Chapter #5 Types of Chemical Reactions

A chemical reaction occurs when one or more chemicals react to become different chemicals. A chemical reaction is characterized by the re-arrangement of atoms from the reactant side of the equation to the product side

Evidence for Chemical Reactions

- A gas is released.
- An **insoluble substance** is produced.
- A permanent **color** change is observed.
- A heat energy change is noted. (exothermic reaction: releases heat) (endothermic reaction: absorbs heat) (Light is emitted)

Five Major Chemical Reactions

Jul 26-7:59 AM

Law of Conservation of Mass

- Established in 1789 by French Chemist Antoine Lavoisier
- States that mass is neither created nor destroyed in any ordinary chemical reaction.
- The mass of substances produced (products) by a chemical reaction is always equal to the mass of the reacting substances (reactants).
- No mass is gained or lost.

According to the law of conservation of mass, how much zinc was present in the zinc carbonate? **A**. 40 g **B**. 88 g **C**. 104 g **D**. 256 g

Nov 20-3:35 PM

Counting Atoms

Coefficient

2HCl –TWO Hydrogen atoms and TWO Chlorine atoms

Subscript

- If an element has a _{small} number after it, this is how many atoms of that specific atom there are.
- Examples: H_2O –TWO Hydrogen atoms, and ONE Oxygen atom C_2H_4 –TWO Carbon atoms and FOUR Hydrogen atoms
- IF AN ATOM DOES NOT HAVE A NUMBER IN FRONT OR BEHIND, IT IS ALWAYS ONE

Putting the Two Together

- If you have coefficients AND subscripts, You need to multiply (times) the coefficient by the subscript.
- Examples:

 $2MnO_4$ (2 x 1)=2 Manganese atoms and (2 x 4)=8 Oxygen atoms

 $3H_3PO_4$ (3 x 3)= 9 Hydrogen atoms, (3 x 1)= 3 Phosphorous atoms, and (3 x 4)= 12 Oxygen atoms

Brackets

- If there are brackets within your molecule...
- A) The coefficient applies to ALL atoms in the molecule, bracket or not.
- B) A subscript OUTSIDE the bracket applies to ALL atoms INSIDE the bracket

Examples:

 $Al(NO_3)_3$

1 Aluminum atom, 3 Nitrogen atoms, and 9 (3 x 3) Oxygen atoms

 $3Au_2(SeO_4)_3$

6 Gold atoms (2 x 3), 9 Selenium atoms (3 x 3), and 36 Oxygen atoms (4 x 3 x 3).

Nov 20-3:06 PM

Practice Counting Atoms	
1) H ₂ O	7) 4HNO₃
2) MgCl ₂	8) 4Li ₂ O
3) Li ₂ SO ₄	9) 3H₂O
4) Mg(C ₂ H ₃ O ₂) ₂	10) 3Al ₂ O ₃
5) (NH ₄₎) ₂ S	11) 2Ca(OH) ₂
6)5Al(NO ₃) ₃	12) 3C ₆ H ₁₂ O ₆

Chemical reactions are represented by chemical equations.

- The '+' is read as 'reacts with' and the arrow means 'yields'.
- The chemical formulas on the left represent the starting substances, called **reactants**.
- The substances produced by the reaction are shown on the right, and are called **products**.
- The numbers in front of the formulas are called coefficients (the number '1' is usually omitted).

Aug 1-9:25 PM

Because atoms are neither created nor destroyed in a reaction, a chemical equation must have an equal number of atoms of each element on each side of the arrow (i.e. the equation is said to be 'balanced').

Nov 20-1:04 PM

Note! Subscripts should never be changed when trying to balance a chemical equation.

Changing a subscript changes the actual identity of a product or reactant.

Balancing a chemical equation only involves changing the relative amounts of each product or reactant.

Aug 1-9:40 PM

Practice Balancing problems.

1. Al +
$$N_2 \rightarrow$$
 AlN

2. Fe+
$$O_2 \rightarrow Fe_3O_4$$

3.
$$CaCO_3 \rightarrow CaO + CO_2$$

4.
$$KI+$$
 $Cl_2 \rightarrow KCl + I_2$

5.
$$BaO_2 \rightarrow BaO + O_2$$

6.
$$NH_4NO_3 \rightarrow N_2O + H_2O$$

7.
$$Pb(NO_3)_2 + HCl \rightarrow PbCl_2 + HNO_3$$

8. Al +
$$H_2SO_4 \rightarrow Al_2(SO_4)_3 + H_2$$

9.
$$MgCl_2 + NaOH \rightarrow Mg(OH)_2 + NaCl$$

10.
$$AgNO_3 + CuCl_2 \rightarrow AgCl + Cu(NO_3)_2$$

Nov 20-1:23 PM

Combustion: A combustion reaction is when oxygen combines with another compound to form water and carbon dioxide. These reactions are exothermic, meaning they produce heat.

$$CxHy + O, --> CO, + H, O$$

$$\underline{} C_{_{10}} H_{_{8}} + \underline{} O_{_{2}} ---> \underline{} CO_{_{2}} + \underline{} H_{_{2}} O$$

$$C_2H_6 + C_2 - CO_2 + H_2O$$

$$C_{6}H_{12}O_{6} + O_{2} ----> CO_{2} + H_{2}O_{3}$$

SINGLE REPLACEMENT: an element reacts with a compound to form a new element & a new compound

* To recognize a SINGLE REPLACEMENT reaction, look for one element and one compound as the reactants. *

Aug 1-10:45 PM

DOUBLE REPLACEMENT: a compound reacts with another compound to form 2 new compounds

* To recognize a DOUBLE REPLACEMENT reaction, look for 2

imgres.webloc