Class	Date

5-1 Practice Midsegments of Triangles

Identify three pairs of parallel segments in the diagram.

- 1. $\overline{AB} \parallel \underline{?}$
- **2.** $\overline{BC} \parallel \underline{?}$
- $\mathbf{AC} \parallel \underline{?}$

Form K

4. \overline{MN} **5.** \overline{ON} **6.** \overline{AB} **7.** \overline{CB} **8.** \overline{OM} **9.** \overline{AC}

Points J, K, and L are the midpoints of the sides of ΔXYZ .

10. Find *LK*.

To start, identify what kind of segment \overline{LK} is. Then identify which relationship in the Triangle Midsegment Theorem will help you find the length.

13. Find *XK*. **14.** Find *JL*.

15. Find *YL*. **16.** Find *KL*.

- **17.** Draw a triangle and label it *ABC*. Draw all the midpoints and label them. Identify pairs of parallel segments and angles in your triangle.

Form K

5-1 Practice (continued) Midsegments of Triangles

Algebra Find the value of x.

Class _____

Date _____

5-2 Perpendicular and Angle Bisectors

Use the figure at the right for Exercises 1–3.

1. What is the value of *x*?

To start, determine the relationship between AC and BD. Then write an equation to show the relationships of the sides. \overline{BD} is the $\frac{?}{-}$ bisector of \overline{AC} . Therefore, point B is equidistant from points A and \Box .

 $4x = \frac{?}{}$

- **2.** Find *AB*.
- **3.** Find *BC*.

Use the figure at the right for Exercises 4–7.

- **4.** *MO* is the perpendicular bisector of
- **5** Find *MP*.
- 6 Find NO.

7 Find NP.

Use the figure at the right for Exercises 8–13.

- **8.** How far is *M* from \overline{KL} ?
- **9.** How far is *M* from *JK* ?
- **10.** How is *KM* related to $\angle JKL$?
- **11** Find the value of *x*.
- **12** Find *m∠MKL*.
- **13** Find $m \angle JMK$ and $m \angle LMK$.

Form K

Class	
-------	--

Date _____

5-2 Perpendicular and Angle Bisectors Use the figure at the right for Exercises 14-16. 14. what are the lengths of \overline{EF} and \overline{EH} ? 15. Find the value of y.

16. Find $m \angle GEH$ and $m \angle GEF$.

Algebra Find the values of the indicated variables and measures.

17. *x*, *BA*, *BC*

 $A \xrightarrow{3x-2} B$

19. *x*, *IK*

 $r \underbrace{v}{\nabla \Psi} v$

20. *x*, *m*∠*UWV*, *m*∠*UWT*

 $(3a - 2)^{\circ}$

23. Writing Is A on the angle bisector of $\angle XYZ$? Explain.

22. *a*, *b*

_____ Class _____ Date __

Form K

0

Х

VA

0 P 2

Practice 5-3 **Bisectors in Triangles**

Coordinate Geometry Find the coordinates of the circumcenter of each triangle.

Coordinate Geometry Find the circumcenter of ΔPQR .

3. <i>P</i> (0, 0)	To start, graph the vertices and connect
<i>Q</i> (3, 4)	them on a coordinate plane. Then draw
<i>R</i> (0, 4)	two perpendicular bisectors.

4. <i>P</i> (1, -5)	5. <i>P</i> (-3, -5)
<i>Q</i> (4, -5)	<i>Q</i> (-3, 2)
<i>R</i> (1, -2)	<i>R</i> (1, -5)

6. <i>P</i> (-6, 6)	7. <i>P</i> (4, 6)
<i>Q</i> (3, 6)	<i>Q</i> (1, 6)
<i>R</i> (-6, 2)	<i>R</i> (1, -2)

8. a. Which point is equidistant from the three posts?

- **b.** Where are the coordinates of this point?
- 9. Construction Construct three perpendicular bisectors for $\triangle ABC$. Then use the point of concurrency to construct the circumscribed circle.

Bisectors in Triangles

Name the point of concurrency of the angle bisectors.

3x

Find the value of *x*.

14. To start, identify the relationship between the line segments that are labeled.

Because the segments meet at the point where the $\underline{?}$ meet, the segments are $\underline{?}$.

Then write an equation to find *x*:

2x + 4

17. Construction Construct two angle bisectors for ΔXYZ . Then use the point of concurrency to construct the inscribed circle.

Class _____ Date _

Form K

Practice Medians and Altitudes

In $\triangle XYZ$, A is the centroid.

1. If DZ = 12, find ZA and AD.

To start, write an equation relating the distance between the vertex and centroid to the length of the median.

$$ZA = DZ$$

3. If AC = 3, find CX and AX.

Is \overline{MN} a median, an altitude, or neither? Explain.

To start, identify the relationship between \overline{MN} and the side it intersects.

 \overline{MN} _? the side of the triangle it intersects.

6. M

In Exercises 7–10, name each segment.

- **7.** a median in ΔSTU
- **8.** an altitude in ΔSTU

9. a median in ΔSBU

10. an altitude in $\triangle CBU$

11. *Q* is the centroid of ΔJKL . PK = 9x + 21y. Write expressions to represent PQ and QK.

_ Class .	
-----------	--

Date ____

Form K

5-4	Practice (continued)
	Medians and Altitudes

...

Find the orthocenter of each triangle.

Coordinate Geometry Find the coordinates of the orthocenter of $\triangle ABC$.

14. *A*(6, 10), *B*(2, 2), *C*(10, 2)

To start, graph the vertices of the triangle in a coordinate plane.

15. *P*(1, 7), *Q*(1, 2), *R*(11, 2)

17. Which triangle has a centroid at the same point as the orthocenter?

16. *D*(5, 11), *E*(2, 5), *F*(11, 5)

Practice 5-5 Indirect Proof

Form K

Complete the first step of an indirect proof of the given statement.

- **1.** There are fewer than 11 pencils in the box. Assume temporarily that there are _?_ pencils in the box.
- **2.** If a number ends in 0, then it is not divisible by 3. Assume temporarily that a number that ends in 0 <u>?</u>.
- **3.** 4x + 3 > 12

4. ΔRST is not an isosceles triangle. Assume temporarily that _?_.

Write the first step of an indirect proof of the given statement.

- **5.** There are more than 20 apples in a box.
- 6. If a number ends in *x*, then it is a multiple of 5.
- **7.** $m \angle XYZ < 100$
- **8.** ΔDEF is a right triangle.

Identify the two statements that contradict each other.

9. I. $\overrightarrow{MN} \parallel \overleftarrow{GH}$	М	N
II. \overrightarrow{MN} and \overrightarrow{GH} do not intersect.		
III. \overrightarrow{MN} and \overrightarrow{GH} are skew.	G	Ĥ

To start, identify two conditions that cannot be true at the same time.

_____ lines must be in the same plane. ? lines must not be in the same plane. Therefore, two lines cannot be both _? and _?.

55	Practice (continued)	Form K
5-5	Indirect Proof	
Identify the t	wo statements that contradict each other.	
10. I. <i>∆CDE</i> is	s equilateral.	
II. $m \angle C$ as	nd $m \angle E$ have the same measure.	
III. <i>m∠C</i> >	> 60	
11. I. <i>∆JKL</i> is	scalene.	
II. ΔJKL is	s obtuse.	
Ⅲ. ∆ <i>JKL</i> i	is isosceles. L	
12. I. The orth	Socienter of $\triangle CDE$ is point G.	•
II. The cen	ntroid and orthocenter of $\triangle CDE$ are both point G.	F
III. $\triangle CDE$	is scalene.	G H
13. I. The altit	rude of $\triangle PQR$ is outside the triangle.	
ΙΙ. Δ <i>PQR</i> i	s acute.	
III. The me	edian of ΔPQR is inside the triangle.	
	PZ	R
Complete the	indirect proof.	n
14. Given: ∠ <i>S</i>	$S \cong W$ T	
	$\angle T \cong \angle V$	\times
Prove: \overline{T}	Ś VŴ	X
Assume te	emporarily that 2 . $S = \frac{1}{W}$	<u>∧</u> _{II} ∧ _U
Then by th	he Converse of the $_?$, $\angle S$ and $\angle W$ cannot be	
This contr	radicts the given information that <u>?</u> .	
Therefore	, \overrightarrow{TS} must be ? \overrightarrow{VW} .	

Class_____ Date _____

Name _____

and $m \angle 1 > \underline{?}$.

For Exercises 2–5, list the angles of each triangle in order from smallest to largest.

5. ΔXYZ , where XY = 25, YZ = 11, and XZ = 15

For Exercises 6–8, list the sides of each triangle in order from shortest to longest.

8. ΔMNO , where $m \angle M = 56$, $m \angle N = 108$, and $m \angle O = 16$

9. Algebra List the sides in order from shortest to longest in ΔXYZ , with $m \angle X = 50$, $m \angle Y = 5x + 10$, and $m \angle Z = 5x$.

Form K

Practice (continued) 5-6 Inequalities in One Triangle

Can a triangle have sides with the given lengths? Explain.

10. 10 in., 13 in., 18 in.

To start, choose two sides and see if their sum exceeds the third side.

10 + 13 [$\stackrel{?}{>}$] 18 yes / no (Circle the correct answer.)

Check the other two sums.

11. 6 m, 5 m, 12 m

12. 11 ft, 8 ft, 18 ft

Algebra The lengths of two sides of a triangle are given. Find the range of possible lengths for the third side.

13. 4, 8

To start, write the inequalities relating the known side lengths and the unknown side length.

x + 8 > 8 + 4 > x + 4 > 8

14.13,8

15. 10, 15

- 16. Error Analysis A student draws a triangle with a perimeter of 12 in. The student says that the longest side measures 7 in. How do you know that the student is incorrect? Explain.
- **17. Algebra** ΔXYZ has the side lengths shown at the right. What values of x result in side lengths that could be the sides of a triangle. (*Hint:* Write and solve three inequalities.)

3x - 7 5x + 22x + 15

Class _____ Date __

Form K

Practice 5-7 Inequalities in Two Triangles

Write an inequality relating the given side lengths. If there is not enough information to reach a conclusion, write no conclusion.

1. AB and CB

To start, determine whether the triangles have two pairs of congruent sides.

$$\overline{AD} \cong \overline{CD}$$

$$\overline{DB} \cong \underline{?}$$

Then compare the hinge angles.

2. JL and MO

4. Two identical laptops are shown at the right. In which laptop is the distance from the top edge of the screen to the front edge of the keyboard greater? Explain.

3. *ST* and *BT*

Algebra Find the range of possible values for each variable.

Name	Class	Date
5-7 Practice (continued)		Form K
5-7 Practice (continued) Inequalities in Two Triangles	3	
Use the diagram at the right for Exercises 7–9. Complete each comparison with < or >. Then complete the explanation. 7. $m\angle ACB \qquad m\angle DCE$	A	C $D46^{\circ} 90^{\circ} 45^{\circ} E$
$\boxed{\qquad} forms a straight angle with \boxed{\qquad}$ The measure of $\angle DCE$ is $\boxed{\qquad}$.	and	
8. $AB \square DE$		
Because $\triangle BCE$ is an isosceles triangle, $\Box = \Box$ and \Box have two pairs of cong So, by the <u>?</u> Theorem, $AB \Box DE$. 9. $BE \Box CE$ The longest side of a \triangle is opposite the angle with	gruent sides.	2.
10. The diagram shows two paths that lead through Would a jogger run a greater distance on Path A Path B? Explain.		
Write an inequality relating the given angle mea		2 mi
11. $m \ge M$ and $m \ge R$ $N \xrightarrow{4} 4$ $N \xrightarrow{4} 4$ $R \xrightarrow{6} 0$ $P \xrightarrow{7} 4$ $\overline{MN}, \overline{MO}, \overline{PR}$, and \overline{QR} are $\underline{?}$. $NO \square PQ$	12. $m \ge U$ and $m \ge U$ V y y 10 Y 11 X y 10 Y 11 10 Y 11	5 [_] W