Chapter 5: Stereoisomerism

Stereoisomers are compounds that have the same structural formula in terms of order of attachment, but differ in arrangements of the atoms in space.

The difference in odor between caraway seeds and mint leaves arises from two stereoisomers of carvone due to different arrangement of atoms at the carbon (*)

5.1 Chirality and Enantiomers

- A molecule (or object) is either chiral or achiral. The word chiral, pronounced "kairal" to rhyme with spiral, comes from the Greek (cheir, hand). A chiral molecule (or object) is one that exhibits the property of handedness. An achiral molecule does not have this property.
- What test can we apply to tell whether a molecule (or object) is chiral or achiral?
- We examine the molecule (or object) and its mirror image. The mirror image of a chiral molecule cannot be superimposed on the molecule itself. The mirror image of an achiral molecule, however, is identical to or superimposable on the molecule itself.

Mirror-image relationship of chiral and achiral objects

The mirror image of a left hand is not a left hand, but a right hand.

Chiral object

The mirror image of a ball is identical with the object itself.

Achiral
object

Stereoisomers have the same order of attachment of atoms but different
spatial arrangements of atoms.
Chiral molecules possess the property of handedness.
Achiral molecules do not possess the property of handedness.
Enantiomers are a pair of molecules related as nonsuperimposable mirror images.

4.2 Stereogenic Centers: the Stereogenic Carbon Atom

Carbon atoms with four different groups attached to them are called stereogenic carbon atoms (also called chiral carbon)

More general case for stereogenic center

Plane of symmetry (sometimes called a mirror plane) is a plane that passes through a molecule (or object) in such a way that what is on one side of the plane is the exact reflection of what is on the other side. Any molecule with a plane of symmetry is achiral. Chiral molecules do not have a plane of symmetry

How many stereogenic carbons does 3-methylhexane have?

$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{*} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ CH_{3}

Draw the two enantiomers of 3-methylhexane.?

H
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{\stackrel{\text { Cl}}{\overline{\mathrm{C}}}-\mathrm{CH}_{3}}{\substack{\overline{3}}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

PROBLEM 5.2 Find the stereogenic centers in

a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
b. 3-methylcyclohexene
c. CIFCHCH 3
d. 2,3-dibromobutane

a.

b.

c.

d.

PROBLEM 5.3 Which of the following compounds is chiral?

a. 1-bromo-1-phenylethane b. 1-bromo-2-phenylethane
a.

b.

4.3 Configuration and the R-S Convention

Enantiomers differ in the arrangement of the groups attached to the stereogenic center. This arrangement of groups is called the configuration of the stereogenic center. Enantiomers are another type of configurational isomer; they are said to have opposite configurations.

or

$a \longrightarrow b \longrightarrow c$ counterclockwise

R-S or Cahn-Ingold-Prelog System

The priority order of the four groups is set in the following way:
Rule 1
The atoms directly attached to the stereogenic center are ranked according to atomic number. The higher the atomic number, the higher the priority

Rule 2

If a decision cannot be reached with rule 1, work outward from the stereogenic center until a decision is made. Example of ethyl and methyl below.

PROBLEM 5.8 Assign a priority order to each of the following sets of groups:
a. $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},-\mathrm{CH}_{3},-\mathrm{H},-\mathrm{NH}_{2}$
b. $-\mathrm{OH},-\mathrm{Br},-\mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{OH}$
c. $-\mathrm{OCH}_{3},-\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2},-\mathrm{CH}_{2} \mathrm{NH}_{2},-\mathrm{OH}$
d. $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

In each case, proceed from high to low priority.
a. $\quad-\mathrm{NH}_{2}>-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>-\mathrm{CH}_{3}>-\mathrm{H}$
b. $\quad-\mathrm{Br}>-\mathrm{OH}>\mathrm{CH}_{2} \mathrm{OH}>-\mathrm{CH}_{3}$
c. $-\mathrm{OCH}_{3}>-\mathrm{OH}>-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}>-\mathrm{CH}_{2} \mathrm{NH}_{2}$

The oxygen in the methoxy group $\left(-\mathrm{OCH}_{3}\right)$ is bonded to carbon, whereas the hydroxyl oxygen $(-\mathrm{OH})$ is bonded only to hydrogen.
d. $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}>-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}>-\mathrm{CH}_{2} \mathrm{CH}_{3}$

For stereogenic centers in cyclic compounds, the same rule for assigning priorities is followed

1,1,3-trimethylcyclohexane

Rule 3

Multiple bonds are treated as if they were an equal number of single bonds.

is treated as

Which group has the higher priority, isopropyl or vinyl?

PROBLEM 5.9 Assign a priority order to
a. $-\mathrm{C} \equiv \mathrm{CH}$ and $-\mathrm{CH}=\mathrm{CH}_{2}$ b. $-\mathrm{CH}=\mathrm{CH}_{2}$ and
 c. $-\mathrm{CH}=\mathrm{O},-\mathrm{CH}=\mathrm{CH}_{2},-\mathrm{CH}_{2} \mathrm{CH}_{3}$, and $-\mathrm{CH}_{2} \mathrm{OH}$
a. $-\mathrm{C}=\mathrm{CH}>-\mathrm{CH}=\mathrm{CH}_{2}$

The acetylenic carbon ($-\mathrm{C} \equiv$) is treated as though it is bonded to three carbons, while the olefinic carbon (- $\mathrm{CH}=$) is treated as though it is bonded to two carbons and a hydrogen (see Sec. 5.3).
b.

The phenyl carbon is treated as though it is bonded to three carbons.
c. $-\mathrm{CH}=0>-\mathrm{CH}_{2} \mathrm{OH}>-\mathrm{CH}=\mathrm{CH}_{2}>-\mathrm{CH}_{2} \mathrm{CH}_{3}$

The aldehyde carbon is treated as though it is bonded to two oxygens.

Assign the configuration (R or S) to the following enantiomer of 3-methylhexane

First assign the priority order to the four different groups attached to the stereogenic center.

$$
-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}>-\mathrm{CH}_{2} \mathrm{CH}_{3}>-\mathrm{CH}_{3}>-\mathrm{H}
$$

Now view the molecule from the side opposite the lowestpriority group (-H) and determine whether the remaining three groups, from high to low priority, form a clockwise (R) or counterclockwise (S) array.

What is absolute configuration for each of the stereogenic center shown in the following compounds?

a. Priority order: $\mathrm{OH}>\mathrm{CH}=\mathrm{O}>\mathrm{CH}_{3}>\mathrm{H}$. Configuration is R.

b. Priority order: $\mathrm{NH}_{2}>-\mathrm{C}_{6} \mathrm{H}_{5}>\mathrm{CH}_{3}>\mathrm{H}$. The configuration is S .

counterclockwie or S

5.4 The E-Z convention for Cis-Trans Isomers

cis or trans?

cis or trans?

Assign the priorities of the two groups attached to each carbon of the double bond:

If the two higher-priority groups are on opposite sides of the double bond, the prefix \boldsymbol{E} (from the German entgegen, opposite) is used.

If the two higher-priority groups are on the same side of the double bond, the prefix is \boldsymbol{Z} (from the German zusammen, together).

(Z)-1-bromo-2-chloro-
2-fluoro-1-iodoethene

(E)-1-bromo-1-chloro-

2-methyl-1-butene

Name each compound by the $E-Z$ system

(E) -2-pentene

(E) -1-bromo-2-chloro-1-fluoroethene

Write the structure for
a. (E)-1,3-hexadiene
b. b. (Z)-2-butene

(E)-1,3-hexadiene

(Z)-2-butene

5.5 Polarized Light and Optical Activity

An ordinary light beam consists of waves that vibrate in all possible planes perpendicular to its path. However, if this light beam is passed through certain types of substances, the waves of the transmitted beam will all vibrate in parallel planes.

A polarimeter is an instrument used to detect optical activity. An optically active substance rotates plane-polarized light, whereas an optically inactive substance does not.

- The angle through which the analyzer prism must be rotated in this experiment is called α, the observed rotation. It is equal to the number of degrees that the
- optically active substance rotated the beam of planepolarized light. If the analyzer must be rotated to the right (clockwise), the optically active substance is said to be dextrorotatory (+); if rotated to the left
(counterclockwise), the substance is levorotatory (-)

Specific Rotation

Example

Camphor is optically active. A camphor sample (1.5g) dissolved in ethanol (optically inactive) to a total volume of 50 mL , placed in a $5-\mathrm{cm}$ polarimeter sample tube, gives an observed rotation of $+0.66^{\circ}$ at $20^{\circ} \mathrm{C}$ (using the sodium D-line). Calculate and express the specific rotation of camphor.

5.6 Properties of Enantiomers

Enantiomers have identical achiral properties, such as melting point, boiling point, density, and various types of spectra. Their solubilities in an ordinary, achiral solvent are also identical. However, enantiomers have different chiral properties, one of which is the direction in which they rotate plane-polarized light (clockwise or counterclockwise).

There is no obvious relationship between configuration (R or S) and sign of rotation.

Enantiomers often behave differently in a biological setting because these properties usually involve a reaction with another chiral molecule. For example, the enzyme lactic acid dehydrogenase will oxidize (+)-lactic acid to pyruvic acid, but it will not oxidize (-)-lactic acid

5.7 Fischer Projection Formulas

A Fischer projection is a type of two-dimensional formula of a molecule used to represent the three-dimensional configurations of stereogenic centers.

There are two important things to notice about Fischer projection formulas.
First, the C for the stereogenic carbon atom is omitted and is represented simply as the crossing point of the horizontal and vertical lines.

Second, horizontal lines connect the stereogenic center to groups that project above the plane of the page, toward the viewer; vertical lines lead to groups that project below the plane of the page, away from the viewer.

Determine the absolute (R or S) configuration of the stereoisomer of 2-chlorobutane shown in the following Fischer projection

Determine the absolute configuration of the following enantiomer of 2butanol from its Fischer projection

5.15

(S)-lactic acid

5.8 Compounds with More Than One Stereogenic Center; Diastereomers.

It is important to be able to determine how many isomers exist and how they are related to one another.

\mathbf{n} chiral centers give rise to $\mathbf{2}^{\mathbf{n}}$ possible stereoisomers.

mirror

enantiomers
mirror

enantiomers

The four stereoisomers of 2-bromo-3-chlorobutane a compound with two stereogenic centers

Consider the relationship between, for example, the $(2 R, 3 R)$ and $(2 R, 3 S)$ forms of the isomers.These forms are not mirror images because they have the same configuration at carbon-2, though they have opposite configurations at carbon-3.
They are certainly stereoisomers, but they are not enantiomers. For such pairs of stereoisomers, we use the term diastereomers.

Diastereomers are stereoisomers that are not mirror images of each other.

Given is the Fischer projection of glucose (blood sugar), how may stereoisomers of this sugar are possible?

glucose

There are four different stereogenic centers, marked below with asterisks. There are, therefore, $2^{4}=16$ possible stereoisomers.

5.9 Meso Compounds; the Stereoisomers of Tartaric Acid

Consider the stereoisomers of 2,3-dichlorobutane

2,3-dichlorobutane

enantiomers, chiral

The "two" structures, (R, S) and (S, R), in fact, now represent a single compound

tartaric acid

A meso compound is an achiral diastereomer of a compound with stereogenic centers

Configuration $[\alpha]_{\mathrm{D}}^{20^{\circ}}\left(\mathrm{H}_{2} \mathrm{O}\right)$
Melting point, ${ }^{\circ} \mathrm{C}$
(R, R)
$+12$
170
$\mathrm{HO}-\begin{gathered}\mathrm{CO}_{2} \mathrm{H} \\ \mathrm{H}-\mathrm{OH} \\ -\mathrm{OH} \\ \mathrm{CO}_{2} \mathrm{H}\end{gathered}$
(S, S)
-12
170


```
meso (R,S)
0
    140
```


5.10 Stereochemistry A Recap of Definitions

A \begin{tabular}{ll}

Conformers:
Configurational
Isomers:
:---
not interconvertible by rotation, only by breaking and
making bonds

$\mathrm{B} \begin{cases}\text { Chiral: } & \begin{array}{l}\text { mirror image not superimposable on itself } \\
\text { Achiral: }\end{array} \\
\text { molecule and mirror image are identical }\end{cases}$

C $\begin{cases}\text { Enantiomers: } & \begin{array}{l}\text { mirror images; have opposite configurations at all stereogenic } \\
\text { centers }\end{array} \\
\text { Diastereomers: } & \begin{array}{l}\text { stereoisomers but not mirror images; have same configuration } \\
\text { at one or more centers, but differ at the remaining stereogenic }\end{array} \\
\text { centers }\end{cases}$
\end{tabular}$>$.

1.Cis-trans 2-butene (Z and E notation)

These isomers are configurational, achiral, and diastereomers
2. Staggered and eclipsed ethane.

These are achiral conformers. They are diastereomeric conformers.

3. (R)- and (S)-lactic acid.

These isomers are configurational, each is
 and
 a pair of enantiomers

4-Meso- and (R, R)-tartaric acids

meso

(R, R)

These isomers are configurational and diastereomers. One is achiral, and the other is chiral.

Tartaric acid crystals under polarized light

5.11 Stereochemistry and Chemical Reactions

How important is stereochemistry in chemical reactions?

The product has one stereogenic center, marked with an asterisk, but both enantiomers are formed in exactly equal amounts. The product is a racemic mixture. Why?
Let us consider the generally accepted mechanism.

When chiral products are obtained from achiral reactants, both enantiomers are formed at the same rates, in equal amounts.

A racemic mixture is a $50: 50$ mixture of a pair of enantiomers.

(2R,3R)-2-bromo-3-chlorobutane

(2S,3R)-2-bromo-3-chlorobutane

Reaction of a chiral regent with an achiral reagent when it creates a new stereogenic center, leads to diastereomeric products at different rates and in unequal amounts.

5.12 Resolution of a Racemic Mixture

To separate a racemic mixture, we first react with a chiral reagent. The product will be a pair of diastereomers. These, differ in all types of physical properties and can therefore be separated by ordinary methods.

$$
\left\{\begin{array}{l}
R \\
S
\end{array}\right\}+R \longrightarrow\left\{\begin{array}{l}
R-R \\
S-R
\end{array}\right\}
$$

pair of
enantiomers (not separable)
chiral diastereomeric reagent
(separable)

Chapter 5
Homework

27303133343639424344

5.31 Tell whether the following structures are identical o o enantiomers:

5.49 Chloramphenicol is an antibiotic that is particularly effective against typhoid fever. Its structure is

What is the configuration (R, S) at each stereogenic center?

