
Chapter 6 – Architectural Design

Summary

1 Chapter 6 Architectural design

Topics covered

• Architectural design decisions

• Architectural views

• Architectural patterns

• Application architectures

2 Chapter 6 Architectural design

Software architecture

• The design process for identifying the sub-
systems making up a system and the
framework for sub-system control and
communication is architectural design.

• The output of this design process is a
description of the software architecture.

3 Chapter 6 Architectural design

Architectural design

• An early stage of the system design process.

• Represents the link between specification and
design processes.

• Often carried out in parallel with some
specification activities.

• It involves identifying major system
components and their communications.

4 Chapter 6 Architectural design

The architecture of a packing robot
control system

5 Chapter 6 Architectural design

Architectural abstraction

• Architecture in the small is concerned with the
architecture of individual programs. At this level,
we are concerned with the way that an individual
program is decomposed into components.

• Architecture in the large is concerned with the
architecture of complex enterprise systems that
include other systems, programs, and program
components. These enterprise systems are
distributed over different computers, which may
be owned and managed by different companies.

6 Chapter 6 Architectural design

Advantages of explicit architecture

• Stakeholder communication
– Architecture may be used as a focus of discussion

by system stakeholders.

• System analysis
– Means that analysis of whether the system can

meet its non-functional requirements is possible.

• Large-scale reuse
– The architecture may be reusable across a range

of systems
– Product-line architectures may be developed.

7 Chapter 6 Architectural design

Architectural representations

• Simple, informal block diagrams showing entities
and relationships are the most frequently used
method for documenting software architectures.

• But these have been criticised because they lack
semantics, do not show the types of relationships
between entities nor the visible properties of
entities in the architecture.

• Depends on the use of architectural models.The
requirements for model semantics depends on
how the models are used.

8 Chapter 6 Architectural design

Box and line diagrams

• Very abstract - they do not show the nature of
component relationships nor the externally
visible properties of the sub-systems.

• However, useful for communication with
stakeholders and for project planning.

9 Chapter 6 Architectural design

Use of architectural models

• As a way of facilitating discussion about the system
design
– A high-level architectural view of a system is useful for

communication with system stakeholders and project
planning because it is not cluttered with detail.
Stakeholders can relate to it and understand an abstract
view of the system. They can then discuss the system as a
whole without being confused by detail.

• As a way of documenting an architecture that has been
designed
– The aim here is to produce a complete system model that

shows the different components in a system, their
interfaces and their connections.

Chapter 6 Architectural design 10

Architectural design decisions

• Architectural design is a creative process so
the process differs depending on the type of
system being developed.

• However, a number of common decisions
span all design processes and these decisions
affect the non-functional characteristics of the
system.

11 Chapter 6 Architectural design

Architectural design decisions

• Is there a generic application architecture that can be used?

• How will the system be distributed?

• What architectural styles are appropriate?

• What approach will be used to structure the system?

• How will the system be decomposed into modules?

• What control strategy should be used?

• How will the architectural design be evaluated?

• How should the architecture be documented?

12 Chapter 6 Architectural design

Architecture reuse

• Systems in the same domain often have similar
architectures that reflect domain concepts.

• Application product lines are built around a core
architecture with variants that satisfy particular
customer requirements.

• The architecture of a system may be designed
around one of more architectural patterns or
‘styles’.
– These capture the essence of an architecture and can

be instantiated in different ways.
– Discussed later in this lecture.

13 Chapter 6 Architectural design

Architecture and system characteristics

• Performance
– Localise critical operations and minimise communications. Use large

rather than fine-grain components.

• Security
– Use a layered architecture with critical assets in the inner layers.

• Safety
– Localise safety-critical features in a small number of sub-systems.

• Availability
– Include redundant components and mechanisms for fault tolerance.

• Maintainability
– Use fine-grain, replaceable components.

14 Chapter 6 Architectural design

Architectural views

• What views or perspectives are useful when designing
and documenting a system’s architecture?

• What notations should be used for describing
architectural models?

• Each architectural model only shows one view or
perspective of the system.
– It might show how a system is decomposed into modules,

how the run-time processes interact or the different ways
in which system components are distributed across a
network. For both design and documentation, you usually
need to present multiple views of the software
architecture.

15 Chapter 6 Architectural design

4 + 1 view model of software architecture

• A logical view, which shows the key abstractions in the system
as objects or object classes.

• A process view, which shows how, at run-time, the system is
composed of interacting processes.

• A development view, which shows how the software is
decomposed for development.

• A physical view, which shows the system hardware and how
software components are distributed across the processors in
the system.

• Related using use cases or scenarios (+1)

16 Chapter 6 Architectural design

Architectural patterns

• Patterns are a means of representing, sharing and
reusing knowledge.

• An architectural pattern is a stylized description of
good design practice, which has been tried and
tested in different environments.

• Patterns should include information about when
they are and when the are not useful.

• Patterns may be represented using tabular and
graphical descriptions.

17 Chapter 6 Architectural design

The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is

structured into three logical components that interact with each other. The

Model component manages the system data and associated operations on

that data. The View component defines and manages how the data is

presented to the user. The Controller component manages user interaction

(e.g., key presses, mouse clicks, etc.) and passes these interactions to the

View and the Model. See Figure 6.3.

Example Figure 6.4 shows the architecture of a web-based application system

organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data. Also used

when the future requirements for interaction and presentation of data are

unknown.

Advantages Allows the data to change independently of its representation and vice versa.

Supports presentation of the same data in different ways with changes made

in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and

interactions are simple.

18 Chapter 6 Architectural design

The organization of the Model-View-Controller

19 Chapter 6 Architectural design

Web application architecture using the MVC
pattern

20 Chapter 6 Architectural design

Layered architecture

• Used to model the interfacing of sub-systems.

• Organises the system into a set of layers (or abstract
machines) each of which provide a set of services.

• Supports the incremental development of sub-systems in
different layers. When a layer interface changes, only the
adjacent layer is affected.

• However, often artificial to structure systems in this way.

21 Chapter 6 Architectural design

The Layered architecture pattern

Name Layered architecture

Description Organizes the system into layers with related functionality

associated with each layer. A layer provides services to the layer

above it so the lowest-level layers represent core services that

are likely to be used throughout the system. See Figure 6.6.

Example A layered model of a system for sharing copyright documents

held in different libraries, as shown in Figure 6.7.

When used Used when building new facilities on top of existing systems;

when the development is spread across several teams with each

team responsibility for a layer of functionality; when there is a

requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is

maintained. Redundant facilities (e.g., authentication) can be

provided in each layer to increase the dependability of the

system.

Disadvantages In practice, providing a clean separation between layers is often

difficult and a high-level layer may have to interact directly with

lower-level layers rather than through the layer immediately

below it. Performance can be a problem because of multiple

levels of interpretation of a service request as it is processed at

each layer.

22 Chapter 6 Architectural design

A generic layered architecture

23 Chapter 6 Architectural design

The architecture of the LIBSYS system

24 Chapter 6 Architectural design

Key points

• A software architecture is a description of how a software
system is organized.

• Architectural design decisions include decisions on the type
of application, the distribution of the system, the
architectural styles to be used.

• Architectures may be documented from several different
perspectives or viewssuch as a conceptual view, a logical
view, a process view, and a development view.

• Architectural patterns are a means of reusing knowledge
about generic system architectures. They describe the
architecture, explain when it may be used and describe its
advantages and disadvantages.

Chapter 6 Architectural design 25

Repository architecture

• Sub-systems must exchange data. This may be
done in two ways:
– Shared data is held in a central database or

repository and may be accessed by all sub-
systems;

– Each sub-system maintains its own database and
passes data explicitly to other sub-systems.

• When large amounts of data are to be shared,
the repository model of sharing is most
commonly used a this is an efficient data
sharing mechanism.

26 Chapter 6 Architectural design

The Repository pattern
Name Repository

Description All data in a system is managed in a central repository that is

accessible to all system components. Components do not

interact directly, only through the repository.

Example Figure 6.9 is an example of an IDE where the components use

a repository of system design information. Each software tool

generates information which is then available for use by other

tools.

When used You should use this pattern when you have a system in which

large volumes of information are generated that has to be

stored for a long time. You may also use it in data-driven

systems where the inclusion of data in the repository triggers

an action or tool.

Advantages Components can be independent—they do not need to know

of the existence of other components. Changes made by one

component can be propagated to all components. All data can

be managed consistently (e.g., backups done at the same

time) as it is all in one place.

Disadvantages The repository is a single point of failure so problems in the

repository affect the whole system. May be inefficiencies in

organizing all communication through the repository.

Distributing the repository across several computers may be

difficult.
27 Chapter 6 Architectural design

A repository architecture for an IDE

28 Chapter 6 Architectural design

Client-server architecture

• Distributed system model which shows how
data and processing is distributed across a
range of components.
– Can be implemented on a single computer.

• Set of stand-alone servers which provide
specific services such as printing, data
management, etc.

• Set of clients which call on these services.
• Network which allows clients to access

servers.

29 Chapter 6 Architectural design

The Client–server pattern

Name Client-server

Description In a client–server architecture, the functionality of the system is

organized into services, with each service delivered from a

separate server. Clients are users of these services and access

servers to make use of them.

Example Figure 6.11 is an example of a film and video/DVD library organized

as a client–server system.

When used Used when data in a shared database has to be accessed from a

range of locations. Because servers can be replicated, may also be

used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be

distributed across a network. General functionality (e.g., a printing

service) can be available to all clients and does not need to be

implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of

service attacks or server failure. Performance may be unpredictable

because it depends on the network as well as the system. May be

management problems if servers are owned by different

organizations.

30 Chapter 6 Architectural design

A client–server architecture for a film
library

31 Chapter 6 Architectural design

Pipe and filter architecture

• Functional transformations process their
inputs to produce outputs.

• May be referred to as a pipe and filter model
(as in UNIX shell).

• Variants of this approach are very common.
When transformations are sequential, this is a
batch sequential model which is extensively
used in data processing systems.

• Not really suitable for interactive systems.

32 Chapter 6 Architectural design

The pipe and filter pattern

Name Pipe and filter

Description The processing of the data in a system is organized so that each

processing component (filter) is discrete and carries out one type of

data transformation. The data flows (as in a pipe) from one component

to another for processing.

Example Figure 6.13 is an example of a pipe and filter system used for

processing invoices.

When used Commonly used in data processing applications (both batch- and

transaction-based) where inputs are processed in separate stages to

generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style

matches the structure of many business processes. Evolution by

adding transformations is straightforward. Can be implemented as

either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between

communicating transformations. Each transformation must parse its

input and unparse its output to the agreed form. This increases system

overhead and may mean that it is impossible to reuse functional

transformations that use incompatible data structures.

33 Chapter 6 Architectural design

An example of the pipe and filter
architecture

34 Chapter 6 Architectural design

Application architectures

• Application systems are designed to meet an
organizational need.

• As businesses have much in common, their
application systems also tend to have a common
architecture that reflects the application
requirements.

• A generic application architecture is an architecture
for a type of software system that may be configured
and adapted to create a system that meets specific
requirements.

35 Chapter 6 Architectural design

Use of application architectures

• As a starting point for architectural design.

• As a design checklist.

• As a way of organising the work of the
development team.

• As a means of assessing components for
reuse.

• As a vocabulary for talking about application
types.

36 Chapter 6 Architectural design

Examples of application types

• Data processing applications
– Data driven applications that process data in batches without

explicit user intervention during the processing.

• Transaction processing applications
– Data-centred applications that process user requests and

update information in a system database.

• Event processing systems
– Applications where system actions depend on interpreting

events from the system’s environment.

• Language processing systems
– Applications where the users’ intentions are specified in a

formal language that is processed and interpreted by the
system.

Chapter 6 Architectural design 37

Application type examples

• Focus here is on transaction processing and language processing
systems.

• Transaction processing systems
– E-commerce systems;

– Reservation systems.

• Language processing systems
– Compilers;

– Command interpreters.

38 Chapter 6 Architectural design

Transaction processing systems

• Process user requests for information from a
database or requests to update the database.

• From a user perspective a transaction is:
– Any coherent sequence of operations that satisfies

a goal;
– For example - find the times of flights from

London to Paris.

• Users make asynchronous requests for service
which are then processed by a transaction
manager.

39 Chapter 6 Architectural design

The structure of transaction processing
applications

40 Chapter 6 Architectural design

The software architecture of an ATM system

41 Chapter 6 Architectural design

Information systems architecture

• Information systems have a generic architecture that
can be organised as a layered architecture.

• These are transaction-based systems as interaction
with these systems generally involves database
transactions.

• Layers include:

– The user interface

– User communications

– Information retrieval

– System database

42 Chapter 6 Architectural design

Layered information system architecture

43 Chapter 6 Architectural design

The architecture of the MHC-PMS

44 Chapter 6 Architectural design

Web-based information systems

• Information and resource management systems are now
usually web-based systems where the user interfaces are
implemented using a web browser.

• For example, e-commerce systems are Internet-based
resource management systems that accept electronic orders
for goods or services and then arrange delivery of these goods
or services to the customer.

• In an e-commerce system, the application-specific layer
includes additional functionality supporting a ‘shopping cart’
in which users can place a number of items in separate
transactions, then pay for them all together in a single
transaction.

 Chapter 6 Architectural design 45

Server implementation

• These systems are often implemented as multi-
tier client server/architectures (discussed in
Chapter 18)
– The web server is responsible for all user

communications, with the user interface implemented
using a web browser;

– The application server is responsible for implementing
application-specific logic as well as information
storage and retrieval requests;

– The database server moves information to and from
the database and handles transaction management.

Chapter 6 Architectural design 46

Language processing systems

• Accept a natural or artificial language as input and generate
some other representation of that language.

• May include an interpreter to act on the instructions in the
language that is being processed.

• Used in situations where the easiest way to solve a problem is to
describe an algorithm or describe the system data

– Meta-case tools process tool descriptions, method rules, etc and
generate tools.

47 Chapter 6 Architectural design

The architecture of a language
processing system

48 Chapter 6 Architectural design

Compiler components

• A lexical analyzer, which takes input language
tokens and converts them to an internal form.

• A symbol table, which holds information about
the names of entities (variables, class names,
object names, etc.) used in the text that is being
translated.

• A syntax analyzer, which checks the syntax of the
language being translated.

• A syntax tree, which is an internal structure
representing the program being compiled.

Chapter 6 Architectural design 49

Compiler components

• A semantic analyzer that uses information
from the syntax tree and the symbol table to
check the semantic correctness of the input
language text.

• A code generator that ‘walks’ the syntax tree
and generates abstract machine code.

Chapter 6 Architectural design 50

A pipe and filter compiler architecture

51 Chapter 6 Architectural design

A repository architecture for a
language processing system

52 Chapter 6 Architectural design

Key points

• Models of application systems architectures help us
understand and compare applications, validate
application system designs and assess large-scale
components for reuse.

• Transaction processing systems are interactive systems
that allow information in a database to be remotely
accessed and modified by a number of users.

• Language processing systems are used to translate
texts from one language into another and to carry out
the instructions specified in the input language. They
include a translator and an abstract machine that
executes the generated language.

53 Chapter 6 Architectural design

