Chapter 5

Hypothesis Testing

A second type of statistical inference is hypothesis testing. Here, rather than use either a point (or interval) estimate from a random sample to approximate a population parameter, hypothesis testing uses point estimate to decide which of two hypotheses (guesses) about parameter is correct. We will look at hypothesis tests for proportion, p, and mean, μ , and standard deviation, σ .

5.1 Hypothesis Testing

In this section, we discuss hypothesis testing in general.

Exercise 5.1 (Introduction)

- 1. Test for binomial proportion, p, right-handed: defective batteries. In a battery factory, 8% of all batteries made are assumed to be defective. Technical trouble with production line, however, has raised concern percent defective has increased in past few weeks. Of n = 600 batteries chosen at random, $\frac{70}{600}$ ths $\left(\frac{70}{600} \approx 0.117\right)$ of them are found to be defective. Does data support concern about defective batteries at $\alpha = 0.05$?
 - (a) *Statement*. Choose one.
 - i. $H_0: p = 0.08$ versus $H_1: p < 0.08$ ii. $H_0: p \le 0.08$ versus $H_1: p > 0.08$ iii. $H_0: p = 0.08$ versus $H_1: p > 0.08$
 - (b) Test.

Chance $\hat{p} = \frac{70}{600} \approx 0.117$ or more, if $p_0 = 0.08$, is

$$p-value = P(\hat{p} \ge 0.117) = P\left(\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \ge \frac{0.117 - 0.08}{\sqrt{\frac{0.08(1 - 0.08)}{600}}}\right) \approx P\left(Z \ge 3.31\right) \approx$$

which equals (i) **0.00** (ii) **0.04** (iii) **4.65**.

```
prop1.test <- function(x, n, p.null, signif.level, type) {</pre>
  p.hat <- x/n
  z.test.statistic <- (p.hat-p.null)/(sqrt(p.null*(1-p.null)/n))</pre>
  if(type=="right") {
    z.crit <- -1*qnorm(signif.level)</pre>
    p.value <- 1-pnorm(z.test.statistic)</pre>
  if(type=="left") {
    z.crit <- qnorm(signif.level)</pre>
    p.value <- pnorm(z.test.statistic)</pre>
  if(type=="two.sided") {
    z.crit <- c(qnorm(signif.level/2),-1*qnorm(signif.level/2))</pre>
    p.value <- 2*min(1-pnorm(z.test.statistic),pnorm(z.test.statistic))</pre>
  dat <- c(p.null, p.hat, z.crit, z.test.statistic, p.value)</pre>
  if(type=="two.sided") names(dat) <- c("p.null", "p.hat", "lower z crit", "upper z crit", "z test stat", "p value"
  if(type != "two.sided") names(dat) <- c("p.null", "p.hat", "z crit Value", "z test stat", "p value")
  return(dat)
3
prop1.test(70, 600, 0.08, 0.05, "right") # approx 1-proportion test for p
                     p.hat z crit Value z test stat
                                                            p value
      p.null
0.080000000 0.1166666667 1.6448536270 3.3106109599 0.0004654627
```

Level of significance $\alpha = (i) 0.01$ (ii) 0.05 (iii) 0.10.

(c) Conclusion.

(Technical.) Since p-value = $0.0005 < \alpha = 0.05$, (i) **do not reject** (ii) **reject** null guess: $H_0: p = 0.08$. (Final.) So, sample \hat{p} indicates population proportion p(i) **is less than** (ii) **equals** (iii) **is greater than** 0.08: $H_1: p > 0.08$.

Figure 5.1: P-value for statistic $\hat{p} = 0.117$, if guess $p_0 = 0.08$

(d) A comment: null hypothesis and alternative hypothesis.
In this hypothesis test, we are asked to choose between
(i) one (ii) two (iii) three alternatives (or hypotheses, or guesses):
a null hypothesis of H₀: p = 0.08 and an alternative of H₁: p > 0.08.

174

Null hypothesis is a statement of "status quo", of no change; test statistic used to reject it or not. Alternative hypothesis is "challenger" statement.

(e) Another comment: p-value.

In this hypothesis test, p-value is chance observed proportion defective is 0.117 or more, guessing population proportion defective is (i) $p_0 = 0.08$ (ii) $p_0 = 0.117$. In general, *p*-value is probability of observing test statistic or more extreme, assuming null hypothesis is true.

- (f) And another comment: test statistic different for different samples. If a second sample of 600 batteries were taken at random from all batteries, observed proportion defective of this second group of 600 batteries would probably be (i) **different from** (ii) **same as** first observed proportion defective given above, $\hat{p} = 0.117$, say, $\hat{p} = 0.09$ which may change the conclusions of hypothesis test.
- (g) Possible mistake: Type I error.

Even though hypothesis test tells us population proportion defective is greater than 0.08, that alternative $H_1 : p > 0.08$ is correct, we could be *wrong*. If we were indeed wrong, we should have picked (i) **null** (ii) **alternative** hypothesis $H_0 : p = 0.08$ instead. Type I error is mistakenly rejecting null; also, $\alpha = P(type \ I \ error)$.

(h) Binomial probability model.

Let random variable X represent the number of n = 600 batteries which are defective and let parameter p be the probability a battery is defective and so an appropriate model for X is binomial pmf,

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x}, \ x = 0, 1, \dots, n,$$

where the null hypothesis is (i) p = 0.08 (ii) p > 0.08, and alternative hypothesis is (i) p = 0.08 (ii) p > 0.08.

(i) Normal approximation to binomial model.

Let $\hat{p} = \frac{x}{n} = \frac{54}{600}$ estimate parameter p. Because of the central limit theorem, the probability distribution of statistic $\hat{P} = \frac{X}{n}$ can be approximated by the normal distribution with mean $\mu = p$ and $\sigma = \sqrt{\frac{p(1-p)}{n}}$ with z-score

$$Z = \frac{\hat{P} - \mu}{\sigma} = \frac{\hat{P} - p}{\sqrt{\frac{p(1-p)}{n}}}.$$

where Z is also normal but mean $\mu = 0$ and $\sigma = 1$. (i) **True** (ii) **False**

- 2. Test p, right-sided again: defective batteries. Of n = 600 batteries chosen at random, $\frac{54}{600}$ ths $\left(\frac{54}{600} = 0.09\right)$, instead of 0.117, of them are found to be defective. Does data support concern about *increase* in defective batteries (from 0.08) at $\alpha = 0.05$ in this case?
 - (a) Statement. Choose one.
 - i. $H_0: p = 0.08$ versus $H_1: p < 0.08$ ii. $H_0: p \le 0.08$ versus $H_1: p > 0.08$ iii. $H_0: p = 0.08$ versus $H_1: p > 0.08$
 - (b) Test.

Chance $\hat{p} = \frac{54}{600} = 0.09$ or more, *if* $p_0 = 0.08$, is

p-value =
$$P(\hat{p} \ge 0.09) = P\left(\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \ge \frac{0.09 - 0.08}{\sqrt{\frac{0.08(1-0.08)}{600}}}\right) \approx P(Z \ge 0.903) \approx$$

which equals (i) **0.00** (ii)**0.09** (iii) **0.18**.

prop1.test(54, 600, 0.08, 0.05, "right") # approx 1-proportion test for p, right-sided

p.null p.hat z crit value z test stat p value 0.0800000 0.0900000 1.6448536 0.9028939 0.1832911

Level of significance $\alpha = (i) 0.01$ (ii) 0.05 (iii) 0.10.

(c) Conclusion.

(Technical.) Since p-value = $0.18 > \alpha = 0.05$, (i) **do not reject** (ii) **reject** null guess: $H_0: p = 0.08$. (Final.) So, sample \hat{p} indicates population proportion p(i) **is less than** (ii) **equals** (iii) **is greater than** 0.08: $H_0: p = 0.08$.

(d) Possible mistake: Type II error.

Even though hypothesis test tells us population proportion defective is equal to null H_0 : p = 0.08, we could be *wrong*. If we were indeed wrong, we should have picked (i) **null** (ii) **alternative** hypothesis H_1 : p > 0.08. Type II error is mistakenly rejecting alternative; also, $\beta = P(type \ II \ error)$.

(e) Comparing hypothesis tests.

P-value associated with $\hat{p} = 0.09$ (p-value = 0.183) is (i) **smaller** (ii) **larger** than p-value associated with $\hat{p} = 0.117$ (p-value = 0.00). Sample proportion defective $\hat{p} = 0.09$ is (i) **closer to** (ii) **farther away from**, than $\hat{p} = 0.117$, to null guess p = 0.08.

It makes sense we do not reject null guess of p = 0.08 when observed proportion is $\hat{p} = 0.09$, but reject null guess when observed proportion is

176

Figure 5.2: Tend to reject null for smaller p-values

 $\hat{p} = 0.117$. If p-value is smaller than level of significance, α , reject null. If null is rejected when p-value is "really" small, less than $\alpha = 0.01$, test is highly significant. If null is rejected when p-value is small, typically between $\alpha = 0.01$ and $\alpha = 0.05$, test is significant. If null is not rejected, test is not significant. This is one of two approaches to hypothesis testing.

3. Test p, left-sided this time: defective batteries.

Of n = 600 batteries chosen at random, $\frac{36}{600}$ ths $\left(\frac{36}{600} = 0.06\right)$ of them are found to be defective. Does data support the claim there is a *decrease* in defective batteries (from 0.08) at $\alpha = 0.05$ in this case?

Figure 5.3: P-value for statistic $\hat{p} = 0.06$, if guess $p_0 = 0.08$

- (a) *Statement*. Choose one.
 - i. $H_0: p = 0.08$ versus $H_1: p < 0.08$ ii. $H_0: p \le 0.08$ versus $H_1: p > 0.08$

iii. $H_0: p = 0.08$ versus $H_1: p > 0.08$

(b) Test. Chance $\hat{p} = \frac{36}{600} = 0.06$ or less, if $p_0 = 0.08$, is

$$p-value = P(\hat{p} \le 0.06) = P\left(\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \le \frac{0.06 - 0.08}{\sqrt{\frac{0.08(1 - 0.08)}{600}}}\right) \approx P(Z \le -1.81) \approx$$

which equals (i) **0.04** (ii) **0.06** (iii) **0.09**.

prop1.test(36, 600, 0.08, 0.05, "left") # approx 1-proportion test for p, left-sided

p.null p.hat z crit value z test stat p value 0.08000000 0.06000000 -1.64485363 -1.80578780 0.03547575

Level of significance $\alpha = (i) 0.01$ (ii) 0.05 (iii) 0.10.

(c) Conclusion.

(Technical.) Since p-value = $0.04 < \alpha = 0.05$, (i) **do not reject** (ii) **reject** null guess: $H_0: p = 0.08$. (Final.) So, sample \hat{p} indicates population proportion p(i) **is less than** (ii) **equals** (iii) **is greater than** 0.08: $H_1: p < 0.08$. Statistic $\hat{p} = 0.06$ (i) **proves** (ii) **demonstrates** parameter p < 0.08.

- (d) One-sided tests. Right-sided and left-sided tests are (i) **one-sided** (ii) **two-sided** tests.
- 4. Test p, two-sided: defective batteries.

Of n = 600 batteries chosen at random, $\frac{36}{600}$ ths $\left(\frac{36}{600} = 0.06\right)$ of them are found to be defective. Does data support possibility there is a *change* in defective batteries (from 0.08) at $\alpha = 0.05$ in this case?

(a) *Statement*. Choose one.

i. $H_0: p = 0.08$ versus $H_1: p < 0.08$ ii. $H_0: p \le 0.08$ versus $H_1: p > 0.08$ iii. $H_0: p = 0.08$ versus $H_1: p \ne 0.08$

(b) Test.

Chance $\hat{p} = \frac{36}{600} = 0.06$ or *less*, or $\hat{p} = 0.10$ or *more*, *if* $p_0 = 0.08$, is

$$p-\text{value} = P(\hat{p} \le 0.06) + P(\hat{p} \ge 0.10)$$

$$\approx P\left(\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \le \frac{0.06 - 0.08}{\sqrt{\frac{0.08(1-0.08)}{600}}}\right) + P\left(\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \ge \frac{0.10 - 0.08}{\sqrt{\frac{0.08(1-0.08)}{600}}}\right)$$

$$\approx P(Z \le -1.81) + P(Z \ge 1.81)$$

which equals (i) **0.04** (ii) **0.07** (iii) **0.09**.

178

prop1.test(36, 600, 0.08, 0.05, "two.sided") # approx 1-proportion test for p, two-sided

p.null p.hat lower z crit upper z crit z test stat p value 0.08000000 0.06000000 -1.95996398 1.95996398 -1.80578780 0.07095149

Level of significance $\alpha = (i) 0.01$ (ii) 0.05 (iii) 0.10.

(c) Conclusion.

(Technical.) Since p-value = $0.07 > \alpha = 0.05$,

(i) do not reject (ii) reject null guess: $H_0: p = 0.08$.

- (Final.) So, sample \hat{p} indicates population proportion p
- (i) is less than (ii) equals (iii) is greater than 0.08: $H_0: p = 0.08$.

Figure 5.4: Two-sided test

- (d) Claim (final conclusion). The claim is
 - i. there is a *change* in defective batteries, so $H_1: p \neq 0.08$.
 - ii. proportion of defective batteries remains the same, so $H_0: p = 0.08$.

and since the null, $H_0: p = 0.08$, is not rejected,

- i. the data supports this claim, so $H_1: p \neq 0.08$.
- ii. the data does *not* support this claim, so $H_0: p = 0.08$.

The claim (i) **does** (ii) **does not** have an "equals" in it, refers to H_a .

5. Test p, two-sided, different claim: defective batteries.

Of n = 600 batteries chosen at random, $\frac{36}{600}$ ths $\left(\frac{36}{600} = 0.06\right)$ of them are found to be defective. Assuming the percent defective either *changes* or not, does the data support the claim 8% of batteries are defective at $\alpha = 0.05$?

- (a) Statement. Choose one.
 - i. $H_0: p = 0.08$ versus $H_1: p < 0.08$
 - ii. $H_0: p \le 0.08$ versus $H_1: p > 0.08$

iii. $H_0: p = 0.08$ versus $H_1: p \neq 0.08$

(b) Test. Chance $\hat{p} = \frac{36}{600} = 0.06$ or less, or $\hat{p} = 0.10$ or more, if $p_0 = 0.08$, is p-value = $P(\hat{p} \le 0.06) + P(\hat{p} \ge 0.10)$ $\approx P\left(\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \le \frac{0.06 - 0.08}{\sqrt{\frac{0.08(1-0.08)}{600}}}\right) + P\left(\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \ge \frac{0.10 - 0.08}{\sqrt{\frac{0.08(1-0.08)}{600}}}\right)$

which equals (i) **0.04** (ii) **0.07** (iii) **0.09**.

prop1.test(36, 600, 0.08, 0.05, "two.sided") # approx 1-proportion test for p, two-sided

p.null p.hat lower z crit upper z crit z test stat p value 0.08000000 0.06000000 -1.95996398 1.95996398 -1.80578780 0.07095149

Level of significance $\alpha = (i) 0.01$ (ii) 0.05 (iii) 0.10.

 $\approx P(Z < -1.81) + P(Z > 1.81)$

(c) Conclusion.

Since p-value = $0.07 > \alpha = 0.05$,

(i) do not reject (ii) reject null guess: $H_0: p = 0.08$.

So, sample \hat{p} indicates population proportion p

(i) is less than (ii) equals (iii) is greater than 0.08: $H_0: p = 0.08$.

(d) Claim (final conclusion). The claim is

i. there is a *change* in defective batteries, so $H_1: p \neq 0.08$.

ii. proportion of defective batteries remains the same, so $H_0: p = 0.08$.

and since the null, $H_0: p = 0.08$, is not rejected,

- i. is sufficient evidence to reject this claim, so $H_1: p \neq 0.08$.
- ii. is *in*sufficient evidence to reject this claim, so $H_0: p = 0.08$.

The claim (i) **does** (ii) **does not** have an "equals" in it, refers to H_0 .

(e) One-sided test or two-sided test?

If not sure whether population proportion p above or below null guess of $p_0 = 0.08$, use (i) **one-sided** (ii) **two-sided** test.

(f) Types of tests.

In this course, we are interested in right-sided test $(H_0: p = p_0 \text{ versus } H_1: p > p_0)$, left-sided test $(H_0: p = p_0 \text{ versus } H_1: p < p_0)$ and two-sided test $(H_0: p = p_0 \text{ versus } H_1: p \neq p_0)$. However, other tests are possible; for example, (choose *one or more*!)

- i. $H_0: p < p_0$ versus $H_1: p \ge p_0$
- ii. $H_0: p = p_0$ versus $H_1: p = p_1$

180

iii. $H_0: p_{0,1} \le p \le p_{0,2}$ versus $H_1: p_{0,2} \le p \le p_{0,3}$

(g) Steps in a test.

Steps in any hypothesis test are (choose one or more!):

- i. Statement
- ii. Test
- iii. Conclusions
- 6. Power: defection batteries.

In a battery factory, $p_0 = 0.08$ of all batteries made are assumed to be defective. Calculate and compare power $1 - \beta$ when the actual (true, correct) proportion defective is either p = 0.09 or p = 0.12. Assume $\alpha = 0.05$ when $p_0 = 0.08$.

chosen \downarrow actual \rightarrow	null H_0 true	alternative H_1 true	
choose null H_0	correct decision	type II error, β	
choose alternative H_1	type I error, α	correct decision: power = $1 - \beta$	

Figure 5.5: Errors and correction decisions for two 1-proportion-tests

(a) Level of significance α = P(Z > z_α) = 0.05 is the chance of
(i) mistakenly rejecting p₀ = 0.08
(ii) mistakenly rejecting p = 0.09
(iii) mistakenly rejecting p = 0.12
if null p₀ = 0.08 is (assumed) true and whether p = 0.09 or p = 0.12.

(b) Power 1 - β = P(Z > z) = 0.24 when p = 0.09 is the chance of

(i) correctly accepting p = 0.08
(ii) correctly accepting p = 0.12
if alternative p = 0.09 is (actually) true and p₀ = 0.08 is (actually) wrong.

(c) Power 1 - β = P(Z > z) = 0.95 when p = 0.12 is the chance of

(i) correctly accepting p = 0.08
(ii) correctly accepting p = 0.12
if alternative p = 0.12 is (actually) true and p₀ = 0.08 is (actually) wrong.

(c) Since power 1 - β = P(Z > z) = 0.95 when p = 0.12 is the chance of

(i) correctly accepting p = 0.09
(ii) correctly accepting p = 0.12
if alternative p = 0.12 is (actually) true and p₀ = 0.08 is (actually) wrong.

(d) Since power 1 - β = P(Z > z) = 0.24 when p = 0.09 is

(i) smaller
(ii) larger than
power 1 - β = P(Z > z) = 0.95 when p = 0.12
there is greater chance of correctly choosing

(i) p = 0.09 (ii) p = 0.12

when assumed $p_0 = 0.08$ is wrong.

5.2 Testing Claims About a Proportion

Hypothesis test for p from (assumed) binomial has test statistic

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

where we assume a large simple random sample has been chosen, $np_0 \ge 5$ and $n(1 - p_0) \ge 5$. We consider three approaches to testing: p-value, traditional and confidence interval. We also discuss power, $1 - \beta$ and testing for p when sample size is small.

Exercise 5.2 (Testing Claims About a Proportion)

1. Test p: defective batteries.

Of n = 600 batteries chosen at random, $\frac{54}{600}$ ths $\left(\frac{54}{600} = 0.09\right)$ of them are found to be defective. Does data support hypotheses of an *increase* in defective batteries (from 0.08) at $\alpha = 0.05$ in this case? Solve using both p-value and traditional approaches to hypothesis testing.

(a) Check assumptions.

Since $np_0 = 600(0.08) = 48 > 5$, $n(1 - p_0) = 600(1 - 0.08) = 552 > 5$, assumptions (i) **have** (ii) **have not** been satisfied, so this large sample test is possible.

(b) *P*-value approach (review).

i. Statement. Choose one.

A. $H_0: p = 0.08$ versus $H_1: p < 0.08$ B. $H_0: p \le 0.08$ versus $H_1: p > 0.08$ C. $H_0: p = 0.08$ versus $H_1: p > 0.08$

ii. Test.

Chance $\hat{p} = \frac{54}{600} = 0.09$ or more, *if* $p_0 = 0.08$, is

$$p-value = P(\hat{p} \ge 0.09) = P\left(\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \ge \frac{0.09 - 0.08}{\sqrt{\frac{0.08(1-0.08)}{600}}}\right) \approx P(Z \ge 0.903) \approx$$

183

(i) 0.00 (ii) 0.09 (iii) 0.18. prop1.test(54, 600, 0.08, 0.05, "right") # approx 1-proportion test for p p.null p.hat z crit value z test stat p value

0.0800000 0.0900000 1.6448536 0.9028939 0.1832911

Level of significance $\alpha = (i) 0.01$ (ii) 0.05 (iii) 0.10.

iii. Conclusion.

Since p-value = $0.18 > \alpha = 0.05$, (i) **do not reject** (ii) **reject** null guess: $H_0: p = 0.08$. So, sample \hat{p} indicates population proportion p(i) **is less than** (ii) **equals** (iii) **is greater than** 0.08: $H_0: p = 0.08$.

- (c) Traditional approach.
 - i. Statement. Choose one.

A. $H_0: p = 0.08$ versus $H_1: p < 0.08$

- B. $H_0: p \le 0.08$ versus $H_1: p > 0.08$
- C. $H_0: p = 0.08$ versus $H_1: p > 0.08$
- ii. Test.

Test statistic

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \approx \frac{0.09 - 0.08}{\sqrt{\frac{0.08(1 - 0.08)}{600}}} \approx$$

(i) **0.90** (ii) **1.99** (iii) **2.18**.

Critical value $z_{\alpha} = z_{0.05}$, where $P(Z > z_{0.05}) = 0.05$, is

 $z_{\alpha} = z_{0.05} \approx$

(i) **1.28** (ii) **1.65** (iii) **2.58** prop1.test(54, 600, 0.08, 0.05, "right") # approx 1-proportion test for p

p.null	p.hat z	crit value	z test stat	p value
0.0800000	0.0900000	1.6448536	0.9028939	0.1832911

iii. Conclusion.

Since $z = 0.903 < z_{0.05} = 1.645$,

- (test statistic is outside critical region, so "close" to null 0.08),
- (i) do not reject (ii) reject null guess: $H_0: p = 0.08$.
- So, sample \hat{p} indicates population proportion p
- (i) is less than (ii) equals (iii) is greater than 0.08: $H_0: p = 0.08$.

Figure 5.6: P-value versus traditional approach

(d) (i) **True** (ii) **False**

When we do not reject null, we pick hypothesis with "equals" in it.

- (e) To say we do not reject null means, in this case, (circle one or more)
 - i. disagree with claim percent defective of batteries is greater than 8%.
 - ii. data does not support claim % defective batteries is greater than 8%.
 - iii. we fail to reject percent defective of batteries equals 8%.
- (f) Population, Sample, Statistic, Parameter. Match columns.

terms	battery example
(a) population	(a) all (defective or nondefective) batteries
(b) sample	(b) proportion defective, of all batteries, p
(c) statistic	(c) 600 (defective or nondefective) batteries
(d) parameter	(d) proportion defective, of 600 batteries, \hat{p}

terms	(a)	(b)	(c)	(d)
example				

2. Test for binomial proportion, p: overweight in Indiana.

An investigator wishes to know whether proportion of overweight individuals in Indiana is the *same* as the national proportion of 71% or not. A random sample of size n = 600 results in 450 $\left(\frac{450}{600} = 0.75\right)$ who are overweight. Test at $\alpha = 0.05$.

(a) Check assumptions.

Since $np_0 = 600(0.71) = 426 > 5$, $n(1 - p_0) = 600(1 - 0.71) = 174 > 5$, assumptions (i) have (ii) have not been satisfied, so this large sample test is possible.

- (b) *P*-value approach.
 - i. Statement. Choose one.

A. $H_0: p = 0.71$ versus $H_1: p > 0.71$

B. $H_0: p = 0.71$ versus $H_1: p < 0.71$

- C. $H_0: p = 0.71$ versus $H_1: p \neq 0.71$
- ii. Test.

Since test statistic of $\hat{p} = \frac{450}{600} = 0.75$ is

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.75 - 0.71}{\sqrt{\frac{0.71(1 - 0.71)}{600}}} =$$

(i) **1.42** (ii) **1.93** (iii) **2.16**,

chance $\hat{p} = -0.75$ or less or $\hat{p} = 0.75$ or more, if $p_0 = 0.71$, is

p-value = $P(Z \le -2.16) + P(Z \ge 2.16) = 2 \times P(X \ge 2.16) \approx$

(i) **0.031** (ii) **0.057** (ii) **0.075**.

prop1.test(450, 600, 0.71, 0.05, "two.sided") # approx 1-proportion test for p

```
p.null p.hat lower z crit upper z crit z test stat p value
0.71000000 0.75000000 -1.95996398 1.95996398 2.15927245 0.03082904
```

Level of significance $\alpha = 0.01$ (ii) 0.05 (iii) 0.10.

iii. Conclusion.

(Technical.) Since p-value = $0.031 < \alpha = 0.050$, (i) **do not reject** (ii) **reject** null guess: $H_0: p = 0.71$. (Final.) In other words, statistic \hat{p} indicates population proportion p(i) **equals** (ii) **does not equal** 0.71: $H_1: p \neq 0.71$.

- iv. Claim (final conclusion). The claim is
 - A. there is a *change* in proportion overweight, so $H_1: p \neq 0.71$.
 - B. proportion overweight same as national proportion, so $H_0: p = 0.71$.

and since the null, $H_0: p = 0.71$, is rejected, there

- A. is sufficient evidence to reject this claim, so $H_1: p \neq 0.71$.
- B. is *in*sufficient evidence to reject this claim, so $H_0: p = 0.71$.

The claim (i) **does** (ii) **does not** have an "equals" in it.

(c) Traditional approach.

- i. Statement. Choose one.
 - A. $H_0: p = 0.71$ versus $H_1: p > 0.71$
 - B. $H_0: p = 0.71$ versus $H_1: p < 0.71$
 - C. $H_0: p = 0.71$ versus $H_1: p \neq 0.71$
- ii. Test.

Test statistic

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \approx \frac{0.75 - 0.71}{\sqrt{\frac{0.71(1 - 0.71)}{600}}} \approx$$

(i) **0.90** (ii) **1.99** (iii) **2.16**.

Critical values at $\pm \alpha = 0.05$,

$$\pm z_{\frac{\alpha}{2}} = \pm z_{\frac{0.05}{2}} = \pm z_{0.025} \approx$$

```
(i) \pm 1.28 (ii) \pm 1.65 (ii) \pm 1.96
```

prop1.test(450, 600, 0.71, 0.05, "two.sided") # approx 1-proportion test for p

p.null p.hat lower z crit upper z crit z test stat p value 0.71000000 0.75000000 -1.95996398 1.95996398 2.15927245 0.03082904

iii. Conclusion.

Since $-z_{0.025} = -1.96 < z_{0.025} = 1.96 < z = 2.16$ (test statistic is inside critical region, so "far away" from null 0.71), (i) **do not reject** (ii) **reject** null guess: $H_0: p = 0.71$. In other words, sample \hat{p} indicates population proportion p(i) **equals** (ii) **does not equal** 0.71: $H_1: p \neq 0.71$.

(d) 95% Confidence Interval (CI) for p.

```
The 95% CI for proportion of overweight individuals, p, is
(i) (0.018, 0.715) (ii) (0.715, 0.785) (iii) (0.533, 0.867).
prop1.interval <- function(x,n,conf.level) # function of 1-proportion CI for p</pre>
 p <- x/n
 z.crit <- -1*qnorm((1-conf.level)/2)</pre>
 margin.error <- z.crit*sqrt(p*(1-p)/n)</pre>
 ci.lower <- p - margin.error
 ci.upper <- p + margin.error</pre>
 dat <- c(p, z.crit, margin.error, ci.lower, ci.upper)</pre>
 names(dat) <- c("Mean", "Critical Value", "Margin of Error", "CI lower", "CI upper")</pre>
 return(dat)
}
prop1.interval(450,600,0.95) # 1-proportion 95% CI for p
           Mean Critical Value Margin of Error CI lower
                                                                    CI upper
      0.7500000
                     1.9599640
                                                     0.7153524
                                                                      0.7846476
                                    0.0346476
```

Since null $p_0 = 0.71$ is *out*side CI (0.715, 0.785), (i) **do not reject** (ii) **reject** null guess: $H_0: p = 0.71$. In other words, sample \hat{p} indicates population proportion p(i) **equals** (ii) **does not equal** 0.71: $H_1: p \neq 0.71$.

- 3. Test for binomial proportion, p, small sample: conspiring Earthlings. It appears 6.5% of Earthlings are conspiring with little green men (LGM) to take over Earth. Human versus Extraterrestrial Legion Pact (HELP) claims more than 6.5% of Earthlings are conspiring with LGM. In a random sample of 100 Earthlings, 7 ($\frac{7}{100} = 0.07$) are found to be conspiring with little green men (LGM). Does this data support HELP claim at $\alpha = 0.05$?
 - (a) Check assumptions.

Since $np_0 = 100(0.065) = 6.5 > 5$, $n(1 - p_0) = 100(1 - 0.065) = 93.5 > 5$, assumptions (i) **have** (ii) **have not** been satisfied (but barely), so compare large-sample z-test with small-sample binomial test.

- (b) *Statement*. Choose one.
 - i. $H_0: p = 0.065$ versus $H_1: p < 0.065$ ii. $H_0: p \le 0.065$ versus $H_1: p > 0.065$
 - iii. $H_0: p = 0.065$ versus $H_1: p > 0.065$
- (c) Test (large sample 1-proportion z-test). Chance $\hat{p} = \frac{7}{100} = 0.070$ or more, if $p_0 = 0.065$, is

$$p-value = P(\hat{p} \ge 0.070) = P\left(\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \ge \frac{0.070 - 0.065}{\sqrt{\frac{0.065(1-0.065)}{100}}}\right) \approx P\left(Z \ge 0.203\right) \approx$$

(i) **0.22** (ii) **0.42** (iii) **0.48**.

prop1.test(7, 100, 0.065, 0.05, "right") # approx 1-proportion 95% test for p

p.null p.hat z crit Value z test stat p value 0.0650000 0.0700000 1.6448536 0.2028185 0.4196385

Level of significance $\alpha = (i) 0.01$ (ii) 0.05 (iii) 0.10.

(d) Test (small sample binomial test). Chance $\hat{p} = \frac{7}{100} = 0.070$ or more, if $p_0 = 0.065$, is

$$p$$
-value = $P(\hat{p} \ge 0.07) = P(X \ge 7) \approx$

(i) **0.22** (ii) **0.42** (iii) **0.48**.

1-pbinom(6,100,0.065) # direct calculation of binomial p-value

[1] 0.4761099

Level of significance $\alpha = (i) 0.01$ (ii) 0.05 (iii) 0.10.

(e) Conclusion.

Since p-value = 0.48(or 0.42) > $\alpha = 0.05$, (i) **do not reject** (ii) **reject** null guess: $H_0: p = 0.065$. So, sample \hat{p} indicates population proportion p**is less than** (ii) **equals** (iii) **is greater than** 0.065: $H_0: p = 0.065$.

Figure 5.7: Large sample z-test and small sample binomial test

- (f) Test constructed so if there is any doubt as to validity of HELP claim, we will fall back on not rejecting null, there are 6.5% conspiring Earthlings. Hypothesis test (always) favors (i) null (ii) alternative hypothesis.
- (g) The p-value, in this case, is chance
 - i. population proportion 0.07 or more, if observed proportion 0.065.
 - ii. observed proportion 0.07 or more, if observed proportion 0.065.
 - iii. population proportion 0.07 or more, if population proportion 0.065.
 - iv. observed proportion 0.07 or more, if population proportion 0.065.
- 4. Power 1β of the test p: defective batteries.
 - Of n = 600 batteries chosen at random, $\frac{54}{600}$ ths $\left(\frac{54}{600} = 0.09\right)$ of them are found to be defective. (i) Calculate the *power* 1β of the test to detect this, that p = 0.09 when null is $p_0 = 0.08$ at $\alpha = 0.05$. (ii) Repeat, but calculate the power of the test to detect p = 0.12.
 - (a) Power 1β to detect p = 0.09 when $p_0 = 0.08$. Since, at $\alpha = 0.05$, where $z_{\alpha} = z_{0.05} = 1.65$

$$z_{0.05} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \Rightarrow \hat{p} = z_{0.05}\sqrt{\frac{p_0(1 - p_0)}{n}} + p_0 \approx 1.65\sqrt{\frac{0.08(1 - 0.08)}{600}} + 0.08 \approx 1.05\sqrt{\frac{p_0(1 - p_0)}{n}} + 0.08$$

(i) **0.24** (ii) **0.098** (iii) **0.95**, the value of the *critical sample proportion*,

and so the power is given by

$$1 - \beta \approx P\left(\hat{p} \ge 0.098\right) \approx P\left(Z \ge \frac{0.098 - 0.09}{\sqrt{\frac{0.09(1 - 0.09)}{600}}}\right) \approx P(Z \ge 0.69) \approx$$

(i) **0.24** (ii) **0.098** (iii) **0.95**.

Figure 5.8: Power $1 - \beta$ for two 1-proportion-tests

```
prop1.power <- function(n, p.null, p.true, signif.level, type) {</pre>
  if(type=="right") {
    z.crit <- -1*qnorm(signif.level)</pre>
    p.hat.crit <- z.crit*sqrt(p.null*(1-p.null)/n) + p.null</pre>
    power <- 1-pnorm(p.hat.crit,p.true,sqrt(p.true*(1-p.true)/n))</pre>
    dat <- c(n, signif.level, p.null, p.true, p.hat.crit, power)</pre>
    names(dat) <- c("n", "alpha", "p.null", "p.true", "p.hat.crit.value", "power")</pre>
  }
  return(dat)
}
prop1.power(600, 0.08, 0.09, 0.05, "right") # power of test for p
                                                      p.true p.hat.crit.value
                                                                                                  power
                            alpha
                                            p.null
               n
    600.00000000
                       0.05000000
                                      0.0800000
                                                        0.09000000
                                                                        0.09821757
                                                                                           0.24091590
```

(b) Power $1 - \beta$ to detect p = 0.12 when $p_0 = 0.08$. Since, at $\alpha = 0.05$, where $z_{\alpha} = z_{0.05} = 1.65$

(i) **0.24** (ii) **0.098** (iii) **0.95**, the value of the *critical sample proportion*,

and so the power is given by

$$1 - \beta \approx P\left(\hat{p} \ge 0.098\right) \approx P\left(Z \ge \frac{0.098 - 0.12}{\sqrt{\frac{0.12(1 - 0.12)}{600}}}\right) \approx P(Z \ge -1.65) \approx 0.098$$

(i) **0.24** (ii) **0.098** (iii) **0.95**

<pre>prop1.power(600,</pre>	0.08,	0.12, 0.05	"right")	<pre># power</pre>	of test	for p		
n		alpha		p.null		p.true	p.hat.crit.value	power
600.0000000		0.0500000	0.08	3000000	0.	12000000	0.09821757	0.94969589

(c) Comparing powers in two cases. Power 1 - β (0.24) to detect p = 0.09 when p₀ = 0.08 is

(i) larger
(ii) smaller than
power 1 - β (0.95) to detect p = 0.12 when p₀ = 0.08;
in other words,
the chance to reject p₀ = 0.08 when p = 0.09 is
(i) larger
(ii) smaller than
the chance to reject p₀ = 0.08 when p = 0.12.

5.3 Testing Claims About a Mean

Hypothesis test for μ with known σ is a *z*-test with test statistic

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}},$$

whereas hypothesis test for μ with unknown σ is a *t-test* with test statistic

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

and used when either underlying distribution is normal with no outliers or if random sample size is large, $n \geq 30$. Typically, more realistic *t*-test used.

Exercise 5.3 (Testing Claims About a Mean)

1. Testing μ , right-sided: hourly wages.

Average hourly wage in US is assumed to be \$10.05 in 1985. Midwest big business, however, claims average hourly wage to be larger than this. A random sample of size n = 15 of midwest workers determines average hourly wage $\bar{x} =$ \$10.83 and standard deviation in wages s = 3.25. Does data support big business's claim at $\alpha = 0.05$? Assume normality.

(a) *Statement*. Choose one.

i. $H_0: \mu = \$10.05$ versus $H_1: \mu < \$10.05$ ii. $H_0: \mu = \$10.05$ versus $H_1: \mu \neq \$10.05$ iii. $H_0: \mu = \$10.05$ versus $H_1: \mu > \$10.05$

(b) Test.

Chance $\bar{x} = 10.83$ or more, *if* $\mu_0 = 10.05$, is

p-value =
$$P(\bar{X} \ge 10.83) = P\left(\frac{\bar{X} - \mu_0}{\frac{s}{\sqrt{n}}} \ge \frac{10.83 - 10.05}{\frac{3.25}{\sqrt{15}}}\right) \approx P(t \ge 0.93) \approx$$

```
which equals (i) 0.18 (ii) 0.20 (iii) 0.23.
```

```
mean1.t.test <- function(x.bar,m.null,s,n,signif.level,type) {</pre>
  t.test.statistic <- (x.bar-m.null)/(s/sqrt(n))</pre>
  if(type=="right") {
    t.crit <- -1*qt(signif.level,n-1)</pre>
   p.value <- 1-pt(t.test.statistic,n-1)</pre>
  if(type=="left") {
    t.crit <- qt(signif.level,n-1)</pre>
    p.value <- pt(t.test.statistic,n-1)</pre>
  3
  if(type=="two.sided") {
    t.crit.right <- -1*qt(signif.level/2,n-1)</pre>
    t.crit.left <- qt(signif.level/2,n-1)</pre>
    t.p.value.right <- 1-pt(t.test.statistic,n-1)</pre>
    t.p.value.left <- pt(-1*t.test.statistic,n-1)
    t.p.value <- t.p.value.left + t.p.value.right</pre>
  }
  if(type=="two.sided") {
    dat <- c(m.null, x.bar, t.crit.left, t.crit.right, t.test.statistic, t.p.value)</pre>
    names(dat) <- c("m.null", "x.bar", "t crit left", "t crit right", "t test stat", "p value")</pre>
  } else {
    dat <- c(m.null, x.bar, t.crit, t.test.statistic, p.value)</pre>
    names(dat) <- c("m.null", "x.bar", "t crit value", "t test stat", "p value")</pre>
  3
  return(dat)
7
mean1.t.test(10.83, 10.05, 3.125, 15, 0.05, "right") # m: mean, s: SD, n: sample size, t-test
      m.null
                     x.bar t crit value t test stat
                                                             p value
  10.0500000 10.8300000 1.7613101 0.9666966
                                                           0.1750497
```

Level of significance $\alpha = (i) 0.01$ (ii) 0.05 (iii) 0.10.

(c) Conclusion.

Since p-value = $0.18 > \alpha = 0.05$,

(i) do not reject (ii) reject null guess: $H_0: \mu = 10.05$.

In other words, sample \bar{x} indicates population average salary μ

- (i) is less than (ii) equals (iii) is greater than 10.05: $H_0: \mu = 10.05$.
- (d) Match columns.

terms	wage example
(a) population	(a) all US wages
(b) sample	(b) wages of 15 workers
(c) statistic	(c) observed average wage of 15 workers
(d) parameter	(d) average wage of US workers, μ

terms	(a)	(b)	(c)	(d)
wage example				

2. Testing μ , right-sided, raw data: sprinkler activation time. Thirteen data values are observed in a fire-prevention study of sprinkler activation times (in seconds). Actual average activation time is supposed to be 25 seconds. Test if it is more than this at 5%.

x <- c(27, 41, 22, 27, 23, 35, 30, 33, 24, 27, 28, 22, 24)

(a) Check assumptions (since n = 13 < 30): normality.

Figure 5.9: Normal probability plot for times

```
qqnorm(x,datax=TRUE) # QQ plot
qqline(x,datax=TRUE) # QQ line
```

Plot indicates activation times (i) **normal** (ii) **not normal** because data veers off the line, but let's continue anyway.

- (b) Statement.
 - i. $H_0: \mu = 25$ versus $H_1: \mu > 25$ ii. $H_0: \mu = 25$ versus $H_1: \mu < 25$ iii. $H_0: \mu = 25$ versus $H_1: \mu \neq 25$
- (c) Test.

Chance $\bar{x} = 27.9$ or more, if $\mu_0 = 25$, is

p-value =
$$P(\bar{X} \ge 27.9) = P\left(\frac{\bar{X} - \mu_0}{\frac{s}{\sqrt{n}}} \ge \frac{27.9 - 25}{\frac{5.6}{\sqrt{13}}}\right) \approx P(t \ge 1.88) \approx$$

(i) **0.039** (ii) **0.043** (iii) **0.341**.

```
x.bar <- mean(x); m.null <- 25; s <- sqrt(var(x)); n <- length(x)
mean1.t.test(x.bar,m.null,s,n, 0.05, "right") # m: mean, s: SD, n: sample size, t-test
    m.null    x.bar t crit value  t test stat    p value
    25.00000000 27.92307692 1.78228756 1.87554296 0.04262512</pre>
```

Level of significance $\alpha = 0.01$ (ii) 0.05 (iii) 0.10.

- (d) Conclusion. Since p-value = 0.043 < α = 0.050,
 (i) do not reject (ii) reject null guess: H₀ : μ = 25. In other words, sample x̄ indicates population average time μ
 (i) is less than (ii) equals (iii) is greater than 25: H₀ : μ > 25.
 (e) Related question: unknown σ.
- The σ is **known** (ii) **unknown** in this case and is approximated by $s \approx$ (i) **5.62** (ii) **5.73** (iii) **5.81**. sqrt(var(x)) [1] 5.619335
- 3. Testing μ , left-sided: weight of coffee

Label on a large can of Hilltop Coffee states average weight of coffee contained in all cans it produces is 3 pounds of coffee. A coffee drinker association claims average weight is less than 3 pounds of coffee, $\mu < 3$. Suppose a random sample of 30 cans has an average weight of $\bar{x} = 2.95$ pounds and standard deviation of s = 0.18. Does data support coffee drinker association's claim at $\alpha = 0.05$?

(a) *P*-value approach.

i. Statement. Choose one.

A. $H_0: \mu = 3$ versus $H_1: \mu < 3$

B. $H_0: \mu < 3$ versus $H_1: \mu > 3$

- C. $H_0: \mu = 3$ versus $H_1: \mu \neq 3$
- ii. Test.

Chance observed $\bar{x} = 2.95$ or *less*, if $\mu_0 = 3$, is

p-value =
$$P(\bar{X} \le 2.95) = P\left(\frac{\bar{X} - \mu_0}{\frac{s}{\sqrt{n}}} \le \frac{2.95 - 3}{\frac{0.18}{\sqrt{30}}}\right) \approx P(t \le -1.52)$$

which equals **0.04** (ii)**0.07** (ii) **0.08**.

mean1.t.test(2.95, 3, 0.18, 30, 0.05, "left") # m: mean, s: SD, n: sample size, t-test

m.null x.bar t crit value t test stat p value 3.00000000 2.95000000 -1.69912703 -1.52145155 0.06948835

Level of significance $\alpha = (i) 0.01$ (ii) 0.05 (iii) 0.10.

iii. Conclusion.

Since p-value = $0.07 > \alpha = 0.05$,

- (i) do not reject (ii) reject the null guess: $H_0: \mu = 3$.
- In other words, sample \bar{x} indicates population average weight μ
- (i) is less than (ii) equals (iii) is greater than 3: $H_0: \mu = 3$.
- (b) Traditional approach.
 - i. Statement. Choose one.

A. $H_0: \mu = 3$ versus $H_1: \mu < 3$ B. $H_0: \mu < 3$ versus $H_1: \mu > 3$ C. $H_0: \mu = 3$ versus $H_1: \mu \neq 3$ ii. *Test.*

Test statistic

$$t=\frac{\bar{x}-\mu_0}{s/\sqrt{n}}=\frac{2.95-3}{0.18/\sqrt{30}}\approx$$

(i) -1.65 (ii) -1.52 (iii) -1.38. Critical value at $\alpha = 0.05$,

$$t_{\alpha} = -t_{0.05} \approx$$

iii. Conclusion.

Since $t \approx -1.52 > -t_{0.05} \approx -1.70$,

(test statistic is outside critical region, so "close" to null $\mu = 3$),

- (i) do not reject (ii) reject the null guess: $H_0: \mu = 3$.
- In other words, sample \bar{x} indicates population average weight μ
- (i) is less than (ii) equals (iii) is greater than 3: $H_0: \mu = 3$.

Figure 5.10: Left-sided test of μ : coffee

- (c) Related questions.
 - i. Test always favors the (i) **null** (ii) **alternative** hypothesis since chance of mistakenly rejecting null is so small; in this case, $\alpha = 0.05$.
 - ii. To assume null hypothesis true, means assuming
 - A. average weight of coffee contained in all Hilltop Coffee cans is less than 3 pounds, $\mu < 3$.

- B. average weight of coffee contained in all Hilltop Coffee cans equals 3 pounds, $\mu = 3$.
- C. average weight of coffee contained in a random sample of 30 Hilltop Coffee cans equals 2.95 pounds, $\bar{x} = 2.95$.
- iii. Match columns.

terms	coffee example
(a) population	(a) average weight of all cans
(b) sample	(b) average weight of 30 cans
(c) statistic	(c) weights of 30 cans
(d) parameter	(d) weights of all cans

terms	(a)	(b)	(c)	(d)
coffee example				