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Handout #1 SECOND REVIEW OF THE STEPS IN SOLVING AN Professor Moseley
AN APPLIED MATH PROBLEM

The need to develop a mathematical model begins with specific questions that the
solution of a mathematical model will answer.  We review again the five basic steps used to
solve any applied math or application problem.  To answer specific questions in a particular
application area we wish develop and solve a mathematical “find” problem which in this course
will usually be an IVP that is well-posed in a set theoretic sense (i.e., has exactly one solution).

Step 1: UNDERSTAND THE CONCEPTS IN THE APPLICATION AREA.   In order to answer
specific questions, we wish to develop a mathematical model (or problem) whose solution will
answer the specific questions of interest.  Before we can build a mathematical model, we must
first understand the concepts needed from the application area where answers to specific
questions are desired.  Solution of the model should provide answers to these questions.  We start
with a description of the phenomenon to be modeled, including the “laws” it must follow (e.g.,
that are imposed by nature, by an entrepreneurial environment or by the modeler).  Recall that the
need to answer questions about a ball being thrown up drove us to Newton’s second law, F=MA.  

Step 2: UNDERSTAND THE MATHEMATICAL CONCEPTS NEEDED.  In order to develop
and solve a mathematical model, we must first be sure we know the appropriate mathematics. 
For this course, you should have previously become reasonably proficient in high school algebra
including how to solve algebraic equations and calculus including how to compute derivatives
and antiderivatives.  We are developing the required techniques and understanding of
differential equations.  Most of our models will be initial value problems.  Additional required
mathematics after first order ODE’s (and solution of second order ODE’s by first order
techniques) is linear algebra.  All of these must be mastered in order to understand the
development and solution of mathematical models in science and engineering.  

Step 3.  DEVELOP THE MATHEMATICAL MODEL.  The model must include those aspects
of the application so that its solution will provide answers to the questions of interest.  However, 
inclusion of too much complexity may make the model unsolvable and useless. To develop the
mathematical model we use laws that must be followed, diagrams we have drawn to understand
the process and notation and nomenclature we developed.  Investigation of these laws results in a
mathematical model.  In this chapter our models are Initial Value Problems (IVP’s) for a first
order ODE that is a rate equation (dynamical system).  This is indeed a “find” problem.  Since
the process evolves in time,  we choose t as our independent variable and start it at t = 0.  For our
one state variable problem, we use y and hence use the general first order ODE with an initial
condition as our  model.  For specific applications, finding f(t,y) is a major part of the modeling
process.

MATHEMATICAL MODEL:  In mathematical language the general nonlinear model may be
written as:
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ODE  =   f(t,y)

IVP
IC    y(0) = y0.

For many (but not all) of the applications we investigate,  the model is the simple linear
autonomous model:

ODE   =  k y + r0 (3)

IVP
IC y(0) = y0. (4)

The parameters r0, k and y0 as well as the variable y and t are included in our nomenclature list.

Nomenclature
y = quantity of the state variable,   t  = time,    r0 = the rate of flow for the source or sink
k = constant of proportionality,   y0 = the initial amount of our state variable

The model is general in that we have not explicitly given the parameters r0, k or y0.  These
parameters are either given or found using specific (e.g., experimental) data.  However, their
values need not be known to solve the linear model.

Step 4: SOLVE THE MATHEMATICAL MODEL  Once correctly formulated, the solver of the
mathematical model can rely completely on mathematics and need not know where the model
came from or what the Nomenclature stands for.  Solution of the model requires both practical 
(“how to”) skills and theoretical (“why”) skills.

For the general linear autonomous model, we can obtain a general formula for its unique
solution.  

 y  = !  + (  y0  +   )  ekt.  

Hence for this model we have a general solution (i.e., formula) for the model.  If specific data is
given, we can insert it into our formula.

Step 5: INTERPRETATION OF RESULTS. Although interpretation of results can involve lots
of things, in the current context where the general model has been solved, it means insert the
specific data given in the problem into the formula and answer the questions asked with regard
to that specific data.  This may require additional solution of algebraic equations, for example,
the formula that you derived as the general solution of the IVP.  However, some applications
may involve other equations.  The term general solution is used since arbitrary values of k, r0, and
y0 are used.   Recall that the term general solution is also used to indicate the (infinite) family of
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functions which are solutions to an ODE before a specific initial condition is imposed.  We could
argue that since the initial condition is arbitrary, we really have not imposed an initial condition,
but again, general here means not only an arbitrary initial condition, but also an arbitrary value of
k and r0.

GENERAL AND SPECIFIC MODELS     Once a general model has been formulated and
solved, it can be applied using specific data.  Alternately, the model can be written directly in
terms of the specific data and then solved (again).  If a general solution of the model has been
obtained, this is redundant.  However, writing a specific model and resolving provides much
needed practice in the process of formulating and solving models and hence is useful in preparing
for exams.   Although it is sometimes useful to remember a general model, solutions of a general
model should not normally be memorized and are usually not given on exams.  Also specific data
may simplify the process and the formulas obtained.  Often it is better to solve a simple problem
with specific data rather than try to apply a complicated formula resulting from a complicated
model.  

Repeating, it is acceptable (and indeed desirable since it gives practice in formulating and 
solving models) to formulate and solve a model using specific data..  The advantage of 
formulating and solving a model in a general context is that the solutions can be recorded in 
textbooks in physics, biology, etc. (and programed on personal computers) for those not 
interested in learning to solve differential equations.  However, if the model assumptions change, 
a new model must be formulated and solved.   Practice in formulating and solving specific 
models will help you to know when a different model is needed and in what generality  a model 
can reasonably be developed.  General models are useful when their results can be easily 
recorded  (or can be  programmed).  On the other hand, trying to use the results of a complicated 
model can unduly complicate a simple problem.  

Handout #2 APPLIED MATHEMATICS PROBLEM # 1 Professor Moseley
RADIOACTIVE DECAY
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Applied mathematics really begins with a desire to answer specific questions about “real
world” problems.  Hence in investigating applications, we will begin with specific questions that
drive us to find answers.  For our applications, answers require that we first develop and solve a
mathematical model that is an initial value problem..

APPLICATION #1  RADIOACTIVE DECAY
Application Areas include Physics, Biology, and Nuclear Engineering.

QUESTION: If the half-life of a particular radioactive substance is known to be 10 days and
there are 25 milligrams initially, how much is present after 8 days?

To answer this question we use our five step procedure.

Step 1: Understand the Concepts in the Application Area Where the Questions are Asked.  We
first describe the phenomenon to be modeled, including the laws it must follow (e.g., that are
imposed by nature, by an entrepreneurial environment or by the modeler).  To understand
radioactive decay, we consider the following empirical physical law.

PHYSICAL LAW.  From physical experiments, it is found that radioactive substances decay at
a rate that is proportional to the amount present.

It is useful to draw a sketch to help visualize the process being modeled.   Try to visualize the 
radioactive substance on a table radiating out into the room.  That is, the room is a sink.  The
amount of substance on the table is constantly decreasing.  (Obviously, in a physics lab, safety
precautions must be taken to protect against personal injury and pollution.)  Now let us consider 
   /))))))) the sentence "Radio active substances decay at a rate which is proportional 
  /         /*
  /  /&&/ _     /  * to the amount present."   Rate means time rate of change which implies
 / g/&  6   / **
/ b   9  `   / derivative with respect to time.  Thus our model will include a first order
)))))))/
**   ** ODE that is a rate equation.  (This is a special one-dimensional or scalar
version of our quintessential model.)  Always make a list of the variables and parameters you
use.  In an engineering research paper, this is called the nomenclature section.  Begin with those
stated in the problem.  If you need a variable not given, choose one that is appropriate and helps
you to remember what it stands for.  We begin our list:

Nomenclature
Q = quantity of the radioactive substance (state variable)
 t  = time (independent variable)

To understand the concept of half life, we must first develop and solve the model.

Step 2: Understand the Needed Concepts in Mathematics. 1. High School Algebra, 2. Calculus, 
3. Solution Techniques covered in this Part of the Notes.

Step 3: Develop the Mathematical Model.  If the problem is not complicated, a general model
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may be developed.  By this we mean that arbitrary constants (parameters) are used instead of
specific data.  This general model may then be used for any specific problem where the modeling
assumptions used to obtain the general model are satisfied.  If the assumptions are changed, a
new model must be formulated.  If a general model can be developed and solved, the results can
be recorded and used for any specific data.  However, you may wish to redevelop the same model
for different specific data in order to develop your modeling skills. 

Let us more carefully  analyze the sentence "Radio active substances decay at a rate which
is proportional to the amount present."   Rate means time rate of change which implies
derivative with respect to time.   Decay implies that the derivative is negative.  Proportional
means multiply the quantity by a proportionality constant, say k. Hence this sentence means the
appropriate rate equation (first order ODE) to model radioactive decay is

     =   ! k Q       k > 0. (1)

For this model we have followed the standard convention of putting in the minus sign explicitly
since we know that the substance is always decaying (i.e., its time derivative is negative).  This is
not necessary, but forces the physical constant k to be positive.  Physical constants are normally
listed in reference books as positive quantities.  You can and should check that the value you
obtain for k in a specific problem is positive.  If not, check your computations to find your
mistake.  Also, k > 0 makes the model more intuitive.  We emphasize that the equation is a rate
equation with units of mass per unit time (M/T e.g. grams per second, gm/sec).  Thus it can be
viewed as a conservation law.  We only have a sink so that the rate of change is equal to the rate
out.  To determine the amount present at all times, we must also know the amount present
initially (or at some time).  Since no initial condition is given, we assume an arbitrary value, say
Q0 as a parameter.  We add k and Q0 to our nomenclature list.

Nomenclature
Q = quantity of the radioactive substance (state variable),   
t  = time (independent variable)
k = positive constant of proportionality (parameter),  
Q0 = initial amount of the radioactive substance (parameter)

The IVP that models radioactive decay is: 

MATHEMATICAL MODEL: Radio active decay.

   ODE    =   ) k Q (2)

IVP
    IC    Q(0) = Q0 (3)

Note that the model is "general" in that we have not explicitly given the proportionality 
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constant k or the initial amount Q0 of the substance.  These parameters can be given or found
using specific (e.g., experimental) data.  However, we do not need to know the values of k and
Q0 to solve the model.

Step 4: Solve the Mathematical Model.  Once the model is developed, it is not necessary that the
solver of the model understand any of the application concepts in order to solve the model. 
What is required now is not an understanding of the physics, but an understanding of the
mathematics.

To solve the ODE in this model, we note that it is both linear and separable.  We choose
to solve it as a separable problem, but recall that since it is linear, we can (and must) solve for Q
explicitly. Separating variables we obtain the sequence of equivalent equations

  =  ! k   dt,       = ! k I dt,      Rn *Q*  = ! kt + c,   *Q*  =  e ! k t + c  =   e c e ! k t.  

Letting A = ±ec ( + ec if Q > 0, !e c if Q < 0) we obtain Q = Aekt.  Although the physics implies 
Q $ 0, the mathematics does not require this in order for a unique solution to the IVP to exist. 
Applying the initial condition Q(0) = Q0, we obtain  Q0 = A .  Hence the unique solution to the
IVP is

Q = Q0e
-kt (4)

It is the solution to the general model for radioactive decay for Q0 $ 0.  Radioactive substances
are said to experience exponential decay.  The formula (4) is found in physics and biology
texts.  There are two constants (parameters) to be determined and we need further data to
evaluate them.  Known values of the constant  k ( with units 1/T e.g. 1/days) or its
(multiplicative) inverse 1/k (which is referred to as a time constant since it has units of time) for
specific substances could be given in reference books.  (Usually half lives are given instead as
explained below.)  The existence and uniqueness theory says that exactly one solution exists for
the IVP given by (2) and (3) and that the interval of validity is R.  If we have any doubts that we
have found it, we can check that it satisfies both the IC and the ODE for all x0R.  

Step 5: Interpret the Results.  Although interpretation of results can involve different things, in
the context of this course it means "After you have solved the  model (IVP) in whatever
generality is appropriate, apply the specific data given to answer the questions that motivated
our study”.  This may require additional solution of algebraic equations (e.g. the formula that you
have derived for the general solution of the model).  The term general solution is used since
arbitrary values of  k and Q0 are used.   (Recall that the term general solution is also used to
indicate the family of functions which are solutions to an ODE before an initial condition is
imposed.  We could argue that since the initial condition is arbitrary, we really have not imposed
an initial condition, but again, general here means not only an arbitrary initial condition, but also
an arbitrary value of k.)

This brings us to the concept of half life.  For an arbitrary value of Q0, let thl be the time
when only half of Q0 is left.  From (4) we obtain the sequence of equivalent scalar equations:



Ch. 5 Pg. 8

(1/2) Q0 = Q0 ,    (1/2) = ,    ln (1/2) = ! k th ,   .

First note that the half life depends only on the value of k and not on Q0.  In fact there is a one-
to-one correspondence between values for k and values for thl.  Thus we also have

.  Note that although it may appear that k is negative, in fact ln(1/2) is negative and 

(6)

Reference books generally give half lives.  The value of k can then be computed using (6).

APPLICATION TO SPECIFIC DATA     Once a general model has been formulated and
solved, it can be applied to specific data.  Alternately, the model can be written in terms of the
specific data and then solved (again).  If a general solution of the model has been obtained, this is
redundant.  However, resolving the model provides practice in the process of formulating and
solving models and hence is useful in preparing for exams.  Solutions of general models are not
normally given on exams and are usually not memorized.  Also specific data may simplify the
process and the formulas obtained.  Suppose that the following specific information is given:

SPECIFIC DATA.  If the half-life (the time required for a given amount to decrease to half that 
amount) of a particular radioactive substance is known to be 10 days and there are 25 milligrams 
initially, then find the amount present after 8 days.

We develop a data chart so that the specific data and the questions to be answered are at 
our finger tips.

Data Chart:

t t0 = 0 t1 = 8 th = 10

Q Q0 = 25 Q1 = ? Qh = ½ Q0

All of the information in the sentence is now contained in the data chart for easy access.  Recall
that the "general" solution of the model (IVP) is given by Q = Q0e

-kt.  We need to apply the 
information in the data chart to obtain specific values for the constants (parameters)  Q0 and k, 
thus completing the model for this specific data.

 It is certainly acceptable (and indeed desirable since it gives practice in formulating and
solving models) to formulate and solve the model using this specific data..  The advantage of
formulating and solving a model in a general context is that the solutions can be recorded in
textbooks in physics, biology, etc. (and programed on personal computers) for those not
interested in learning to solve differential equations.  However, if the model assumptions change,
a new model must be formulated and solved.   Practice in formulating and solving specific
models will help you to know when a different model is needed and in what generality  a model
can reasonably be developed.  General models are useful when their results can be easily
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recorded  (or can be programmed).  On the other hand, trying to use the results of a complicated
model can unduly complicate a simple problem.  Applying the data in the data chart we
obtain:

At  t = 0,    Q = 25   Y   Q0 = 25.
At  t = 10,    Q = ½ Q0 = ½ (25) = Q0e

-k(10) = 25e-k(10)

Hence   Rn(½)  =  ) k (10)  (Note that this result is independent of the value of Q0.) so that 

k = .  Hence   Q = 25    =   25 exp( !    t  ).  Thus after 8 days

Q(8)  = 25    =  25  exp( ! 8)  =  25 exp( Rn ( 2 )(4/5) ) = 25/(24/5 ) = 25/ .
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EXERCISES on Applied Math Problem #1: Radioactive Decay

EXERCISE #1.  Use the solution (4) of the model (2), (3) to “solve” the following problems.  Be
sure to include a data chart.  
(a)  If the half life of a particular radioactive substance is known to be 10 years and there are 8
milligrams initially, find the amount after 8 years. 
(b)  If the half life of a particular radioactive substance is known to be 100 years and there are 8
milligrams initially, find the amount after 50 years.

EXERCISE #2.  Suppose a radioactive material satisfies the model (2), (3) with decay rat r and
half life J.  Determine J in terms of r.  By inverting this function, determine r in terms of J. 
Copy down Table 1 below.  Use the relations you have found to fill it in.

TABLE #1: DECAY RATES AND HALF LIVES FOR SOME RADIOACTIVE MATERIALS
Material   Units Decay rate (r) Half-Life (J)

Mass (Q) Time (T)   

Plutonium - 241 milligrams years 0.0525 1/years

Einsteinium - 253

Radium - 226 milligrams years 1620 years

Thorium - 234

EXERCISE #3.  Suppose that a radioactive substance R has a decay constant r when the amount
of the substance is measured in milligrams and time is in days.  That is, if left alone, it obeys the
model (2), (3).  Now suppose that an additional amount of R is added at the constant rate of k
mg/day.  Develop a model (i.e., an IVP) for this experimental set up.

EXERCISE #4.  Solve the model developed in Exercise #3.
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Handout #3 APPLIED MATHEMATICS PROBLEM # 2 Professor Moseley
CONTINUOUS COMPOUNDING

Application #2  CONTINUOUS COMPOUNDING
Application Areas include Business and Economics.

QUESTIONS.   If  $1000 is invested at 6% annually compounded continuously how much will
the investment be worth in 6 years.  How long before the investment doubles?

We again apply our four step procedure to solve this applied math or application
problem:

Step 1: Understand the Concepts in the Application Area Where the Questions are Asked.  This
We describe the phenomenon to be modeled, including the laws it must follow.  We consider the
following “economic definition” for continuous compounding and develop a general model
(IVP) that governs this process with no deposits or withdrawals after the initial investment.

ECONOMIC DEFINITION.  Continuous compounding means that the time rate of change of
the total investment (principle plus interest) is increasing in proportion to the amount present. 
(Money grows like  rabbits.  The more there is, the faster it grows.) 

Unfortunately (in terms of understanding continuous compounding, but not in terms of
understanding bank accounts) most people already have some understanding of discrete
compounding.  Example 2 (page 45) of Boyce and Diprima develops discrete as well as
continuous compounding and compares them.  As a first effort at trying to understand
continuous compounding, it is probably better not to worry about discrete compounding (what
banks do) and just focus on the model of continuous compounding as described in the above
“economic definition”.  We note however that continuous compounding is in fact the limit of
discrete compounding as the interval of compounding (i.e., )t) is allowed to go to zero.

It is useful to draw a sketch to help visualize the process being modeled.
Try to visualize the amount of invested  money on a table

-))))))    /))))))) with the bank adding interest.  The total amount of 
*money*  /     ))       /
*  *         /    /   /        / (principle plus interest) is increasing as the bank adds
*B  *  6    /   g_ /        /
*  a  *  6   /                 / interest to the original principle invested.  (Obviously, in a
*    n  *  6  )))))))/
*___k_ *     *    * real life situation the money is in a vault or loaned to

      Your account someone else at a higher interest rate.)  Again our model
will contain an ODE that is a rate equation.

Step 2: Understand the Needed Concepts in Mathematics. 1. High School Algebra, 2. Calculus, 
3. Solution Techniques covered in this Part of the Notes.

Step 3: Develop the Mathematical Model.  If the problem is not complicated, a "general" model
may be developed and solved first.  This "general" model may then be used for any specific
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problem where the modeling assumptions used to obtain the "general " model are satisfied.  If
they are not, a new model must be formulated and solved.  To develop a model, let us analyze the
sentence.  "Continuous compounding means the time rate of change of the total investment
(principle plus interest) is increasing in proportion to the amount present."  This is just like
radioactive decay, except that the rate is increasing, instead of decreasing.  Hence we omit the
minus sign and obtain 

  =   k S       k > 0.

where
S = Total investment (Principle plus interest)
t = time
k = positive constant of proportionality (text uses r)

Always make a list of the variables and parameters you use.  Begin with those stated in the
problem.  If you need a variable not given, choose one that is appropriate and helps you to
remember what it stands for. Note that this rate equation has units of money per unit time (e.g.
dollars per year, $/yr).  To determine the amount present at all times, we must also know the
amount present initially (or at some time).  Since no initial condition is given, we assume an
arbitrary value, say S0.  Hence the IVP that models this phenomenon is given by:

MATHEMATICAL MODEL: Continuous Compounding.

   ODE  =  k S

IVP
   IC    S(0) = S0

Note that the model is "general" in that we have not explicitly given the proportionality 
constant k or the initial investment S0.  These will have to be given or found using data.  More 
needs to be said about the proportionality constant k.  Unlike radioactive substances whose decay 
rates are set by nature, growth rates for money are set by bankers or the government).  By 
looking at the definition of interest rates for discrete compounding and taking the limit as the 
time interval for compounding goes to zero (or simply by assuming this as a definition of 
continuous compounding) we agree that the constant k expressed as a fraction (e.g. 6% = 0.06) is 
the rate of interest.  It is the (multiplicative) inverse of a time constant and has units of 
fractional portion (from the percentage rate) ) per unit time (1/T, e.g. one over years, 1/yrs).  
Since it is a "rate of interest",  we now replace k by r.

MATHEMATICAL MODEL: Continuous Compounding
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   ODE    =  r S

IVP
   IC S(0) = S0.

Step 4: Solve the Mathematical Model.  To solve the ODE, we note that it is essentially 
the same equation as for radioactive decay with ) k replaced by r.  Hence the solution is given by

S = S0e
rt

There are two constants (parameters) to be determined and we need data to evaluate them.  If  the 
assumptions of the model are violated (e.g. if we add the additional assumption that we are 
adding to the original investment or withdrawing money on a continuous basis) the model must 
be reformulated and resolved.

Step 5: Interpret the Results.  Although interpretation of results can involve a number of things,
in the context of this course it usually means "After you have formulated and solved the
"general" model (IVP) for the conditions presented, use your results and the specific data given to
answer the specific questions asked".  This may require additional solution of algebraic equations
obtained in solving the model (IVP), for example,  the equation obtained as the "general"
solution of the model.  The term "general" solution is used here  since arbitrary values of r and S0

are used.   (Recall that the term general solution is also used to indicate the family of functions
which are solutions to an ODE before an initial condition is imposed.  We could argue that since
the initial condition is arbitrary, we really have not imposed an initial condition, but again,
"general" here means not only an arbitrary initial condition, but also an arbitrary value of r.)

APPLICATION OF SPECIFIC DATA     Once a general model has been formulated and
solved, it can be applied using specific data.  Alternately, the model can be written in terms of the
specific data and resolved.  Although redundant, this resolving of the model provides much
needed practice in the process of formulating and solving models.  This is useful in preparation
for exams since solutions of general models are not normally given on exams and are usually not
memorized.  Also specific data may simplify the process and the formulas obtained.  Suppose
that the following specific information is given:

SPECIFIC DATA.   If  $1000 is invested at 6% annually compounded continuously how much
will the investment be worth in 6 years.  How long before the investment doubles?

We develop a data chart for:    r = 6% = 0.06
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t t0 = 0 t1 = 6 td=? 

S S0 = 1000 S1 = ? Sd = 2 S0

All of the information in the sentence except r = 6% = 0.06 is now contained in the data chart for
easy access.  Recall that the "general" solution of the model (IVP) is given by S = S0e

-rt.  We need
to apply the information in the data chart to obtain values for the ?'s  in the chart.  It is certainly
acceptable to include computation of S0 (i.e. writing the formula with the value given) as  part of
the solution process with Step 2, but normally Step 2 involves the solution of the model (IVP) in
the most general form that is reasonable.)  Letting r = 6% = 0.06 and applying the data in the data
chart we obtain:

At  t = 0,  S = 1000 which implies  S0 = 1000.  Hence S = 1000 e 0.06 t

Hence at  t = 6 years, S = 1000e 0.06(6) = 1000e0.36  ( . $ 1433.33 using a calculator)

At t = td , S = 2 S0 = 2000 = S0 e
 0.06 td = 1000 e 0.06 td so that  2 = e 0.06 td and hence 0.06 td = Rn(2).

Thus  td  = (100/6)Rn(2)  ( . 11.55 years using a calculator) 

Similar to half life, the doubling time for the initial investment (or the doubling time for rabbits)
is not dependent on value of the initial investment (or the initial number of rabbits).  It is
important to emphasize that if the modeling assumptions are changed, the result (i.e. formula for
the solution) derived for the above model in Steps 1 and 2 and applied in Step 3, is not valid. 
The model must be reformulated and re-solved.

EXERCISES on Applied Math Problem #1: Continuous Compounding
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Handout #4 APPLIED MATHEMATICS PROBLEM # 3 Professor Moseley
MIXING PROBLEMS

Application #3   MIXING (TANK) PROBLEMS.  
Application Areas include Civil and Chemical Engineering.

QUESTIONS.  Suppose a tank initially has 10 pounds of salt dissolved in 100 gallons of water. 
If brine at a concentration of 1/4 pound of salt per gallon is entering the tank at the rate of 3
gallons per minute and the well stirred mixture leaves the tank at the same rate, how much salt is
left in the tank after 30 minutes?  What is the maximum amount of salt which accumulates in the
tank?

Again we use our four step procedure to solve this applied math or application
problem:

Step 1: Understand the Concepts in the Application Area Where the Questions are Asked.  This
process begins with a description of the phenomenon to be modeled, including the laws it must
follow.  We consider the following conservation (of stuff) law for a fixed location (container) in
space.

PHYSICAL LAW.  Conservation of mass.  If we are not dealing with nuclear energy, then
mass can neither be created or destroyed.  When dealing with a fixed control volume
(container), this becomes the rate equation:

Rate of change of amount in the control volume = (Rate in) ) (Rate out).

We consider the following physical setup and develop a general model that governs the
water and salt flow in a tank using appropriate modeling assumptions.  That is, we apply the
physical law of conservation of mass to a specific control volume (tank) containing two
substances, salt and water.

SET UP OF PHYSICAL SYSTEM.  Let  T  be a tank which initially has S0 lbs of salt
dissolved in W0 gallons of water.  Suppose brine at a concentration of C0 lbs of salt per gallon is
entering the tank at the rate of r0 gal./min. and the well stirred mixture leaves the tank at the same
rate.  

Step 2: Understand the Needed Concepts in Mathematics. 1. High School Algebra, 2. Calculus, 
3. Solution Techniques covered in this Part of the Notes.

Step 3: Develop the Mathematical Model.  If the problem is not complicated, a general model
may be developed and solved first.  Results for this general model may then be used for any
specific data where the modeling assumptions used to obtain the general model are satisfied.  If
different assumptions are desired, a new model must be formulated and solved.

We could give numerical values for S0, W0, C0, and r0 since these are assumed to be
constants (parameters).  This might make the problem appear less abstract.   However, working
the problem with "symbols" instead of numbers will yield formulas instead of numbers as
answers.  These formulas can then be programed on a computer, PC, or programmable calculator. 
These formulas can then be used for any values of  S0, W0, C0, and r0 desired.  Thus we only have
to solve the model once.  Of course, if we change the model assumptions and make it more
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complicated ( e.g. if the flow rate in is not the same as the flow rate out), then we must
reformulate the model and re-solve it.  On the other hand, having specific values for S0, G0, C0,
and r0  may make the problem seem more "real world" or "applied".  You are encourage to solve
models in as general form as you can handle.  On the other hand resolving the model for different
specific data provides much needed practice in te formulation and solution of models.

To develop a model, let us analyze the sentence.  "Suppose brine at a concentration of C0

lbs. of salt per gallon is entering the tank at the rate of r0 gallons per minute and the well stirred
mixture leaves the tank at the same rate."    It is useful to draw a sketch to help visualize the
process being modeled.   Try to visualize the brine (salt water) flowing into the tank and the 

well stirred mixture flowing out at the same rate.  
 ))))     C0 lbs/gal We apply the general physical law of conservation of "Stuff"
 ))) *
      * *   r0 gals/min (i.e. conservation of mass, but it can be measured in force units 
        9*  * e.g., lbs., since weight is proportional to mass and for liquids, in 
*))))*   W*      = W0*  *  *       *t=0 volume e.g., gallons, since the density is assumed to be constant). 
* 4  *    S  *        =  S0 The general conservation equation is 
 ))))  *     * t=0
         **
         ** Rate of change of amount in the tank = (Rate in) ) (Rate out)
           9   r0 gals/min

Since there are two ingredients (in a chemical reactor, there are
may be many chemical species), there are two conservation 

equations.  That is, we have two state variables and hence a system of ODE’s.  However, the
coupling of these is only one way and we can easily treat the system as two scalar equations, one
of which is trivial.  Always make a list of the variables you use.  Use those stated in the
problem.  If you need a variable not given, choose one that is appropriate and helps you to
remember what it stands for.   
Nomenclature

W  =  Amount of water (brine, gals.) in the tank at time t (state variable #1)
S   =  Amount of salt (lbs.) in the tank at time t (state variable #2)
t    =   time
W0  = Initial amount of water (brine, gals.) in the tank.
S0   = Initial amount of salt (lbs.) in the tank.

 
   We write the conservation equation for the water first.

ASSUMPTION #1:  The volume and flow of the water is not affected by the salt it contains.

That is, we assume that the concentrations are small enough so that the amount of salt in solution
(lbs.) does not affect the space occupied by the water (gals.) ).  Hence we only have one-way
(forward) coupling.  We may compute the amount of water in the tank first and this provides
definite information for computing the amount of salt.  Hence we develop a submodel for the
water flow.

ASSUMPTION #2:  The rate of flow of brine into the tank is the same as the rate of flow out. 
This is a very important assumption since it leads to much simplification.  It means that the
amount of brine in the tank remains constant.
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    =   rate of flow in  minus rate of flow out  = r0 ) r0 = 0.

Note that the units of this rate equation are gals/min.  We need an initial condition.  We assume 

  W(0)   =   W *       =  W0.  Hence we have the IVP
*t=0

MATHEMATICAL SUBMODEL #1: Water in tank.

   ODE     = 0

SUBMODEL#1   IVP
   IC   W(0) = W0

This submodel is easily solved to obtain  W = W0  = constant.  Since by Assumption 2, the flow 
rate out is the same as the flow rate in, the amount of water in the tank remains constant.

We now write the conservation equation for the salt.  We must first note that the rate of 
flow of a solid in solution is given by its concentration times the flow rate of the liquid.  Thus  

    =   (conc. in)(flow rate of water in) ) (conc. out)(flow rate of water out).

Note that the units of the rate equation are lbs/min. on the left and (lbs/gal)(gals/min) = lbs/min 
on the right.  The concentration of the solution flowing in is given.  However, the concentration 
of the solution flowing out is not.  The phrase "well stirred mixture" is a clue.  If the salt is 
evenly distributed (by the clapper in the sketch) through out the tank, then the concentration in 
the tank is the same at all points and is equal to S/W (=S/W0).  

ASSUMPTION #3:  The concentration of the salt is uniform in the entire tank (“reactor”).  That 
is, it si independent of the point in the tank where we might choose to measure it.  
Hence the conservation equation for salt is

   =   C0 r0 ) S/W.

To determine the amount present at all times, we need an initial condition.  To make the model 
as general as possible, we assume an arbitrary initial condition:

  S(0)    =     S *       =  S0.  Hence we have the IVP
*t=0
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MATHEMATICAL SUBMODEL #2: Salt in tank.

   ODE     = C0 r0 ) (S/W)r0.

SUBMODEL#2 IVP
   IC    S(0) = S0

Note that this rate equation has units of mass (or weight)  per unit time (e.g. pounds per minute,
lbs/min).  

The mathematical model consists of the two submodels taken together.  We could write
this as a system of two ODE’s.  We will learn to solve general systems of ODE’s later.  However
this one is simple to solve without the general machinery and hence provides a good introduction
to the concept.) 

        = 0

ODE System

     = C0 r0  ! (S/W)r0.

MODEL IVP
  W(0) = W0

IC
   S(0) = S0

The reason that this system is easy to solve is that it is uncoupled (or at least only one-way
coupled).  We can solve for the amount of water in the tank first and then find the amount of salt
in the tank.  Since the solution of the first equation was trivial resulting in W = W0 = constant,
we can argue that we should be allowed to substitute this value in the second submodel to obtain
the scalar model.

SCALAR MODEL:  Salt in tank.

   ODE    = C0 r0 ) (S/W0)r0.

IVP
   IC    S(0) = S0

Step 4: Solve the Mathematical Model.  Since Submodel#1 was trivial, we solved it immediately
to obtain W = W0 = constant.  We then put this constant into Submodel#2 to obtain the scalar
model given above.  To solve the ODE in the scalar model, we note that it is both linear and
separable.  We choose to view it as a separable problem, but recall that since it is linear, we can
(and must) solve explicitly for Q.  Also from the theory, we have that p(t) = r0/W0 and g(t) = C0 r0

are in A(R) so that all solutions are in A(R).  From our previous experience, we expect
exponential growth or decay.  As previously demonstrated, we separate variables in a way to
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make it easy to obtain the time constant and avoid integration errors.

      = !   ( S )  W0 C0 )   dt  

I     =   !     I dt  

 Rn* S )  W0 C0  *   =  )  ( r0 / W0 ) t  + c

* S )  W0 C0  *   =   exp () (r0 /W0 )t + c )  = e-( r0/ W0 ) t + c = e-( r0/ W0 ) t  ec

Letting  A = ±e c, we may rewrite this as

     S )  W0 C0   =  A exp () (r0/W0 )t )  =  A e-( r0/ W0 ) t

or
     S  =   W0 C0   +  A exp () (r0/W0 )t )  =  W0 C0  +  A e-( r0/ W0 ) t

Applying the initial condition we obtain 

     S0  =   W0 C0   +  A exp () (r0 /W0 ) 0  )  =  W0 C0  +  A e-( r0/ W0 ) 0

     S0  =   W0 C0   +  A    Y        A   =   S0  )   W0 C0 

     S  =  W0 C0  + ( S0  )  W0 C0 ) exp () (r0 /W0 ) t  )  =  W0 C0   + ( S0  )  W0 C0 ) e
-( r0/ W0 )  t

Note there are four constants (parameters) to be determined and we need further data to evaluate 
these.  Also note that if the assumptions of the model do not hold (e.g. the flow of liquid in is not 
the same as the flow out) the model must be reformulated and resolved.

Step 5: Interpret the Results.  Although interpretation of results can involve a number of things,
in the context of this course it usually means " After you have formulated and solved the
(general) model (IVP) for the general modeling assumptions, apply the specific data given to
answer the questions asked".  This may require additional solution of algebraic formulas
(functions or equations)  obtained in solving the model (IVP), for example,  the equation
obtained as the "general" solution of the model.  The term "general" solution is used here  since
arbitrary values of C0 and r0 as well as W0 and S0 are used.  

APPLICATION OF SPECIFIC DATA     Once a general model has been formulated and
solved, it can be applied using specific data.  Alternately, the model can be written in terms of the
specific data and resolved.  Although redundant, this resolving of the model provides much
needed practice in the process of formulating and solving models.  This is useful in preparation
for exams since solutions of general models are not normally given on exams and are usually not
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memorized.  Also specific data may simplify the process and the formulas obtained.  Suppose
that the following specific information is given:

SPECIFIC DATA.  Let  T  be a tank which initially has 10 lbs of salt dissolved in 100 gals of
water.  If brine at a concentration of 1/4 lb of salt per gallon is entering the tank at the rate of 3
gals/min, and the well stirred mixture leaves the tank at the same rate.  Determine the amount of
salt in the tank after 30 min.  What is the maximum amount of salt which accumulates in the
tank.

Since the assumption of the general model are satisfied, we may use the “general” solution. 
However, first we  redraw our sketch giving the specific data and develop a data chart for both
IVPs.

 )))))))))))))))
 ))))   C0 = 1/4 lbs/gal *    t *      t0  =  0 * Water
c ))   *  )))))))))))))))
       * *   r0 = 3 gals/min *    W *  W0  = 1000 *
*   *   )))))))))))))))
 )))))
*  * *   W*      = W0  =100 gals
*  * *       *t=0 Salt
* 4 **      S *        =  S0 = 10 lbs.  ))))))))))))))))))))))))))))))))))))
))) *       * t=0 *   t *      t0  =  0 *    t1 = 30 *    tm = ? *
        * *  ))))))))))))))))))))))))))))))))))))

  *   S *     S0  =  10 *    S1 =  ? *    Smax  = ? *
          9   r0 = 3 gals/min  ))))))))))))))))))))))))))))))))))))

All of the information in the problem is now contained in the sketch and the data chart for easy
access.   Since these values are now given in the problem statement, it is certainly acceptable
(and in fact desirable) to include them in your own formulation of the IVP and repeat  Steps 1
and 2 using these specific values.  We leave this as an exercise.

EXERCISE.  Formulate and solve (repeat steps 2 and 3) the model for the specific data given
above.

Instead of reworking the problem for this specific data we simply recall that the "general"
solution for this model (IVP) is given by 

     S  =  W0 C0  + ( S0  )  W0 C0 ) exp () (r0 /W0 ) t  )  =  W0 C0  + ( S0  )  W0 C0 ) e
-(r0/W0) t

where C0 = 1/4 lbs/gal,  r0 = 3 gals/min,   W0 = 100 gals,  S0 =  10 lbs.
Hence we obtain

     S  = (100)(1/4) + ( 10  )  (100)(1/4) ) exp () (3 /100 ) t  )  =  25  + (10  )  25 ) e-(3/100) t

         = 25 ) 15 e-(3/100) t

We use this result to obtain values for the  “ ?'s “  in the chart.  The first question is easy.

S(30)   =   S(t1)    = S *        = S1 =  25 ) 15 e - (3/100) (30) = 25 ) 15 e - 9/10 . 18.00
*t = t1 =30
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The second is a little more tricky since it might at first appear to be a straight forward max-min
problem.  However, recall that e-x decreases to zero as x 6 4.  Also 
dS/dt = ) (15)( ) 3/100) e-(3/100) t  > 0   � t 0 R.  Hence the amount of salt is always increasing as
the term  15 e-(3/100) t decreases to zero.  Hence the maximum amount of salt in the tank is

S( t = 4 )   =   S(tm)    =    S *        =   Smax =  lim (25 ) 15 e - (3/100) (t) ) =  25. 
*t = t1 =30 t6 4

As  t 6 4  the amount of salt in the tank approaches 25 lbs.  This is called the steady-state.

EXERCISES on Applied Math Problem #3: Mixing Problems
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Handout #5 A GENERIC FIRST ORDER LINEAR MATHEMATICAL Professor Moseley
MODEL WITH ONE STATE VARIABLE

Review the three models developed and note their commonality.  (The mixing problem
was originally a nonlinear vector problem with two state variables, but, even with nonequal flow
rates, because of the one-way coupling, it could be reduced to a scalar linear model.)  We wish to
step back and get an overview of how to use first order (linear) ODE initial value problems as
mathematical models.  We first review our five step procedure for solving any applied math or
application problem:

Step 1. Understand the concepts in the application area where a mathematical model is desired.
Step 2: Understand the Needed Concepts in Mathematics.
Step 3. Develop the mathematical model.
Step 4. Solve the mathematical model.
Step 5. Interpret your results  This includes answering  the questions asked.

QUESTIONS.  Suppose a container (e.g., a tank, test tube, Petri dish, bank account, human
body, or ocean) initially contains y0 units of stuff (e.g., salt, chemical, culture, money, heat
energy, or fish).  Suppose, with no source term, stuff accumulates (or drains) by a linear law.  If
in addition, stuff is added at the constant rate of r0 units of stuff per unit of time. how much stuff
will be left after t1 units of time?

Step 1: Understand the Concepts in the Application Area Where the Questions are Asked..  This
process begins with a description of the phenomenon to be modeled, including the laws it must
follow (e.g., that are imposed by nature, by an entrepreneurial environment or by the modeler). 
For our generic model this is a law which gives the rate of change of the state variable based on
its current value. it is a rate equation that does not depend on history.  We assume a linear law if
there is no source term.

SOMEBODY’S LINEAR LAW.  From data or theory, it is known that if there is no source
term, the rate at which the amount of  “stuff” we have changes (increases or decreases, but going
who knows where) is proportional to the amount present.  

We will see that this leads to a first order linear ODE.  It is useful to draw a sketch to help
visualize the process being modeled.   Try to visualize the  amount of stuff in a container on a
table.  It may be increasing or decreasing.  Most physical laws assume decay (radioactive decay,
discharge of a capacitor, cooling of a body) when  there is no source term.  Our law does not say
which.  If we assume it is decreasing, then as in the sketch below, we draw arrows away from the
container (and put in a minus sign explicitly in the model).  If it is increasing, we draw the arrows
toward the table.  Now consider the sentence “the rate at which “stuff” changes is proportional 
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   /))))))) to the amount present.”  Rate means time rate of change which implies 
  /  /      /*
  /  /&&/ _   /** derivative with respect to time.  Thus our model will include an

ODE 
 /  /      /        /
 / g/&  6  / ** that is a rate equation. This is the one-dimensional or scalar case

of our 
 )))))))/
/ b   9  `   / quintessential model.  Now make a list of the variables  you use.  In an
**   **
engineering research paper, this is in the nomenclature section.  Begin with those stated in the
problem.  If you need a variable not given, choose one that is appropriate and helps you to
remember what it stands for.  We begin our list with y as our only state variable that is a
quantitative measure of “stuff” and t as time.

Nomenclature
y = our only state variable
t  = time

Step 2: Understand the Needed Concepts in Mathematics. 1. High School Algebra, 2. Calculus, 
3. Solution Techniques covered in this Part of the Notes.

Step 3: DEVELOPMENT OF THE MODEL.  If the problem is not complicated, a general
model may be developed and solved first.  This general model may then be used for any specific
problem where the modeling assumptions used to obtain the general model are satisfied.  If
they are not, a new model that governs this new phenomenon must be formulated and solved.  
Let us more carefully analyze the sentence "the rate at which our state variable changes is
proportional to the amount present."   Rate means time rate of change which implies
derivative with respect to time.  Proportional means multiply the amount of “stuff” currently
present by a proportionality constant, say k. Hence this sentence means the appropriate ODE to
model this behavior if there is no source term is

    =   k y. (1)

If we know that y is decreasing, we put in the minus sign explicitly so that !k<0 and k>0.  Since 
we assume a source term, we modify (1) to obtain

     =   f(y;k,r0) = k y + r0. (2)

We emphasize that the ODE is a rate equation with units of “units of stuff” per unit time.  Here 
r0 can be positive or negative; we could have a source or sink.  Also. the constant k could be 
positive or negative, depending on the phenomenon being modeled.  To determine the amount 
present at all times, we must also know the amount present initially (or at some time).  Since no 
initial condition is given, we assume an arbitrary value, say y0.  Hence the IVP that models the 
phenomenon described by “Somebody’s Law” with a source (or sink) term is:
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MATHEMATICAL MODEL: 

   ODE    = f(y;k,r0) =  k y + r0 (3)

IVP
    IC y(0) = y0 (4)

We add the parameters r0, k and y0 to our nomenclature list.

Nomenclature
y = quantity of the state variable,    t  = time,   r0 = the rate of flow for the source or sink
k = constant of proportionality,     y0 = the initial amount of our state variable

The model is general in that we have not explicitly given the parameters r0, k or y0.  These
parameters are either given or found using specific (e.g., experimental) data.  However, they are
not necessary in order to solve the model.  We do note that f(y;k,r0) is independent of time t. 
Such systems are called autonomous.  They have certain special properties.  One is that
equilibrium (or constant) solutions are y = ye where ye is any solution of f(y) = 0.  For our
problem f(y;k,r0) =  k y + r0 = 0 implies that if k�0, then ye =  !r0/k is the only equilibrium
solution.

Step 4: Solve the Mathematical Model  Even though we have not specified values for the
parameters k and y0, this does not impair our ability to solve the general model.  To solve the
ODE, we note that it is both linear and separable.  We choose to view it as a separable problem,
but recall that since it is linear, we can (and must) solve for y explicitly.  Also, since p(t) = k is
continuous, indeed analytic, for all t ( p0A(R)fC(R) ), we know a priori that all solutions to the
ODE are in A(R).   Hence the solution to the IVP will be in A(R).

Separating variables we obtain   =   k dt  so that     =   k Idt  

and hence  Rn * y +r0/k *  =   kt + c.  Raising both sides to the e power, we obtain

      *y + r0/k*  =  e k t + c  =   e c  e k t

Letting  A = ±ec ( + ec if y > 0, ) e c if y < 0), we obtain y + r0/k = Aekt.  Applying the initial
condition y(0) = y0, we obtain y0 + r0/k = A .  Hence we have the solution

y= (y0 + r0/k) e kt ! r0/k (4)

to the general model.  The existence and uniqueness theory told us  that exactly one solution 
exists for the IVP given by (3) and (4) and that it is in A(R).  “Clearly” y is in A(R).   If we have
any doubts that it is what we seek, we can check that it satisfies both the IC and the ODE for all t
in R.  Note that  y0 = ! r0/k (so that y = ye = ! r0/k) yields the equilibrium solution and that if
k<0, then all solutions approach ye = ! r0/k so that it is stable. 
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Step 5: INTERPRETATION OF RESULTS. Although interpretation of results can involve a
number of things, in the context of this course it generally means the following:  Apply the
specific data given in the problem and answer the questions asked with regard to that specific
data.  This may require additional solution of algebraic equations, for example, the formula (4)
that we derived as the general solution of the IVP.  However, some applications may involve
other equations.  The term general solution is used since arbitrary values of  k, r0, and y0 are used. 
Recall that the term general solution is also used to indicate the (infinite) family of functions
which are solutions to an ODE before a specific initial condition is imposed.  We could argue
that since the initial condition is arbitrary, we really have not imposed an initial condition, but
again, general here means not only an arbitrary initial condition, but also an arbitrary value of k
and r0.

APPLICATION OF SPECIFIC DATA     Once a general model has been formulated and
solved, it can be applied using specific data.  Alternately, the model can be written directly in
terms of the specific data and then solved (again).  If a general solution of the model has been
obtained, this is redundant.  However, resolving the model provides much needed practice in the
process of formulating and solving models and hence is useful in preparing for exams.   Although
it is sometimes useful to remember a general model, solutions of a general model should not
normally be memorized and are usually not given on exams.  Also specific data may simplify the
process and the formulas obtained.  It is better to solve a simple model than to try to apply a
complicated formula resulting from a complicated model.

Repeating, it is acceptable (and indeed desirable since it gives practice in formulating and 
solving models) to formulate and solve a model using specific data..  The advantage of 
formulating and solving a model in a general context is that the solutions can be recorded in 
textbooks in physics, biology, etc. (and programed on personal computers) for those not 
interested in learning to solve differential equations.  However, if the model assumptions change, 
a new model must be formulated and solved.   Practice in formulating and solving specific 
models will help you to know when a different model is needed and in what generality  a model 
can reasonably be developed.  General models are useful when their results can be easily 
recorded  (or can be  programmed).  On the other hand, trying to use the results of a complicated 
model can unduly complicate a simple problem..  
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Handout #6 APPLIED MATHEMATICS PROBLEM # 4 Professor Moseley
 ONE DIMENSIONAL MOTION OF A POINT MASS

Application #4   ONE DIMENSIONAL MOTION OF A POINT MASS
Application Areas include Physics, Mechanics, and Mechanical Engineering.

QUESTIONS.  A body with mass  5 grams falls from rest in a medium offering resistance
proportional to the square of the velocity.  If the limiting velocity is 2 centimeters per second,
find the velocity  v as a function of time t.

Step 1: Understand the Concepts in the Application Area Where the Questions Are Asked.  This
process begins with a description of the phenomenon to be modeled, including the “laws” it must
follow.  We consider the following physical law that was reviewed in Chapter 1. 

THEORETICAL (AND EMPIRICAL) PHYSICAL LAW. (Newton’s Second Law of
Motion, Conservation of Momentum,) This law states that at any given time, the net force on a
particle (point mass) is equal to its mass times its acceleration (F = MA).

Now consider the following empirical physical law. 

EMPIRICAL PHYSICAL LAW.  When a particular body falls from rest in a particular
medium, the force of resistance to movement that is to the square of the velocity.

We call this the Prell problem since in a commercial for Prell shampoo, a pearl was
dropped into a bottle of Prell shampoo.  Since Prell was a very viscous liquid, the pearl dropped
very slowly.  We could give numerical values for mass and other relevant parameters, but if we
can solve the resulting model in some generality, the resulting formula(s) can then be programed
on a computer, PC, or programmable calculator.  These formula(s) can then be used for any
values of  the parameters desired.  Thus we only have to solve the model once.  Of course, if we
change the model assumptions and make the problem more complicated ( e.g. if the medium
offers resistance proportional to the velocity or to the cube of the velocity), then we must
reformulate the model and re-solve it.  On the other hand, having specific values for the
parameters may make the problem seem more "real world" or "applied".  You are encourage to
solve models in as general form as you can handle, but formulating and solving specific models
gives much needed experience in the process.

Step 2: Understand the Needed Concepts in Mathematics. 1. High School Algebra, 2. Calculus, 
3. Solution Techniques covered in this Part of the Notes.

Step 3: DEVELOPMENT OF THE MODEL.  If the problem is not complicated, a general model
may be developed and solved first.  This general model may then be used for any specific data
where the modeling assumptions used to obtain the general  model are satisfied.  If they are not, a
new model must be formulated and solved

To develop a model, we begin with Newton’s law.  It is usually useful to draw a sketch
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to help visualize the process being modeled.   Try to visualize the pearl falling slowly in the
bottle of Prell.  Applying Newton's law,   Force = mass times acceleration,  F = ma .(i.e.
conservation of momentum but under certain circumstances it can be used to derive conservation
of energy.  Actually, we prefer to write it as  ma = F where a =dv/dt = the derivative of the

velocity v.  Thus we obtain the differential equation   m   = F.  We now consider the forces

acting on the pearl.  We are told that the "pearl" falls from rest.  Hence we choose our coordinate
system to point down.  Our initial velocity is v(0) = 0.  We could choose to have an 

arbitrary initial velocity.  However, then the pearl could initially go
 up (like throwing a ball up).  It would eventually come down.

*)))) * .
* * However, the change in direction would cause a problem for our  

      *_____*
* * model.  Hence we start with the simpler model using v(0) = 0 with

           /   9  \
          /  \ some intuitive assurance that the motion will always be

down.
         /    � 9Fg  \        /    \ There are two forces acting on the "pearl".  The force of gravity  
       /       8 Fr    \           
      /      \ and the resistance offered by the (viscous) fluid.  Since we are 
     /       \
    / PRELL       \ taking positive x as down, Fg = mg where g is the  acceleration due 
   /         \
  /          \ to gravity (32 ft/s2).  The resistance offered by the fluid is a little
 /________________\

more tricky.   Its magnitude is k*v2* where k is the (positive) 
proportionality constant.  However, the direction of the resistance offered by the fluid (force is
really a vector quantity even though we are assuming one dimensional motion.) is always
opposite that of the motion.  Thus Fr = ) k v2 provided the motion is down (recall down is
positive and up is negative).  If the motion were allowed to be up, we would have to stop the
process and replace ) k v2 with k v2 (k > 0) when the "pearl" was going up (v < 0).  Since we do
not expect this to happen we have:

Fg = mg = force of gravity (positive since positive x is down)
Fr = ! k v2 = resistance offered by the fluid (negative since it opposes the downward, positive,
motion
where 
m = mass of the particle
g = acceleration due to gravity (32ft/s2)
k = proportionality constant determined empirically (i.e. experimentally and not from theory)
v = velocity of particle.
t = time.

Always make a list of the variables you use.  Use those stated in the problem.  If you need a
variable not given, choose one that is appropriate and helps you to remember what it stands for
Recalling that v(0) = 0, we obtain the model(IVP):

   ODE            m    =    Fg   +  Fr   =    mg  )  k v2

MODEL   IVP
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   IC   v(0) = v0 = 0.

Note that the ODE has units of force (e.g. Newtons = kg m/s2 , pounds force = slug ft/s2 ,
dynes = gm cm/s2,  etc.).  Hence k must have units of  
force / (velocity)2 = (ML/T2)/(L/T)2 = M/L = (gm/cm).

Step 4: SOLUTION OF THE MATH MODEL  To solve the ODE, we note that it is not linear.  
Why?  However, it is separable.  We solve it in the usual way.  However, we have no guarantee 
that we can solve for the velocity explicitly.  From our physical intuition, we expect the velocity 
to in crease.  However, it is not obvious that a terminal velocity will be obtained (like the 
maximum amount of salt in the tank).  We must wait and see.

  =      =   !   ( v2 !  )

      =   !   I dt  

Interestingly the units of this equation are 
LHS = velocity/(velocity)2 = T/M = (sec/cm)  
RHS = ( (M/L) / M ) T =  (sec/cm)

The integral on the left requires partial fractions.  We do it separately.  Since  

  =   = +  

we have (using the "cover up" method with  v =  and v = !  ),

   = +  .

   =  +  

So  A =  1/(2  ),    B =  !1/(2   ).
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  =   +   

    =  A Rn * v !   *    +  B Rn * v +  *

   = 1/(2 ) ( Rn * v )  *! Rn * v + * )

 =  

Substituting back into the solution of the ODE, we obtain:

  =  !  t + c

Recall that the ODE was nonlinear.  Hence an implicit solution may be the best we can do.
However, you may be able to tell that, indeed, you can solve for v.  But this could get messy if an
arbitrary IC is used.  Recall, however, that to keep the model simple, we dropped the particle. 
Thus v(0) =0 and we can apply it in the implicit form.  

  =  !  (0) + c     Y       c = 0.  Hence

  =  !  t ,    

  =  ! (2 )  t = !2  t.

Although this may be an acceptable solution under some circumstances, an explicit solution is 
desirable.  Raising both sides to the e power, we obtain

  =   exp{ !2  t } =  

To get rid of the absolute value, we must know the sign of the terms inside.  From the physics, 
we expect v to start a zero and increase.  However, does it increase without limit?  Note that  the 
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right hand side goes to zero as t 6 4.  Hence we obtain the terminal velocity from

    =   0

as  vmax = .  Note that the units of mg/k are

force /(M/L)  =  ( ML/T2 ) / (M/L)  =  (L/T)2 

as required.  Thus  the velocity increases from zero but never gets above this terminal value.  

Hence, v !  < 0, so that we have 

 =   exp{ !2  t } =  

!(v ! ) =   (v + ) exp{ !2  t } = ( v + )  

!v +  =   v exp{ !2  t } +  exp{ !2  t } 

 (1!exp{ !2  t } ) =   v(1 + exp{ !2  t }) 

v  =   

The results of solving the model are this equation and vmax =  %mg/k .
Note there are two constants to be determined, m and k (g is the acceleration due to gravity and is
a constant, but not a parameter), and we need further data to evaluate these.  Also note that if the
assumptions of the model do not hold (e.g. the initial velocity is not zero) the model must be
reformulated and re-solved.

Step 4: INTERPRETATION OF RESULTS.  Although interpretation of results can involve a
number of things, in the context of this course it usually means " After you have formulated and
solved the model (IVP) in as much generality as is appropriate, (it is important to record the
modeling assumptions clearly e.g. v(0) =0 in the statement of the IVP ),  answer the questions
asked for the specific data given".  This may require additional solution of algebraic formulas
(functions or equations)  obtained in solving the model (IVP).
       Suppose that the more specific problem is given:
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    A body with mass  5 grams falls from rest in a medium offering resistance proportional to the
square of the velocity.  If the limiting velocity is 2 centimeters per second, find the velocity  v as
a function of time t.

Recall 

v  =   , vmax =  

The mass m is given as 5 grams.  the constant g = 980 cm/s2.  The parameter k can now be obtain 
from the limiting velocity equation.  

2  =  vmax =    =      = =  /

  =   =  =   = 5 = 5  = 15

k. 34.1 gr/cm

EXERCISES on Applied Math Problem #4: Newton’s Second Law of Motion
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