
Dr. Mohamed Mahmoud

http://iweb.tntech.edu/mmahmoud/
mmahmoud@tntech.edu

Chapter 5

HCS12 Timer Functions

ECE 3120

Outline

5.1 Timer

5.2 Input Capture and Output Compare Functions

5.3 Applications on Input Capture Function

5.4 Applications on Output Compare Function

5 - 1

Why are Timer Functions Important?

- Many useful applications are difficult to implement without a
dedicated timer function.

- Examples:
- Precise time delay creation and measurement
- Period and pulse width measurement
- Frequency measurement
- Event counting
- Arrival time comparison
- Time-of-day tracking
- Periodic interrupt generation
- Waveform generation

These applications can be done by the timer’s circuit without the
direct involvement of the CPU

These applications will be discussed in this chapter.

The main timer in HCS12

If E-Clock = 24MHz

Min. prescale value = 1 -- Interrupt every 2.73 ms

Max. prescale value = 128 -- Interrupt every 349.53 ms

To do an action every longer time, take action every n interrupts

Ex. when prescale = 128 and an action is taken every 4 interrupts --
the action is taken every 1.4 second

E-Clock

Timer
Interrupt every:

TCNT

- Timer Counter Register (TCNT): 16-bit counter timer
- It counts from 0000 to FFFF, then it rolls to 0000 and makes interrupt.
- One clock is needed to increment the counter by 1.
- It can make interrupt every 216 counts (or clocks).

5 - 2

Interrupts

How to program the timer

1- Interrupt vector: $FFDE

org $FFDE
dc.w Timer_ISR ;load timer interrupt routine vector

Priority

5 - 3

- Timer System Control Register 2 (TSCR2)

- Bit 7 is the timer overflow interrupt enable bit.

- Bits 0, 1, and 2 are used to select the prescale.

2- Local timer flow interrupt enable bit

TOI enables/disables interrupts, but it does not start/stop counting

5 - 4

When interrupt is disabled, the timer counts but an interrupt is not
generated when it rolls from FFFF to 0000

Timer System Control Register 1 (TSCR1)

- Setting and clearing TEN (bit 7 of TSCR1) will start and stop the counting
of the TCNT.

TEN starts/stops counting. It does not enable/disable interrupts but
when the counter stops counting, the interrupts stop automatically
because it will not roll from FFFF to 0000

Start/stop counting

5 - 5

1- TFFCA (bit 4) = 0: The user must write one to TOF flag to clear it.

2- TFFCA (bit 4) = 1: Enable fast timer flag clear function.
TOF is automatically cleared when you access (read/write) TCNT or timer
functions’ registers (input capture read -or- output compare write).
Helps reduce software overhead

- Timer Interrupt Flag 2 Register (TFLG2)

- Bit 7 (TOF) will be set whenever TCNT overflows from $FFFF to
$0000 – when the timer makes interrupt.

3- Timer Interrupt Flag

movb #%10000000,TFLG2

5 - 6

Timer System Control Register 1 (TSCR1)

Two ways to clear TOF

- Just like the RTI system, we can make a timer out of a counter
attached to the system clock

- But, unlike the RTI system, we attach the counter to some
additional hardware to create some additional functionality

- These functions are: Input capture and Output compare

5 - 7

Outline

5.1 Timer

5.2 Input Capture and Output Compare
Functions

5.3 Applications on Input Capture Function

5.4 Applications on Output Compare Function

1- 16-bit timer counter (TCNT)

2- Eight channels programmed as
input capture or output compare.
The pins of these channels are
port T.

3- 16-bit Pulse Accumulator A

The HCS12 Timer System

TCNT

Port T

11 interrupt sources
1 for Timer overflow
8 for channels
2 for Pulse Accumulator A

When a channel is not used, you
can use its pin as general input or
output port pin.

5 - 8

- When an event happens, the event time (the content of the timer
(TCNT)) is recorded in a register and makes interrupt (if enabled).

- The occurrence of an event is represented by a signal edge (rising or
falling edge).

- Each channel has a 16-bit capture register (TCx and x = {0, 1, .. ,7})
and an input pin on port T.

- If the time of event 1 is 0005 and the time of event 2 is 0009, then
1- Event 1 happened before event 2
2- The time difference between the 2 events = (0009 – 0005) * (1/F)

where F is the timer clock and (0009 – 0005) is the number of
clocks between the two events.

3- Event 1 happened at time (0005 * 1/F) from starting the timer
4- Event 2 happened at time (0009 * 1/F) from starting the timer

Input Capture Functions

5 - 9

- The HCS12 has eight output compare channels. Each channel has a
16-bit compare register (TCx) and an output action pin (PTx) in
port T.

- One of the applications of the output-compare function is to trigger
an action at a specific time in the future.

- Example, if you wanna do an action after 166.67 ms, the action
should be taken after 166.67ms/(1/24MHz) = 4000 clocks with
assuming E-clock = 24MHz and prescale = 1.

An output-compare register (TCx, x = 0..7) = the current contents
of the TCNT register + a value equal to the desired delay (4000)

Output Compare Functions

1- Write a value in a compare register (TCx and x = {0, 1, .. ,7})
2- Once the value of the main timer (TCNT) = the value in TCx:

1- Interrupt happens (if enabled) and action is taken.
2- The action can be outputting 0, 1 or toggle the PTx pin

5 - 10

Select either Input-Capture or Output-Compare Function

- The same pins can be used for Input-Capture and Output-Compare
Functions

- Only one function can be selected at a time.
- Timer input capture/output compare (TIOS) register is programmed to

select either input-capture or output-compare for each channel

movb #$00,TIOS ; all channels are input capture
movb #$FF,TIOS ; all channels are output capture
movb #$F0,TIOS ; the first 4 channels are input capture and

the last 4 channels are output capture
5 - 11

Priority

1- Interrupt vectors for Timer Channels:

org $FFE0
dc.w Timer_Ch7 ;load Channel 7 ISR vector

Example:
Set the interrupt vector of the timer channel 7

5 - 12

2- Local interrupt enable bits

- The enabling of the interrupt is controlled by the Timer Interrupt
Enable Register (TIE)

- Channels can generate interrupts if it is enabled or its bit in TIE is 1

movb #$1,TIE ; enable interrupt of channel 1
movb #$FF,TIE ; enable the interrupts of all channels

5 - 13

3- Interrupt Flags

- Whenever an interrupt happens, the associated timer interrupt
flag in Timer Interrupt Flag 1 (TFLG1) register will be set to 1.

Flag CxF is cleared by writing a “1” to bit x of this register

Example: movb #$01,TFLG1 will clear the C0F flag.

5 - 14

However, in case of “fast flag clear” mode (see slide 5-6), just
reading (input capture) or writing (output compare) the channel
register will automatically clear these flags

- The actions that can be activated on an output compare pin include
1. pull up to high
2. pull down to low
3. toggle

- The action is determined by the Timer Control Register 1 & 2 (TCTL1
& TCTL2):

The actions that can be activated on an output compare

5 - 15

Input capture respond to rising or falling edge?

- The signal edge to be captured is selected by Timer Control
Register 3 and 4 (TCTL3 and TCTL4).

- The edge to be captured is selected by two bits. The user can
choose to capture the rising edge, falling edge, or both edges.

5 - 16

- TCRE (bit 3) = 0, counter free run. It counts 0000 to FFFF and then 0000 to

FFFF and repeats.

- TCRE (bit 3) = 1, the timer can be reset to 0000 when TCNT equals TC7.

5 - 17

Timer System Control Register 2 (TSCR2)

Summary

1- Programming the timer interrupt

org $FFDE
dc.w timer_isr ; set up TCNT overflow interrupt vector

movb #$80,TSCR1 ;enable timer counter
movb #$86,TSCR2 ;enable TCNT overflow interrupt, set prescaler to 64
movb #%10000000,TFLG2 ;clear Timer interrupt flag

timer_isr: movb #%10000000,TFLG2 ; clear TOF flag

; code is here
rti

2- Programming the timer without using interrupt

movb #$80,TSCR1 ;enable timer counter
movb #$06,TSCR2 ;disable TCNT overflow interrupt, set prescaler to 64

5 - 18

org $FFEE
dc.w PT0_ISR ;load Channel 0 ISR vector

bclr TIOS,#$01 ;bit 0 is input-capture (not Output Compare)
movb #$01,TCTL4 ;capture the rising edge of PT0 signal
bset TIE,#$1 ;enable interrupt of channel 0
movb #$01,TFLG1 ; clear the C0F flag

PT0_ISR:
movb #$01,TFLG1 ; clear the C0F flag.
; code is here
rti

3- Programming input capture interrupt

bclr TIOS,#$01 ; bit 0 is input-capture (not Output Compare)
movb #$01,TCTL4 ; capture the rising edge of PT0 signal

4- Programming input capture with polling C0F bit (no interrupt)

5 - 19

Outline

5.1 Timer

5.2 Input Capture and Output Compare Functions

5.3 Applications on Input Capture Function

5.4 Applications on Output Compare Function

-

- Need to capture the main timer values (t1 and t2) corresponding to two
consecutive rising or falling edges

5 - 20

one period

(a) Capture two rising edges

one period

(b) Capture two falling edges

Figure 8.9 Period measurement by capturing two consecutive edges

t1 t2

Example: t1 = 6000 and t2 = 9000, then the timer counted 3000 counts (or
clocks) between two consecutive rising edges. The period = 3000 x 1/F,
where 1/F is the duration of one clock.

If each rising edge is an event, the period is the time between two
consecutive events

Period measurement

This program can be used
to measure the time
between two events

To measure a period that is equal to 128 ms, we have two options:

One: (will be used in next example)
- If prescale = 1, the longest period of the signal that can be measured is

216 ÷ 24 MHz = 2.73 ms. This means the timer may overflow several
times until it captures the falling edge.

- Keep track of the number of times the timer overflows.

- The number of overflows should be taken into account when calculating
the period.

Two: (will be used in this example)
- Set the prescale factor to 64. The timer overflow time = 174.72 ms >

the signal period (128ms) the two edges can be captured before the
timer overflows

- No need to keep track of the number of times the timer overflows.

Use the IC0 to measure the period of an unknown signal. The period is
known to be shorter than 128 ms. Assume that the E clock frequency is
24 MHz. Use the number of clock cycles as the unit of the period.

5 - 21

C0F = 1, when the
first rising edge comes

Timer does not count
if it is not enabled.

5 - 22

Interrupt is not used but polling
C0F bit is used.

C0F = 1, when the second
rising edge comes

; Assembly Program for Period Measurement
ABSENTRY Entry
INCLUDE 'mc9s12dp256.inc'

org $1000
edge1 ds.b 2 ; memory to hold the first edge
period ds.b 2 ; memory to store the period

org $1500
Entry: movb #$90,TSCR1 ;enable timer counter and enable fast timer flags clear

movb #$06,TSCR2 ;disable TCNT overflow interrupt, set prescaler to 64

bclr TIOS,#$01 ; bit 0 is input-capture (not Output Compare)
movb #$01,TCTL4; capture the rising edge of PT0 signal
movb #$01,TFLG1; clear the C0F flag

Here: brclr TFLG1,#$01,Here ; wait for the arrival of the first rising edge
ldd TC0 ;save the first edge, C0F is cleared automatically
std edge1

Here1: brclr TFLG1,#$01,Here1 ; wait for the arrival of the second edge

ldd TC0 ; d = the second edge
subd edge1 ; compute the period
std period 5 - 23

movb #$90,TSCR1 ;enable timer counter and enable fast timer flags clear

1 0 0 1 0 0 0 0

bclr TIOS,#$01 ; bit 0 is input-capture (not Output Compare)

0

5 - 24

movb #$06,TSCR2 ; disable TCNT overflow interrupt, set prescaler to 64

0 0 0 0 0 1 1 0

movb #$01,TCTL4 ; capture the rising edge of PT0 signal

0 0 0 0 0 0 0 1

5 - 25

movb #$01,TFLG1 ; clear the C0F flag

0 0 0 0 0 0 0 1

5 - 26

Repeat pervious program but by using interrupts

; Assembly Program for Period Measurement using interrupts
ABSENTRY Entry
INCLUDE 'mc9s12dp256.inc'

org $1000
edge1 ds.b 2 ; memory to hold the first edge
edge2 ds.b 2 ; memory to hold the first edge
Interruptsno ds.b 1 ; memory to number of interrupts
period ds.b 2 ; memory to store the period
org $FFEE
dc.w PT0_ISR ;load Channel 0 ISR vector

org $1500
Entry: movb #$90,TSCR1 ;enable timer counter and enable fast timer flags clear

movb #$06,TSCR2 ; disable TCNT overflow interrupt, set prescaler to 64

bclr TIOS,#$01 ; bit 0 is input-capture (not Output Compare)
movb #$01,TCTL4; capture the rising edge of PT0 signal
movb #$01,TFLG1; clear the C0F flag
bset TIE,#$1 ; enable interrupt of channel 0
clr Interruptsno 5 - 27

PT0_ISR: movb #$01,TFLG1 will clear the C0F flag.
Inc Interruptsno
ldaa Interruptsno
cmpa #1
bne two
ldd TC0 ;save the first edge’s time at the first interrupt
std edge1
rti

two: ldd TC0 ;save the second edge’s time at the second interrupt
std edge2
bclr TIE,#$1 ;disable interrupt of channel 0
rti

Again: ldaa Interruptsno
cmpa #2
bne again ; loop until two edges come

ldd edge2
subd edge1; compute the period
std period
here: bre here

5 - 28

- Need to capture the rising and falling edges

Pulse width

Rising edge Falling edge

Figure 8.10 Pulse-width measurement using input capture

5 - 29

Pulse width measurement: Write a program to measure the pulse width
of a signal connected to the PT0 pin. E-clock = 24 MHz

STEPS:

1. Set the prescale to 32.

2.The pulse width may be longer than 216 clock cycles, we need to keep
track of the number of times the timer overflows.

3. Variables: overflow = TCNT counter overflow count

diff = the difference of two consecutive edges

edge1= the captured time of the first edge

edge2 = the captured time of the second edge

4. The pulse width can be calculated by the following equations:
Case 1: edge2 edge1

pulse width = overflow × 216 + diff (= edge2 - edge1)
Case 2: edge2 < edge 1

pulse width = (overflow – 1) × 216 + diff

5 - 30

0000

FFFF

edge1

edge2

edge2 edge1

From edge1 to edge 2, the
number of counts = diff, then
add 216 for every overflow

0000

FFFF

edge2

edge1

edge2 < edge1

From edge1 to edge 2, the number
of counts = diff and number of
overflows is one, then add 216 for
every overflow after the first one.

diffdiff

5 - 31

Wait until the first edge comes

Timer overflow interrupt is enabled to count
how many times the timer overflows

This routine is called each time
the timer overflows. Increment
overflow each time the routine
is called.

Wait until the second edge comes

; Assembly Program to measure pulse width
ABSENTRY Entry
INCLUDE 'mc9s12dp256.inc'

org $1000
edge1 ds.b 2
overflow ds.b 2 ; counter to the number of overflows.
diff ds.b 2
PW dc.b 0,0,0,0
org $$FFDE
dc.w #timer_isr ; set up TCNT overflow interrupt vector

org $1500
Entry:

lds #$1500 ; set up stack pointer
movw #0,overflow
movb #$90,TSCR1 ; enable TCNT and fast timer flag clear
movb #$05,TSCR2 ; disable TCNT interrupt, set prescaler to 32
bclr TIOS,#$01 ; select IC0
movb #$01,TCTL4 ; capture rising edge
movb #$01,TFLG1 ; clear C0F flag

Here: brclr TFLG1,#$01,here ; wait for the first rising edge
movw TC0,edge1 ; save the first edge & clear the C0F 5 - 32

flag: movb #%10000000,TFLG2 ; clear Timer interrupt flag
bset TSCR2,#$80 ; enable TCNT overflow interrupt

cli
movb #$02,TCTL4 ; capture the falling edge on PT0 pin
here1: brclr TFLG1,C0F,here1 ;Wait for the arrival of the falling

edge: ldd TC0 ; d = edge2
subd edge1 ;d = diff = edge2-edge1
std diff ; std does not change the carry
bcc next ; is the second edge smaller?
ldy overflow ; second edge is smaller, so decrement
dey ; overflow count by 1
sty overflow ; "

ldd #$FFFF ; d = 2^16
Emul ; D * Y = overflow (or overflow-1)* 2^16 Y:D
Addd diff
Std PW ; store the first two bytes of the result
xgdy ; exchange D and Y

5 - 33

Adcb PW+2 ; compute and store the third byte of the result
stab PW+2 ; ‘’
Adca PW+3 ; compute and store the fourth byte of the result
staa PW+3 ; ‘’

next: bra next

timer_isr: movb #%10000000,TFLG2 ; clear TOF flag
ldx overflow
inx
stx overflow
rti

5 - 34

Interrupt can be used to capture the falling and rising edges.

movb #$03,TCTL4 ; capture the rising and falling edges of channel 0

0 0 0 0 0 0 1 1

(1) Duty Cycle Measurement

- Duty cycle is the percent of time that the signal is high within a
period in a periodic digital signal

- Capture the rising and falling edges.
- Record t0, t1 and t2.
- Use them to calculate T and T and the duty cycle.

5 – 35

Other applications for input capture function

t0
t1 t2

(2) Phase Difference Measurement

5 - 36

t0

t1

t2

- Phase difference is the difference of arrival times (in percentage of a
period) of two signals that have the same frequency but do not coincide
in their rising and falling edges.

- Two channels are used to capture the rising time of each signal (t0 and t1)

- Record T = t1 - t0 and T = t2 - t0

(3) Interrupt generation

5 - 37

- An interrupt can be generated when an event happens (falling/rising
edge on a pin).

- Similar to IRQ, we can use input capture to generate an interrupt when
an event happens instead of using it as an event time recorder.

- For example, input capture pin can be connected to a switch that
makes falling (or rising) edge when pressed.

- Write in the input capture routine what you wanna do when the switch
is pressed, for example, turn on/off a functionality.

- Input capture pin can be connected to a circuit or a sensor that needs
to interrupt the microcontroller to ask it to do something.

- Input capture pin can be connected to events’ signals to count them.
Simply, an event generates an interrupt when it comes. The interrupt
routine counts how many times it is called.

A switch is connected to pin 0 of port T to make rising edge when
pressed. Write a program to increment the binary number displayed on
the LEDs (on port B) each time the switch is pressed.

ABSENTRY Entry
INCLUDE 'mc9s12dp256.inc'

org $1000
count ds.b 1 ; the number to be displayed on LEDs.

org $FFEE
dc.w PT0_ISR ;load Channel 0 ISR vector

org $1500
Entry: movb #$FF,DDRB ; configure port B for output

bset DDRJ,$02 ;configure PJ1 pin for output
bclr PTJ,$02 ;enable LEDs to light
movb #$FF,DDRP ; disable 7 segments that are connecetd
movb #$0F,PTP ; ‘’

movb #$90,TSCR1 ;enable timer counter and enable fast timer flags clear
bclr TIOS,#$01 ; bit 0 is input-capture (not Output Compare) 5 - 38

movb #$01,TCTL4 ; capture the rising edge of PT0 signal
movb #$01,TFLG1 ; clear the C0F flag
movb #$1,TIE ; enable interrupt of channel 1
clr count
cli
here: bra here ; wait interrupts

PT0_ISR:
movb #$01,TFLG1 will clear the C0F flag.
inc count
movb count,PORTB
rti

Event counting: If a sequence of events (instead of a switch) is connected
to PT0, count = the number of events, e.g, number of customers who
entered a store.

PT0
5 - 39

(4) Number of events during a time period

- From previous example, input capture pin can count the number of
events generated on input capture pin.

- Input capture function can be used to count the number of events
during a period by enabling the interrupt at the beginning and disabling
it at the end of the period.

- The program will be similar to the previous example but we add this
functionality.

5 - 40

Enable interrupt Disable interrupt

Write a program to count the number of events on pin 0 of port T in a
certain period of time.

ABSENTRY Entry
INCLUDE 'mc9s12dp256.inc'

org $1000
count ds.b 1 ; counter to the number of events.
Ovcnt ds.b 1 ; the number of timer overflows
org $FFEE
dc.w PT0_ISR ;load Channel 0 ISR vector
org $FFDE
dc.w timer_isr ; set up TCNT overflow interrupt vector

org $1500
Entry: movb #$80,TSCR1 ;enable timer counter

bclr TIOS,#$01 ; bit 0 is input-capture (not Output Compare)
movb #$86,TSCR2 ; enable TCNT overflow interrupt, set prescaler to 64
movb #%10000000,TFLG2 ; clear Timer interrupt flag

movb #$01,TCTL4; capture the rising edge of PT0 signal
movb #$01,TFLG1; clear the C0F flag
bset TIE,#$1 ; enable interrupt of channel 0 5 - 41

Modify this program to add this functionality. A switch is connected to
IC1 (pin 1 on port T). Start counting when the switch is pressed.

clr Ovcnt
clr count
cli
here: bra here ; wait interrupts

PT0_ISR:
movb #$01,TFLG1 will clear the C0F flag.
inc count
rti

timer_isr: movb #%10000000,TFLG2 ; clear TOF flag
inc Ovcnt
ldaa Ovcnt
cmpa #200 ; we want to count the event
bne done ;during the time period of 200 overflows

;; stop counting the event by disabling channel 0 interrupts
bclr TIE,#$1 ; disable interrupt of channel 0
done: rti

5 - 42

- An optical encoder sensor uses an LED and a phototransistor

- A disc having two holes is attached to the motor shaft.

- The disc rotates between the LED and the phototransistor.

- Two pulses will be generated when the disc makes a complete rotation.

- When the hole is between the LED and the phototransistor, the
phototransistor conducts and the output is pulled high.

- Use previous program to count the number of pulses in a second. The
half of this count gives the motor speed in rotations per second. 5 - 43

An application for previous program: Motor speed

One rotation = 2 pulses

Optical encoder

Control the speed of a conveyor

t Motor speed = 1 / t m/s

- To measure the speed of a conveyor, an optical
encoder is used.

- Metal pieces are attached to the belt to make a
pulse when each piece moves through the encoder.

- The distance between each two metal pieces is 1 meter. The time
between each two pulses is the time for the conveyer to move 1 meter.

- The period measurement program in slides 5-27 and 5-28 can be used to
measure t.

- Modify the program to periodically measure the time between each two
pulses and to add a turn/off switch.

- If the measured time is less than a threshold (T1), increment the number
on port A to increase the motor speed. If the time is more than a
threshold (T2) decrement the number on port A to decrease motor speed.

5 - 44

Outline

5.1 Timer

5.2 Input Capture and Output Compare Functions

5.3 Applications on Input Capture Function

5.4 Applications on Output Compare
Function

org $FFEE
dc.w PT0_ISR ;load Channel 0 ISR vector

bset TIOS,#$01 ;bit 0 is Output Compare (not input-capture)
bset TIE,#$1 ;enable interrupt of channel 0
movb #$03,TCTL2 ;action to be taken 1 = toggle, 2 = clear, 3 = set
movb #$01,TFLG1 ; clear the C0F flag

PT0_ISR:
movb #$01,TFLG1 ; clear the C0F flag.
; code is here
rti

Programming output compare interrupt

bset TIOS,#$01 ;bit 0 is Output Compare (not input-capture)
movb #$03,TCTL2 ;action to be taken 1 = toggle, 2 = clear, 3 = set

Programming output compare with polling C0F bit (no interrupt)

5 - 45

- If the prescale is set to 8, the timer clock is 24/8 = 3 MHz. The period
of the clock signal to the timer will be 1/3 µs.

- The numbers of clock cycles that the signal is high = 300 µs/(1/3) = 900

- The numbers of clock cycles that the signal is low = 700/(1/3) = 2100

- We need to use two values for TC0:-

1- Count for TC0 = TCNT + 2100, pull OC0 high after counting

2- Count for TC0 = TCNT + 900, pull OC0 low after counting

3- Go to step 1

Generate an active high 1 KHz digital waveform with 30 percent duty
cycle from the PT0 pin. Use the polling method to check the success of
the output compare operation.

5 - 46

900 counts
2100 counts

5 - 47

OC0 is high after counting

TC0 = TCNT + 2100

Wait until counting 2100
clocks

TC0 = TCNT + 900

OC0 is low after counting

hi_time equ 900
lo_time equ 2100

org $1500
movb #$90,TSCR1 ;enable TCNT with fast timer flag clear
movb #$03,TSCR2 ;disable TCNT interrupt, set prescaler to 8

bset TIOS,#$01 ;enable OC0
movb #$03,TCTL2 ;select pull high as pin action

ldd TCNT ;start an OC0 operation with 900 us as delay
repeat: addd #lo_time ; "
std TC0 ;TC0 = TCNT + 2100

low: brclr TFLG1,C0F,low ;wait until OC0 pin go high after counting 2100

movb #$02,TCTL2 ;select pull low as pin action
ldd TC0 ;start an OC operation with 300 us as delay
addd #hi_time ; "
std TC0 ; TC0 = TCNT + 900

high: brclr TFLG1,C0F,high ; wait until OC0 pin go low after counting 900

movb #$03,TCTL2 ;select pull high as pin action
ldd TC0

bra repeat 5 - 48

1- OC pin is toggled from 1 to 0
2- Generate interrupt: In interrupt routine:
OC value = TCNT + 2100

1- OC pin is toggled from 0 to 1
2- Generate interrupt. In interrupt
routine: OC value = TCNT +900

We can use interrupt-driven method to generate the waveform so that
the CPU can still perform other operations.

5 - 49

hi_time equ 900 ; delay count for high interval of the waveform
lo_time equ 2100 ; delay count for low interval of the waveform

org $1000
HiorLo ds.b 1 ; flag to select hi_time (1) or lo_time (0)

org $FFE4
dc.w PT5_ISR ;load Channel 0 ISR vector

org $1500
; configure timer
movb #$90,TSCR1 ; enable TCNT and fast timer flag clear
movb #$03,TSCR2 ; set TCNT clock prescaler to 8

; configure OC5
bset TIOS,#$%00100000 ; enable OC5 interrupts
movb #$04,TCTL1 ; change pin action to toggle
bset TIE,#$%00100000 ;enable interrupt of channel 5

clr HiorLo ; lo_time will be the delay count next time
ldd TCNT ; start another OC5 operation with
addd #hi_time ; delay count set to hi_time
std TC5 ; "

here: bra here ; wait interrupts
5 - 50

PT5_ISR:
tst HIorLO ; which delay count should be added?
beq addLow ; if 0 then select lo_time

ldd TCNT ; select hi_time as the delay count for
addd #hi_time ; the new OC5 operation
std TC5 ; "
clr HiorLo ; toggle HiorLo flag
rti

addLow: ldd TCNT ; select lo_time as the delay count for
addd #lo_time ; the new OC5 operation
std TC5 ; "
movb #1,HiorLo ; toggle HiorLo flag
rti

5 - 51

Estimate frequency: Use an input-capture and an output-compare
functions to measure the frequency of the signal connected to PT0 pin.

org $1000
frequency ds.b 2
org $FFEE ; set up interrupt vector number for TC0
dc.w TC0_isr ;load Channel 0 ISR vector

org $2000
movb #$90,TSCR1 ; enable TCNT and fast timer flags clear
movb #$02,TSCR2 ; set prescale factor to 4

movb #$02,TIOS ; enable OC1 and IC0
movb #$01,TCTL4 ; prepare to capture the rising edges of PT0
movb #C0F,TFLG1 ; clear the C0F flag
bset TIE,#01 ; enable IC0 interrupt

movw #0,frequency ; initialize frequency count to 0
cli ; "

– Use one of the output-compare function to create a one-second time
base.

– Keep track of the number of rising (or falling) edges that arrived at the
PT0 pin within one second.

5 - 52

;----- use OC1 to make a delay for 1 second
ldy #100
continue:
ldd TCNT ; start an OC1 operation with 10 ms delay
addd #60000 ; "
std TC1 ; "
w_lp: brclr TFLG1,#02,w_lp; wait for 10 ms

dbne y,continue ; 100 iteraions – each creates 10 ms delay so total = 1 s
;-----------------------------

here: bra here

TC0_isr:
ldd TC0 ; clear C0F flag
ldx frequency ; increment frequency count by 1
inx ; "
stx frequency ;

rti
5 - 53

10ms
1s

Generating a delayed pulse

- Input capture function can be used in conjunction with an output
compare function to generate a delayed pulse

- In some applications, we need to generate an output pulse for a certain
time on output compare pin after receiving an input pulse

- We’ll set up input capture to look for a rising edge
- When found, the input capture ISR will set up output compare to make

the output pin go high at time T2 = T1 + DELCNT
- When the output compare occurs, the output compare ISR will set up the

output pin to go low at time T3 = T2 + PWCNT

5 - 54

- A sensor generates a pulse when the containers are in the proper place
- The microcontroller should wait (DELCNT) and then it generates a signal
to turn on a valve for a certain time (PWCNT) to fill up containers

Main program
– Initialize IC1 to look for
low‐to‐high edge
– Enable IC1 interrupts
– Disble OC3 interrupts
– Turn on interrupt system (cli)
– Wait forever

IC1_ISR
– Clear interrupt flag
– T2 = T1 + DELCNT
– Store T2 into TC3
– Set OC3 to go high on next match
– Clear OC3 flag
– Enable OC3 interrupt

OC3_ISR
– Disable OC3 interrupts
– T3 = T2 + PWCNT
– Store T3 into TC3
– Set OC3 to go low on next match

5 - 55

Distance measurement

- An ultrasonic sensor emits a high frequency sound pulse, then waits for
the reflected pulse

- The distance can be determined by the time of flight to the object (t).
The distance can be calculated from the speed of sound = distance/t

-To use the sensor:-
1. Send a pulse to trigger the transmitter
2. The transmitter sends ultrasonic wave and pulls the receiver pin

high
3. The receiver pin is low when the retuned signal is received.
4. The time of flight to the object (t) is the time interval the receiver is

high

5 - 56

Output compare

Input capture

PSEND

- Output compare pin can be used to trigger the sensor by generating a
pulse at intervals of PSEND

- Input capture pin is used to get the pulse width of the return pulse (t)

Input capture ISR

Capture rising edge (t1) and falling edge (t2)

Compute t = t2-t1 5 - 57

Let:
NN: number of pulses to be generated
DelayHi: high interval duration
DelayLo: low interval duration
HiorLo: flag to select DelayHi or DelayLo
pcnt: number of OC0 operation to be performed

Steps:

1. Pull the PT0 pin high quickly using the OC0 operation.
2. Change the OC0 pin action to toggle. Start the next OC0 operation
with delay equal to DelayHi.

3. pcnt 2 * NN - 1. HiorLo 0.
4. Enable OC0 interrupt.
5. The main program continues to perform other operations.

Write a program to generate a number of pulses using an OC function.
The specified high interval duration (12 ms) and low interval duration (8
ms). Use the interrupt-driven approach so that the CPU can perform
other operations.

5 - 58

DelayHi equ 18000 ;pulse high interval duration time = 18000/1.5= 12 ms
DelayLo equ 12000 ; pulse low interval duration
NN equ 10 ;number of pulses to be created

org $1000
pcount ds.b 1 ; number of OC0 operations remaining to be performed
HiorLo ds.b 1 ; flag to choose DelayHi(1) or DelayLo (0)
org $FFEE
dc.w oc0ISR ;load Channel 0 ISR vector

org $1500
lds #$1500
movb #$90,TSCR1
movb #$04,TSCR2 ; prescale = 16, f =24/16=1.5Mhz
bset TIOS,OC0 ; enable OC0
movb #01,TFLG1; clear C0F flag
movb #$03,TCTL2 ; set OC0 pin action to pull high

ldd TCNT ; pull TC0 pin high
addd #12 ; quickly
std TC0 ; "

here: brclr TFLG1,C0F,here ; wait until C0F flag is set

movb #$01,TCTL2 ; set OC0 pin action to toggle
ldd TCNT ; start next OC0 operation with
addd #DelayHi ; delay set to DelayHi

Configuration

pull TC0 pin high

5 - 59

std TC0 ; "

movb 2*NN-1,pcount ;prepare to perform pcount OC0 operations

clr HiorLo ; next OC0 operation use DelayLo as delay

here1: bra here1

oc0ISR: ldaa HiorLo ;check the flag to choose delay count
beq pulseLo ;if flag is 0, then go and use DelayLo
ldd TCNT ;start an OC0 operation and use
addd #DelayHi ; DelayHi as delay count
std TC0 ; "
movb #0,HiorLo; toggle the flag
bra decCnt

pulseLo: ldd TC0 ; start an OC0 operation and use
addd #DelayLo ; DelayLo as delay count
std TC0 ; "
movb #1,HiorLo; toggle the flag

decCnt: dec pcount
bne quit
movb #0,TIE ; disable OC0 interrupt
bclr TIOS,$01 ; disable OC0

quit: rti

Disable interrupts
after generated
the required
number of pulses

5 - 60

A highly accurate digital clock using the timer

; Initialization code

movb #$80,TSCR1 ; Enable timer

movb #$0C, TSCR2 ; Set prescale factor to 16, enable the timer

and counter reset after OC7

movb #$80,TIOS ; Set Ch 7 for Output Compare

movb #$80,TIE ; Enable Ch 7 interrupt

movw #15000,TC7 ; Set up Ch 7 to generate 10 ms interrupt rate

– Use prescaler of 16 to divide 24 MHz bus clock down to 1.5 MHz (will
cause TCNT register to increment every 0.667 ms)

– Use Timer Channel 7 so that the TCNT register can be automatically reset
when the Output Compare occurs

– Set TC7 register to 15,000, so that interrupt will occur every 10 ms

– Update the clock when 100 of these interrupts accumulate (= 1 second)

5 - 61

Write a subroutine called Delayby1ms to generate a time delay that is a multiple
of 1 ms. Assume that the E clock frequency is 24 MHz. The number of milliseconds
is passed in Y.

- Set the prescale to 8
- Perform the number of output-compare operations (given in Y) with

each operation creating a 1-ms time delay.
- The number to be added to TCNT is 3000. (3000 (8/24MHz) = 1 ms)
- The number to be added to TCNT is 375 when prescale = 64

Delayby1ms:
pshd
movb #$90,TSCR1 ; enable TCNT & fast flags clear:
movb #$03,TSCR2 ; configure prescaler to 8

bset TIOS,#$01 ; bit 0 is Output Compare

again0: ldd TCNT
addd #3000 ;start an output-compare operation
std TC0 ;with 1 ms time delay

wait_lp0:brclr TFLG1,#$01,wait_lp0

dbne y,again0

puld
rts 5 - 62

1ms Yms

- A sound can be generated by creating a digital
waveform with appropriate frequency and
using it to drive a speaker or a buzzer.

HCS12DP256

PT5

3.3 F

Buzzer

Figure 8.21 Circuit connection for a buzzer

Generating a Siren Using the Output-Compare Function

Write a program to generate a two-tone siren that
oscillates between 300 Hz and 1200 Hz.

- Prescale = 8.
- The delay count for the low frequency tone is (24MHz 8) 300 2 = 5000.
- The delay count for the high frequency tone is (24MHz 8) 1200 2 = 1250.
- These delays are used for the low and high

Steps
1. Configure channel 5 as output compare and enable its interrupts.
2. Output compare is toggle
3. Set delay = 1250 for half a second and change it to 500 for half a
second
4- Output compare interrupt routine use the value of delay to set the
output signal high and low values. 5 - 63

hi_freq equ 1250 ; delay count for 1200 Hz

lo_freq equ 5000 ; delay count for 300 Hz

org $1000

delay ds.w 1 ;store the delay for output-compare operation

org $FFE4

dc.w oc5_ISR ;Initialize the interrupt vector entry

org $2000

lds #$2000

movb #$90,TSCR1 ;enable TCNT, fast timer flag clear

movb #$03,TSCR2 ;set main timer prescaler to 8

bset TIOS,#%00100000 ;enable OC5

movb #$04,TCTL1 ;select toggle for OC5 pin action

ldd #hi_freq

std delay ; use high-frequency delay count first

ldd TCNT ; start timer

5 - 64

addd delay ; "

std TC5 ; "

bset TIE,#%00100000; enable OC5 interrupt

cli ; "

Forever: ldy #500 ; wait for half a second

jsr Delayby1ms ; "

movw #lo_freq,delay ;switch to low-frequency delay count

ldy #500

jsr Delayby1ms

movw #hi_freq,delay ;switch to high-frequency delay count

bra forever

oc5_isr: ldd TC5

addd delay

std TC5

rti

Toggle OC5 for delay time interval

5 - 65

Questions

Mohamed Mahmoud

