the iterative design of a machine mechanism for which fairly thorough 
knowledge of force-time relationships is required. In recent years, the physical insight 
of the graphics approach and the speed and accuracy inherent in the computer-based 
analytical approach have been brought together through computer graphics systems, 
which have proven to be very effective engineering design tools. There are a few 
special types of member loadings that are repeatedly encountered in the force analysis 
of mechanisms, These include a member subjected to two forces, a member subjected 
to three forces, and a member subjected to two forces and a couple. These special 
cases will be considered in the following paragraphs, before proceeding to the 
graphical analysis of complete mechanisms. 
 
► 5.2.1 Analysis of a Two-Force Member: 
 

A member subjected to two forces is in equilibrium if and only if the two 
forces (1) have the same magnitude, (2) act along the same line, and (3) are opposite 
in sense. Figure 5.2A shows a free-body diagram of a member acted upon by forces 

1F and 2F  where the points of application of these forces are points A and B. For 
equilibrium the directions of 1F and 2F must be along line AB and 1F must equal 2F−  
graphical vector addition of forces 1F and 2F is shown in Figure 5.2B, and, obviously, 
the resultant net force on the member is zero when 1 2F F= − . The resultant moment 
about any point will also be zero. 

Thus, if the load application points for a two-force member are known, the 
line of action of the forces is defined, and it the magnitude and sense of one of the 
forces are known, then the other force can immediately be determined. Such a 
member will either be in tension or compression. 
 

   
 
 
 
 
 
 
 
 

Figure 5.2(A) A two-force member. The 
resultant force and the resultant moment 
both equal Zero. 

Figure 5.2(B) Force summation for a 
two-force member 
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► 5.2.2 Analysis of a Three-Force Member: 
 

A member subjected to three forces is in equilibrium if and only if (1) the 
resultant of the three forces is zero, and (2) the lines of action of the forces all 
intersect at the same point. The first condition guarantees equilibrium of forces, while 
the second condition guarantees equilibrium of moments. The second condition can 
be under-stood by considering the case when it is not satisfied. See Figure 5.3A. If 
moments are summed about point P, the intersection of forces 1F and 2F , then the 
moments of these forces will be zero, but 3F will produce a nonzero moment, 
resulting in a nonzero net moment on the member. On the other hand, if the line of 
action of force 3F  also passes through point P (Figure 5.3B), the net moment will be 
zero. This common point of intersection of the three forces is called the point of 
concurrency. 

A typical situation encountered is that when one of the forces, 1F , is known 
completely, magnitude and direction, a second force, 2F , has known direction but 
unknown magnitude, and force 3F has unknown magnitude and direction. The 
graphical solution of this case is depicted in Figures 5.4A through 5.4C. First, the 
free-body diagram is drawn to a convenient scale and the points of application of the 
three forces are identified. These are points A, B, and C. Next, the known force 1F  is 
drawn on the diagram with the proper direction and a suitable magnitude scale. The 
direction of force 2F  is then drawn, and the intersection of this line with an extension 
of the line of action of force 1F  is the concurrency point P. For equilibrium, the line 
of action of force 3F  must pass through points C and P and is therefore as shown in 
Figure 5.4A. 

The force equilibrium condition states that 
  1 2 3 0F F F+ + =  
 

    
 

 
Since the directions of all three forces are now known and the magnitude of 1F were 
given, this equation can be solved for the remaining two magnitudes. A graphical  

Figure 5.3(A) The three forces on the 
member do not intersect at a common 
point and there is a nonzero resultant 
moment. 

Figure 5.3(B) The three forces 
intersect at the same point P, called 
the concurrency point, and the net 
moment is zero. 
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Solution follows from the fact that the three forces must form a closed vector loop, 
called a force polygon. The procedure is shown in Figure 5.4B. Vector 1F is redrawn. 
From the head of this vector, a line is drawn in the direction of force 2F , and from the 
tail, a line is drawn parallel to 3F . The intersection of these lines closes the vector loop 
and determines the magnitudes of forces 2F and 3F . Note that the same solution is 
obtained if, instead, a line parallel to 3F  is drawn from the head of 1F , and a line 
parallel to 2F  is drawn from the tail of 1F . See Figure 5.4C.  
 

 
 

 
 
 
  

This is so because vector addition is commutative, and, therefore, both force 
polygons are equivalent to the vector equation above. It is important to remember 
that, by the definition of vector addition, the force polygon corresponding to the 
general force equation  

0F =∑  

Will have adjacent vectors connected head to tail. This principle is used in identifying 
the sense of forces 2F  and 3F in Figures 5.4B and 5.4C. Also, if the lines of action of 

1F and 2F are parallel," then the point of concurrency is at infinity, and the third force 

3F  must be parallel to the other two. In this case, the force polygon collapses to a 
straight line. 

Figure 5.4(A) Graphical force 
analysis of a three- force member. 

Concurrency point P 

Line of action of F3 

Line of action F2 

Figure 5.4(B) Force polygon for the 
three forces member. 

Figure 5.4(C) An equivalent force 
polygon for the three force member 
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► 5.3.1 Graphical Force Analysis of the Slider Crank Mechanism: 
 

The slider crank mechanism finds extensive application in reciprocating 
compressors, piston engines, presses, toggle devices, and other machines where force 
characteristics are important. The force analysis of this mechanism employs most of 
the principles described in previous sections, as demonstrated by the following 
example. 

 
▼ EXAMPLE 5.1 
 
Static-force analysis of a slider crank mechanism is discussed. Consider the slider 
crank linkage shown in Figure 5.5A, representing a compressor, which is operating at 
so low a speed that inertia effects are negligible. It is also assumed that gravity 
forces are small compared with other forces and that all forces lie in the same plane. 
The dimensions are OB = 30 mm and BC == 70 mm, we wish to find the required  
crankshaft torque T and the bearing forces for a total gas pressure force P = 40N at  
the instant when the crank angle 45φ = ° . 
 
 

 

SOLUTION 
The graphical analysis is shown in Figure 5.5B. First, consider connecting rod 2. In 
the absence of gravity and inertia forces, this link is acted on by two forces only, at 
pins B and C. These pins are assumed to be frictionless and, therefore, transmit no 
torque. Thus, link 2 is a two-force member loaded at each end as shown. The forces 

12F  and 32F  lie along the link, producing zero net moment, and must be equal and 
opposite for equilibrium of the link. At this point, the magnitude and sense of these 
forces are unknown. 

Next, examine piston 3, which is a three-force member. The pressure force P is 
completely known and is assumed to act through the center of the piston (i.e., the 
pressure distribution on the piston face is assumed to be symmetric). From Newton's 
third law, which states that for every action there is an equal and opposite reaction, it 
follows that 23 32F F= − , and the direction of 23F  is therefore known. In the absence of 
friction, the force of the cylinder on the piston, 03F , is perpendicular to the cylinder 
wall, and it also must pass through the concurrency point, which is the piston pin C. 
Now, knowing the force directions, we can construct the force polygon for member 3 
(Figure 5.5B). Scaling from this diagram, the contact force between the cylinder and 
piston is 03 12.70F N= , acting upward, and the magnitude of the bearing force at C is 

23 32 42.0F F N= =  . This is also the bearing force at crankpin B, because 12 32F F= − . 
Further, the force directions for the connecting rod shown in the figure are correct, 
and the link is in compression. 

OB = 30 mm 
BC = 70 mm 

45φ = °   Figure 5.5(A) Graphical force 
analysis of a slider crank 
mechanism, which is acted on by 
piston force P and crank torque T   
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Finally, crank 1 is subjected to two forces and a couple T (the shaft torque T is 
assumed to be a couple). The force at B is 12 21F F= −  and is now known. For force 
equilibrium, 01 21F F= −  as shown on the free-body diagram of link 1. However these 
forces are not collinear, and for equilibrium, the moment of this couple must be 
balanced by torque T. Thus, the required torque is clockwise and has magnitude 
 21 (42.0 )(26.6 ) 1120 . 1.120 .T F h N mm N mm N m= = = =  

It should be emphasized that this is the torque required for static equilibrium in the 
position shown in Figure 9.10A. If torque information is needed for a complete 
compression cycle, then the analysis must be repeated at other crank positions 
throughout the cycle. In general, the torque will vary with position. 
 

 
 
► 5.3.1 Graphical Force Analysis of the Four-Bar Linkage: 
 
The force analysis of the four-bar linkage proceeds in much the same manner as that 
of the slider crank mechanism. However, in the following example, we will consider 
the case of external forces on both the coupler and follower links and will utilize the 
principle of superposition. 
 
▼ EXAMPLE 5.2 
 
Static-force analysis of a four-bar linkage is considered. The link lengths for the four-
bar linkage of Figure 5.6 A are given in the figure. In the position shown, coupler link 
2 is subjected to force F2 of magnitude 47 N, and follower link 3 is subjected to force 
F3, of magnitude 30 N. Determine the shaft torque Ti on input link1 and the bearing 
loads for static equilibrium. 
  

Figure 5.5(B) Static force 
balances for the three 
moving links, each 
considered as a free body 
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SOLUTION 
As shown in Figure 5.6A, the solution of the stated problem can be obtained by 
superposition of the solutions of sub problems I and II. In sub problem I, force F3 is 
neglected, and in sub problem II, force F2 is neglected. This process facilitates the 
solution by dividing a more difficult problem into two simpler ones. 

The analysis of sub problem I is shown in Figure 5.6B, with quantities 
designated by superscript I. Here, member 3 is a two-force member because force F3 
is neglected. The direction of forces 1

23F and 1
03F are as shown, and the forces are 

equal and opposite (note that the magnitude and sense of these forces are as yet 
unknown), This information allows the analysis of member 2, which is a three-force 
member with completely known force F2, known direction for 1

32F , and, using the 
concurrency point, known direction for 1

12F . Scaling from the force polygon, the 
following force magnitudes are determined (the force directions are shown in Figure 
(5.6B): 

1 1 1 1 1
32 23 03 12 2121.0 36F F F N F F N= = = = =  

Link 1 is subjected to two forces and couple 1
1T , and for equilibrium, 

11 11 11 11
03 23 21 0129.0F N F F F= = =  

And; 1 1 1
1 21 (36 )(11 ) 396 .T F h N mm N mm CW= = =  

The analysis of sub problem II is very similar and is shown in Figure 5.6C, where 
superscript II is used. In this case, link 2 is a two-force member and link 3 is a three-
force member, and the following results are obtained: 

 11 11 11 11
03 23 21 0129 17F N F F F N= = = =  

And; 11 11 11
1 21 (17 )(26 ) 442 .T F h N mm N mm CW= = =  

The superposition of the results of Figures 5.6B and 5.6C is shown in Figure 5.6D. 
The results must be added vectorially, as shown. By scaling from the free-body 
diagrams, the overall bearing force magnitudes are 

Total problem Sub problem I        + Sub problem II  

Figure 5.6(A) Graphical force analysis of a four-bar linkage, 
utilizing the principle of the superposition  
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01 23

12 03

50 31
50 49

F N F N
F N F N

= =
= =

 

And the net crankshaft torque is 

 1 11
1 1 1 396 . 442 . 838 .T T T N mm N mm N mm CW= + = + =  

The directions of the bearing forces are as shown in the figure. These resultant 
quantities represent the actual forces experienced by the mechanism. It can be seen 
from the analysis that the effect of the superposition principle, in this example, was to 
create sub problems containing two-force members, from which the separate analyses 
could begin. In an attempt of a graphical analysis of the original problem without 
superposition, there is not enough intuitive force information to analyze three-force 
members 2 and 3, because none of the bearing force directions can be determined by 
inspection. 
 

 

Figure 5.6B 
The solution of 
sub problem I 

Figure 5.6C 
The solution of 
sub problem II 
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► PROBLEMS◄ 
 
Perform a graphical static-force analysis of the given mechanism. Construct the 

complete force polygon for determining bearing forces and the required input force or 
torque. Mechanism dimensions are given in the accompanying figures. 
 

1- The applied piston load P on the offset slider crank mechanism of Figure1 remains 
constant as angle φ  varies and has a magnitude of 100 Ib. Determine the required 
input torque T1 for static equilibrium at the following crank positions: 

 

. 45

. 135
. 270
. 315

a
b
c
d

φ
φ
φ
φ

= °
= °
= °
= °

 

 
 
 
 
2- Determine the required input torque Ti for static equilibrium of the mechanism 
shown in Figure2. Forces F2 and F3, have magnitudes of 20 Ib and 10 Ib. 
respectively. Force Fa acts in the horizontal direction. 

 
 
3- Determine the required input torque T1 for static equilibrium of the mechanism shown 

in Figure3. Torques T2 and T3 are pure torques, having magnitudes of 10N.m • m and  
7 N.m, respectively. 

 

 

Figure 1 

Figure 2 

Figure 3 
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Dynamic Force Analysis 

 
 

► 5.4.1 D'Alembert's Principle and Inertia Forces:  
 
An important principle, known as d'Alembert's principle, can be derived from 

Newton's second law. In words, d'Alembert's principle states that the reverse-effective 
forces and torques and the external forces and torques on a body together 
give statical equilibrium.  

( ) 0GF ma+ − =       (5.3A) 
 ( ) 0eG GT I α+ − =       (5.3B) 

The terms in parentheses in Eqs. 5.3A and 5.3B are called the reverse-effective force 
and the reverse-effective torque, respectively. These quantities are also referred to as 
inertia force and inertia torque. Thus, we define the inertia force F, as 
 Fi = -maG        (5.4A) 
This reflects the fact that a body resists any change in its velocity by an inertia force 
proportional to the mass of the body and its acceleration. The inertia force acts 
through the center of mass G of the body. The inertia torque or inertia couple C, is 
given by:  
 i GC I α= −        (5.4B) 

As indicated, the inertia torque is a pure torque or couple. From Eqs. 5.4A and 5.4B, 
their directions are opposite to that of the accelerations. Substitution of Eqs. 5.4A and 
5.4B into Eqs, 5.3A and 5.3B leads to equations that are similar to those used for 
static-force analysis: 
 0e iF F F= + =∑ ∑       (5.5A) 

 0G eG iT T C= + =∑ ∑      (5.5B) 
Where F∑ refers here to the summation of external forces and, therefore, is the 
resultant external force, and eGT∑ is the summation of external moments, or resultant 
external moment, about the center of mass G. Thus, the dynamic analysis problem is 
reduced in form to a static force and moment balance where inertia effects are treated 
in the same manner as external forces and torques. In particular for the case of 
assumed mechanism motion, the inertia forces and couples can be determined 
completely and thereafter treated as known mechanism loads. 

Furthermore, d'Alembert's principle facilitates moment summation about any 
arbitrary point P in the body, if we remember that the moment due to inertia force F, 
must be included in the summation. Hence, 

0P eP i PG tT T C R F= + + × =∑ ∑     (5.5C) 

Where; PT∑  is the summation of moments, including inertia moments, about point 
P. ePT∑  is the summation of external moments about P, C, is the inertia couple 
defined by Eq. 5.4B, F, is the inertia force defined by Eq. 5.4A, and RPG is a vector 
from point P to point C. It is clear that Eq. 5.5B is the special case of Eq.5.5C, where 
point P is taken as the center of mass G (i.e., RPG = 0). 

For a body in plane motion in the xy plane with all external forces in that plane. 
Eqs. 5.5A and 5.5B become: 



MEG373           Kinematics And Dynamics of Machinery                          Chapter 5   

 
AAiT    Meng 3071     Kinematics And Dynamics of Machinery Page 14 
 

( ) 0x ex ix ex GxF F F F ma= + = + − =∑ ∑ ∑    (5.6A) 
( ) 0y ey iy ey GyF F F F ma= + = + − =∑ ∑ ∑    (5.6B) 
( ) 0G eG i eG GT T C T I α= + = + − =∑ ∑ ∑    (5.6C) 

Where aGx and aGy are the x and y components of aG. These are three scalar equations, 
where the sign convention for torques and angular accelerations is based on a right-
hand xyz coordinate system; that is. Counterclockwise is positive and clockwise 
is negative. The general moment summation about arbitrary point P, Eq. 5.5C, 
becomes:  

 
. .

( ) ( ) ( ) 0
P eP i PGx iy PGy ix

eP G PGx Gy PGy Gx

T T C R F R F

T I R ma R maα

= + + −

= + − + − − − =
∑ ∑

∑
  (5.6D) 

Where RPGx and RPGy are the x and y components of position vector RPG. This 
expression for dynamic moment equilibrium will be useful in the analyses to be 
presented in the following sections of this chapter. 
 
► 5.4.2 Equivalent Offset Inertia Force:  
 

For purposes of graphical plane force analysis, it is convenient to define what is 
known as the equivalent offset inertia force. This is a single force that accounts for 
both translational inertia and rotational inertia corresponding to the plane motion of a 
rigid body. Its derivation will follow, with reference to Figures 5.7A through 5.7D. 

Figure 5.7A shows a rigid body with planar motion represented by center of 
mass acceleration aC and angular accelerationα . The inertia force and inertia torque 
associated with this motion are also shown. The inertia torque GI α− can be expressed 
as a couple consisting of forces Q and (- Q) separated by perpendicular 

   
 

   
 
 
 
 
 
 

(A) 
(B) 

(C) (D) 

/G Gh I maα=
 

/G Gh I maα=  

Figure 5.7 (A) Derivation of the equivalent offset inertia force associated with planer motion of a rigid 
body. (B) Replacement of the inertia torque by a couple. (C) The strategic choice of a couple. (D) The 
single force is equivalent to the combination of a force and a torque in figure 5.7(A)     
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Distance h, as shown in Figure 5.7B. The necessary conditions for the couple to be 
equivalent to the inertia torque are that the sense and magnitude be the same. 
Therefore, in this case, the sense of the couple must be clockwise and the magnitudes 
of Q and h must satisfy the relationship 

 . .GQ h I α=  

Otherwise, the couple is arbitrary and there are an infinite number of possibilities that 
will work. Furthermore, the couple can be placed anywhere in the plane. 

Figure 5.7C shows a special case of the couple, where force vector Q is equal to 
maG and acts through the center of mass. Force (- Q) must then be placed as shown to 
produce a clockwise sense and at a distance; 

 G G

G

I I
h

Q ma
α α

= =       (5.7) 

Force Q will cancel with the inertia force Fi= - maG, leaving the single equivalent 
offset force shown in Figure 5.7D, which has the following characteristics: 

1. The magnitude of the force is | maG |. 
2. The direction of the force is opposite to that of accelerationα . 
3. The perpendicular offset distance from the center of mass to the line of 

action of the force is given by Eq. 5.7. 
4. The force is offset from the center of mass so as to produce a moment about 

the center of mass that is opposite in sense to acceleration a. 
The usefulness of this approach for graphical force analysis will be demonstrated in 
the following section. It should be emphasized, however, that this approach is usually 
unnecessary in analytical solutions, where Eqs. 5.6A to 5.6D. Including the original 
inertia force and inertia torque, can be applied directly. 
 
► 5.4.3 Dynamic Analysis of the Four-Bar Linkage:  
 
 The analysis of a four-bar linkage will effectively illustrate most of the ideas 
that have been presented; furthermore, the extension to other mechanism types should 
become clear from the analysis of this mechanism. 
 
▼ EXAMPLE 5.3 
The four-bar linkage shown in Figure 5.8A has the dimensions shown in the figure 
where G refers to center of mass, and the mechanism has the following mass 

properties: 

 

2
1 1

2
2 2

2
3 3

0.10 20 .

0.20 400 .

0.30 20 .

G

G

G

m kg I kg mm
m kg I kg mm
m kg I kg mm

= =

= =

= =

 

Determine the instantaneous value of drive torque T required to produce an assumed 
motion given by input angular velocity 95 /rad sω =  counterclockwise and input 
angular acceleration a1 = 0 for the position shown in the figure. Neglect gravity and 
friction effects. 
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SOLUTION 
This problem falls in the first analysis category that is given the mechanism motion, 
determine the resulting bearing forces and the necessary input torque. Therefore, the 
first step in the solution process is to determine the inertia forces and inertia torques. 
Thereafter, the problem can be treated as though it were a static-force analysis 
problem. 

Kinematics analysis of the mechanism can be accomplished by using any of the 
methods presented in earlier chapters. Figure 5.8B shows a graphical analysis 
employing velocity and acceleration polygons. From the analysis, the following 
accelerations are determined: 

 
1 1

2 2
2 2

2 2
3 3

0( ) 0( )

235,000 312 / 520 /

235,000 308 / 2740 /

C

C

C

a Stationary Center of mass given
a mm Sec rad s ccw
a mm Sec rad s cw

α

α

α

= =

= ∠ ° =

= ∠ ° =

 

 

Where the angles of the acceleration vectors are measured counterclockwise from the 
positive x direction shown in Figure 5.8A. From Eqs. 5.4A and 5.4B, the inertia 
forces and inertia torques are; 

 

 

1
2

2 2 2
2

3 3 3

1
2 2

2 2 2
2 2

3 3 3

0

47,000 132 . / 47 132

30,000 128 . / 30 132
0

208,000 . / 208 .

274,000 . / 274 .

i

i G

i G

i

i G

i G

F
F m a kg mm s N
F m a kg mm s N
C
C I kg mm s cw N mm cw
C I kg mm s ccw N mm ccw

α

α

=

= − = ∠ ° = ∠ °

= − = ∠ ° = ∠ °
=

= − = =

= − = =

 

 

 

The inertia forces have lines of action through the respective centers of mass, and the 
inertia torqueses are pure couples. 

Figure 5.8(A) 
The four-bar 
linkage of 
Example 5.3 
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 GRAPHICAL SOLUTION 
In order to simplify the graphical force analysis, we will account for the inertia 
torques by introducing equivalent offset inertia forces. These forces are shown in 
Figure 2.8C, and their placement is determined according to the previous section. For 
link 2, the offset force F2 is equal and parallel to inertia force F12.Therefore, 

 2 47 132F N= ∠ °  

It is offset from the center of mass G2 by a perpendicular amount equal to 

 2 2
2

2 2

208 4.43
47

G

G

I
h mm

m a
α

= = =  

And this offset is measured to the left as shown to produce the required clockwise 
direction for the inertia moment about point G2. In a similar manner, the equivalent 
offset inertia force for link 3 is 

3 30 128F N= ∠ °  at an offset distance 3 3
3

3 3

274 9.13
30

G

G

I
h mm

m a
α

= = =  

Where this offset is measured to the right from G3 to produce the necessary 

counterclockwise inertia moment about G3. From the values of h2 and h3 and the 

Velocity polygon 

Acceleration polygon 
2

2

2
2

3

235,000 312 /
520 /

100,000 308 /
2740 /

G

G

a mm Sec
rad Sec ccw

a mm Sec
rad Sec cw

α

α

= ∠ °
=

= ∠ °
=

  

Figure 5.8(B) 
the velocity and 
acceleration 
analysis 
necessary for 
determination 
of inertia forces 
and inertia 
t  
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angular relationships, the force positions r2 and r3 in Figure 5.8C are computed to 

be 

2
2 2

3
3 3 3

45.10
cos(132 17 90 )

38.40
cos(90 85 128 )

hr BG mm

hr O G mm

= − =
°− °− °

= + =
°+ °− °

 

Now, we wish to perform a graphical force analysis for known forces F2 and F3. 
This has been done in Example Problem 9.2, and the reader is referred to that 
 

 
 
Analysis. The required input torque was found to be T = 383N.mm cw 

ANALYTICAL SOLUTION 
Having determined the equivalent offset inertia forces F2 and F3 the analytical 
solution could proceed according to Example Problem 9, 6, which examined the same 
problem. However, it is not necessary to convert to the offset force, and here we will 
carry out the analytical solution in terms of the original inertia forces and inertia 
couples. 
Figure 5.8D shows the linkage with the inertia torques and the inertia forces in xy 
coordinate form. Consistent with Figure 9.15A, we define the following quantities: 

 

1 2 3

1 2 3

1 2 3

2 2

3 3

2 3

1 1 1

30 100 50
135 17 85
0 50 25

47cos(132 ) 31.40 47sin(132 ) 34.90

30cos(128 ) 18.50 30sin(128 ) 23.60

208 . 274 .
0

x y

x y

x y

mm mm mm

r r mm r mm
F N F N
F N F N
C N mm C N mm
F F C

φ φ φ
= = =
= ° = ° = °
= = =
= ° = − = ° =

= ° = − = ° =

= − =
= = =

  

 

Figure 5.8(C) 
Equivalent offset 
inertia forces for 
members 2 and 3   
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Where the differences are due to round off: 

 11 21 1

12 22 2

49.8 29.2 786
4.36 95.6 1920

a a b
a a b

= − = = −
= − = −

 

Then,  23 12

03 01

31.30 50.30
49.20 50.30

F N F N
F N F N

= =
= =

 

And   851 .T N mm= −  
 

Thus, it can be seen that the general analytical solution of the four-bar linkage 
presented in this Chapter for static-force analysis is equally well suited for dynamic- 
force analysis. Before leaving this example, a couple of general comments should be 
made. 
First, the torque determined is the instantaneous value required for the prescribed 
motion, and the value will vary with position. Furthermore, for the position 
considered, the torque is opposite in direction to the angular velocity of the crank. 
This can be explained by the fact that the inertia of the mechanism in this position is 
tending to accelerate the crank in the counterclockwise direction, and, therefore, the 
required torque must be clockwise to maintain a constant angular speed. If a constant 
speed is to be maintained throughout the mechanism cycle, then there will be other 
positions of the mechanism for which the required torque will be counterclockwise. 
The second comment is that it may be impossible to find a mechanism actuator, such 
as an electric motor, that will supply the required torque versus position behavior. 
This problem can be alleviated, however, in the case of a "constant" rotational speed 
mechanism through the use of a device called a flywheel, which is mounted on the 
input shaft and produces a relatively large mass moment of inertia for crank 1. The 
flywheel can absorb mechanism torque and energy- variations with minima] speed 
fluctuation and. thus, maintains an essentially constant input speed. In such a case. 
The assumed-motion approach to dynamic-force analysis is appropriate. 
 
 
 
 

Figure 5.8(D) 
Combinations of 
inertia forces and 
inertia torques for 
members 2 and 3 
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► 5.4.3 Dynamic Analysis of the Slider-Crank Mechanism:  
 
 Dynamic forces are a very important consideration in the design of slider 
crank mechanisms for use in machines such as internal combustion engines and 
reciprocating compressors. Dynamic-force analysis of this mechanism can be carried 
out in exactly the same manner as for the four-bar linkage in the previous section. 
Following such a process a kinematics analysis is first performed from which 
expressions are developed for the inertia force and inertia torque for each of the 
moving members, These quantities may then be converted to equivalent offset inertia 
forces for graphical analysis or they may be retained in the form of forces and 
torques for analytical solution, utilizing, in either case, the methods presented in this 
chapter. In fact, the analysis of the slider crank mechanism is somewhat easier than 
that of the four-bar linkage because there is no rotational motion and, in turn, no 
inertia torque for the piston or slider, which has translating motion only. The 
following paragraphs will describe an analytical approach in detail. 

Figure 5.9A is a schematic diagram of a slider crank mechanism, showing the 
crank 1, the connecting rod 2, and the piston 3, all of which are assumed to be rigid. 
The center of mass locations are designated by letter G, and the members have masses 
m, and moments of inertia IGi, i = 1, 2, 3. The following analysis will consider the 
relationships of the inertia forces and torques to the bearing reactions and the drive 
torque on the crank, at an arbitrary mechanism position given by crank angleφ  
Friction will be neglected. 

Figure 5.9B shows free-body diagrams of the three moving members of the 
linkage. Applying the dynamic equilibrium conditions. Eqs. 5.6A to 5.6D, to each 
member yields the following set of equations. For the piston (moment equation not 
included): 
 23 3 3( ) 0x GF m a+ − =       (5.8A) 
 03 23 0y yF F+ =       (5.8B) 
 
 

 
 
 
 
 

Figure 5.9(A) 
Dynamic-force 
analysis of a slider 
crank mechanism   
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For the connecting rod (moments about point B): 
 12 32 2 2( ) 0x x G xF F m a+ + − =      (5.8C) 
 12 32 2 2( ) 0y y G yF F m a+ + − =      (5.8D) 

 32 32 2 2

2 2 2 2

sin cos ( ) sin

( ) cos ( ) 0
x y G x G

G y G G

F F m a
m a I
θ θ θ

θ α

+ + −

+ − + − =

  


   (5.8E) 

 
For the crank (moments about point O1): 
 01 21 1 1( ) 0x x G xF F m a+ + − =      (5.8F) 
 01 21 1 1( ) 0y y G yF F m a+ + − =      (5.8G) 

 1 21 21 1 1

1 1 1 1

sin cos ( ) sin

( ) cos ( ) 0
x y G x G

G y G G

T F r F r m a r
m a r I

φ φ φ

φ α

− + + −

+ − + − =
  (5.8H) 

 
Where T is the input torque on the crank. This set of equations embodies both of the 
dynamic-force analysis approaches described in Newton's Laws. However, its form is 
best suited for the case of known mechanism motion, as illustrated by the following 
example. 
 
 
 
 
 

Figure 5.9(B) Free-body diagrams of the moving members 
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MEG 373 Kinematics and Dynamics of Machines 
Force Analysis (Graphical Method) 

Student Name:              Student No.: 
 
Question 1: 
 The four-bar mechanism of Figure has one external force P = 200 Ibf and one 
inertia force S = 150 Ibf acting on it. The system is in dynamic equilibrium as a result 
of torque T2 applied to link 2. Find T2 and the pin forces. 
 (a) Use the graphical method based on free-body diagrams. 
 

 

 
 
 

O2A   = 30 mm 
AB     = 60 mm 
O4B   = 45 mm 
O2O4 = 90 mm 200 lbf  

23 mm 

S=150 lbf 
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MEG 373 Kinematics and Dynamics of Machines 
Force Analysis (Graphical Method) 

Student Name:              Student No.: 
 
Question 2: 
 The input crank of the four-bar linkage of Figure rotates at a constant speed of   
w2 = 500 rad/Sec (C.W). Each link has significant inertia. The velocity and acceleration 
diagrams are provided in the figure. Calculate the values of all velocities and 
accelerations in these diagrams. 
Then;   
(a) Determine the linear accelerations of each center of gravity and angular accelerations 

2 3,α α  and 4α .  
(b) Find the inertia forces 02 03,F F  and 04F . 
(c) Find the offsets 2 3,ε ε  and 4ε  of the inertia forces. 
(d) Sketch the inertia forces in their correct positions on the linkage. 
(e) Find the directions and magnitudes of the pin forces at A and B. 
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MEG 373 Kinematics and Dynamics of Machines 
Force Analysis (Graphical Method) 

Student Name:              Student No.: 
 
Question 3: 
 The slider-crank mechanism of Figure is to be analyzed to determine the effect 
of the inertia of the connecting rod (link 3). The velocity diagram is shown in the figure 
and the magnitude of VA is given. Calculate the crank vector O2A and the input angular 
velocity W2, and proceed to calculate the values of all vectors in the velocity diagram. 
Then;  
(a) Determine the linear acceleration of the center of gravity of link 3 and the angular 

acceleration 3α . 
(b) Find the inertia force F03 of the coupler link. 
(c) Find the offset 3ε  of the inertia force F03. 
(d) Sketch the inertia force in its correct position on the linkage. 
(e) Find the directions and magnitudes of the pin forces at A and B. 
(f) Determine the required input torque to drive this mechanism in this position under 

the conditions described in this problem.  
 
 
 
 
 

 
 

AB   = 4 in 
AG3 = 3 in 
O2B = 5.5 in 
M3   = 3 slugs  
I3     = 12 slug.in2 

VA = 20 in/Sec 
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MEG 373 Kinematics and Dynamics of Machines 
Force Analysis (Graphical Method) 

Student Name:              Student No.: 
 
Question 4: 
  
(a) Find the magnitude Ag4. 
(b) Find the angular accelerator 4α . 
(c) What is the magnitude of the inertia force F04? 
(d) What is the magnitude of the offset 4ε ? 
(e) Draw the vector F04 in the correct location on the mechanism. 
(f) Given that the mechanism is driven by an input torque, TIN, applied to link 2. 

Determine the following: magnitudes of all pin forces, and magnitude and 
direction of the input torque. 

 

 
 
 

 
 
 
 

 
 

O2B    = 80 mm 
BC     = 160 mm 
O4C   = 100 mm 
O4G4 = 50 mm 
O2G4 = 200 mm 

T
CA  

168,000 mm/Sec2 

578,000 mm/Sec2 
( )
T
CBA  

255,000 mm/Sec2 
 

b ′′  4000 mm/Sec2  
        N

CRA  

288,000 mm/Sec2 

AC = AB + ACB 


