Chapter 5

New certified Kenzo modules

At this moment the Kenzo system keeps on growing. Several researchers are developing
new functionalities for it; for instance, spectral sequences [RRS06], resolutions [RER09],
Koszul complexes [RS06] and so on.

An important point, that was already introduced in the previous chapter (see Sec-
tion 4.4), in the development of new Kenzo modules is the verification of their cor-
rectness. The Kenzo system is a research tool that has got some relevant results not
confirmed nor refuted by neither theoretical or computational means. Then, the question
of Kenzo reliability (beyond testing) naturally arises.

In this chapter three new Kenzo modules (developed by us), their integration in the
fKenzo system and some remarks about their verification in the ACL2 theorem prover
are presented. Section 5.1 is devoted to describe our development related to simplicial
complexes, a basic notion in Algebraic Topology which can be used to study digital
images. Namely, we can associate a simplicial complex with a digital image and then
study properties of the image by means of topological invariants (such as homology
groups) of the associated simplicial complex. The framework to study digital images by
means of simplicial complexes is explained in Section 5.2. Finally, explanations about
the construction of the effective homology of the pushout of simplicial sets with effective
homology are given in Section 5.3.

5.1 Simplicial complexes

The most elementary method to settle a connection between common “topology” and
Algebraic Topology is based on the usage of simplicial complexes. The notion of topo-
logical space is too “abstract” in order to transfer it to machine universe. Simplicial
complexes provide a purely combinatorial description of topological spaces which admit
a triangulation. The computability of properties, such as homology groups, from a finite
simplicial complex associated with a topological space is well-known and, for instance in
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186 Chapter 5 New certified Kenzo modules

the case of homology groups the algorithm uses simple linear algebra [Veb31]. Then, an
algebraic topologist can identify a compact triangulable topological space with a finite
simplicial complex, making computations easier.

Simplicial complexes are not included in the current www-available version of Kenzo.
We have undertaken the task of deploying a new certified Kenzo module to work with
them. In addition, we have also enhanced the fKenzo system to deal with simplicial
complexes.

The rest of this section is organized as follows. Subsection 5.1.1 introduces the
basic background about simplicial complexes and some algorithms about them; in Sub-
section 5.1.2 the new Kenzo module about simplicial complexes is presented; Subsec-
tion 5.1.3 explains how our framework is extended to include the functionality about
simplicial complexes; moreover, the way of widening the fKenzo GUI to include simpli-
cial complexes is detailed in Subsection 5.1.4. Finally, some aspects of the verification
of the simplicial complexes programs are presented in Subsection 5.1.5.

5.1.1 Mathematical concepts

We briefly provide in this subsection the minimal mathematical background about sim-
plicial complexes. We mainly focus on definitions. Many good textbooks are available
for both these definitions and results about them, for instance [Mau96].

Let us start with the basic terminology. Let V' be an ordered set, called the vertex
set. An (ordered abstract) simplex over V is any ordered finite subset of V. An (ordered
abstract) n-simplex over V' is a simplex over V' whose cardinality is equal to n+1. Given
a simplex « over V', we call faces of a to all the subsets of a.

Definition 5.1. An (ordered abstract) simplicial complex over V is a set of simplexes
KC over V' such that it is closed by taking faces (subsets); that is to say:

Vaoe K, if Ca=pek.

Let K be a simplicial complex. Then the set S, (K) of n-simplexes of K is the set
made of the simplexes of cardinality n 4+ 1 of K.

Example 5.2. Let us consider V = (0,1,2,3,4,5,6).
The small simplicial complex drawn in Figure 5.1 is mathematically defined as the

object:

0,(0),(1),(2),(3), (4), (5), (6),
(0,1),(0,2),(0,3),(1,2),(1,3),(2,3),(3,4), (4,5), (4,6), (5,6),
(’ 72)’(47 ’6)

Note that, because the vertex set is ordered the list of vertices of a simplex is also
ordered, which allows us to use a sequence notation (...) and not a subset notation
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Figure 5.1: Butterfly simplicial complex

{...} for a simplex and also for the vertex set V. It is also worth noting that simplicial
complexes can be infinite. For instance if V' = N and the simplicial complex K is
{(n)}nen U {(n — 1,n)},>1, the simplicial complex obtained can be seen as an infinite
bunch of segments.

Definition 5.3. A facet of a simplicial complex I over V' is a maximal simplex with
respect to the subset relation, C, among the simplexes of K.

Example 5.4. The facets of the small simplicial complex depicted in Figure 5.1 are:
{(0,3),(1,3),(2,3),(3,4),(0,1,2), (4,5,6)}

Let us note that a finite simplicial complex can be generated from its facets taking
the set union of the power set of each one of their facets. In general, we have the following
definition.

Definition 5.5. Let S be a finite sequence of simplexes, then the set union of the power
set of each one of the elements of S is, trivially, a simplicial complex called the simplicial
complex associated with S.

It is worth noting that the same simplicial complex can be generated from two
different sequences of simplexes; in addition, the minimal sequence of simplexes which
generates a finite simplicial complex is the sequence of its facets.

Then, the following algorithm can be defined.

Algorithm 5.6.
Input: a sequence of simplexes S.
Output: the associated simplicial complex with S.

Example 5.7. Let us show the way of generating the simplicial complex depicted in
Figure 5.1 from its facets. Table 5.1 shows the faces of facets of the butterfly simplicial
complex. If we perform the set union of all the faces, the desired simplicial complex is
obtained.

In Subsection 1.1.2, we have defined the notion of simplicial set, a notion more com-
plex than the notion of simplicial complex. Nevertheless, many common constructions
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facet faces

(1,3) {0,(1),(3),(1,3)}

(3,4) {0,(3),(4),(3,4)}

(0,3) {0,(0),(3),(0,3)}

(2,3) {0,(2),(3),(2,3)}
(0,1,2) | {0, (0), (1) (2), (0,1),(0,2), (1,2),(0,1,2)}
(4,5,6) | {0,(4),(5).(6),(4,5), (5,6), (4,6), (4,5,6)}

Table 5.1: Faces of the facets of the Butterfly simplicial complex

in topology are difficult to make explicit in the framework of simplicial complexes. It
soon became clear around 1950 that the notion of simplicial set is much better.

There exists a link between these two notions which will allow us to compute homol-
ogy groups of a simplicial complex by means of a simplicial set.

Definition 5.8. Let SC be an (ordered abstract) simplicial complex over V. Then
the simplicial set K(SC) canonically associated with SC is defined as follows. The set
K"™(8C) is S,(SC), that is, the set made of the simplexes of cardinality n + 1 of SC. In
addition, let (vo,...,v,) be a ¢g-simplex, then the face and degeneracy operators of the
simplicial set K (SC) are defined as follows:

83((1)0,...,1}1,...,1}(1)) = (Uo,...,’Uz‘_l,l)i_i_l,...,l)q),
ni((vo, Uiy oy 0g)) = (Voy .- v, Uiy Uiy vy V).

That is, the face operator df removes the vertex in the position i of a g-simplex, and
the degeneracy operator 7y duplicates the vertex in the position i of a g-simplex.

The proof of the fact that K(SC) is a simplicial set is quite easy.

Then, the above definition provides us the following algorithm.

Algorithm 5.9.
Input: a finite simplicial complex SC.
Output: the simplicial set K (SC) canonically associated with SC.

Definition 5.10. Given a simplicial complex SC, the n-homology group of SC, H,(SC),
is the n-homology group of the simplicial set K(SC):

H,(SC) = H, (K (SC)).

5.1.2 Simplicial complexes in Kenzo

In the current www-available version of Kenzo, the notion of simplicial complex is not
included. Then, we have developed a new Common Lisp module to enhance the Kenzo
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system with this notion. Our programs (with about 150 lines) implement Algorithms 5.6
and 5.9.

The following lines are devoted to explain the essential part of these programs, de-
scribing the functions with the same format as in the Kenzo documentation [DRSS98].

First of all, let us note that the vertex set V' in our programs is N; besides, we
represent an n-simplex as a strictly ordered list of n + 1 natural numbers that represent
the vertices of the simplex. For instance, the 2-simplex with vertices 0, 1 and 3 is
represented as the list (0 1 3). Moreover, a finite simplicial complex is represented, in
our system, by means of a list of simplexes.

Our first program implements Algorithm 5.6, that is, the functions which generate a
simplicial complex from a sequence of simplexes. The description of the main function
in charge of this task is shown here:

simplicial-complex-generator 1s [Function]

From a list of simplexes, 1s, this function generates the associated simplicial com-
plex, that is to say, another list of simplexes.

The second program implements Algorithm 5.9. It generates the simplicial set canon-
ically associated with a simplicial complex as an instance of the Simplicial-Set Kenzo
class (see Subsection 1.2.1). The main function is:

ss-from-sc simplicial-complex [Function/

Build an instance of the Simplicial-Set Kenzo class which represents the simpli-
cial set canonically associated with a simplicial complex, simplicial-complex, see
Definition 5.8, using some auxiliar functions which are necessary to define simpli-
cial sets in Kenzo.

To provide a better understanding of the new tools, an elementary example of their
use is presented now. Let us consider the (minimal) triangulation of the torus presented
in Figure 5.2.

The facets of the torus of Figure 5.2 are all the triangles (2-simplexes) depicted in
that figure. Therefore, in our program the facets of the torus are assigned to the variable
torus-facets as follows:

> (setf torus-facets ’((013) (015) (024) (026) (036) (045)
(125) (126) (134) (146) (234 (235)
(3586) (456))))) ™M

((013) (015) (024) (026) (036) (045) (1 25) (126) (134 ...

From these facets, we can construct the torus simplicial complex S! x S! with our
program:
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> (setf torus (simplicial-complex-generator torus-facets)) X
((013) (01) (0 (1) (13 (3 (015 (05 (5 (024) ...)

Once we have constructed this simplicial complex, we can build the simplicial set
canonically associated with the torus simplicial complex by means of the instruction:

> (setf torus-ss (ss-from-sc torus)) "X
[K1 Simplicial-Set]

> (homology torus-ss 0 3) M
Homology in dimension O:
Component Z

Homology in dimension 1:
Component Z

Component 7

Homology in dimension 2:
Component Z

The result must be interpreted as stating Hy(torus) = Z, H(torus) = 7Z & Z and
Hs(torus) = Z.

5.1.3 Integration of simplicial complexes

From the beginning of the development of our framework we strove for a system which
could evolve with Kenzo. Therefore, to enhance our system with the functionality related
to simplicial complexes we have developed a plug-in following the guidelines given in
Subsubsection 3.1.2.

This new plug-in will allow us to construct from a sequence of simplexes S the sim-
plicial set canonically associated with the simplicial complex defined from S (applying
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Figure 5.3: ss-from-sc-facets constructor in XML-Kenzo

Algorithms 5.6 and 5.9). The plug-in employed to include the functionality about sim-
plicial complexes references the following resources:

<code id="simplicial-complexes">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> simplicial-complexes.lisp </data>
<data format="Kf/microkernel"> simplicial-complexes-m.lisp </data>
<data format="Kf/adapter"> simplicial-complexes-a.lisp </data>
</code>

As we claimed in Subsubsection 3.1.2, if we want to include new functionality related
to Kenzo in our framework, all its components must be broadening. Let us explain each
one of the referenced resources.

First of all, as we want to introduce a new kind of objects in our system (the simplicial
sets associated with simplicial complexes generated from a sequence of simplexes), it is
necessary to provide a representation for that kind of objects in our framework. There-
fore, we have extended the XML-Kenzo specification (XML-Kenzo.xsd file) to admit the
new objects related to simplicial complexes. In this specification, we have defined both
the simple type called simplex which represents a list of natural numbers and the type
called simplicial-complex which represents a sequence of simplex elements; and a new
element: ss-from-sc-facets (see Figure 5.3), whose value is an element whose type is
simplicial-complex. The ss-from-sc-facets element is defined as an element of the SS
type; so, it can be used as any other element of this group.

As we have explained in Subsection 5.1.2 a simplex is implemented in our programs
as an ordered list of natural numbers; however, in the XML-Kenzo specification we can
only constrain the value of the simplex type to be a list of natural numbers. Therefore,
the programs included in the microkernel will be in charge of checking the restriction
of being ordered; here, we have an example of a functional dependency of a compound
argument. As we explained in Subsubsection 3.1.2 the external server evolves when
the XML-Kenzo.xsd file is upgraded. Then, when the XML-Kenzo.xsd file is modified to
include the new elements, the external server is able to check the restrictions against the
XML-Kenzo specification of requests such as:
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<constructor>
<ss-from-sc-facets>
<simplex>0 1 2</simplex>
<simplex>3 4 5</simplex>
</ss-from-sc-facets>
</constructor>

The simplicial-complexes.lisp file includes the functionality explained in Subsec-
tion 5.1.2 to extend the Kenzo system. Moreover, this file adds code that enhances
the xml-kenzo-to-kenzo function of the internal server to process the construction of
objects from the ss-from-sc-facets XML-Kenzo construction requests. For instance,
if the internal server receives the above request, the following instruction is executed in
the Kenzo kernel.

As aresult an object of the Simplicial-Set Kenzo class is constructed, and the identifier
of that object is returned using an id XML-Kenzo object.

The simplicial-complexes-m.lisp file defines a new construction module for the
microkernel called simplicial-complex. The procedure implemented in this module fol-
lows the guidelines explained in Subsubsection 2.2.3.3. In this case, the procedure imple-
mented in this module checks that the values of simplex elements of a ss-from-sc-facets
request are ordered lists since this constraint cannot be imposed in the XML-Kenzo
specification (remember that functional dependencies cannot be defined in the XML-
Kenzo specification), and therefore is not checked in the external server. Moreover,
this file enhances the interface of the microkernel in order to be able to invoke the new
simplicial-complex module.

Finally, we have extended the SS Content Dictionary by means of the definition of a
new object: ss-from-sc-facets. Therefore, the simplicial-complexes-a.lisp file raises
the functionality of the adapter, which is now able to convert from the new OpenMath
objects, devoted to simplicial complexes, to XML-Kenzo requests. Namely, we have
extended the Phrasebook by means of a new parser in charge of this task. Then, for
instance, the XML-Kenzo request presented previously is generated by the adapter when
the following OpenMath request is received:
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<0MOBJ>
<0OMA>
<0OMS cd="SS" name="ss-from-sc-facets"/>
<0OMA>
<0MS name="simplex"/>
<0OMI>0</0OMI><0MI>1</0MI><0MI>2</0MI>
</0MA>
<0OMA>
<0OMS name="simplex"/>
<0MI>3</0MI><0MI>4</0MI><0MI>5</0MI>
</0MA>
</0MA>
</0MOBJ>

5.1.4 Integration of simplicial complexes in the fKenzo GUI

The current subsection is devoted to present the necessary resources to extend the fKenzo
GUI in order to handle simplicial complexes.

As we presented in Section 3.2 one of the modules which customizes fKenzo is the
Sitmplicial Set module. This module contains the elements that represent simplicial
set constructors of Kenzo: options to construct spaces from scratch (spheres, Moore
spaces, finite simplicial sets, and so on) and from other spaces (for instance, cartesian
products). We have enhanced this module by means of a new constructor related to
simplicial complexes.

The original Simplicial Set module referenced two files: simplicial-sets-structure
(which defined the structure of the graphical constituents of the module) and
simplicial-sets-functionality (which provided the functionality related to the graph-
ical constituents). Both files have been upgraded in order to tackle the use of simplicial
complexes in the fKenzo GUIL. Moreover, the new Simplicial Set module also references
the plug-in described in the previous subsection. In this way, when the Simplicial Set
module is loaded, the whole fKenzo system is ready to allow the construction of simplicial
sets coming from simplicial complexes.

We have defined three new graphical elements, using the XUL specification language,
in the simplicial-sets-structure file:

e A new menu option called Load Simplicial Complex included in the Simplicial
Sets menu.

e A window called Load Simplicial Complex (see Figure 5.4).

e A window called SS-from-SC-name (see Figure 5.5).

The functionality stored in the simplicial-sets-functionality document related
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Figure 5.4: Load Simplicial Complex window

to these components works as follows. A function acting as event handler is associ-
ated with the Load Simplicial Complex menu option; this function shows the window
Load Simplicial Complex (see Figure 5.4) which allows the user to choose a file which
contains a list of simplexes. It is worth noting that the user does not introduce each one
of the simplexes of the sequence manually: he selects a file with that information (a file
which can be either generated by a computer program or build manually with a text
editor). Currently, a folder, called Simplicial-Complexes Examples, with several exam-
ples of simplicial complexes defined from their a sequence of simplexes is included in the
distribution of fKenzo. At this moment it contains 39 examples such as the torus, the
projective space or the duncehat (several of those examples were extracted from [Hac01]
keeping its original format, which is the one used in our system).

Once the user has selected a file, the system processes the file to construct an
ss-from-sc-facets OpenMath request with the sequence of simplexes obtained from
the file. Subsequently, the framework constructs the simplicial set associated with the
simplicial complex defined from the sequence of simplexes and returns its identification
number (an id XML-Kenzo object). Afterwards, the system asks a name for the new
simplicial set by means of the window SS-from-SC-name (see Figure 5.5); if the name
given by the user is correct (was not used previously), the system stores it, otherwise
it indicates that the name was previously used and asks again a name. Eventually,
when the user has given a valid name, the system builds a new FKENZO-OBJECT-NAME
instance (see Subsubsection 4.1.5.1) and, also, adds the new object to the list of con-
structed spaces (located at the left side of the main tab of the fKenzo GUI). Figure 5.6
shows the control and navigation submodel (with the Noesis notation) describing the
construction of the simplicial set canonically associated with a simplicial complex from
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* Name of Simplicial Set associated with the Simplicial Complex PZ|

The file was correct, enter the name of the Simplicial Set.

| ok || oDetaut |

Figure 5.5: fKenzo asking a name for a simplicial set coming from a simplicial complex

the Load Simplicial Complex menu option.

5.1.4.1 Execution flow of the fKenzo GUI for simplicial complexes

In order to clarify the execution flow followed by fKenzo, let us retake the example
presented in Subsection 5.1.2, that is, the computation of the first homology groups
of the torus. When the Simplicial Set module is loaded in fKenzo, the option Load
Simplicial Complex is available in the Simplicial Sets menu. From this option, the user
can select the file which contains the facets of the torus; this file is called torus.dat and
is located at the folder Simplicial-Complexes Examples, see Figure 5.4. An extract of
the data stored in that file is:

O O H=
=
o w

which corresponds with the facets of the triangulation of the torus of Figure 5.2. From
that file, fKenzo constructs the following OpenMath request:

<0M0OBJ>
<0OMA>
<0MS cd="SS" name="ss-from-sc-facets"/>
<0OMA>
<0MS cd="SS" name="simplex"/>
<0MI>0</0OMI><0MI>1</0MI><0MI>3</0MI>
</0MA>
<0OMA>
<0MS cd="SS" name="simplex"/>
<0MI>0</0OMI><0MI>1</0MI><0MI>5</0MI>
</0MA>
</0MA>
</0MOBJ>

which is sent to the framework. From this request, the simplicial set associated with
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Figure 5.6: Construction of a simplicial set from a simplicial complex in fKenzo
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Figure 5.7: Homology groups of the torus

the torus simplicial complex is built and its identification number is returned. Then,
fKenzo asks the user a name for the object (in this case the given name is “torus”).
Subsequently, the new object is added to the list of constructed spaces which is shown
in the left side of the fKenzo GUI. When, the user selects this object, the name that the
user provided previously is shown (see Figure 5.7).

Finally, the user can ask fKenzo to compute the homology groups of the torus using
the homology option of the Computing menu, the results are shown, as usual, in the
Computing tab, see Figure 5.7.

5.1.5 Formalization of Simplicial Complexes in ACL2

As we said at the beginning of this chapter, we are interested not only in developing
new tools for the Kenzo system but also in verifying the correctness of these new tools.
This subsection is devoted to present the certification of the correctness of our imple-
mentation of Algorithm 5.6. The certification of the correctness of the implementation
of Algorithm 5.9 belongs to a more general case (the certification of the implementation
of Kenzo simplicial sets) and we will cope with it in the next chapter.

5.1.5.1 Main definitions and properties

As we have just said, we want to formalize in ACL2 the correctness of the
simplicial-complex-generator function; that is to say, our implementation of Algo-
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rithm 5.6. Since both Kenzo and ACL2 are Common Lisp programs we can verify the
correctness of the simplicial-complex-generator function in ACL2.

First of all, let us present the definition of the simplicial-complex-generator func-
tion. This program can be decomposed in three steps. First of all, we have defined the
powerset function which generates the powerset of a simplex.

(defun map-cons (x s)
(if (endp s)
nil
(cons (cons x (car s)) (map-cons x (cdr s)))))

(defun powerset (1)
(if (endp 1)
(1ist nil)
(append (powerset (cdr 1)) (map-cons (car 1) (powerset (cdr 1))))))

Subsequently, we have defined the simplicial-complex-generator-aux function
which builds a list gathering the powerset of every simplex of a sequence of simplexes
1s.

(defun simplicial-complex-generator-aux (1ls)
(if (endp 1s)
nil
(append (powerset (car 1s)) (simplicial-complex-generator-aux (cdr 1s)))))

Eventually, we have implemented the simplicial-complex-generator func-
tion which removes the duplicates elements (thanks to the ACL2 function
remove-duplicates-equal) of the list generated by simplicial-complex-generator-aux,
getting the looking for simplicial complex.

(defun simplicial-complex-generator (1ls)
(remove-duplicates-equal (simplicial-complex-generator-aux 1s)))

This design follows simple recursive schemas, which are suitable for the induction
heuristics of the ACL2 theorem prover.

From now on, we define the necessary functions to prove the correctness of our
program. First of all, we need some auxiliary functions which define the necessary
concepts to prove our theorems. These definitions are based on both Algorithm 5.6 and
Definition 5.1. Namely, we need to define the notions of simplex, list of simplexes, set of
simplexes, face and member in ACL2.

As we said in Subsection 5.1.2, a simplex in our programs is a strictly ordered list of
natural numbers. The simplex-p function is a predicate that given a list 1ist returns t
if the list represents a simplex and nil otherwise.
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(defun simplex-p (list)
(if (endp list)
(equal list nil)
(if (endp (cdr list))
(and (equal (cdr list) nil) (natp (car list)))
(and (natp (car list)) (matp (cadr list)) (< (car list) (cadr list))
(simplex-p (cdr 1list))))))

From this notion of simplex, we can easily define the notion of list of simplexes by
means of the list-of-simplex-p predicate which returns t if its argument is a list of
simplexes and nil otherwise:

(defun list-of-simplexes-p (1ls)
(if (endp 1s)
(equal 1s nil)
(and (simplex-p (car 1ls)) (list-of-simplexes-p (cdr 1s)))))

A set of simplexes is a list of simplexes without duplicate elements. This is modeled
with the set-of-simplexes—p predicate (a test function, called without-duplicates—p,
that checks if a list does not have duplicate elements has been defined as auxiliar func-
tion).

(defun set-of-simplexes-p (1s)
(and (list-of-simplexes-p 1ls) (without-duplicates-p 1s)))

Finally, to define the relations “be a face of” (between two simplexes) and “be in”
(between a simplex and a set of simplexes or between a simplex and a list of simplexes) we
have used two already defined ACL2 functions that are subsetp-equal and member-equal
respectively.

Therefore, we have the framework to prove the correctness of our programs. The
following theorems state the basic properties that the simplicial-complex-generator
function must satisfy. First of all, we prove that simplicial-complex-generator con-
structs a simplicial complex. Therefore, we need to prove the following two ACL2
lemmas.

ACL2 Lemma 5.11. Let s be a list of simplexes, then (simplicial-complex-generator
[s) builds a set of simplexes.

(defthm simplicial-complex-generator-constructs-simplicial-complex-1
(implies (list-of-simplexes-p 1s)
(set-of-simplexes-p (simplicial-complex-generator 1s))))

ACL2 Lemma 5.12. Let x be a simplex and [s be a list of simplexes, if = be-
longs to (simplicial-complex-generator [s) and y is a face of z, then y belongs to
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(simplicial—complex—generator ls).

(defthm simplicial-complex-generator-constructs-simplicial-complex-2
(implies (and (simplex-p s1)
(simplex-p s2)
(list-of-simplexes-p 1ls)
(member-equal sl (simplicial-complex-generator 1ls))
(subsetp-equal s2 sl1))
(member-equal s2 (simplicial-complex-generator 1s))))

Once we have proved these two theorems we can claim that the
simplicial-complex-generator function constructs an abstract simplicial complex
when a list of simplexes is provided as argument.

In addition, we need to prove that the simplicial complex constructed by the
simplicial-complex-generator function is the one that we are looking for. This means
that we need to prove the following lemma.

ACL2 Lemma 5.13. Let 1s be a list of simplexes and let s be an element of the
simplicial complex constructed with the simplicial-complex-generator function taking
as argument 1s; then, s is a face of some of the simplexes of 1s.

(defthm simplicial-complex-generator-correctness
(implies (and (list-of-simplexes-p 1ls)
(member-equal s (simplicial-complex-generator 1s))
(face-of-some-p s 1s)))

The proof of the above lemmas, in spite of involving some auxiliary results, can be
proved without any special hindrance due to the fact that, as we said previously, our
programs follow simple inductive schemas that are suitable for the ACL2 heuristics.
Then, we have the following theorem.

ACL2 Theorem 5.14. Let Is be a list of simplexes, then
(simplicial-complex-generator [s) constructs the simplicial complex associated
with [s.

The interested reader can consult the complete development in [Her11].

5.1.5.2 Two equivalent programs

The implementation of the simplicial-complex-generator function is suitable for the
induction heuristics of the ACL2 theorem prover. However, it is an inefficient design,
S0, it can produce undesirable situations. For instance, if we try to build a simplicial
complex from a list of 11613 simplexes, an error message will be shown:
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> (simplicial-complex-generator ...) 'K
Error: Stack overflow (signal 1000)
[condition type: SYNCHRONOUS-OPERATING-SYSTEM-SIGNAL]

This kind of error occurs when too much memory is used on the data structure that
stores information about the active computer program.

In order to overcome this drawback, an efficient algorithm called
optimized-simplicial-complex-generator has been implemented. This new pro-
gram relies on the memoization technique. Let us remember that memoization is used
primarily to speed up computer programs. A memoized function “remembers” the
results corresponding to some set of specific inputs. Subsequent calls with remembered
inputs return the remembered result rather than recalculating it.

However, the optimized-simplicial-complex-generator program can not be imple-
mented in ACL2 (remember that ACL2 is an applicative subset of Common Lisp). In
order to deal with this pitfall we have based on the work presented in [ALRO7], where
the authors coped with a similar problem, but related to already implemented Kenzo
code fragments.

Let us enumerate the characteristics of our situation:

e simplicial-complex-generator program is

— specially designed to be proved;

— programmed in ACL2 (and, of course, Common Lisp);
— not efficient;

tested;

proved in ACL2.

e optimized-simplicial-complex-generator program is

— specially designed to be efficient;
— written in Common Lisp;
— efficient;

tested;

— unproved.

In our approach, simplicial-complex-generator is supposed to be equivalent to
optimized-simplicial-complex-generator. But we do not pretend to prove this equiv-
alence: this option would lead us to a form of ill-founded recursion. Our aim should be
to use the highly reliable simplicial-complex-generator to perform automated testing
of the efficient optimized-simplicial-complex-generator.
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The following toy program will illustrate this idea:

(defun automated-testing ()
(let ((cases (generate-test-cases 100000)))
(dolist (case cases)
(if (not (equal-as-sc (simplicial-complex-generator case)
(optimized-simplicial-complex-generator case)))
(report-on-failure case)))))

With this intensive testing, it is hoped that simplicial-complex-generator accu-
rately models optimized-simplicial-complex-generator, and then our strategy could
be safely applied.

A really interesting work, in the same line, was presented [GT08], where a method to
permit the user of a mathematical logic to write elegant logical definitions while allowing
sound and efficient execution was described. Those features afford dual applications: on
the one hand, formal proof; on the other hand, execution. In particular, they allow the
user to install, in a logically sound way, alternative executable counterparts for logically-
defined functions. These alternatives are often much more efficient than the logically
equivalent terms they replace. Unfortunately, in order to use the tool presented in [GT08]
both programs must be developed in ACL2, which is not our case.

5.2 Applications of simplicial complexes: Digital
Images

Algebraic Topology is a complex and abstract mathematical subject; however, some of
its techniques can be applied to different contexts such as coding theory [Woo89], data
analysis [Her03], robotics [Mac03] or digital image analysis [GDMRSP05, GDRO05] (in
this last case, in particular in the study of medical images [SGFO03]).

Here, we are going to focus on the application of Algebraic Topology to the study of
binary digital images. In the Algebraic Topology framework, binary digital images can
be studied using simplicial complexes. This section is devoted to present a technique
based on simplicial complexes to study binary digital images. In particular, we study
monochromatic (black and white) digital images by means of the algorithms related to
simplicial complexes explained in Subsection 5.1.1 and new algorithms explained later.

Explanations about how we use simplicial complexes to study digital images are
given in the rest of this section. Subsection 5.2.1 presents the technique and the algo-
rithms that we apply to analyze digital images by means of simplicial complexes. The
algorithms presented in Subsection 5.2.1 are implemented as an enhancement of the sim-
plicial complex Kenzo module (presented in Subsection 5.1.2) in Subsection 5.2.2 for the
cases of 2D and 3D digital images. The way of widening our framework and the fKenzo
GUI to include digital images is explained in Subsection 5.2.3 and 5.2.4 respectively.
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Finally, some remarks about the formalization of our algorithms for digital images are
provided in Subsection 5.2.5.

5.2.1 The framework to study digital images

Let n be any positive integer. An n-zel ¢ in an Euclidean n-space, R", is a closed unit
n-dimensional (hyper)cube ¢ C R™ whose 2" vertices have natural coordinates (more
precisely, an n-zel in R™ is a cartesian product like [i1, i1 4+1] X [ig, ia+1] X ... X [i, i +1]).
In this memoir, a pizel is a 2-xel in R2. We define an n-dimensional binary image or
nD-image, to be a finite set of n-xels in R".

An nD-image Z can, of course, be represented by a finite n-dimensional array of 1’s
and 0’s in which each 1 represents an n-xel in D and each 0 represents an n-xel that
is not in D. Let us focus on the study of nD-images by means of simplicial complexes.
Firstly, we present the study for the cases of 2D-images and eventually the general case.

As we have just said, a 2D-image D can be represented by a finite 2-dimensional
array of 1’s and 0’s in which each 1 represents a pixel in D and each 0 represents a pixel
that is not in D (in a monochromatic 2D-image D, black pixels are represented by 1’s,
on the contrary white pixels are represented by 0’s).

Let D be a 2D-image codified as a 2-dimensional array of 1’s and 0’s. We want to
associate a simplicial complex with D. It is worth noting that the most natural and
efficient approach to study digital images by topological means consists in using cubical
complexes, see [KMMO04]. However we have preferred to analyse digital images through
simplicial complexes, because we can reuse the certified simplicial complex Kenzo module
presented in Section 5.1.

From a digital image, there are several ways of constructing a simplicial complex
(see [ADFQO03]). The approach that we have followed here consists in obtaining from
D the facets of one of its associated simplicial complexes. Subsequently, applying Al-
gorithm 5.6 (the algorithm which constructs a simplicial complex from a sequence of
simplexes), we obtain a simplicial complex associated with D.

The process that we have followed to obtain the facets from a 2D-image D is as
follows. Let V' = (N,N) be the vertex set, that is, a vertex, in this case, is a pair of
natural numbers. Let p = (a,b) be the coordinates of a pixel in D (that is, the position
of the pixel in the 2-dimensional array associated with D). From p we can obtain two
2-simplexes that are two facets of the simplicial complex associated with D. Namely,
from p = (a, b) we obtain the following facets: the triangles ((a,b), (a+1,b), (a+1,b+1))
and ((a,b),(a,b+1),(a+ 1,0+ 1)). If we repeat the process for the coordinates of all
the pixels in D, we obtain the facets of a simplicial complex associated with D, that will
be denoted by Kap(D).

Therefore, we can define the following algorithm.
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Figure 5.8: On the left, a digital image; on the right, its simplicial complex representation

Algorithm 5.15.
Input: a 2D-image D represented by means of a 2-dimensional array of 1’s and 0’s.
Output: the facets of Kop(D), a simplicial complex associated with D.

Example 5.16. Consider the 2D-image depicted in the left side of Figure 5.8. This
image can be codified by means of the 2-dimensional array: ((1,0),(0,1)), then, the
coordinates of the black pixels are (0,0) and (1, 1). Therefore, applying Algorithm 5.15
we obtain the facets of KCop(D):

(((0,0),(0,1), (1,1)), ((0,0), (1,0), (1, 1)), (1, 1), (1,2),(2,2)), (1, 1), (2,1), (2,2))).

Once we have the simplicial complex associated with the digital image, we can com-
pute the homology groups of the image from the simplicial complex. As we said pre-
viously, several simplicial complexes can be associated with a digital image, but all of
them are homeomorphic (see [ADFQO03]); then, we can define the homology groups of a
2D-image as follows:

Definition 5.17. Given a 2D-image D, the n-homology group of D, H,(D) is the n-
homology group of the simplicial complex Kop(D):

H,(D) = H,(Kop(D)).

Subsequently, we can interpret properties about the digital image from its homology
groups. 2D-images are embedded in R? then its homology groups vanish for dimensions
greater than 2 and they are torsion-free from dimensions 0 to dimension 1; that is, their
homology groups are either null or a direct sum of Z components in dimensions 0 and
1. The number of Z components of the homology groups of dimension 0 and 1 measures
respectively the number of connected components and the number of holes of the image.

The method presented here for 2D-images can be generalized to nD-images with
n > 2. An nD-image can be represented by a finite n-dimensional array of 1’s and 0’s in
which each 1 represents an n-xel in D and each 0 represents an n-xel that is not in D.

Let D be an nD-image, from the coordinates of each n-xel in D (its position in the
n-dimensional array associated with D), we can obtain a triangulation by means of n-
simplexes, see [OS03], which are facets of a simplicial complex associated with D. If we
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repeat the process for the coordinates of all the n-xels in D, we obtain the facets of a
simplicial complex associated with D. Then, applying Algorithm 5.6, we can obtain the
simplicial complex associated with D. Therefore, the two following algorithms can be
defined.

Algorithm 5.18.
Input: the coordinates of an n-xel.
QOutput: a triangulation of the n-xel by means of n-simplexes.

Algorithm 5.19.
Input: an nD-image D represented by means of a n-dimensional array of 1’s and 0’s.
Output: the facets of IC,,p(D), a simplicial complex associated with D.

It is worth noting that these two last algorithms are not implemented for the general
case, just for 2D-images and 3D-images.

5.2.2 Enhancing the simplicial complex Kenzo module

Algorithms 5.18 and 5.19 explained in Subsection 5.2.1 have been implemented for the
cases n = 2,3 as an enhancement for the simplicial complex Kenzo module explained in
Subsection 5.1.2. The set of programs that we have developed (with about 600 lines)
allows the construction of the facets of the simplicial complexes Kyp(D1) and Ksp(Ds)
from a 2D-image, D1, and a 3D-image, Dy. Moreover, thanks to the simplicial complex
module and the Kenzo kernel, we can construct the simplicial complex defined by the
list of facets, the simplicial set associated with that simplicial complex, and, finally,
compute the homology groups of the simplicial set obtaining properties of the original
image.

The rest of this subsection is devoted to present the essential part of the programs
which implement algorithms 5.18 and 5.19 for the cases n = 2, 3, describing the functions
with the same format as in the Kenzo documentation [DRSS98]. Moreover, we will see
some examples of the use of these programs.

We have written several functions that allow us to cope with 2D-images and 3D-
images; but most of them are auxiliary functions; so we just describe the main ones:

generate-facets-image-2d 2da [Function]

This function takes as argument the 2-dimensional array (a 2-dimensional array
is represented by means of a list of lists) of 1’s and 0’s, 2da, which determines a
2D-image and returns the list of facets of the simplicial complex Kop associated
with the 2D-image (Algorithm 5.15). The facets are returned as a list of simplexes
over V = (N,N).

generate-facets-image-3d 3da [Function]
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Figure 5.9: Small 2D-image

This function takes as argument the 3-dimensional array (a 3-dimensional array is
represented by means of a list of lists of lists) of 1’s and 0’s, 3da, which determines
a 3D-image and returns the list of facets of the simplicial complex K3p associated
with the 3D-image (Algorithm 5.19 case n = 3). The facets are returned as a list
of simplexes over V = (N, N, N).

transform-lolol-to-lol lolol [Function/

This function transforms a list of simplexes, lolol, over V' = (N/N) or
V = (N,N,N) to a list of simplexes over V' = N. This function is neces-
sary because the programs related to simplicial complexes presented in Subsec-
tion 5.1.2 work with simplexes over V' = N and the two above functions re-
turn list of simplexes over V' = (N,N) and V = (N,N,N) respectively. Then,
we need a transformation between the format of the output of the functions
generate-facets-image-2d and generate-facets-image-3d to the format of the in-
put of the simplicial-complex-generator function (defined in Subsection 5.1.2).
The transform-lolol-to-lol function assigns a unique natural number to each
vertex over V' = (N,N) or V' = (N,N,N) of the list lolol (this function is a bi-
jection from N x N to N and also from N x N x N to N). The natural numbers
are assigned based on the lexicographical order of the lists of simplexes 1olol. For
instance, from the list of simplexes (((0,0), (0,1), (1, 1)), ((0,0),(1,0),(1,1))) over
V = (N,N) (where we have the following ordination of the simplexes based on
the lexicographical order: (0,0) < (0,1) < (1,0) < (1,1)) we obtain the list of
simplexes ((0, 1,3), (0,2,3)) over V =N,

To provide a better understanding of the new tools, some examples of their use are
presented. Let us consider the 2D-image depicted in Figure 5.9. This image can be
represented by the following 2-dimensional array (a list of lists) which is assigned to the
variable small-2d-image:

> (setf small-2d-image ((0 1 001) (10100) (01010) (00101) (00010

e
((01001) (10100) (01010) (0101 (0O0O0O1O0))

From the 2-dimensional array of the image we can generate the list of facets over
V = (N,N) of Kop(small-2d-image):
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> (setf facets-image (generate-facets-image-2d small-2d-image)) "K

(((10) (20 (21)) (1 0) (11 (21) (40 (B0 (51)) (40 (41 (51))
((01) (1 1) (12)) ((01) (02) (12) ((21) (831 (32)) ((21) (22) (32))
((12) (22) (23) (12 13 (23) ...

Now, we can transform these facets to the suitable format for the
simplicial-complex-generator function:

> (setf facets-image-nat (transform-lolol-to-lol facets-image)) M

((034) (014) (267) (237) (489) (459) (7 1112) (7 8 12) (9 13 14)
(9 10 14) ...

> (setf image-2d-sc (simplicial-complex-generator facets-image-nat)) "¢
((034) 34) (04 (03) (4) (3 (0 (014 (14 (01 ...)

Subsequently, the simplicial set canonically associated with the simplicial complex
image-2d-sc can be built:

> (setf image-2d-ss (ss-from-sc image-2d-sc)) "X
[K1 Simplicial Set]

We obtain as result a Simplicial-Set object. Then, we can ask for its homology
groups.

> (homology image-2d-ss 0 2) "
Homology in dimension O:
Component Z

Component Z

Homology in dimension 1:
Component Z

Component Z

Component Z

The results must be interpreted as stating that the image of Figure 5.9 has 2 con-
nected components and 3 holes.

Analogously we can consider an example of a 3D-image, namely, the one depicted in
Figure 5.10. This image can be represented by the following 3-dimensional array (a list
of lists of lists) which is assigned to the variable small-3d-image:
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\

Figure 5.10: 3D cube with a tunnel

> (setf small-3d-image (((0 11 1) (0101) (0111) (000 0))

((0111) (0101) (0111) (0000

(0111) (0101) (0111) (00O0O0)

((0000) (0000 (0000 (000 0))) MM
(((0111)(101) (0111) (000 ((0111) (V101) (111 (OO0
((0111) (0101) (0V111) (0000)) ((0000) (VOO0 (0000 (0000

From the 3-dimensional array of an image we can generate the list of facets over
V = (N,N,N) of K3p(small-3d-image):

> (setf facets-image-3d (generate-facets-image-3d small-3d-image)) "X
((100) (200 (201 (21 1)) ((100) (200) (210 (211))
(o0 @o1) 201 (21 1)) (100 (101 (111 (211))
(100 110 (210 21 1)) (100 (110 (111 (211))
(200 (800 (8301 (31 1)) ((200) (8300) (310) (31 1))
(200 (201 301) 31 1)) ((200) (201) (211) (31

Now, we can transform these facets to the suitable format for the
simplicial-complex-generator function:

> (setf facets-image-3d-nat (transform-lolol-to-lol facets-image-3d)) 'K
((0 16 17 21) (0 16 20 21) (0 1 17 21) (0 1 5 21) (0 4 20 21) (0 4 5 21) (16 32 33 37)
(16 32 36 37) (16 17 33 37) (16 17 21 37) ...)

Then, from these facets we can construct the associated simplicial complex:
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> (setf image-3d-sc (simplicial-complex-generator facets-image-3d-nat)) M
((0 16 17 21) (16 17 21) (0 17 21) (0 16 21) (0 16 17) (17 21) (16 21) (16 17)
(0 21) ...

Subsequently, the simplicial set canonically associated with the simplicial complex
image-3d-sc can be built:

> (setf image-3d-ss (ss-from-sc image-3d-sc)) "X
[K10 Simplicial Set]

We obtain as result a Simplicial-Set object. Then, we can ask for its homology
groups.

> (homology image-3d-ss 0 3) "X
Homology in dimension O:
Component Z

Homology in dimension 1:
Component Z

Homology in dimension 2:

The results must be interpreted as stating that the image of Figure 5.10 has 1 con-
nected component, 1 tunnel and 0 cavities.

Up to now, we have presented the programs that, from the 2-dimensional array
associated with a 2D-image or the 3-dimensional array associated with a 3D-image,
obtain the facets of a simplicial complex associated with them. However, few common
2D-image formats (such as “jpeg”, “bmp”, “png”, “pbm” and so on) or 3D-image formats
(such as “byu”, “juz”, “obj” and so on) encode images as 2-dimensional or 3-dimensional
arrays respectively.

Namely, in the case of 2D-images, the only format which codifies a image as a 2
dimensional array is pbm. Then, we have implemented, as a Common Lisp program, an
interpreter which converts from an image in the pbm format to the 2-dimensional array
in the format of our programs (that is to say, a list of lists).

The pbm images that our program can process are codified in the following way:

e The two characters “P1” which indicate that we work with plain pbm files (there
are other kinds of pbm files; but we only deal with the simpler one).

e The width (w) in pixels of the image and the height (h) in pixels of the image,
formatted as ASCII characters in decimal.

e A raster of h rows, in order from top to bottom. Each row has w bits. Each bit
represents a pixel: 1 is black, 0 is white. The order of the pixels is left to right.
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For instance, the image depicted in Figure 5.9 is codified in a pbm file as follows.

P1
55
01001
10100
01010
00101
00010

The above code must be read as follows. We have a plain pbm file which has a raster
of five rows and five columns of pixels. The pixels of the coordinates (0,1), (1,0), (1,2),
(2,1), (2,3), (3,2), (3,4), (4,0) and (4, 3) are black and the rest of pixels are white.

From a pbm file we can easily obtain the 2-dimensional array of the image in the
suitable format for our programs. Then, we have the following function.

pbm-to-loc-path pbm-path [Function]

This function takes as argument a pbm image stored in the path pbm-path, and
returns the 2-dimensional array of the image as a list of lists of 1’s and 0’s.

To provide a better understanding of this new function, an example of its use is
presented. Let us consider a pbm file called simple.pbm that codifies the image depicted
in Figure 5.9 as was presented previously.

From that file, we can obtain the 2-dimensional array of the image in the desirable
format for our program as follows:

> (setf small-2d-image (pbm-to-loc-path "simple.pbm")) *K
(01001) (1 0100) (01010) (00101 (00010

Now, we can proceed as in the previous examples. Then, to process 2D-images
codified in different image formats with our programs, we only need to transform the
original codification to the pbm format (a task that can be performed with different
tools, for instance GIMP [Pec08] allows us to convert an image stored in, practically,
any format to the pbm one).

To sum up, an interpreter for 2D-images stored in “pbm” format has been developed.
However, in the case of 3D-images, we have not found any 3D-image format which
codifies a 3D-image by means of a 3-dimensional array; and, at this moment, we have
not developed an interpreter which converts from 3D-image formats to the suitable input
format of our programs; that is, the 3-dimensional array associated with an image. This
task remains as further work.

Nevertheless, we have developed and interpreter which converts from a 3-dimensional
array, codified as a list of lists of lists, to the “obj” 3D format [Tec] in order to be able
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to show our images in usual 3D-image renders. The information stored in the files which
use this format consists of the position of the tetrahedrons of the image; since it works
with tetrahedrons instead of working with voxels. Then, we have developed a Common
Lisp program which from the 3-dimensional array of a 3D-image returns the 3D-image
codified in this format. So, if we save the generated data in an “obj” file, we can visualize
the image in a 3D viewer.

3da-to-obj 3da [Function]

This function takes as argument a 3-dimensional array, codified as a list of lists of
lists, of a 3D-image, and returns the image codified in the “obj” format.

For instance, if we invoke the 3da-to-obj function with the 3-dimensional array
declared in small-3d-image as argument; the content of the file which allows us to show
the image of Figure 5.10 is generated.

To sum up, we have enhanced the Kenzo system with a new module which allows us
to study monochromatic 2D-images and 3D-images.

5.2.3 Digital images in our framework

We have enhanced our framework with the functionality related to digital images by
means of a new plug-in. This plug-in will allow us to construct the simplicial set canon-
ically associated with a simplicial complex defined by means of a list of facets extracted
from the 2-dimensional array of a 2D-image (applying algorithms 5.19 (case n = 2), 5.6
and 5.9) and also the simplicial set canonically associated with a simplicial complex de-
fined by means of a list of facets extracted from the 3-dimensional array of a 3D-image
(applying algorithms 5.19 (case n = 3), 5.6 and 5.9).

This plug-in, which includes the functionality about digital images in our framework,
references the following resources which are used by the plug-in framework to extend
the functionality of all the components.
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Figure 5.11: Digital images elements in XML-Kenzo

<code id="digital-images">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> simplicial-complexes.lisp </data>
<data format="Kf/internal-server"> digital-images.lisp </data>
<data format="Kf/microkernel"> digital-images-m.lisp </data>
<data format="Kf/adapter"> digital-images-a.lisp </data>
</code>

Let us explain each one of the referenced resources. As we have said previously, the
XML-Kenzo.xsd file specifies the XML-Kenzo language. We want to introduce two new
kind of objects in our system (the simplicial sets associated with simplicial complexes
generated from the sequence of facets of 2D-images and 3D-images); then, it is necessary
to provide a representation for those objects in our framework.

In the XML-Kenzo specification, we have defined two new simple types: array-2d,
which represents a 2-dimensional array of 1’s and 0’s that will be used to provide the
2-dimensional array of a 2D-image, and array-3d, which represents a 3-dimensional
array of 1’s and 0’s that will be used to provide the 3-dimensional array of a 3D-image.
In addition, two new elements have been defined: digital-image-2d, whose value is
an element of the type array-2d; and, digital-image-3d, whose value is an element
of the type array-3d (see Figure 5.11). Both digital-image-2d and digital-image-3d
elements are defined as elements of the SS type because they are used to represent the
simplicial sets associated with the simplicial complexes defined from 2D-images and 3D-
images. Due to the fact that they are defined as elements of the SS type they can be
used as any other element of this type.

When upgrading the XML-Kenzo.xsd the external server evolves and is able to check
the constraints against the XML-Kenzo specification of requests related to digital images
such as:

<constructor>
<digital-image-2d>
<array-2d>
<line> 1 0 </line>
<line> 0 1 </line>
</array-2d>
</digital-image-2d>
</constructor>

The simplicial-complexes.lisp file includes the Kenzo functionality about simpli-
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cial complexes presented in Subsection 5.1.2, since if we want to use the functionality
about digital images in Kenzo, it is necessary to load the functionality about simplicial
complexes.

The digital-images.1lisp file includes the functionality explained in Subsection 5.2.2
to extend the Kenzo system. Moreover, this file includes the functionality that enhances
the xml-kenzo-to-kenzo function of the internal server to process requests devoted to the
construction of objects from the elements digital-image-2d and digital-image-3d. For
instance, if the internal server receives the above XML-Kenzo request. The instruction

(ss-from-sc (simplicial-complex-generator (transform-lolol-to-lol
(generate-facets-image-2d ’((1 0) (0 1)))))

is executed in the Kenzo kernel. As a result an object of the Simplicial-Set Kenzo
class is constructed, and the identifier of that object is returned.

The digital-images-m.lisp file defines two new construction modules for the mi-
crokernel called digital-images-2d and digital-images-3d. Each one of these modules
implements a procedure following the guidelines explained in Subsubsection 2.2.3.3 to
construct respectively the simplicial sets associated with 2D-images and 3D-images in
the microkernel. Neither of the new modules have to check if the XML-Kenzo requests
related to digital images are correct, since all the restrictions about these requests are
controlled in the external server thanks to the XMIL-Kenzo specification (this is due to
the fact that we only have the restriction of being an array of 1’s and 0’s, and this is an
independent argument restriction).

Finally, we have extended the SS Content Dictionary by means of the defini-
tion of two new objects: digital-images-2d and digital-images-3d. Therefore, the
digital-images-a.lisp file contains the necessary functions to raise the functionality of
the adapter to be able to convert from the new OpenMath requests, devoted to digital
images, to XML-Kenzo requests. Namely, we have extended the Phrasebook by means
of a new parser in charge of this task. Then, for instance, the previous XML-Kenzo
request is generated by the Adapter when the following OpenMath request is received.

<0OMOBJ>
<0OMA>
<OMS cd="SS" name="digital-image-2d"/>
<0OMA>
<0MS name="array-2d4"/>
<OMA> <0OMS name="line"/> <OMI>1</0OMI><0OMI>0</0OMI> </0OMA>
<OMA> <0MS name="1line"/> <OMI>0</OMI><OMI>1</0OMI> </OMA>
</0MA>
</0MA>
</0MOBJ>
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5.2.4 Digital images in the fKenzo GUI

This subsection is devoted to present the necessary resources to extend the fKenzo GUI
to support the interaction with digital images. We have defined a fresh fKenzo module
to enhance the GUI with support for digital images. The new OMDoc module refer-
ences three files: digital-images-structure (that defines the structure of the graphical
constituents), digital-images—functionality (which provides the functionality related
to the graphical constituents) and the plug-in introduced in the previous subsection.

We have defined six graphical elements, using the XUL specification language, in the
digital-images-structure file:

A menu called Digital Images which contains two options: Load Digital Image 2D
and Load Digital Image 3D.

A selection window called select-2D-image.

A selection window called select-3D-image.

A window called show-2D-image with an image viewer as sole component.

A window called show-3D-image with a browser as sole component.

A window called SS-from-DI-name.

The functionality stored in the digital-images-functionality document related to
these components works as follows. A function acting as event handler is associated
with the Load Digital Image 2D menu option; this function shows the select-2D-image
window which allows the user to choose an image from a pbm file. Currently, a folder,
called Digital Images Examples, with several examples of pbm files is included in the
distribution of fKenzo.

Once the user has selected a pbm image, the system checks if the file is a pbm file
which can be processed in our system; otherwise it informs the user with a warning mes-
sage. Subsequently, if the file is valid, it invokes our framework with a digital-image-2d
OpenMath request with the information obtained from the selected file through the
pbm-to-loc-path function, which is also included in the digital-images-functionality
document. Subsequently, the simplicial set associated with the simplicial complex de-
fined from the list of simplexes obtained from the 2-dimensional array of the image is
constructed and an identification number is returned. Afterwards, the system asks a
name for the new simplicial set by means of the window SS-from-DI-name; if the name
given by the user is correct (was not used previously), the system stores it, otherwise
it indicates that the name was previously used and asks again a name. Eventually, if
the result returned by the was an identification number; the system adds to the list of
constructed spaces (situated in the left side of the main tab of fKenzo) the new object.
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Moreover, the digital-images-functionality file increases the behavior of the event
handler associated with the left list of the fKenzo GUI. As we explained in Subsec-
tion 3.2.1 when a space is selected from the list of constructed spaces, its standard
notation appears at the bottom part of the right side of the fKenzo GUI. However, if
the space selected is a simplicial set constructed from a digital image, the information
that appears at the bottom part of the right side of the fKenzo GUI is the name given
by the user. In addition, the pbm file is used to show the image associated with the
simplicial set in the window show-2D-image. To show the images in the show-2D-image
window, we use a graphical component which allows us to show 2D-images.

The case of 3D-images is analogous. In this case, examples of 3D digital images
are included in the folder Digital Images Examples 3D; these images are stored in files
with extension “3d”, it is our own format to store the 3-dimensional array of an image.
Moreover, in this case the image viewer of 3D-images shows the 3D-image in a browser
component by means of the JavaView applet [PT02]. To be able to show the 3D-images,
we use the loc-to-obj function (explained in Subsection 5.2.2) which is included in the
digital-images-functionality file, and which transforms the 3-dimensional array of an
image to its “obj” codification (an image format which can be rendered by the JavaView

applet).

5.2.4.1 New objects in the fKenzo GUI

As we have just said the behavior of the event handler associated with the left list of the
fKenzo GUI has been modified. In Subsubsection 4.1.5.1 the management of objects in
the fKenzo GUI and the functionality associated with the left list of the fKenzo GUI were
explained. To handle the new behavior presented for objects associated with 2D-images
and 3D-images we have included the following definitions.

As we commented in Subsubsection 4.1.5.1 we have two subclasses of the
FKENZO-0BJECT class, FKENZ0O-OBJECT-NAME and FKENZO-OBJECT-FILE. Now, we have spe-
cialized the FKENZO-0BJECT-FILE to represent objects associated with 2D-images and 3D-
images. Moreover, the new classes are also an specialization of the FKENZ0-0BJECT-NAME
class. Namely, we have defined the following two classes:

Both FKENZO-0BJECT-IMAGE-2D and FKENZO-OBJECT-IMAGE-3D are subclasses of both
the FKENZO-0BJECT-NAME and FKENZ0-0BJECT-FILE classes without adding any additional
slot. An instance of the FKENZ0O-O0BJECT-IMAGE-2D class is constructed for simplicial sets
associated with 2D-images, the name slot is given by the user and the file slot is the
path of the 2D-image. Analogously for the FKENZ0-O0BJECT-IMAGE-3D.
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As we wanted a different behavior for the event handler, associated with the left list
of the fKenzo GUI for the new objects, to the one presented before, we need some new
concrete methods. In particular, we have defined the following two methods:

(DEFMETHOD show-object ((object FKENZO-OBJECT-IMAGE-2D))
(show-image-2d (file object))
(call-next-method))

(DEFMETHOD show-object ((object FKENZO-OBJECT-IMAGE-3D))
(show-image-3d (file object))
(call-next-method))

The method associated with the objects of the FKENZO-0BJECT-IMAGE-2D class shows
the window with the 2D-image stored in the path indicated by the file slot; subse-
quently, it calls the method associated with the FKENZO-0BJECT-NAME class; and therefore
the fKenzo GUI shows the name of the object at the bottom part of the right side of the
fKenzo GUIL. Analogously for the objects of the FKENZO-0BJECT-IMAGE-3D but showing
the 3D-image stored in the path indicated by the file slot after the conversion to the
obj format.

The call-next-method function of these methods allow them to refer to a less specific
method, namely the one associated with the FKENZO-0BJECT-NAME class. This means that
if we have selected an object in the left list of the fKenzo GUI that corresponds with a
FKENZ0-0BJECT-IMAGE-2D or a FKENZO-0BJECT-IMAGE-3D object, the GUI shows the name
of the object at the bottom part of the right side of the fKenzo GUIL.

In this way, the behavior of the left list of the GUI is enhanced without touching the
main code.

5.2.4.2 Execution flow of the fKenzo GUI for digital images

In order to clarify the execution flow followed by fKenzo, let us present two examples.
When the Digital Images module is loaded in fKenzo, a new menu called Digital Images,
with two options; Load Digital Image 2D and Load Digital Image 3D, becomes avail-
able. From the option Load Digital Image 2D, the user can select a pbm image from
the folder Digital Images Examples with the select-2D-image window, see Figure 5.12.
For instance, the 8893.pbm file is the image of a small cat.

From the 8893.pbm file and using the pbm-to-loc function, fKenzo constructs the
OpenMath request which is sent to our framework. From this request the simplicial
set associated with the simplicial complex defined from the facets obtained from the
coordinates of black pixels of the image is built, and the identification number of the
constructed object is returned. Then, fKenzo asks the user a name for the object by
means of the window SS-from-DI-name (see Figure 5.13), in this case the name given is



5.2 Applications of simplicial complexes: Digital Images

217

Select the digital image
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Figure 5.12: Window to load a 2D-image

* Name of Simplicial Set associated with the Image

The file was correct, enter the name of the Image.

| ok || oetaur |

Figure 5.13: fKenzo asking a name for a simplicial set coming from a digital image

“cat”. Subsequently, the new object is added to the list of constructed spaces shown in
the left side of the fKenzo GUI. When the user selects this object, both the name that
the user provided previously and the image are shown (see Figure 5.14).

Finally, the user can ask fKenzo to compute the homology groups of the image,
and the results are shown, as usual, in the Computing tab. Figure 5.14 shows the
computation of the homology groups of the small cat which has 4 connected components
and 5 holes. These properties are interpreted from the homology groups of the image.

Analogously for the Load Digital Image 3D option. Figure 5.15 shows the compu-
tation of homology groups of the letters “MAP” in 3D; this image has 3 connected
components, 2 tunnels and 0 cavities. As in the case of 2D-images, these properties are
interpreted from the homology groups of the image.
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% Kenzo AEE
File Computing Digital Images  Help
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| Session | Comauting
Computations:
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Figure 5.14: Homology groups of the small cat
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Figure 5.15: Homology groups of the letters MAP in 3D
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5.2.5 Formalization of Digital Images in ACL2

As we already claim, the verification of programs is an important issue, but specially in
the case of the programs for digital images. If we want to use our programs in real life
problems (for instance, in the study of medical images), we must be completely sure that
the results produced by our programs are correct. Therefore, the formal verification of
our programs with a Theorem Prover (in our case, ACL2) is significant.

This subsection is devoted to present the certification of the correctness of Algo-
rithm 5.15 which from a 2D-image constructs a list of simplexes (which represents the
facets of the simplicial complex associated with the 2D-image). The task of verifying the
correctness of Algorithm 5.19 for the case n = 3 is analogous; then, in spite of having
both developments, we just focus on the verification of the correctness of Algorithm 5.15.

5.2.5.1 Main definitions and properties

As we just said, we want to formalize in ACL2 the correctness of Algorithm 5.15; namely,
our implementation of that algorithm by means of the generate-facets-image-2d func-
tion. Since both Kenzo and ACL2 are Common Lisp programs we can verify the cor-
rectness of that Kenzo function in ACL2.

From now on, we define the necessary functions to establish the correctness of our
program. First of all, we need some auxiliary functions which define the necessary
concepts to prove our theorems. These definitions are based on both Algorithm 5.15
and the notions for digital images. Namely, we need to define the notion of 2D-image.

As we said in Subsection 5.2.2, a 2D-image D is represented by means of a finite
2-dimensional array (that is a list of lists) of 1’s and 0’s where each 1 represents a
pixel in D and each 0 represents a pixel that is not in D. The 2d-imagep function is a
function that checks if its argument is a list of lists of 1’s and 0’s. This function uses
the 1ist-0-1-p function that checks if its argument is a list of 1’s and 0’s.

(defun 1ist-0-1-p (list)
(if (endp 1list)
(equal 1list nil)
(if (endp (cdr list))
(and (equal (cdr list) nil)
(or (equal (car list) 0) (equal (car list) 1)))
(and (or (equal (car list) 0) (equal (car list) 1))
(1ist-0-1-p (cdr 1list))))))

(defun 2d-imagep (list)
(if (endp list)
(equal 1list nil)
(and (1list-0-1-p (car list)) (2d-imagep (cdr 1list)))))
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Subsequently, we define the generate-facets-image-2d function and all its auxiliary
functions in ACL2. It is worth noting that the definition of these functions is exactly
the same used in the definition of Kenzo functions (see Subsection 5.2.2). Let us show
in detail these definitions.

First of all, we define the 1ist-up-i-j and list-down-i-j functions which are used to
generate from a pair of natural numbers (4, j) the simplexes ((7,7), (i+1,7), (i+1,j+1))
and ((2,7), (4,7 + 1), (i + 1,5 + 1)) respectively.

(defun llst—up—l—J A (1 J) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
(list (list i j) (Qist (1+ i) j) (List (1+ i) 1+ NN

(defun 11st—down—1—_] . (1 . J) .................................................................................................
(list (list i j) (List i (1+ j)) (List (1+ i) 1+ NN

From the above two functions, we can define a function, called generate-facets-i-j
which from the pair (i,7) generates the pair of simplexes (((¢,7),(i +1,7),(i + 1,7 +
1)), ((,5), (6,5 +1), (i + 1,7+ 1)))

(defun generate-facets-i-j (i j)
(list (list-up-i-j i j) (list-down-i-j i j)))

Now, we can define the generate-facets-image-2d function which generates the
simplexes of a list of lists of 0’s and 1’s 1ol.

(defun generate-facets-image-2d (lol)
(generate-facets-image-aux lol 0))

The above function calls the more general function generate-facets-image-aux
which takes two arguments: a list of lists of 0’s and 1’s 1ol and a natural number j.
The function generate-facets-image-aux must be understood as the procedure which
generates the simplexes of the list of lists of 0’s and 1’s 1ol which is the sublist located
from position j of another list of lists of 0’s and 1’s, let us called it lol-main.

(defun generate-facets-image-aux (lol j)
(if (endp 1lol)
nil
(append (generate-facets-list (car lol) 0 j)
(generate-facets-image-aux (cdr lol) (1+ j)))))

For each one of the lists of 0’s and 1’s of 1ol and the position of that list in
lol-main, the above function invokes the function generate-facets-list. The func-
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tion generate-facets-list must be understood as the procedure which generates the
simplexes of the list of 0’s and 1’s 1ist which is the sublist located from position ¢ of
the list of position j of 1lol-main.

(defun generate-facets-list (list i j)
(if (endp list)
nil
(if (equal (car 1list) 1)
(append (generate-facets-i-j i j) (generate-facets-list (cdr list) (1+ i) j))
(generate-facets-list (cdr list) (1+ i) j))))

Once we have defined our programs in ACL2 we can prove theorems about them.
To be more concrete, we have proved both the correctness a the completeness of our
program generate-facets-image-2d.

First of all we state the ACL2 theorem which ensures the completeness of
generate-facets—-image-2d.

ACL2 Theorem 5.20. Let image be a 2D-image represented by means of a 2 dimen-
sional array, then, Vi, 7 € N such that the value of the image in position (4, 7) of the array
is 1, then, the simplexes ((4, j), (i+1,7), (i+1,74+1)) and ((¢,5), (¢, 7+1), (i4+1,5j+1)) are
in the list generated by the generate-facets-image-2d function taking as input image.

To state this theorem in ACL2, we need the ACL2 functions: (natp n), which is a test
function returning t if n is a natural number and nil otherwise; (nth i 1s), which re-
turns the value of position i (a natural number) of the list 1s; and, (member-equal x 1s),
which returns t if x is equal to some of the elements of 1s (a list).

(defthm generate-facets-image-2d-completeness
(implies (and (2d-imagep image)
(natp 1)
(natp j)
(equal (nth i (nth j image)) 1))
(and (member-equal (list-up-i-j i j) (generate-facets-image-2d image))
(member-equal (list-down-i-j i j) (generate-facets-image-2d image)))))

Once we have proved the completeness of our program, we must prove its correctness.
This task is handled by means of the following lemmas.

ACL2 Theorem 5.21. Let image be a 2D-image represented by means of a
2 dimensional array and simplex be an element of the output generated by
generate-facets-image-2d taking as input image. Then if simplex is of the form
((¢,9),(¢ + 1,7),(i + 1,5 + 1)) with ¢ and j natural numbers, then the element
((2,7), (1,741), (i+1, j+1)) is also in the output generated by generate-facets-image-2d
taking as input image.

To state this theorem in ACL2 we need some auxiliary functions. Namely,
member-1list-up, which returns t if its input is a list of the form ((7,j), (i + 1,7), (i +
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1,74+ 1)) and nil otherwise; and list-down, which from a list of the form ((i,7), (i +
1), (i 4+ 1, + 1)) returns the list ({7, ), (i, + 1), (i + 1, + 1)),

(defthm generate-facets-image-correctness-1
(implies (and (2d-imagep image)
(member-equal simplex (generate-facets-image-2d image))
(member-list-up simplex))
(member-equal (list-down simplex) (generate-facets-image-2d image))))

ACL2 Theorem 5.22. Let image be a 2D-image represented by means of a
2 dimensional array and simplex be an element of the output generated by
generate-facets-image-2d taking as input image. Then if simplex is of the form
((¢,7), (i, + 1),(s + 1,7 + 1)) with ¢ and j natural numbers, then the element
((4,7), (i+1,4), (i+1, j+1)) is also in the output generated by generate-facets-image-2d
taking as input image.

To state this theorem in ACL2 we need some auxiliary functions. Namely,
member-list-down, which returns t if its input is a list of the form ((4,7), (4,7 +
1),(i + 1,5 + 1)) and nil otherwise; and list-up, which from a list of the form
((4,7), (4,7 + 1), (i + 1,5 4+ 1)) returns the list ((¢,7), (¢ +1,7),(i + 1,7+ 1)).

(defthm generate-facets-image-correctness-2
(implies (and (2d-imagep image)
(member-equal simplex (generate-facets-image-2d image))
(member-list-down simplex))
(member-equal (list-up simplex) (generate-facets-image-2d image))))

ACL2 Theorem 5.23. Let image be a 2D-image represented by means of a
2 dimensional array and simplex be an element of the output generated by
generate-facets-image-2d taking as input image of the form ((i, j), (i+1,7), (i+1, j+1))
or ((2,7),(i,7 +1),(i 4+ 1,7+ 1)) with ¢ and j natural numbers. Then, the element of
position (7, j) of image is 1.

To state this theorem in ACL2 we use some ACL2 functions which have not been
used previously: caar which returns the first element of the first element of a list and
cadar which returns the second element of the first element of a list.

(defthm generate-facets-image-correctness-3
(implies (and (2d-imagep image)
(member-equal simplex (generate-facets-image-2d image)))
(equal (nth (caar simplex) (nth (cadar simplex) image)) 1)))

Let us present some remarks about the proof of these theorems which state both the
completeness and the correctness of the generate-facets-image-2d program.
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First of all, it is worthwhile noting that the implementation of the
generate-facets-image-2d function, and its auxiliar ones, follows simple recursive
schemas, that are suitable for the induction heuristics of the ACL2 theorem prover.

Let us present now with some details two auxiliary lemmas needed in our devel-
opment of the proof of the main theorems. As we have seen in the definition of
generate-facets-image-aux, this function invokes the generate-facets-list function
with arguments (car 1ist), 0 and j. Therefore, it is sensible to think that in the proof
of our theorems we are going to need some auxiliary lemmas such as:

(thm (implies (and (list-0-1 x) (matp j)
(member-equal simplex (generate-facets-list x 0 j)))
(equal (nth (caar simplex) x) 1))

that is to say, a lemma which involves a call to (generate-facets-1list x 0 j). However,
ACL2 has some problems to find a proof of theorems such as the previous one, since it
does not find a good inductive schema for reasoning. On the contrary, for ACL2 is much
easier to find a proof of theorems such as:

(thm (implies (and (1ist-0-1 x) (natp i) (natp j)
(member-equal simplex (generate-facets-list x i j)))
(equal (nth (- (caar simplex) i) x) 1))

that is to say, lemmas that are generalizations of the previous ones.

Taking this question into account in the development of our proofs, the certification
of the completeness and correctness theorems can be done without any special trouble.

In this way, we have proved the completeness and correctness of our implementation
of Algorithm 5.15 by means of the program generate-facets-image-2d.

In the case of 3D-digital images the development is very similar. The interested
reader can consult the complete development in [Herl1].

5.3 An algorithm building the pushout of simplicial
sets

Many of the usual constructions in Topology are nothing but homotopy pullbacks or
homotopy pushouts [Mat76]. Loop spaces, suspensions, mapping cones, wedges or joins,
for instance, involve such constructions. In these cases, when the spaces are not of finite
type the computation of their homology groups can be considered as a challenging task.
A way of dealing with this kind of spaces consists of using the effective homology method
explained in Subsection 1.1.3.
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In this section we use the effective homology method to design algorithms building
the pushout associated with two simplicial morphisms f: X — Y and g : X — Z, where
X,Y and Z are simplicial sets with effective homology. In addition the integration of
this new tool in fKenzo is presented.

The rest of this section is organized as follows. Subsection 5.3.1 introduces the math-
ematical background about the pushout and some additional concepts about effective
homology. The way of constructing the effective homology of the pushout is presented
in Subsection 5.3.2. Some examples of the use of the implementation of those algorithms
as a new Kenzo module are provided in Subsection 5.3.3. Subsection 5.3.4 deals with
the extension of the framework to include the functionality about the pushout; and the
way of widening the fKenzo GUI to include the pushout is detailed in Subsection 5.3.5.
Finally, some remarks about the formalization of the developed algorithms are presented
in Subsubsection 5.3.6.

5.3.1 Preliminaries

To explain the effective homology of the pushout is necessary to introduce the notion
of pushout and also some additional notions about effective homology which were not
presented in Subsection 1.1.3.

5.3.1.1 Pushout notions

First of all, let us introduce the notion of pushout. The following definitions can be
found, for instance, in [Mat76, Doe98].

Definition 5.24. Consider two morphisms f: X — Y, g: X — Z in a category C. A
pushout of (f,g) is a triple (P, f’, ¢') where

1. P is an object of C,

2. f':Y = P, ¢ : Z — P are morphism of C such that fog =go f,

and for every other triple (@, f”, ¢") where

1. @ is an object of C,

2. f":Y = Q, ¢": Z — @Q are morphism of C such that fog¢g” =go f”,

there exists a unique morphism p : P — @ such that f” = po f' and ¢" = po g (see the
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following diagram).

Definition 5.25. Let f,g: X — Y be two morphisms between topological spaces, then
a morphism H : X x I — Y, where I is the unit interval [0, 1], is a homotopy between
f and g, denoted by H : f ~ g, if H(z,0) = f(x) and H(z,1) = g(z).

Definition 5.26. A homotopy commutative diagram:

x—t.y
g f!
7-2.p

equipped with H : f'of ~ ¢'og, is called a homotopy pushout when for any commutative
diagram

x—1.y
g f//

Z g// Q

equipped with G : f” o f ~ ¢" o g, the following properties hold:

1. there exists a map p : P — ) and homotopies K : f" ~po ffand L:pog ~ ¢"
such that the whole diagram

x—t.y

g Iz
72PN\

~
)
~N
g’ N

with all maps and homotopies above is homotopy commutative,

Q
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2. if there exists another map p’ : P — @ and homotopies K’ : f” ~ p' o f’ and
L' :p' og ~ ¢" such that the diagram

x-1.vy

g f!
7-2.p

~

is homotopy commutative, then there exists a homotopy M : p ~ p’ such that the
whole diagram with all maps and homotopies above is homotopy commutative.

From now on, with an abuse of notation, we will call (homotopy) pushout of (f,g)
to the object P.

There is a “standard” construction of the homotopy pushout of any two maps
f:X =Y g:X—Z7Zas:

Plg = Y I(X x )1 Z)/ ~

where I is the unit interval [0, 1] and the equivalence relation ~ is defined as follows: for
every z € X, (x x 0) is identified to f(z) € Y and (z x 1) is identified to g(z) € Z.

5.3.1.2 Effective homology preliminaries for the pushout

Let us present now some effective homology concepts which are akin to the definition of
the effective homology of the pushout. A complete study of the definitions and results
presented here can be found in [RS06].

Theorem 5.27 (Direct Sum Equivalence Theorem). Let C, and D, be two chain com-
plexes with effective homology. Then the direct sum C, & D, is a chain complex with
effective homology.

The cone constructor is an important construction in Homological Algebra, we
present here the definition and the most elementary properties of this construction.

Definition 5.28. Let C, and D, be two chain complexes and ¢ : D, — C, be a chain
complex morphism. Then the cone of ¢ denoted by Cone(¢) is the chain complex
Cone(¢) = A, defined as follows. First A,, := C,,11 ® D,,; and the boundary operator is
given by the following matrix:

| de. @
dA* T |: 0 _dD* ‘|
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In the previous definition, if both C, and D, are chain complexes with effective
homology, then, the following theorems ensure that we can construct an equivalence
between Cone(¢) and an effective chain complex, therefore, Cone(¢) is also a chain
complex with effective homology.

Theorem 5.29 (Cone Reduction Theorem [RS06]). Let p = (f,g,h) : Ci=> D, and
o =(f",¢, 1) :C.=> D, betworeductions and ¢ : C., — C, a chain complex morphism.
Then these data define a canonical reduction:

p" : Cone(¢) = Cone(fdg')

An extension of the Cone Reduction Theorem is the following result.

Theorem 5.30 (Cone Equivalence Theorem [RS06]). Let ¢ : C] py — Cipn be a
chain complex morphism between two chain complexes with effective homology. Then
Cone(¢) is a chain complex with effective homology.

Definition 5.31. An effective short exact sequence of chain complexes is a diagram:

o P
0<~"-A,=—=B,=—=C.~—0
j 7
where ¢ and j are chain complexes morphisms, p (retraction) and o (section) are graded
module morphisms satisfying:

o pi=ide,;
e ip+oj=idp,;

® jo=1dy,.

It is an exact sequence in both directions, but to the left it is an exact sequence of
chain complexes, and to the right it is only an exact sequence of graded modules.

The following theorem (see [RS06]) states that given an effective short exact sequence,
if two of the chain complexes of the short exact sequence are chain complexes with
effective homology, then, we can construct the effective homology of the third one.

Theorem 5.32 (SES Theorems). Let

P
O<LA*<;"_>B*<—._>C*<—O
j 7
be an effective short exact sequence of chain complexes. Then three general algorithms

are available:
SES, : (Bspu,Cien) = Aven

SESy : (Aspn,Capn) = Bapn
SESs: (Awkn, Bipn) = Cign

producing the effective homology of one chain complex when the effective homology of
both others is given.
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The following two lemmas are used in the proof of the above theorem and will be
important in the development of the effective homology of a pushout.

Lemma 5.33. Let
0

0= A, ==B.=—=C,~——0
j 7

be an effective short exact sequence of chain complexes. Then the effective exact se-
quence produces a reduction Cone(i) = A,.

To state the second lemma we need an auxiliary definition.

Definition 5.34. Let C, = (C,,dc, )nez be a chain complex. The suspension functor
applied to C, is the chain complex ol — (M, dp)nez such that, M, = C,_; and
d, = _anfw Vn € Z.

Moreover, we can define the effective homology version of the suspension functor.

Theorem 5.35 (Suspension Functor Equivalence Theorem). Let C, be a chain complex
with effective homology. Then ! is a chain complex with effective homology.

Now, we can provide the second lemma associated with Theorem 5.32.

Lemma 5.36. Let
o P
021 A,—=B,—C.,<—0
] 1
be an effective short exact sequence of chain complexes. Then the effective exact se-
quence generates a connection chain complex morphism y : A, — o, Besides, B, is
canonically isomorphic to Cone(x).

Once these concepts have been introduced, we can undertake our goal of defining the
effective homology of a pushout.

5.3.2 Effective Homology of the Pushout
5.3.2.1 Main algorithms

The definitions related to the pushout given in Subsubsection 5.3.1.1 come from standard
topology, from now on we switch to the simplicial framework where we can formulate
the following algorithm.

Algorithm 5.37.

Input: two simplicial morphisms f : X — Y and g : X — Z where X,Y and Z are
simplicial sets.

Output: the simplicial set Py g).
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The above algorithm is based on the standard pushout construction presented in
Subsubsection 5.3.1.1, in particular given f : X — Y and g : X — Z simplicial mor-
phisms, then we define Py, as the simplicial set (Y II(X x A')I1Z)/ ~, where A’ is the
unit interval [0, 1] in the simplicial framework: the simplicial set A! has two 0-simplexes
(0), (1) and the non-degenerate 1-simplex (0,1); and ~ is the equivalence relation such
that for every x € X, (x x (0)) is identified to f(z) € Y and (z x (1)) is identified to
g(x) € Z.

Now, if X,Y and Z are simplicial sets with effective homology, then Py g is also an
object with effective homology; in particular we can formulate the following algorithm.

Algorithm 5.38.

Input: two morphisms f: X — Y and g : X — Z where X,Y and Z are simplicial sets
with effective homology.

Output: the effective homology of Py g).

The construction of the effective homology of P, involves several steps. In a
nutshell, the construction of the effective homology of P 4 is based on applying the case
SES, of Theorem 5.32 to a short exact sequence which is produced by the description
of C, P (the chain complex coming from Py )):

0~ M, C.P - OY @ C.Z~—0

where M, is the chain complex associated with the simplicial set X x A! but with
the simplexes of X x (0) and X x (1) cancelled (that is to say, the simplexes like
(z,(0)) € X x (0), (z,(1)) € X x (1) and their degeneracies are removed from X x A'),
the morphisms o and ¢ are inclusions and the morphisms j and p are projections.

To apply the case SES; of Theorem 5.32 to the above short exact sequence, the
effective homology of M, and C,X & C.Y must be available. Then, the main steps to
construct the effective homology of the pushout Py are the following ones.

Step 1. From f: X — Y and g : X — Z simplicial morphisms, P, and its
associated chain complex C, P are constructed.

Step 2. The effective homology of M, is constructed.
Step 3. The effective homology of C,.X & C.Y is constructed.

Step 4. Eventually, from C, P, the effective homology of M,, the effective homology
of C,X & C.Y and applying case SES; of Theorem 5.32 to the above short exact
sequence, the effective homology of the pushout Py, is constructed.

A complete description of the algorithm will be provided in Subsubsection 5.3.2.3.
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5.3.2.2 Auxiliar algorithms

Several sub-algorithms have been required in the process to define Algorithm 5.38, in
particular, we have needed the following ones.

Algorithm 5.39 (Definition 1.26).
Input: two simplicial sets X and Y.
Output: the simplicial set X x Y.

Algorithm 5.40 (Eilenberg-Zilber Theorem, see [May67]).
Input: two simplicial sets X and Y with effective homology.
Output: the effective homology of X x Y.

Algorithm 5.41 (Definition 1.8).

Input: two simplicial sets X and Y.

Output: the direct sum chain complex C, X @ C.Y where C,X and C.Y are the chain
complexes associated with X and Y respectively.

Algorithm 5.42 (Theorem 5.27).
Input: two simplicial sets X and Y with effective homology.
Output: the effective homology of C. X & C.Y.

Algorithm 5.43 (Definition 5.28).
Input: a morphism 7 between two chain complexes A, and B,.
Output: the chain complex Cone(7).

Algorithm 5.44 (Theorem 5.30).
Input: a morphism 7 between two chain complexes A, and B, with effective homology.
Output: the effective homology of Cone(i).

Algorithm 5.45.
Input: a simplicial set X.

Output: the chain complex coming from X x A! but with the simplexes of X x (0) and
X x (1) cancelled.

Algorithm 5.46.
Input: a simplicial set X with effective homology.

Output: the effective homology of the simplicial set X x A! but with the simplexes of
X x (0) and X x (1) cancelled.

Algorithm 5.47 (Definition 5.34).
Input: a chain complex A,.
QOutput: the chain complex Al
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Algorithm 5.48 (Theorem 5.35).
Input: a chain complex A, with effective homology.
Output: the effective homology of Al

Algorithm 5.49 (Lemma 5.33).
Input: A, B and C' simplicial sets with effective homology, i,j,0 and p morphism

o P
which determine the short exact sequence 0 DL C,A—C,B—C,C =<—0 where

7 i
C.A,C,B and C,C are the chain complex canonically associated with A, B and C re-
spectively.
Output: the reduction Cone(i) = C,A.

Algorithm 5.50 (Proposition 1.40).
Input: a reduction B, = A, and the effective homology of B,.
Output: the effective homology of A,.

Some of these algorithms are already implemented in Kenzo (namely, algo-
rithms 5.39, 5.40 and 5.50). On the contrary, it has been necessary to implement the
rest of them.

5.3.2.3 A complete description of the algorithm

In this subsubsection, we are going to present a detailed description of the 4 main steps to
construct the effective homology of the pushout of two simplicial morphisms f: X — Y
and g : X — Z where X,Y and Z are simplicial sets with effective homology.

As we said previously, the construction of the effective homology of F(y ) is based on
applying the case SESs of Theorem 5.32 to the short exact sequence which is produced
by the description of C,P (the chain complex associated with P;g)):

0~ M. ——=C.P f— OY & 0.7 ~——0

7 %

where M, is the chain complex associated with the simplicial set X x A! but with the
simplexes of X x (0) and X x (1) cancelled, the morphisms ¢ and i are inclusions and
the morphisms j and p are projections. To apply the case SES; of Theorem 5.32, the
effective homology of M, and C,X & C.Y must be available. Then, the main steps to
construct the effective homology of the pushout are as follows.

Step 1. From f: X — Y and g : X — Z simplicial morphisms, P, and its
associated chain complex C, P are constructed.

To this aim, we simply apply Algorithm 5.37.

Step 2. We construct the effective homology of the simplicial set X x A! but with
the simplexes of X x (0) and X x (1) cancelled.
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The construction of the effective homology of this simplicial set is a bit tricky and
needs several sub-steps that are now explained.

1. We construct the chain complex associated with X x A! but with the simplexes of
X x(0) and X x (1) cancelled, that will be denoted by M., applying Algorithm 5.45.

Briefly, the construction of the effective homology of M, is obtained from the
application of the case SFES; of Theorem 5.32 to the short exact sequence produced
by the description of the chain complex M,:

o 2
- 0, (X x AY) ’

J2 i2

0~ M, C.(X x (0)) @ Cu(X x (1)) =0

where the morphisms 02 and ¢2 are inclusions and the morphisms j2 and p2 are
projections. To apply the case SES; of Theorem 5.32, the effective homology of
C.(X x A') and C.(X x (0)) & C.(X x (1)) must be provided.

2. We build the effective homology of C,(X x Al).

Since both X and A! are simplicial sets with effective homology (A! is an effec-
tive object, then it has trivially effective homology), we can construct, applying
Algorithm 5.40, the effective homology of C,(X x Al).

3. We construct the effective homology of C.(X x (0)) & C.(X x (1)).

Since both X x (0) and X x (1) are simplicial sets with effective homology (applying
Algorithm 5.40 since X, (0) and (1) are simplicial sets with effective homology), we
can construct, applying Algorithm 5.42; the effective homology of C.(X x (0)) &
Ci(X x (1)).

4. We construct the effective homology of Cone(i2).

Since 72 is a chain complex morphism between two objects with effective homol-
ogy, Ci(X x Al) and C,(X x (0)) ® C.(X x (1)), we can construct, applying
Algorithm 5.44, the effective homology of Cone(i2).

5. The reduction M, «= Cone(i2) is constructed applying Algorithm 5.49.

6. The effective homology of M, is constructed.

Since Cone(i2) is a chain complex with effective homology and we have the re-
duction M, «= Cone(i2), we can construct, applying Algorithms 5.50, the effective
homology of M,.

Therefore, we have constructed the effective homology of the simplicial set X x Al
but with the simplexes of X x (0) and X X (1) cancelled. The above process produces
Algorithm 5.46.
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Step 3. We construct the effective homology of C,. X & C.Y.

Since both Y and Z are simplicial sets with effective homology we can construct,
applying Algorithm 5.42; the effective homology of C.Y & C.Z.

Step 4. The effective homology of the pushout Py ) is constructed.

Let us present how we proceed to complete this construction.

1. We define the following short exact sequence:

— ’

7 A

0<~— M, C.Y®(C.Z<—0.

where the morphisms ¢ and ¢ are inclusions and the morphisms j and p are pro-
jections.

2. We construct the effective homology of (C.Y @ C,Z)!.

Since C.Y @ C.Z is a chain complex with effective homology, applying Algo-
rithm 5.48, we can construct the effective homology of (C.Y & C.Z )[1].

3. We define the morphism shift : C,Y ®C.Z — (C,Y ® C,Z)Y which assigns every
element of dimension n of C.Y @ C.Z to the same element in dimension n + 1 of
(C.Y @ C,z2)M,

4. We define the chain complex morphism y : M, — (C.Y & C,.Z )[1} as the composi-
tion x = shiftopodg,poo.

5. We construct the effective homology of Cone(y).

Since x is a chain complex morphism between two chain complexes with effective
homology, M, and (C.Y @ C,Z)!"| we can construct, applying Algorithm 5.44, the
effective homology of Cone(y).

6. Finally, applying Lemma 5.36, C. P is isomorphic to Cone(y), therefore, the effec-
tive homology of C, P is obtained.

In this way, the effective homology of the pushout of two simplicial morphisms f :
X —Yand g: X — Z where X,Y and Z are simplicial sets with effective homology is
obtained. Therefore, we can state the following theorem.

Theorem 5.51. Let f : X — Y and g : X — Z be two simplicial morphisms where
X,Y and Z are simplicial sets with effective homology. Then P, is a simplicial set
with effective homology.

The proof of this theorem is the above construction which produces Algorithm 5.38.
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5.3.2.3.1 By-product algorithms Once we have Algorithm 5.38, it can be used
in several interesting cases. For instance, as we commented at the beginning of this
section, many of the usual constructions in Topology can be built from the pushout. Let
us consider two particular cases: the wedge and the join of simplicial sets with effective
homology.

Definition 5.52. Given X and Y 1-reduced spaces with base points 25 € X and yg € Y,
then the wedge X VY is the quotient of the disjoint union X ITY obtained by identifying
xo and yo to a single point.

Consider the pushout diagram

Xy

]

Z——>P

where X is the one-point simplicial set and Y, Z are 1-reduced simplicial sets and i1, iy
are morphism from X to the base point of ¥ and Z respectively. Then, P, ;,) is the
wedge Y V Z.

Algorithm 5.53.
Input: two 1-reduced simplicial sets X and Y with effective homology.
Output: the effective homology of X VY.

Definition 5.54. Given X and Y spaces, one can define the space of all lines segments
joining points in X to points in Y. This is the join X < Y, the quotient space of
X xY x I/ ~, under the identifications (x,y;,0) ~ (x,92,0) and (z1,y,1) ~ (z9,y,1).
Thus we are collapsing the subspace X x Y x (0) to X and X x Y x (1) to Y.

Consider the pushout diagram

Xxy®.ox
P
Y P

where px and py are the projections. Then, P, ) is the join X Y.

Algorithm 5.55.
Input: two simplicial sets X and Y with effective homology.
Output: the effective homology of X >x Y.

5.3.2.3.2 Implementation The algorithms explained throughout this subsection
have been implemented as a new module for the Kenzo system. The set of programs we
have developed (with about 1600 lines) allows the computation of the pushout of two
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simplicial morphisms f : X — Y and g : X — Z, and the construction of its version
with effective homology when the effective homologies of X, Y and Z are available.

In the development of the new module for Kenzo that allows one to construct the
pushout associated with two simplicial morphisms, the first step has consisted in imple-
menting the algorithms presented in Subsubsection 5.3.2.2 which were not available in
Kenzo (to be more concrete, algorithms 5.37, 5.41, 5.42, 5.43, 5.44, 5.45, 5.46, 5.47, 5.48
and 5.49). Subsequently, applying the construction previously explained, we have im-
plemented Algorithm 5.38, that is to say, a program that allows us to construct the
effective homology of the pushout. Eventually, we have used that program in order to
implement algorithms 5.53 and 5.55.

Among the bunch of implemented functions, we highlight the following ones.

pushout f g [Function/

Build a simplicial set with effective homology, namely the pushout of the simplicial
morphisms f: X — Y and ¢g: X — Z where X, Y and Z are simplicial sets with
effective homology.

wedge smstl smst2 [Function]

Build a simplicial set with effective homology, namely the wedge of smst! and
smst2, that are two simplicial sets with effective homology.

join smst1 smst2 [Function]

Build a simplicial set with effective homology, namely the join of smsti and smst2,
that are two simplicial sets with effective homology.

Several examples are provided in the following subsection to provide a better under-
standing of the new tools.

5.3.3 Examples

In this subsection we present four examples of application of the programs we have
developed to build the pushout of two simplicial morphisms. In the first case, we consider
the particular case of the wedge of Eilenberg MacLane spaces (K(Z,2)V K(Z,2)). As a
second example, we will show the join of two spheres. A sophisticated example giving a
geometrical construction of P?(C) is presented, too. Finally, a way of computing some
homotopy groups of the suspension of the classifying space of the group SLs(Z) is given.

We consider a fresh Kenzo session, where our pushout Kenzo module has been loaded.
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Wedge of K(Z,2) and K(Z,2)

Let us present here an example of the use of the wedge of spaces. In this case we want
to compute the first six homology groups of the wedge of K(Z,2) and K(Z,?2). First of
all, we build the Eilenberg-MacLane space K (Z,?2).

> (setf bkz (k-z 2)) "X
[K13 Abelian-Simplicial-Group]

> (setf bkzwbkz (wedge bkz bkz)) K
[K41 Simplicial-Set]

> (homology bkzwbkz 0 6) M
Homology in dimension O :
Component Z

Homology in dimension 1 :

Homology in dimension 2 :
Component Z
Component Z
Homology in dimension 3 :

Homology in dimension 4 :
Component Z
Component 7
Homology in dimension 5 :

Join of S? and S°

Let us present here an example of the use of the join of spaces. In this case we want to
compute the first seven homology groups of the join of the spheres S? and S3. Let us
note that the join of the spheres S™ and S™ is the sphere S™*™*!; so, in our case the

)

only non null homology groups should be 0 and 6. We construct the spheres S? and S3.

> (setf s2 (sphere 2)) M
[K331 Simplicial-Set]
> (setf s3 (sphere 3)) 'K
[K336 Simplicial-Set]
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We construct the join S? i S3.

> (setf s2js3 (join s2 s3)) "X
[K353 Simplicial-Set]

> (homology s2js3 0 7) "X
Homology in dimension O :
Component Z

Homology in dimension 1 :

Homology in dimension 2 :
Homology in dimension 3 :
Homology in dimension 4 :
Homology in dimension 5 :

Homology in dimension 6 :
Component Z

P*(C)

This example which gives a geometrical construction of P?(C) [Ser10] was suggested by
Francis Sergeraert. Take S? and construct the first stage of the Whitehead tower. We
access to the current definition of the sphere of dimension 2 stored in the variable s2.

> (setf ch2 (chml-clss s2 2)) M
[K547 Cohomology-Class on K331 of degree 2]

We construct the fibration over the sphere canonically associated with the above coho-
mology class.

> (setf f2 (z-whitehead s2 ch2)) "X
[K548 Fibration K331 -> K1]
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Finally, the total space from the fibration is generated.

> (setf x3 (fibration-total f2)) »X
[K554 Simplicial-Set]

Then x3 has the homotopy type of the 3-sphere S. More precisely x3= s2x¢5 K (7, 1)
with £2 an appropriate twisting function producing S® as a total space. It is easy to
deduce a projection f: X3 — S2.

> (setf f (build-smmr ; the function to construct a simplicial morphism
:sorc x3 ; the source simplicial set
:trgt s2 ; the target simplicial set
:degr 0 ; the degree of the morphism
:sintr #’(lambda (dmns gmsm) ; the map
(declare (ignore dmns))
(absm (dgopl gmsm) (gmsml gmsm)))
torgn ‘(proj ,x3 ,s2))) "
[K559 Simplicial-Morphism K554 -> K331]

Taking the pushout of this f and the map g : X3 — % (where * is the simplicial set with
just one vertex),

> (setf unipunctual (build-finite-ss ’(x))) 'K
[K25 Simplicial-Set]
>(setf g (build-smmr ; the function to construct a simplicial morphism
:sorc x3 ; the source simplicial set
:trgt unipunctual ; the target simplicial set
:degr 0 ; the degree of the morphism
:sintr #’(lambda (dmns gmsm) ; the map
(if (and (equal dmns 0)
(equal gmsm (bsgn x3)))
’x
nil))
rorgn ‘(proj ,x3 ,unipunctual))) M
[K660 Simplicial-Morphism K554 -> K25]

> (setf p (pushout f g)) MK
[K566 Simplicial-Set]

It can be checked that our programs obtain the right homology groups that are
(2,0,7,0,7Z,0,0,...):
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> (homology p 0 7) M
Homology in dimension 0 :
Component Z

Homology in dimension 1 :

Homology in dimension 2 :
Component Z
Homology in dimension 3 :

Homology in dimension 4 :
Component Z
Homology in dimension 5 :

Homology in dimension 6 :

SLy(Z)

This example allows us to compute some homotopy groups of the suspension of SLy(Z)
(the group of 2 x 2 matrices with determinant 1 over Z, with the group operations of
ordinary matrix multiplication and matrix inversion), the interest in computing homo-
topy groups of this kind of spaces can be seen in [MW10]. In [Ser80], it was explained
that SLy(Z) is isomorphic to the amalgamated sum Zj4 %z, Zg. Then, this is a pushout
in the category of groups, and, in this case, applying the functor K (—, 1) we obtain also
a pushout (see [Bro82]):

P

K(Zﬁa 1)

Then, we can compute the homology groups of S Ly(Z) thanks to the programs devel-
oped to construct the pushout of simplicial sets and the programs presented in [RER09]
which allow us to construct K (G, 1) for G a cyclic group (in this case K (Zs, 1), K(Z4,1)
and K(Zg,1)). Namely, we proceed as follows. First of all, we construct the spaces
K(Zg, 1), K(Z4, 1) and K(ZG, ].)

> (setf kz2 (k-zp-1 2)) M
[K2 Abelian-Simplicial-Group]
> (setf kz4 (k-zp-1 4)) "X
[K15 Abelian-Simplicial-Group]
> (setf kz6 (k-zp-1 6)) M
[K28 Abelian-Simplicial-Group]
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Subsequently, we define the two simplicial morphisms f and g by means of a function
called kzps-incl which represents the inclusion between K(Z,,1) and K(Z,,1).

(defun kzps-incl (n m)

(declare (number n m))

(let ((1 (/ m n)))

(build-smmr ; the function to construct a simplicial morphism
:sorc (k-zp-1 n) ; the source simplicial set
:trgt (k-zp-1 m) ; the target simplicial set
:degr 0 ; the degree of the simplicial morphism

:sintr #’(lambda (dmns gmsm) ; the map
(absm 0 (make-list dmns

:initial-element i)))

torgn ‘(inclusion between (k-g-1 ,n) and (k-g-1 ,m)))))

> (setf kz2-kz4 (kzps-incl 2 4)) M
[K40 Simplicial-Morphism K2 -> K15]
> (setf kz2-kz6 (kzps-incl 2 6)) *K
[K41 Simplicial-Morphism K2 -> K28]

> (setf p (pushout kz2-kz4 kz2-kz6)) "X

[K52 Simplicial-Set]

Due to the fact that the abelianization map SLy(Z) — Z/127Z induces an isomor-
phism on integral homology, see [Knu], then, the homology groups of SLy(7Z) are the
same that the ones of K(Z/127Z,1). It can be checked that our programs obtain the
right homology groups that are (Z,Z/127Z,0,7Z/127Z,0,Z/127Z, . . .):

> (homology p 0 7) M
Homology in dimension
Component Z

Homology in dimension
Component Z/12Z
Homology in dimension

Homology in dimension
Component Z/12Z
Homology in dimension

Homology in dimension
Component Z/12Z
Homology in dimension
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Therefore, we have been able to compute the homology groups of SLs(Z). Now,
we apply the suspension constructor to the pushout, see Definition 1.28. Subsequently,
we can compute, using the Kenzo system, some homotopy groups of the suspension of
SLy(7Z) thanks to the algorithm explained in [Rea94] and using the programs developed
in [RER09]. Namely, the first homotopy groups of the suspension of SLy(Z), denoted by
E(SLQ(Z)) are WQ(E(SLQ(Z))) = Z/12Z, Wg(E(SLQ(Z))) = Z/12Z and 7T4(Z(SL2(Z))) =
ZJ127 & 7, /27. The file with the procedure to compute these homotopy groups can be
seen in [Herll].

5.3.4 Integration of the pushout in our framework

In the last two examples of the previous subsection, the definition of simplicial morphisms
for the construction of the pushout has been shown. Namely, to define a simplicial
morphism an instance of the class SIMPLICIAL-MRPH (which is a subclass of the MORPHISM
class) is necessary.

The relevant slots of a SIMPLICIAL-MRPH instance are sorc, the source object of type
SIMPLICIAL-SET; trgt, the target object of type SIMPLICIAL-SET; degr, the degree of
the morphism; sintr, the internal lisp function defining the effective mapping between
simplicial sets; and orgn, used to keep a record of information about the object.

The definition of the Lisp function installed in the sintr slot is the main hindrance
in order to integrate the whole functionality of the pushout in fKenzo. The definition of
this lisp function is ad-hoc in most of the cases (although in some particular cases, such
as the wedge or the join, can be defined in general) and involves a study of the internal
structure of the source and target simplicial sets and a knowledge of the definition of
Lisp functions, and such a meticulous study is difficult to integrate in our framework,
at least in an easy and usable way (i.e. without giving access to the internal Common
Lisp code).

Nevertheless, some of the functionality developed in the new module can be inte-
grated in fKenzo, namely the functionality related to construct the wedge and the join
of simplicial sets, since it does not involve, at least in an explicit way, the construction
of simplicial morphisms and we can use them like other Kenzo constructors such as
cartesian or tensor products. This subsection is devoted to explain the necessary steps
to incorporate both the wedge and join functionality to the Kenzo framework.

To enhance the framework with the functionality related to wedge and join construc-
tions, we have developed a plug-in following the guidelines given in Subsubsection 3.1.2.

This new plug-in will allow us to construct the wedge and the join of simplicial sets
and use them as any other object of the framework. The plug-in used to include the
functionality about these constructors references the following resources:
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Figure 5.16: join and wedge elements in XML-Kenzo

<code id="pushout">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> pushout-list.lisp </data>
<data format="Kf/microkernel"> pushout-m.lisp </data>
<data format="Kf/adapter"> pushout-a.lisp </data>

</code>

As we claimed in Subsubsection 3.1.2; if we want to include new functionality in the
Kenzo internal server and make it available outside the framework, all the components
must be broadening. Let us explain each one of the referenced resources.

We want to introduce two new kinds of objects in our system (the wedge and the join
of simplicial sets), then, it is necessary to provide a representation for that objects in our
system. To that aim, we have defined two new elements: wedge and join. Both elements
are defined as elements of the SS type, so, they can be used as any other element of this
group, and have two children of some of the types SS, SG or ASG (see Figure 5.16).

As we explained in Subsection 3.1.2 the external server evolves when the
XML-Kenzo . xsd file is upgraded. Then, when the XML-Kenzo .xsd file is modified to include
the join and the wedge elements, the external server is able to check the correctness of
requests such as:
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<constructor>
<join>
<wedge>
<sphere>3</sphere>
<sphere>4</sphere>
</wedge>
<k-z>2</k-z>
</join>
</constructor>

The pushout-list.lisp file includes the functionality defined in Subsection 5.3.2 to
extend the Kenzo system. Moreover, this file includes the functionality that enhances
the xml-kenzo-to-kenzo function of the internal server to process the construction of
objects from the join and wedge elements. For instance, if the internal server receives
the above request. The instruction

is executed in the Kenzo kernel. As a result an object of the Simplicial-Set Kenzo
class is constructed, and the identifier of that object is returned.

The pushout-m.1lisp file defines two new construction modules for the microkernel
called join and wedge. The procedures implemented in this module follows the guidelines
explained in Subsubsection 2.2.3.3. In this case neither of the modules checks any
property to construct objects when they are activated since the requests coming from
the external server related to wedge and join are always safe; that is, all the requests
related to wedge and join constructions that can produce errors are stopped in the
external server and never arrive to the microkernel (since the constraints related to these
constructors are type restrictions which are handled in the XML-Kenzo specification).

Finally, we have extended the SS Content Dictionary by means of the definition of two
new objects: join and wedge. Therefore, the pushout-a.lisp file contains the necessary
functions to raise the functionality of the adapter to be able to convert from these
new OpenMath objects, devoted to the wedge and the join, to XML-Kenzo requests.
Namely, we have extended the Phrasebook by means of a new parser in charge of this
task. Then, for instance, the previous XML-Kenzo request is generated by the adapter
when the following OpenMath request is received.
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<0OMOBJ>
<0OMA>
<OMS cd="S8S" name="join"/>
<0MA>
<0MS cd="SS" name="wedge"/>
<OMA> <0OMS cd="SS" name="sphere"/> <OMI>3</0MI> </0OMA>
<OMA> <0OMS cd="SS" name="sphere"/> <OMI>4</0MI> </0OMA>
</0MA>
<OMA> <OMS cd="ASG" name="k-z"/> <0MI>2</0OMI> </0OMA>
</0MA>
</0M0OBJ>

5.3.5 Integration of the pushout in the fKenzo GUI

In this subsection we are going to present the necessary resources to extend the fKenzo
GUI with the functionality about wedge and join constructors. As we presented in Sec-
tion 3.2 one of the modules which customizes fKenzo is the Simplicial Set module. This
module contains the elements that represent the simplicial set constructors of Kenzo:
options to construct spaces from scratch (spheres, Moore spaces, finite simplicial sets,
simplicial sets coming from simplicial complexes and so on) and from other spaces (for
instance, cartesian products). We have enhanced this module by means of the necessary
ingredients to construct joins and wedges of simplicial sets.

In Section 3.2 a Simplicial Set module with two files, simplicial-sets-structure
(which  defined  the  structure of the  graphical constituents) and
simplicial-sets-functionality (which provided the functionality related to the
graphical constituents), was presented.

In Subsection 5.1.4, the original Simplicial Set module was improved to include
the functionality about simplicial complexes. In particular, we modified the files
simplicial-sets-structure and simplicial-sets-functionality referenced by the
original module and we also included a reference to the plug-in about simplicial com-
plexes.

Now, we have extended this module to include the functionality about the wedge
and the join of simplicial sets. Namely, it also references the plug-in presented
in the previous subsection and, in addition, both simplicial-sets-structure and
simplicial-sets-functionality documents have been upgraded in order to allow the
use of wedge and join constructors in the fKenzo GUIL

We have defined four new graphical elements, using the XUL specification language,
in the simplicial-sets-structure file:

e A new menu option called Join included in the Simplicial Sets menu.

e A new menu option called Wedge included in the Simplicial Sets menu.
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Figure 5.17: Wedge window

e A window called Join (very similar to the window defined to construct the cartesian
product of two simplicial sets).

e A window called Wedge as above.

The functionality stored in the simplicial-sets-functionality document related
to these components works as follows. The functionality is analogous for wedge and
join options; so let us explain just the wedge one. A function acting as event handler
is associated with the Wedge menu option; this function shows the Wedge window (see
Figure 5.17) if at least a simplicial set, a simplicial group or an abelian simplicial group
was built previously in fKenzo; otherwise, it informs the user that at least one object of
one of those types must be constructed before using the Wedge option.

From the Wedge window, the user must select two objects from the two Add buttons;
the lists of objects shown by the Add buttons only contain the objects of types simplicial
set, simplicial group and abelian simplicial group.

Once the user has selected two objects X1 and X2, when it presses the create button
of the Wedge window, an OpenMath request is generated. Subsequently, our framework
is invoked with the OpenMath request. The wedge of X1 and X2 is constructed and
its identification number is returned. Eventually, fKenzo adds to the list of constructed
spaces (situated in the left side of the main tab of the fKenzo GUI) the new simplicial
set. Figure 5.18 shows the control and navigation submodel (with the Noesis notation)
describing the construction of the wedge of two simplicial sets from the Wedge menu
option.

Moreover, we have also modified the stylesheet used to present in the fKenzo GUI the
spaces constructed, using their mathematical notation (see Subsubsection 3.2.4.3). This
stylesheet is modified in the folder of the fKenzo distribution to present with standard
notation both wedge and join spaces.

Let us present an example, for instance if we have constructed the spaces S* and
M(Z/2Z,4) in a fKenzo session, we can build the space S* V M(Z/27Z,4) and subse-
quently the space (S®V M(Z/2Z,4)) =< (S® V M(Z/27Z,4)) from Wedge and Join menus
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Figure 5.18: Control graph for the construction of the wedge of two simplicial sets

respectively. Finally, the user can ask fKenzo to compute the homology groups of these
spaces using the homology option of the Computing menu. The results are shown, as
usual, in the Computing tab, see Figure 5.19.

5.3.6 Formalization of the pushout in ACL2

In the same way that we certified our programs for the case of simplicial complexes and
digital images, we are interested in verifying the correctness of the implementation of
the algorithms which construct the pushout of simplicial sets in ACL2. This task is an
ongoing work, and at this moment just some of the algorithms are verified. To be more
concrete, the implementation of Algorithms 5.41 (direct sum), 5.43 (cone), 5.47 (suspen-
sion functor) and the algorithms associated with SES1 and SES3 cases of Theorem 5.32
have been formalized in ACL2.

The verification of the correctness of those algorithms and also the rest of algorithms
presented is part of a wider project which tries to verify the implementation of algorithms
which construct new spaces by applying topological constructions. This formalization
will be presented in Section 6.2 of the following chapter.

In that section, a methodology to prove the correctness of the construction of new
spaces by applying topological constructions is presented. This methodology copes with
the higher-order nature of those constructors by means of the simulation of high order
logic by means of ACL2 encapsulates.

Therefore, we postpone the presentation of the formalization of the implementation
of algorithms of this section to Section 6.2.
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